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I. Introduction

A SIGNIFICANT body of research has led to the con-
clusion that peptides are important regulatory com-

ponents of nervous system function. Initially, the “peptider-
gic neuron” concept was reserved for the neurosecretory
cells in the hypothalamus that released oxytocin and vaso-
pressin directly into the circulation from their nerve termi-

nals in the posterior pituitary. The idea of neurosecretion in
the hypothalamus can be traced back to the work of Scharrer
and Scharrer (1) as early as the late 1920s. Later work by
Harris (2) specified that the hypothalamic substances se-
creted into the portal vessels were pituitary specific and led
to the concept of “releasing factors” whose purpose was to
initiate a cascade of events resulting in the release of pe-
ripherally active hormones (3). The discovery and chemical
characterization of the first identified hypothalamic releasing
factor, TRH (pyro-Glu-His-ProNH2, also known as thyro-
liberin, and herein referred to as TRH) by Guillemin and
colleagues (4) and Schally and colleagues (5) provided ulti-
mate confirmation for the founding principles of neuroen-
docrinology and was followed by the discovery of other
peptide-releasing factors (6, 7).

TRH, produced in the paraventricular nucleus of the hy-
pothalamus (PVN),1 stimulates the biosynthesis and secre-
tion of TSH from the anterior pituitary (8, 9). TSH, in turn,
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1 Abbreviations: iTRH, immunoreactive TRH; TRH-OH, deamidated
TRH; CHP, cyclo (His-Pro); PTU, propylthiouracil; HPT, hypothalamic-
pituitary-thyroid; DVC, dorsal vagal complex; DMN, dorsal motor nu-
cleus of the vagus; NTS, nucleus tractus solitaris; IML, intermediolateral
column of the spinal cord; SP, substance P; NPY, neuropeptide Y; CGRP,
calcitonin gene-related peptide; CT, calcitonin; IL1, interleukin 1; VIP,
vasoactive intestinal peptide; OAG, the diacylglycerol analog 1-oleoyl-
2-acetyl-sn-glycerol; CCK, cholecystokinin; NT, neurotensin; THC, tet-
rahydrocannabinol; ACh, acetylcholine; ECS, electroconvulsive shock
treatment; NE, norepinephrine; E, epinephrine; DA, dopamine; 5-HT,
serotonin; NO, nitric oxide; NMDA, N-methyl-D-aspartate; 6-HODA,
6-hydroxydopamine; 5,7-DHT, 5,7-dihydroxytryptamine; GABA,
g-aminobutyric acid; EOPs, endogenous opioid peptides; CA, cat-
echolamines; ENK, enkephalins; DYN, dynorphin; SRIF, somatostatin;
CP, carboxypeptidases; CPE, carboxypeptidase E; CSF, cerebrospinal
fluid; NAc, nucleus accumbens; VTA, ventral tegmental area; PVN,
periventricular nucleus of the hypothalamus; RPa, nucleus raphe pal-
lidus; RMg, nucleus raphe magnus; ROb, nucleus raphe obscurus; icv,
intracerebroventricular; sc, subcutaneous, ic, intracerebral; SHR, spon-
taneously hypertensive rats; WKY, Wistar-Kyoto rats; MCA, middle
cerebral artery; ALS, amyotrophic lateral sclerosis; RMN, Rolling mouse
Nagoya model of ataxia; CNS, central nervous system; EEG, electroen-
cephalogram; PAG, periaqueductal gray; RPGi, nucleus reticularis para-
gigantocellularis; MAF, mesencephalic reticular formation; POA; pre-
optic nucleus of the hypothalamus; LC, locus coeruleus; LPGi, nucleus
paragigantocellularis lateralis; LS, long-sleep; SS, short-sleep; PBMC,
peripheral blood monocyte; ME, median eminence; RER, rough endo-
plasmic reticulum; PCs, proconverting enzymes; RSP, regulated secre-
tory pathway; GC, Golgi complex; SG, secretory granules; TGN, trans-
Golgi network; ICC immunocytochemistry; TRE, thyroid response
element; CRE, cAMP response element.
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stimulates thyroid hormone biosynthesis and release (10).
TRH is central in regulating the hypothalamic-pituitary-
thyroid (HPT) axis. TRH influences the release of other hor-
mones, including PRL, GH, vasopressin, and insulin (11–13),
and the classic neurotransmitters noradrenaline and adren-
aline (14). Further, TRH is present in many brain loci outside
of the hypothalamus, supporting a potential role as a neu-
romodulator or neurotransmitter outside of traditional HPT
axis function (15, 16). For example, TRH is implicated as a
modulator of seizure activity (17) and gastrointestinal func-
tion (18). TRH has been also found outside the central ner-
vous system (CNS) in the gastrointestinal tract, pancreas,
reproductive tissues including placenta, ovary, testis, semi-
nal vesicles, and prostate, retina, and blood elements (19).
The widespread distribution of TRH within and outside the
CNS supports a diverse range of roles for this molecule, roles
likely to involve many functions outside of the traditional
HPT axis.

Of the many peptide products derived from the TRH pre-
cursor (pro-TRH described below), until recently only TRH
itself was studied extensively. In the last few years, a new
wave of research has identified many other products derived
from pro-TRH and suggests potential biological functions for
these non-TRH peptides. The immediate precursor to TRH,
TRH-Gly, independent of conversion to TRH, stimulates gas-
tric acid secretion in a dose-dependent manner, although it
is 100-fold less potent than TRH (18). Other peptides derived
from pro-TRH, originally referred to as cryptic peptides be-
cause their roles are incompletely understood, are now being
studied. In the hypothalamus, prepro-TRH160–169 (pST10, also
known as Ps4) and prepro-TRH178–199 (pFE22), peptides that
lie between the third and fourth and the fourth and fifth
progenitor sequences for TRH in the TRH precursor, respec-
tively, are released from perifused rat hypothalamic slices
and the median eminence (20). [The reader should note that
in Fig. 1, pro-TRH-derived peptides are named by “p” for
peptide followed by the single letter amino acid designation
for the first and last amino acid of the peptide, along with the
peptide length in subscript. Where these peptides are first
mentioned, they are followed by the longer prepro-TRH
name that describes their amino acid residue positions
within the precursor.] prepro-TRH160–169 potentiates TSH
release from anterior pituitary and stimulates TSHb gene
promoter activity (21). This peptide also potentiates TRH-
induced gastric acid secretion when microinjected into the
dorsal motor nucleus of the vagus (22). Thus, prepro-
TRH160–169 acts in concert with TRH both within and outside
traditional HPT roles. prepro-TRH178–199 is proposed to be a
CRH-inhibiting factor (Refs. 23 and 24 but see Ref. 25).

Both prepro-TRH25–50 (pYE26) and prepro-TRH53–74

(pFT22) are released from the median eminence (ME) and
isolated anterior pituitary cells in response to depolarizing
concentrations of potassium (26). In general, pro-TRH-
derived peptides are present in the ME in much higher levels
than other regions of the brain, consistent with complete
processing of pro-TRH in the ME (E. A. Nillni, unpublished
data). In vivo studies demonstrate that pro-TRH processing
is regulated (27). During opiate withdrawal in rats, prepro-
TRH mRNA is induced in the periaqueductal gray (PAG).
The N-terminal peptides prepro-TRH53–74 and propro-

TRH83–106 (pEH24) are increased (see Section IV), whereas the
level of TRH remains unaltered (27, 28). In addition, prepro-
TRH178–199 and its processed forms are increased in the PVN
during suckling (see Section IV). Thus, levels of various prod-
ucts derived from pro-TRH can be independently regulated
under altered physiological conditions.

Substantial progress has been made in the last few years
in understanding the biosynthesis and processing of pro-
hormone and neuropeptide precursors. For pro-TRH (Fig. 1),
we have developed a model of its processing to mature
peptides (29–31). Like many other secreted peptides, pro-
cessing of the primary translation product, prepro-TRH, be-
gins with removal of the signal peptide during its passage
into the lumen of the rough endoplasmic reticulum (RER).
From our current knowledge, processing of pro-TRH takes
place within the regulated secretory pathway (RSP) (for full
definition see Section IIA). Two recently discovered serine
proteases, which are members of the family of prohormone
convertases (PCs), PC1 (SPC3) and PC2 (SPC2), related to
subtilisin and the yeast-processing enzyme Kex 2 (32–34), are
the primary PCs involved in posttranslational processing of
pro-TRH (31, 35–37).

Recent contributions to the understanding of pro-TRH
biosynthesis and processing provide a useful framework for
uncovering the diversity of function displayed by pro-TRH-
derived peptides and the way that this diversity is generated.
We will review the current knowledge of pro-TRH process-
ing to the most studied biological end product, TRH, and
importantly, other pro-TRH-derived peptides. The impor-
tance of understanding pro-TRH processing is then under-
scored by a comprehensive review of the wide range of
potential biological roles subsumed by non-TRH products
derived from pro-TRH. Although data are limited, where
possible we summarize where these peptides are produced
and how their levels might be regulated. We then review the
HPT axis, with emphasis of its effects on pro-TRH process-
ing. This is followed by a comprehensive review of the func-
tion of extrahypophysiotropic TRH. A review of TRH and
other pro-TRH-derived peptide receptors then explains
mechanisms of pro-TRH peptide signal transduction. Fi-
nally, TRH degradation provides an additional way by
which peptide levels are tightly controlled, and this area is
reviewed. The degradation of other pro-TRH-derived pep-
tides is not yet understood.

II. Biosynthesis of TRH and Other pro-TRH-Derived

Peptides

A. Biosynthesis and processing of pro-TRH

In recent years considerable research has focused on the
expression of neuropeptide genes and their tissue-specific
regulation. However, it has become clear that the peptides
derived from these genes play significant neuromodulatory
roles in the control of the CNS neurotransmitters. Even more
astounding is the discovery that multiple neuropeptides
with distinct physiological functions arise from the process-
ing of single polypeptide precursors (36, 38–40). Thus, to
fully understand the biology of a neuropeptide, one must
understand the processing of the preprohormone gene prod-
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uct, as well as the regulation of the gene’s transcription. How
do cells produce different levels of one peptide with respect
to another when both derive from the same protein se-

quence? This is achieved through differential processing and
degradation by the action of specific enzymes acting in spe-
cific cellular and extracellular compartments. Posttransla-

FIG. 1. Diagrammatic representation of the proposed processing model of rat pro-TRH to non-TRH peptides and TRH, and the postulated
involvement of PC1 and PC2 as determined from our studies (for further details see Section II.A–D). The small arrows indicate PC1 and PC2
activity. Cleavage sites and direction of the processing cascade are indicated with longer arrows. Thicker arrows indicate that most of the initial
cleavage of the intact precursor was produced at this site. The positions of paired basic residues are indicated by numbers. Non-TRH peptides
are indicated in the shaded pro-TRH molecule, and TRH is indicated by a black rectangle.
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tional processing of hormone precursor proteins is a critical
mechanism by which cells increase their biological and func-
tional diversity, such that two or more peptides with differ-
ent biological functions originate from the same precursor. It
is through differential posttranslational processing mecha-
nisms that cells selectively produce specific peptides for se-
cretion.

Even though the amino acid structures of vasopressin and
insulin had been elucidated in the 1950s (41), it was not until
the early 1960s that the mechanisms of protein biosynthesis
began to be understood and the genetic code was fully de-
fined. In 1964, Sachs and Takabatake (42) provided the first
evidence that the biosynthesis of vasopressin can be inhib-
ited with puromycin, a protein synthesis inhibitor, and that
newly synthesized vasopressin could not be detected in tis-
sues until more than 1 h after pulse labeling. In these studies,
Sachs and Takabatake demonstrated that before vasopressin
becomes a biologically active peptide, it exists in a modified,
or proform, state. Posttranslational modification was then
required to convert the proform into an active peptide.

While the structure of insulin peptides was described early
on (41), it was difficult to envision how the combination of
A and B chains was attained in b-cells of the pancreas. Ex-
periments initiated by Steiner in 1965 using tritiated leucine
and phenylalanine to label proinsulin and insulin repre-
sented a landmark in prohormone theory. Using a pancreatic
insulinoma derived from a patient, it was possible to deter-
mine that insulin could be derived in vitro from a single
molecule that was converted to the A and B chains by trypsin
treatment (43). Studies done in rat islets subsequently dem-
onstrated conversion of proinsulin to insulin, in a relatively
slow process taking approximately 40 min (44). During the
same period, work done by Howell and Taylor (45) on insulin
biosynthesis showed that newly synthesized insulin was re-
leased several hours after its biosynthesis. The emerging
view of these findings was that some sort of orderly vectorial
transport occurred involving the RER, the Golgi complex
(GC), and secretory granules (SG). These data (46), along
with the major contributions of other investigators who es-
tablished that the biosynthesis of serum albumin, PTH, and
glucagon also originate from larger precursors, formed the
basis of the prohormone theory. This theory states that syn-
thesis of peptide hormones and neuropeptides begins with
mRNA translation into a large, inactive precursor peptide,
followed by limited posttranslational proteolysis to release
bioactive end products. Chretien and Li (47) also made an
important contribution to the prohormone theory when they
determined the amino acid sequences of b-lipotropin (b-
LPH), g-LPH, and b-melanotropin (b-MSH). They observed
that b-MSH was part of the b-LPH sequence, providing
evidence that b-MSH was a conversion product of b-LPH.
They also observed that cleavage occurred at the C-terminal
side of paired basic lysine or arginine residues. More defin-
itive evidence for a precursor/product was provided with
the cloning of POMC (29 kDa), which revealed that the
ACTH and b-LPH sequences were present within the N
terminus of POMC (38).

In summary, the biochemical processing of neuropeptides,
peptide hormones, and other secreted proteins begins with
limited posttranslational proteolysis of larger inactive pre-

cursors. Prohormones generally have their hormone se-
quences flanked by a single, a pair or four (tetra) basic amino
acids where subtilisin-like processing enzymes produce their
initial endoproteolytic cleavage (48, 49). This endopreoteo-
lytic cleavage is produced at the C-terminal side of the single
or paired basic amino acid residue(s) which is followed by
removal of the basic residue(s) by carboxypeptidase enzymes
(CP) (50, 51). Further modifications can occur in the form of
N-terminal acetylation, pyroglutamate formation, or C-
terminal amidation, which confers bioactivity to many pep-
tides (52).

At the intracellular level, hormone precursors are synthe-
sized on membrane-bound ribosomes, by which they are
translocated into the lumen of the RER via a signal recog-
nition peptide. During vectorial transport through the GC
and beyond, the newly synthesized proteins are subjected to
posttranslational modifications including glycosylation,
phosphorylation, amidation, acetylation, and proteolytic
conversion (48). Ultimately, partially processed proteins
reach the last compartment of the GC, the trans-Golgi Net-
work (TGN). At the TGN, unprocessed or partially processed
products are sorted to the RSP (29, 53, 54) to be stored in
immature secretory granules (ISG). Upon maturation, elec-
tron-dense SGs containing sorted products can fuse with the
plasma membrane in response to an extracellular stimulation
in a calcium-dependent manner, thereby releasing their con-
tents into the external milieu (55). Two pathways of un-
stimulated release are proposed for AtT20 cells: constitutive
(nongranular) secretion and basal release from compart-
ments that form after sorting into the RSP (56). The mech-
anism whereby constitutive and regulated proteins are dif-
ferentially sorted into separate vesicles after budding from
the TGN is still under intensive investigation (57, 58).

Two hypotheses have been proposed to explain how pro-
teins are selectively targeted from the TGN to the RSP. In the
first hypothesis, proteins are sorted by passive aggregation,
in which the proteins condense within forming ISG, thereby
excluding other proteins from entering in the granule. This
process occurs under acidic pH and high calcium concen-
trations (59, 60). Support for the aggregation hypothesis
comes from studies done with chromogranin A (61, 62),
chromogranin B (62), carboxypeptidase E (CPE) (63), and
prohormone convertase 2 (PC2) (64). However, there are data
suggesting that aggregation alone is not sufficient for sorting.
Modifications of the chromogranin B sequence (65) can pre-
vent the correct sorting of these peptides to the RSP, while
their in vitro aggregation properties appeared unaltered. The
insulin-like growth factor-1 (66) does not aggregate in the
TGN, but is still sorted in the RSP.

The second hypothesis, originally proposed in 1985 by
Kelly (67), involves cis-acting sorting signals within a protein
destined for the RSP that interact with membrane-bound
sorting receptors. Sorting receptors, possibly located in the
forming SG, direct segregation of the protein for further
packaging into SGs. Protein aggregation within the ISG can
occur in this model, but is more critical for product concen-
tration than sorting per se. Evidence supporting this second
hypothesis has come from experiments involving chimeric
proteins (68–73), where the fusion of constitutively secreted
protein to a protein destined for RSP caused a rerouting of
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this protein to the RSP. Conversely, proteins that have their
sorting signal domains modified may be misrouted from the
RSP into the constitutive pathway, as demonstrated for
POMC (74), chromogranin A and B (75), PC2 (69), and gly-
cine a-amidating monooxygenase (PAM) (76). A related hy-
pothesis is sorting by retention, in which all proteins are
initially targeted to ISGs, after which proteins that do not
belong in the RSP are removed to their final destination, e.g.,
lysosomal enzymes (57, 77).

It has been proposed recently that the membrane form of
CPE, localized to the TGN, is a sorting signal receptor (78).
CPE is proposed to direct POMC, proinsulin, proenkephalin,
but not chromogranin A, into the RSP (79). Thus, CPE is a
common sorting receptor for some, but not all, prohormones,
and there must be other sorting receptors to direct trafficking
of other proteins to the RSP (79). However, Irminger et al. (80)
have provided evidence refuting the claim that CPE is a
sorting receptor for proinsulin. In those studies they used
pancreatic islets isolated from CPE-deficient (Cpefat/Cpefat)
and control (Cpefat/1) mice to examine whether the traffick-
ing of proinsulin and insulin was affected. They found that
CPE was not essential for the sorting of proinsulin to the RSP
(80). However, similar experiments with procholecystokinin
in Cpefat/Cpefat mice indicate that CPE does function as a
sorting receptor (81).

With this as a background, we turn specifically to the
processing of pro-TRH. The elucidation of the rat prepro-
TRH sequence in 1986 was of key importance to understand-
ing the processing of pro-TRH to TRH and non-TRH pep-
tides. Rat prepro-TRH is a 29-kDa polypeptide composed of
255 amino acids. The rat precursor contains an N-terminal
25-amino acid leader sequence, 5 copies of the TRH progen-
itor sequence Gln-His-Pro-Gly flanked by paired basic amino
acids (Lys-Arg or Arg-Arg), 4 non-TRH peptides lying be-
tween the TRH progenitors, an N-terminal flanking peptide,
and a C-terminal flanking peptide (82, 83). The N-terminal
flanking peptide (prepro-TRH25–50-R-R-prepro-TRH53–74) is
further cleaved at the C-terminal side of the arginine pair site
to render prepro-TRH25–50 and prepro-TRH53–74, thus yield-
ing a total of 7 pro-TRH-derived peptides (Fig. 1).

The biosynthesis of TRH and other pro-TRH-derived pep-
tides follows the same prohormone-processing mechanisms
described above, beginning with mRNA-directed ribosomal
translation, followed by posttranslational limited proteolysis
of the larger precursor, proTRH. This process occurs while
pro-TRH is transported from the TGN to newly formed ISGs
(84). These granules then mature and are targeted to sites of
secretion at the plasma membrane of the cell. Rat, mouse, and
human pro-TRH, similar to other peptide hormone precur-
sors such as pro-enkephalin, contains multiple copies of one
of its peptide products, in this case, the progenitor for TRH,
Gln-His-Pro-Gly. Most of the products derived from pro-
TRH are targeted into the RSP. Cleavage of the precursor
to generate biologically active TRH occurs at paired basic
residues by the action of PC1 and PC2 (31, 35, 37) followed
by the action of CPE to remove the basic residue(s) (85).
Gln-His-Pro-Gly is then amidated by the action of PAM,
which uses the C-terminal Gly as the amide donor, and
the Gln residue undergoes cyclization to a pGlu residue to
yield TRH.

In the last few years, this laboratory has elucidated the
processing steps involved in the synthesis of TRH and pro-
TRH-derived peptides. An understanding of the biosynthe-
sis and processing of pro-TRH is critical to appreciating how,
when, and where modulation of this central regulator of the
HPT axis takes place during physiologically appropriate
modulation of thyroid function. It is also critical to under-
standing the function of TRH and other pro-TRH-derived
peptides in extrahypothalamic regions of the brain, or out-
side of the nervous system, as discussed in Section VI of this
review. Initial studies of TRH biosynthesis were difficult
because of the low levels of TRH and other pro-TRH-derived
peptides produced in hypothalamic tissue in vivo. In the
search for a better system to perform these studies, initial
work was done by stably transfecting prepro-TRH cDNA
into transformed cell lines (86, 87) to attain higher levels of
pro-TRH expression. Among the cell lines investigated, only
AtT20 (corticotroph, mouse) and RIN 5F (insulinoma, rat)
cells were able to efficiently cleave the TRH precursor at
paired basic amino acid residues to generate mature TRH, as
well as pro-TRH-derived peptides, which were identical to
those previously identified in vivo (88, 89). GH4C1 (somatom-
mamotroph, rat) and 3T3 (fibroblast, rat) cells were unable to
process the pro-TRH precursor. When these studies were
performed, little information was available about PCs, their
role in prohormone processing, or their expression in dif-
ferent tissues and cell lines. Retrospectively, it was deter-
mined that the cell lines capable of processing proTRH, AtT20

and RIN 5F cells, also express PC1 and PC2 (90).
A model of pro-TRH posttranslational processing was de-

veloped in experiments with transfected AtT20 cells express-
ing rat prepro-TRH (30). By means of Western blot analysis,
immunoprecipitation followed by SDS-PAGE, and RIA, it
was determined that pro-TRH is present in transfected AtT20

cells and in primary cultures of hypothalamic neurons, an
endogenous source of pro-TRH, as a 26-kDa protein (37).
Pulse-chase studies indicated that the 26-kDa precursor is
cleaved at two mutually exclusive sites to generate the first
intermediate forms (Fig. 1). One cleavage generates a 15-kDa
N-terminal peptide (prepro-TRH25–151 or 157) and a 10-kDa
C-terminal peptide (prepro-TRH154 or 160–255). An alternate
cleavage generates a 9.5-kDa N-terminal peptide (prepro-
TRH25–106 or 112) and a 16.5-kDa C-terminal peptide (prepro-
TRH109 or 115–255). These cleavage steps occur in the TGN (Fig.
2), before packaging into ISGs (29, 84), in agreement with
similar studies of the cellular location of early processing for
POMC and somatostatin (SRIF) (53).

In subsequent steps, the 15-kDa N-terminal intermediate
moiety of pro-TRH is processed to a 6-kDa peptide, corre-
sponding to prepro-TRH25–74, and a 3.8- kDa peptide, cor-
responding to prepro-TRH77–106. It is proposed that process-
ing of the remaining 10-kDa C-terminal fragment produces
the 5.4-kDa C-terminal flanking peptide prepro-TRH208–255,
and the 5.6-kDa peptide prepro-TRH160–199 (30, 91). Antisera
against prepro-TRH178–199 (pFE22) recognizes the 10-, 5.6-,
and 2.6-kDa (prepro-TRH178–199) C-terminal peptides both
in transfected AtT20 cells and in extracts from rat PVN, lat-
eral hypothalamus, and ME. Prepro-TRH178–199 is further
cleaved to two smaller moieties of 1.6 and 0.84 kDa, prepro-
TRH178–184 and prepro-TRH186–199 (pFQ7 and pSE14), respec-
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tively (Fig. 1). Processing of the 9.5-kDa N-terminal fragment
arising from the alternative cleavage of the 26-kDa prohor-
mone at residues 107–108 is postulated to result in the pro-
duction of the N-terminal peptides, prepro-TRH25–50, pre-
pro-TRH53–75, and prepro-TRH83–106, while the 16.5-kDa
fragment is processed to produce the 5.6-kDa prepro-
TRH160–199 and the 5.4-kDa prepro-TRH208–255 (Fig. 1).

Recent experiments confirm the proposed model that the
C-terminal 10-kDa peptide derived from an initial cleavage
at residues Lys152-Arg153 is the precursor to two peptides of
5.6- (prepro-TRH160–199) and 5.4-kDa (prepro-TRH208–255)
(Fig. 1). After the cleavage of basic residues at positions
199–200 or 207–208, the 5.6-kDa peptide is further processed
to generate the prepro-TRH160–169 and prepro-TRH178–184.
prepro-TRH178–184 is further cleaved to two novel peptides,
prepro-TRH178–184 and prepro-TRH186–199 (91), Fig. 1).

B. Intracellular sites of pro-TRH processing

Initial studies in 1993 showed that processing of the 26-
kDa pro-TRH precursor to smaller intermediates occurred
before packaging into ISGs (29). The experimental strategy
used to more precisely define the intracellular sites of pro-

TRH processing was to block peptide transport from one
cellular compartment to another and to characterize pro-
cessing that occurred before the point of blockade (84). To
study processing that occurs in the RER, peptides were
blocked in their exit from this compartment with brefeldin A
(BFA) treatment of AtT20 cells expressing the prepro-TRH
cDNA (30, 87). BFA is a fungal metabolite that blocks ER-
to-Golgi transport of proteins by reversibly inhibiting the
exchange of GDP for GTP in the GTP-binding protein that is
a key component in the vesicular transport, the ARF protein.
This prevents protein recruitment to intracellular mem-
branes and inhibits subsequent vesicle formation. To study
the processing steps that occur in the GC, cells were incu-
bated at reduced temperatures. Incubation of cells at 20 C
prevents packaging of proteins into ISGs at the TGN and has
been used previously to study the processing of other pro-
hormones (53, 92). Figure 2 summarizes the results of these
blockade experiments, described more fully below.

When transfected AtT20 cells expressing prepro-TRH were
treated with BFA to block ER-to-GC transport, the 26-kDa
pro-TRH precursor accumulated 4-fold over control levels,
indicating a significant degree of post-ER processing. How-

FIG. 2. Schematic representation of the proposed intracellular processing of pro-TRH. On the left is indicated the biochemical processing cascade
that is initiated in the GC by PC1 (Section II.B and D). The effect of BFA and temperature blockade on the intracellular trafficking of peptides
is described in Section II.B. The PC1 and PC2 enzymatic activities in this cascade are described in Section II.D. On the right, a cartoon showing
the distribution of organelles within the RSP. TGN, trans-Golgi-network; MSG, mature secretory granules; ISG, immature secretory granules;
nTRH, non-TRH peptides. [Reproduced with permission from I. P. Cruz and E. A. Nillni: J Biol Chem 271:22736–22745, 1996 (84).]
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ever, some processing of 26-kDa pro-TRH to the 15-kDa and
the 9.5-kDa N-terminal intermediates, and the 16.5-kDa and
10-kDa C-terminal intermediates, was seen. The accumula-
tion of the 16.5-kDa intermediate was not as great as that of
the 15-kDa intermediate when compared with control levels
(4-fold for the 15 kDa and about 2-fold for the 16.5 kDa) (84).
To further clarify where the initial site of pro-TRH cleavage
occurred, a combination of temperature blockade and BFA
treatment was performed. With this strategy it was demon-
strated that the 26-kDa precursor protein (accumulated
4-fold) is processed in the GC (possibly in the TGN) to gen-
erate the 15-kDa/10-kDa and the 9.5-kDa/16.5-kDa inter-
mediate pairs. When the fate of the 15- and 16-kDa inter-
mediates was analyzed, while they were retained within the
TGN at 20 C, the 16-kDa C-terminal intermediate was further
processed at basic residues 206–207 to the 5.4-kDa C-termi-
nal peptide. In contrast, the 15-kDa N-terminal intermediate
appeared to undergo processing in a post-GC compartment,
i.e., the SGs. This observation strongly suggests that these
two intermediates follow different paths of processing (84).

Evidence supporting differential distribution for the N-
and C-terminal peptides comes from recent immunocyto-
chemical (ICC) studies using transfected AtT20 cells, which
indicate that pro-TRH, as well as the 15- and the 6-kDa
N-terminal intermediates, are located in the GC and TGN
(Fig. 3A). In contrast, end products, including prepro-
TRH25–50, prepro-TRH160–169, and TRH, are only present in
SGs along the plasma membrane and in cell processes (Fig.
3F). C-terminally directed antisera that recognize pro-TRH
and the 16.5- and 5.4-kDa C-terminal peptides result in pos-
itive immunostaining in the GC, along the plasma mem-
brane, and in cell processes (Fig. 3H). Thus, C-terminal in-
termediates appear to reach further along the RSP before
processing than their N-terminal counterparts. This differ-
ential processing might serve as a mechanism to regulate the
timing of production of peptides such as prepro-TRH160–169,
prepro-TRH178–199, and prepro-TRH53–75, and possibly TRH.
For example, the 16.5-kDa intermediate, which is processed
in the TGN, contains prepro-TRH178–199 and preproTRH160–

169. A portion of such peptides, formed before their entry into
SGs, might exit the cell via the constitutive pathway to main-
tain a basal level of release independent of TRH secretion.

Primary cultures of hypothalamic neurons, developed in
this laboratory, provided a second model system in which to
study pro-TRH processing. After 12–14 days in vitro (36),
these hypothalamic neurons show growth of neurites similar
in morphology to peptidergic neurons. Most neurons are
bipolar with long axons containing varicosities, boutons, and
growth cones. Many of the growth cones are in contact with
neurites of other neurons. Dendrite-like structures are also
observed. N-terminal antiserum in these cultured hypotha-
lamic neurons (36) stains the GC, ISGs budding from the GC,
and terminal boutons (Fig. 3, B and E). Immunoelectron
microscopy (IEM) confirms positive staining in the GC (Fig.
3E). Some ISGs budding from the TGN-like were also
stained. Since positive staining was detected in boutons, it
was proposed that these intermediates are processed to ma-
ture pro-TRH-derived peptides near the axon terminal, be-
fore secretion. ICC using anti-TRH, anti-prepro-TRH53–75,
and anti-prepro-TRH160–169 showed positive staining only in

the neuronal processes and axon terminals while the soma
remained unstained (Fig. 3G). The positive staining observed
in neuronal processes and axon terminals with these anti-
bodies was confirmed by IEM (Fig. 3G, inset).

Note that in transfected AtT20 cells using the same anti-
serum, immunostaining was seen only in GC and ISGs, but
not in cellular processes (Fig. 3A). ICC on transfected AtT20

cells using anti-TGN38, a TGN marker, indicated that the
TGN can be projected away from the GC toward budding
ISGs (Fig. 3C). Thus, in AtT20 cells processing of the 15-kDa
N-terminal peptide takes place somewhere between the TGN
and ISGs, suggesting that prepro-TRH25–50, prepro-TRH53–75,
and prepro-TRH83–106 are already formed by the time SGs
mature.

Using the C-terminal antiserum that recognizes pro-TRH
and the 16.5-, 10-, and 5.4-kDa peptides, positive staining was
visualized in a patchy cytoplasmic distribution (Fig. 3I), often
closely associated with the nucleus. Immunoreactivity was
also observed in neuronal boutons, axon terminals, and un-
branched growth cones. IEM confirmed that the patchy cy-
toplasmic areas were within the ER and GC (36) (Fig. 3I,
inset); all layers of the GC (cis, medial, and trans) were im-
munostained with this antibody (36). The contrasting stain-
ing patterns for the two antisera (N- and C-terminal) (Fig. 3,
B and I) suggest the existence of a different peptide distri-
bution for N-terminal vs. C-terminal peptides, possibly due
to different intracellular routing of intermediates to SGs.
However, no conclusive data are yet available to confirm this
hypothesis.

C. Tissue-specific processing of pro-TRH

Increased knowledge of differential processing has led to
a better understanding of how multiple biological peptides,
with different functions, are generated from the same pro-
hormone. This concept is further reinforced by the observa-
tion that certain regions in the brain can give rise to several
different pro-TRH-derived peptides in addition to, or instead
of, TRH. This will become clear in a review of the neuro-
anatomical distribution of pro-TRH and pro-TRH-derived
peptides.

TRH-positive axons in the ME originate from neuronal
perikarya in the PVN. The PVN is composed of two major
components, the magnocellular and the parvocellular divi-
sions. The parvocellular division contains most of the TRH
neurons that project to the ME. A large population of im-
munoreactive neurons is located in medial and periventricu-
lar parvocellular subdivisions, organized in a triangular con-
figuration, symmetric to the dorsal aspect of the third
ventricle, whereas the anterior parvocellular subdivision
neurons are more disperse (93). However, not all TRH-
containing neurons in the PVN project to the ME (94). In
addition to the PVN, TRH neurons are present in many other
regions of the hypothalamus (93). As these populations of
neurons have no known projections to the ME, and are not
regulated in conjunction with the thyrotropic neurons of the
PVN, it is presumed that they do not subserve a direct hy-
pophysiotropic function.

The largest concentration of hypothalamic TRH neurons
outside of the PVN are found in the dorsomedial nucleus,
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lateral hypothalamus, and preoptic area, including medial,
periventricular, suprachiasmatic, and the sexual dimorphic
nucleus of the preoptic area (93). In addition to the PVN, TRH
neurons are present in many other regions of the CNS in-
cluding regions in the diencephalon, telencephalon, mesen-
cephalon, myelencephalon, and spinal cord (Table 1). An
extensive anatomic description of TRH neurons and TRH
fibers in these tissues has been reported previously (93).
While the presence of TRH in these regions is clear, relative
levels are largely unknown because most mapping has de-
pended on ICC detection in animals pretreated with colchi-
cine. Detailed microdissection studies, combined with RIA,
have been done for some areas, including the brainstem and
hippocampus. These studies do not require colchicine pre-
treatment, are more quantitative than ICC detection, and
reveal an even broader distribution for TRH than appreci-
ated by ICC. However, their neuroanatomical resolution falls
short of that of ICC, and these latter studies are the primary
source of TRH data presented in Table 1.

In several areas of the brain where production of pro-TRH
is found, TRH and pro-TRH-derived peptides are also de-
tected (Table 1). In the case of pro-TRH, the reticular nucleus
of the thalamus contains abundant prepro-TRH mRNA and
several pro-TRH-derived peptides in their extended forms,
but does not contain mature TRH (95). Moreover, the N-
terminal extended forms of TRH, TRH-prepro-TRH160–169

and TRH-prepro-TRH178–199 are major end products of pro-
TRH processing in the olfactory lobe (OB) (96, 97), but not in
the hypothalamus where pro-TRH is completely processed
to non-TRH peptides and TRH (96). In the ME, PVN, and
preoptic area (POA), pro-TRH is fully processed to its mature
forms, while in the OB less than 60% of N-terminal prepro-
TRH25–50 is formed. Similarly, while in the OB the 10-kDa
C-terminal intermediate (see Fig. 1) is the main end product,
in the ME and PVN this intermediate is fully processed to
prepro-TRH160–169 and prepro-TRH178–199 (Fig. 1). Finally, in
the POA partial processing of the 10-kDa peptide is observed,
and the lateral hypothalamus contains lower levels of both
N- and C-terminal pro-TRH-derived peptides as compared

with the ME and POA (E. A. Nillni, unpublished data). Table
1 summarizes the current information regarding neuroana-
tomical distribution of intermediate forms of pro-TRH pro-
cessing, mature pro-TRH-derived peptides, and TRH pep-
tides in perikarya and fibers.

D. The role of PCs and CPs

The PCs are a family of seven subtilisin/kexin-like endo-
proteases including furin, PC1 (also known as PC3), PC2,
PC4, PACE4, PC5-A (also known as PC6-A), its isoform
PC5-B (also known as PC6-B), PC7 (also known as LPC), and
PC8 (also known as SPC7) (32–34, 98–101)). The structure of
these serine proteinases resembles both the bacterial sub-
tilisins and yeast kexin (90, 102, 103). These enzymes cleave
at the C-terminal side of single, paired, or tetra basic amino
acid residue motifs (104), followed by removal of remaining
basic residue(s) by CPs (50, 51). The selective expression of
PC1 and PC2 in endocrine and neuroendocrine cells suggests
they are significant in prohormone processing (32, 90, 98,
105). PC1 and PC2 have been shown to process pro-TRH (31,
35, 37, 106), proinsulin (104, 107, 108), proenkephalin (109),
prosomatostatin (110, 111), and POMC (112, 113) to various
intermediates and end products in coexpression experi-
ments.

Like their substrates, PC1 and PC2 undergo maturation
from larger precursor proteins. Maturation of pro-PC1 be-
gins in the ER and continues in the TGN (90). In contrast,
pro-PC2 maturation begins in the TGN and continues in the
SGs; active PC2 and PC1 accumulate in SGs (114, 115). PC2
has been proposed to produce smaller peptides from inter-
mediates resulting from cleavage by PC1 (109, 112, 113).
Consistent with this, PC1 is implicated in the early cleavage
of POMC (112, 113, 116) and proinsulin (117). Thus, the
compartments where these enzymes are active also are de-
termined by differential timing of their respective matura-
tion.

The distribution of neurons containing mRNAs encoding
prepro-TRH, PC1, and PC2 in the PVN and other areas of the

FIG. 3. Subcellular localization of pro-TRH, intermediate and end products of processing, and TRH in transfected AtT20 cells encoding
prepro-TRH, and in primary cultures of hypothalamic neurons. The cells were fixed with 4% paraformaldehyde followed by immunostaining
with different antibodies against the pro-TRH sequence. Fluorescein isothiocyanate conjugated to goat antirabbit globulin was used as a probe.
Panel A, AtT20 cells: positive staining in the GC and TGN (arrows) using an antibody against pro-TRH and N-terminal intermediate forms
(anti-pCC10). Bar 5 25 mm. Panel C, AtT20 cells: cells immunostained with anti-TGN38 (arrows), a TGN marker. Bar 5 50 mm. Panel F, AtT20

cells: a typical positive staining along the plasma membrane (arrow heads), a common granule distribution of corticotropic cells, and processes
(arrows) using anti-non-TRH peptides and anti-TRH. Bar 5 25 mm. Panel F, AtT20 cells; inset: typical positive staining of SGs by IEM using
anti-pST10 antibodies (5 nm gold particles). Bar 5 200 nm. Panel H, AtT20 cells: positive staining in the GC and processes using an antibody
that recognizes pro-TRH and C-terminal intermediate forms (anti-pYE17). Bar 5 50 mm. Panel B, Hypothalamic neurons: positive staining in
the GC (arrow) and TGN using an antibody against pro-TRH and N-terminal intermediate forms, and in all boutons distributed along the
neuronal processes (arrowheads) Bar 5 50 mm. Panel D, hypothalamic neurons: cells immunostained with anti-TGN38, a TGN marker. Bar 5

50 mm. Panel E, hypothalamic neurons, a higher magnification of panel B showing positive staining in stacked Golgi cisternae and in some
forming granules (arrows) using the peroxidase-DAB reaction (arrows) Bar 5 5 mm. Panel G, hypothalamic neurons: positive fluorescence is
observed only in neurites (arrowheads) and axon terminals, while the cell body remain unstained. Bar 5 50 mm. Panel G, hypothalamic neurons;
inset: an IEM of neurites using peroxidase-DAB staining reaction. Of the two adjacent neurites shown, the lower one is positively stained (large
arrows), whereas the upper one is negative (small arrow). Bar 5 1 mm. Panel I, hypothalamic neurons: positive staining in several areas of
the cell body (arrowheads) and in all boutons distributed along the neuronal processes (arrowheads) using an antibody against pro-TRH and
C-terminal intermediate forms. Bar 5 25 mm. Panel I, hypothalamic neurons, inset: a higher magnification of cytoplasmic areas from panel
I showing positive staining in the endoplasmic reticulum and GC (arrows) as well as in SG near the plasma membrane (arrows). Bar 5 2 mm.
nu, Nucleus; G, Golgi complex. The polyclonal antibodies used in this ICC are as follow: Anti-pCC10 [made against a synthetic decapeptide
(Cys-Lys-Arg-Gln-His-Pro-Gly-Lys-Arg-Cys)], which recognizes prepro-TRH25–255 (26 kDa) prepro-TRH25–151 (15 kDa) prepro-TRH25–112 (9.5
kDa) prepro-TRH25–74 (6 kDa). Anti-pYE17 (made against prepro-TRH240–255), which recognizes prepro-TRH25–255 (26 kDa) prepro-TRH115–255

(16.5 kDa), prepro-TRH160–255 (10 kDa), prepro-TRH208–255 (5.4 kDa), anti-pST10 (made against preproTRH160–169), and anti-TRH. [Panels B,
D, G, and I were reproduced with permission from E. A. Nillni et al.: Endocrinology 137:5651–5661, 1996 (36). © The Endocrine Society.]
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TABLE 1. Current information available regarding pro-TRH biosynthesis, processing in different tissue location, its relation to PC1 and
PC2, neuroendocrine inputs, and physiological significance

Tissue pro-TRH-derived
peptides

TRH PCs Coexpressing
PCs and
pro-TRH

Neuroendocrine
inputs to TRH

neurons
Physiological significance

Perikarye Fibers PC1 PC2 PC5

Telencephalon
Olfactory bulb Partial processing

prepro-TRH154–169
prepro-TRH172–199

Accessory 1

External plexiform layer 1 111 11 11 PC2
Internal plexiform layer 1 PC2
Mitral cells 1 11 1111

Ependymal cells 0 0 0
Granule cells 0/1 1 0
Periglomular cells 1 11 11

Glomerular layer 1 1 PC2
Anterior olfactory nucleus 1 111 1111 1111

Tenia tecta 1111 111 0 PC1
Hippocampal formation

CA1 111 11111 11

CA2 1 11 1111 1

CA3 1 1111 11111 11111

Scattered hilar cells 1111 111 1111

Stratum oriens 1

Dentate gyrus
Molecular Layer 1 0 0 0 PC1,PC2
Granular Layer 1 11111 111 1 PC1,PC2

Nucleus accumbens 1 1 11 0
Caudate-putamen 1 1 11111 111 0 PC1,PC2

Amygdala
Medial nucleus 1 1 111 11 111 PC1,PC2
Central nucleus 1 1 0/1 0/1 1 PC1,PC2
Anterior cortical nucleus 11 1 111 PC1,PC2

Basolateral nucleus 111 1111 111 PC1,PC2
Septum 1 11 1111 11

Bed nucleus, anterior com-
missure

1

Bed nucleus, stria termina-
lis

1 1 111 11 1 PC1,PC2

Diagonal band of Broca 1 1 PC1,PC2
Entorhinal cortex 1

Medial preoptic area 111 1 11 PC1,PC2
Pyriform cortex 1

Diencephalon
Thalamus

Anteroventral nucleus 111 11 0
Anteromedial nucleus 11 1111 0/1
Anterodorsal nucleus 1111 1111 0/1
Centrolateral nucleus 11 1111 0/1
Centromedial nucleus 111 1111 1111

Mediodorsal nucleus 111 1111 0
Paraventricular nucleus 1 111 1111 11111

Paratenial nucleus 1

Reticular nucleus Some intermediates, no
TRH

1 0

Reuniens nucleus 0 111 0/1
Rhomboid nucleus 111 1111 111

Ventrolateral nucleus 0/1 1111 0
Ventromedial nucleus 1 0/1 111 0
Dorsal lateral geniculate

nucleus
0 1111 0

Medial geniculate nucleus
Dorsal 0/1 1111 0
Ventral 0/1 111 0
Medial 0/1 1111 0
Marginal Zone 111 1 0

Habenula
Medial

Lateral part 11 1 0
Medial part 1 1111 0

Lateral 1 11 1 0
Hypothalamus

Anterior hypothalamus 1 1

Suprachiasmatic nucleus 111 11 11 PC1,PC2
Periventricular nucleus 1111 1 111 PC1,PC2
Supraoptic nucleus 1 11111 111 11111 PC1,PC2
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TABLE 1. Continued

Tissue pro-TRH-derived
peptides

TRH PCs Coexpressing
PCs and
pro-TRH

Neuroendocrine
inputs to TRH

neurons
Physiological significance

Perikarye Fibers PC1 PC2 PC5

Paraventricular nucleus pro-TRH is fully
processed

NE1, E-?, DA1,
5HT1, NPY-,
Som-, EOPs-,
VIP1?, GABA-?,
IL-1-

Theromoregulation, T3/T4

feedback, stress, TSH
circadian rhythm,
starvation, response to
infection. pFE22 and
pSE14 increased during
suckling

Magnocellular part 1 1 11111 11 11111 PC1,PC2
Parvocellular part 1 1 11 111 111 PC1,PC2

Arcuate nucleus 1 1 111 11 11 PC1,PC2
Lateral hypothalamic area Lesser processing as

compared with PVN and
ME

1 1 11111 1111 1111 PC2

Median eminence TRH 1 non-TRH peptides 1 NE1, E?, DA-,
Som-, EOPs-,
IL-1?

Theromoregulation. T3/T4

feedback, stress, TSH
circadian rhythm,
starvation, response to
infection

Ventromedial nucleus 1 1 11 1 PC2
Dorsomedial nucleus 1 1 111 111 111 PC1,PC2
Medial mammillary nucleus 1 1111 111

Lateral mammillary nu-
cleus

1 111 1

Perifornical region 1

Premammillary nucleus 1

Preoptic area pro-TRH is fully processed 1 1

Subfornical organ 1

Mesencephalon and meten-
cephalon

Locus coeruleus 1 11 1111 111

Motor nucleus V 1

Oculomotor nucleus 1 111 1111 111

Parabrachial nucleus 1

Periaqueductal gray pro-TRH is fully processed 1 1 11 111 11 PC1,PC2 Possible pain modulation
Raphe magnus nucleus 111 1 0 PC1,PC2
Red nucleus 1 11 1111 1111

Substantia nigra, pars late-
ralis

1

Substantia nigra, pars com-
pacta

111 111 111

Substantia nigra, pars re-
ticulata

1 111 111

Trochlear nucleus 1

Myelencephalon
Cochlear nucleus 1 1111 111 11

Dorsal motor nucleus, vagus 1 1

External cuneate nucleus 1

Facial nucleus 1 111 1111 1111

Hypoglossal nucleus 1 111 1 1111

Inferior olive 1 11 1111 1111

Lateral reticular nucleus 1

Nucleus ambigus 1

Nucleus tractus solitarius
Medial 1 1111 11 1111

Lateral 11 111 1111

Pontine nuclei 1 111 1111 11111 PC1,PC2
Raphe nuclei

Dorsal 1 1 111 111 11111 PC1,PC2
Median 1 1 111 11 111 PC1,PC2

Reticular formation 1

Spinal Cord pST10 detected
Anterior funiculus 1

Central canal 1

Dorsal horn (laminae II and
III)

1 1

Intermediolateral column 1

Lateral funiculus 1

Ventral horn (lamina IX) 1

Cell lines
Transfected AtT20 cells pro-TRH is fully processed PC1 low PC2 PC1,PC2
Transfected RIN 5F cells pro-TRH is fully processed PC1 PC2
Transfected GH4C1 cells no pro-TRH processing
Primary hypothalamic neu-

rons
pro-TRH is fully processed PC1 PC2 PC1,PC2

The major source of contribution to this table comes from literature cited in this review and from our published and unpublished results.
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brain has been determined using in situ hybridization (106)
(Table 1). The glomerular layer of the OB displays coexpres-
sion of prepro-TRH with PC2 mRNA, but not PC1, whereas
in the tenia tecta coexpression of mRNA for prepro-TRH
with PC1, but not PC2, is evident. The PVN displays prepro-
TRH mRNA coexpression with both enzymes, whereas the
lateral hypothalamus shows coexpression of prepro-TRH
mRNA with PC2 mRNA, but not PC1 mRNA. Double in situ
hybridization indicates that in the PVN, PC2 mRNA is
present in 60–70% of TRH neurons, and PC1 is present in
37–46% of TRH neurons (118). Even though these investi-
gators found a trend for more coexpression of mRNA for
prepro-TRH with PC2 than PC1, coexpression alone does not
define which enzyme is more important in the processing of
pro-TRH in vivo.

During the last few years, Nillni’s laboratory has provided
unequivocal evidence for the role of PC1 and PC2 in the
processing of pro-TRH (31, 35–37). In coinfection experi-
ments, where recombinant vaccinia viruses are used to co-
express PC1, PC2, PACE4, PC5-B, and furin, together with rat
prepro-TRH in constitutively-secreting LoVo cells or in the
regulated-secreting endocrine GH4C1 cell line, RIA of LoVo-
derived secreted products demonstrates that furin cleaves
the precursor to generate both N- and C-terminal interme-
diates, while PC5-B does not produce any peptide. PC1, PC2,
and PACE4 only produce N-terminal intermediates, and less
efficiently than furin. Interestingly, in LoVo cells, furin co-
transfection produces TRH-Gly at much greater levels than
any of the other PC enzymes. Recent data indicate that furin,
which is ubiquitously expressed in all tissues, may serve a
role in processing of prosomatostatin within the constitutive
pathway (110, 111). Since LoVo cells only contain the con-
stitutive secretory pathway, these results suggest that pro-
TRH can be processed to a certain extent without entry into
the RSP. However, caution must be taken with this inter-
pretation because under conditions of viral expression, the
unusually high level of virus in coinfected cells can produce
disruption of cellular compartments. The products resulting
from coexpression of prepro-TRH with either furin or PC1
are similar, in agreement with their similar specificity ob-
served in a number of cell coexpression experiments (109,
111) and in vitro data (119).

In GH4C1 cells, PC1, PC2, furin, PC5-B, and PACE4 pro-
duce both N-terminal and C-terminal peptides derived from
pro-TRH. Significantly, TRH-Gly and TRH are produced in
highest amounts by PC1, PC2, and furin. Further analysis of
the cleavage specificity of PC1 and PC2 reveals that PC1 is
primarily responsible for cleavage of the entire TRH precur-
sor to mature TRH, as it can generate all products at signif-
icantly higher levels than PC2 (Fig. 4). While 7B2 is known
to be involved in the maturation of PC2 (Fig. 4) (90, 120) it
does not augment the ability of PC2 to cleave pro-TRH to
either N- or C- terminal forms. Subsequently, we have ex-
amined the role of PC1 and PC2 in the formation of prepro-
TRH178–199 by coexpressing rat prepro-TRH cDNA with PC1,
PC2, and 7B2 in GH4C1 cells (91). PC1 effectively cleaved
pro-TRH to immunoreactive forms recognized by anti-pre-
pro-TRH178–199, while PC2 played a minor role, even in the
presence of 7B2 (Fig. 1).

Even though PC1 displays a greater ability to process

pro-TRH than PC2, PC2 can process certain regions of the
pro-TRH sequence (37). For example, in cells coexpressing
pro-TRH and PC2, but not pro-TRH and PC1, greater quan-
tities of 2.8-kDa peptide (pEH24, preproTRH83–106) relative to
3.8-kDa peptide (TRH-pEH24, prepro-TRH77–106) are found,
while the converse is true for PC1 coexpressing cells. These
data suggest that PC2 may be important in generating TRH
from this intermediate. In support of a physiological role for
both PC1 and PC2, pro-TRH is coexpressed and colocalized
with PC1 and PC2 in primary cultures of hypothalamic neu-
rons (Fig. 5) (37).

SDS-PAGE fractionation reveals that PC2 has a cleavage
specificity that differs from that of PC1. In cells coinfected
with PC1 and pro-TRH, two prominent moieties of 5.6 kDa
and 2.6 kDa are formed. The latter is similar in size to prepro-
TRH178–199. In cells coinfected with PC2 and proTRH, the
5.6-kDa peptide is not present, but the 2.6-kDa peptide and
a smaller form of about 1.6 kDa are observed. Microsequenc-
ing analysis of prepro-TRH178–199 peptide incubated in vitro
with purified PC2 demonstrates one specific cleavage at
Arg185 (. . . Glu182-Leu183-Gln184-Arg185-2-Ser186-Trp187-
Glu188-Glu188-Lys189. . . ) generating two novel peptides,
pFQ7 and pSE14 (Fig. 1).

These two novel peptides, prepro-TRH178–184 and prepro-
TRH186–199 are present in rat PVN, lateral hypothalamus, and
ME (91). Thus, the antibody generated against the prepro-
TRH178–199 sequence recognizes the 10-kDa peptide, a 5.6-
kDa form that probably is prepro-TRH160–199 (30), a 2.6-kDa
peptide that is prepro-TRH178–199, and two smaller moieties
of 1.6 and 0.84 kDa that are proposed to be prepro-TRH186–199

and prepro-TRH178–184, respectively (Fig. 1). Figure 6 shows
a diagrammatic representation of rat pro-TRH and its cleav-
age by PC1 and PC2 as proposed from the most recent studies
and compared with previous in vitro studies (31, 35, 91).

Table 1 combines current neuroanatomical distribution
data for prepro-TRH mRNA, pro-TRH, and pro-TRH-
derived products with the distribution of PC mRNAs and
enzymes. Also included is a summary of pro-TRH processing
in transfected cells and primary cultures of hypothalamic
neurons and pituitary cells. Several important conclusions
can be drawn. pro-TRH is widely distributed in the hy-
pophysiotropic and extrahypophysiotropic areas of the
brain. The widespread expression of pro-TRH, PC1, and PC2
mRNAs, with their overlapping distribution in many areas
of the rat CNS, indicates the striking versatility provided by
tissue-specific processing in generating quantitative and
qualitative differences in non-TRH peptide products as well
as TRH. Examples of these differences for several tissues are
presented in the first column of the table and described
above. A most striking example is the reticular nucleus of the
thalamus, where PC1 and PC2 are not coexpressed with
pro-TRH. TRH is not produced in this nucleus, indicating a
central role for PC1 and PC2 in maturation to TRH. However,
other pro-TRH intermediates are present in the reticular nu-
cleus, suggesting PCs other than PC1 and PC2 might be
involved in processing of pro-TRH for this particular region
of the CNS (106).

Differential processing has been reported for other pro-
hormones, and these differences relate to alterations in the
expression of various PCs within different cell types. POMC
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is processed primarily to ACTH, b-endorphin, and
N-POMC1–77 in the anterior pituitary (melanotrophs). In
turn, these products are further processed to a-MSH, b-
endorphin1–31, N-POMC1–49, and g-MSH in the intermediate
lobe and brain (38). Differential processing of a common
polypeptide precursor is dependent upon the processing
enzymes expressed in each specific cell type. Proenkephalin,
which contains seven identical copies of met-enkephalin, is
processed to large intermediate forms in the adrenal me-
dulla, whereas this precursor is cleaved primarily to the
pentapeptide met-enkephalin in the brain (39). The biological
actions of substance P (SP) depend on the enzymatic pro-

cessing of its precursor by the processing enzymes prolylen-
dopepetidase to yield SP5–11, and endopepetidase 3.4.24.11 to
yield SP1–7. While SP1–7 acts as an analgesic, inhibits aggres-
sion, and enhances learning and memory, the SP5–11 en-
hances pain transmission, stimulates aggression, and blocks
learning and memory (40). In the brain, procholecystokinin
(pro-CCK) is processed to produce only CCK8 amide, while
in the gut the precursor is cleaved to larger molecules, such
as CCK12, 22, 33, 38, 58, and 83 amide (121). Transfection
experiments have shown that proneuropeptide Y (pro-NPY)
can be cleaved by cell lines expressing either PC1 or PC2, but
pro-NPY is primarily processed by PC2 in superior cervical

FIG. 4. Cleavage of pro-TRH as determined using anti-TRH (A) RIA, anti-TRH-Gly (B), using anti-pYE27 (C) RIA, and anti-pYE17 (D) RIA.
Coinfections of pro-TRH were done with Dynorphin as a control, PC1, PC2, PC1-PC2, PC1-PC2–7B2, and PC2–7B2 in GH4C1 cells. n,
Noninfected cells. RIAs were performed against resuspended serum free media. Cell means of recognized products in picograms are plotted
against the indicated coinfected construct. Data are the mean values of six identical wells per condition, with P , 0.05 on Tukey-Kramer.
[Reproduced with permission from P. Schaner et al.: J Biol Chem 272:19958–19968, 1997 (37).]
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ganglia (122). Thus, differential processing of neuropeptitdes
including pro-TRH, pro-NPY, POMC, pro-CCK, SP, and
proenkephalin provides a critical mechanism through which
cells regulate the levels of specific peptides to fulfill different
physiological requirements, a mechanism potentially more
versatile than the alternative splicing of mRNA.

As mentioned in Section IIA, CPs remove remaining C-
terminal basic residues from prohormone intermediates that
are initially cleaved by PCs. Experiments with the fat/fat
mouse model of CPE deficiency (123) support a role for CPE
in the processing of pro-TRH (85). Mice homozygous for the
fat/fat mutation are obese, diabetic, and infertile. These mice
have a missense (Ser to Pro) mutation at CPE residue 202 that
abolishes enzymatic activity (123). Hypothalamic TRH levels
are depressed 65% in fat/fat mice relative to heterozygous
controls. SDS-PAGE demonstrates hypothalami from both
wt/fat and fat/fat mice contain moieties different from those
of the wt/wt mice. Specifically, 6.5-, 3.0-, 2.6-, and 1.6-kDa
forms of the pro-TRH sequence are detected, and their levels
differ significantly between the two groups. Compared with
wt/fat mice, fat/fat mice hypothalami contain 20-, 3-, and
2-fold elevations in the 6.5-, 3.0-, and 2.6-kDa species. These
data indicate that the fat/fat mutation produces qualitative
changes in pro-TRH processing, and that CPE is involved in
the later stages of pro-TRH processing. However, cell trans-
fection experiments would help to rule out secondary phe-
notypic changes caused by the CPE mutation in these mice.
Further, since hypothalami from fat/fat mice contain immu-
noreactive TRH, additional CPs must also be able to process
pro-TRH to TRH, assuming that the TRH detected is not a
cross-reactive non-TRH species. CPs such as carboxypepti-
dase D, with similar enzymatic properties to CPE, are also
present in compartments of the secretory pathway and are
distributed in many tissues, including the brain (50).

Interestingly, in fat/fat mice, levels of TSH, T3, and T4 were
normal, suggesting that 34% of normal TRH levels is suffi-
cient to maintain the thyroid function. This last observation
is important because it is hypothesized that the five identical
progenitor sequences of TRH contained in the prohormone
may not be processed to mature TRH at all times, and that
only a few of them may be needed to maintain the thyroid
function. In cultured hypothalamic cells at steady state, pre-
vious studies had shown that the ratio of mature TRH to
prepro-TRH25–50 and the 5.4-kDa C-terminal peptide (Fig. 1)
is 3:1 instead of the theoretical 5:1 for complete processing
(36). A similar ratio is seen in transfected AtT20 cells (30). In
the rat brain, the ratio of TRH to other pro-TRH-derived
peptides sequences is almost 1:1 in the hypothalamus, and
1.5:1 in the olfactory lobe (89). The above ratios are indicative
of incomplete yields of TRH from pro-TRH, although only if
degradation rates do not contribute significantly to these
various ratios. Further, the relative immunoreactivites of
various antisera used to their iodinated tracers has not been
defined, leaving exact molar ratios difficult to calculate. Still
the range of TRH to pro-TRH-derived peptides found in
various tissues makes it likely that full TRH yields are not
achieved in all, or even most, tissues.

If not all TRH progenitor sequences are cleaved from pro-
TRH, the resulting TRH progenitor sequences, linked to ami-
no- or carboxyl-terminal extensions, would not be detected
in usual TRH RIAs. The TRH assay is specific for mature
TRH, needing both the amino-terminal pyro-Glu and car-
boxy-terminal Pro-amide for detection. Nonimmunoreactive
TRH progenitors might also retain untrimmed basic amino
acid residues, carboxyl-terminal glycine residues, etc. An-
other explanation for the lower than 5:1 ratio of TRH to other

FIG. 5. Colocalization of pro-TRH with PC1 and PC2. Neuronal cells
cultured for up to 14 days in four-chamber labTeck slides were fixed
with 4% paraformaldehyde followed by immunoreaction with anti-
PC1 or anti-PC2. Fluorescein isothiocyanate conjugated to goat an-
tirabbit globulin was used as a probe. Texas Red-X-succimidylester
directly conjugated to anti-pAV37 antibodies was used as a probe for
pro-TRH. Panel A shows positive immunostaining for pro-TRH pep-
tides (red color, arrows). Panel B shows positive immunostaining for
PC1 (green color, arrow and arrowhead). Panel C shows the protein
colocalization of pro-TRH and PC1 (yellow-orange color indicated by
arrows). Some neuronal cells contain PC1 but not pro-TRH (panels B
and C, arrowhead). Panel D shows positive immunostaining for pro-
TRH peptides (red color, arrow). Panel E shows positive immuno-
staining for PC2 (green color, arrow and arrowhead). Panel F shows
the protein colocalization of pro-TRH and PC2 (yellow-orange color
indicated by arrow and arrowhead). Some neuronal cells contain PC1
but not pro-TRH (panels B and C, arrowhead). Thirty-millimeter
slides were digitized with a video camera and appropiate macro lens
using BioVisionframe grabbera software (Perceptics Corp., Knoxville,
TN). Images of the red and green planes were combined using Adobe
Systems, Mountain View, CA) to show areas of colocalization. The
resulting images were printed with a Mitsubishi CP210 dye subli-
mation printer (Apunix Computer Services, San Diego, CA). [Repro-
duced with permission from P. Schaner et al.: J Biol Chem 272:
19958–19968, 1997 (37).]
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products could be that TRH is extracted less efficiently from
cells than these other peptides, although this seems unlikely
because TRH is the smallest of the peptides, and doping
experiments indicate TRH is extracted with high efficiency
under our conditions. As described above, it is proposed that
the processing of peptides derived from the N-terminal por-
tion of pro-TRH is substantially different from the processing
of those of the C-terminal end. This suggests the possibility
of differential maturation of TRH molecules depending on
location within the pro-TRH sequence (84). If this is the case,
either the three TRH molecules derived from the C-terminal
side, or the two from the N-terminal side, may play a more
primary role in hormonogenesis. It is also possible that cer-
tain TRH molecules become biologically active at different
times than others, or only some of them reach maturity while
the rest are degraded by the TRH-degrading enzymes, de-
pending upon physiological needs (see Section VII). Finally,
cells may simply produce excess TRH that may or may not
be used.

In summary, we have presented an overview of the current
knowledge of pro-TRH biosynthesis, its processing, its tissue
distribution, and the role of known processing enzymes in
pro-TRH maturation. Evidence is presented suggesting dif-
ferential processing for pro-TRH at the intracellular level is
physiologically relevant. The data indicate that PC1 is pri-
marily responsible for most pro-TRH cleavage events. PC2 is
involved in specific processing events that occur later in the
secretory pathway, specifically in the formation of the second
TRH molecule from the N-terminal side of prepro-TRH83–106,

and the proteolytic cleavage of prepro-TRH178–199 to gener-
ate the novel prepro-TRH178–184 and prepro-TRH186–199

peptides.

E. Neuropeptide and catecholamine regulation of pro-TRH

biosynthesis and processing

Immunoreactive TRH (iTRH) axon terminals are present
in high density in the external layer of the rat ME, in close
apposition to capillaries of the hypophysial-portal system
(124). These axons originate from neuronal perikarya located
in the PVN, the “thyrotrophic area” of the rat hypothalamus.
Destruction of this region results in disappearance of up to
94% of TRH in the external layer of the ME and reduction of
TSH secretion from the anterior pituitary gland (125). As
described in Section IIC (Table 1), in addition to the PVN,
iTRH neurons are present in other regions of the hypothal-
amus, including the POA, anterior hypothalamus, and su-
praoptic, arcuate, dorsomedial, and premmamilary nuclei, as
well as basolateral and prefornical hypothalmus (93).

Although many neurons in the PVN contain more than one
peptide, TRH neurons are unique in being almost always
unassociated with other known peptides (126). This makes
the regulation of pro-TRH-derived peptide biosynthesis very
specific. As described in more detail below, TRH neurons in
the PVN are located in a region where they can be regulated
by a number of neuroendocrine inputs. TRH neurons are
densely innervated by norepinephrine (NE)-containing ax-
ons that stimulate TRH secretion (124). TRH neurons are also

FIG. 6. Diagramatic representation of rat pro-TRH and its cleavage by PC1 and PC2 as showed in our previous studies done in vitro and
coexpression conditions (see Section II.D). The arrows indicate the site of cleavages and whether they are major (thick arrow) or minor (thin
arrow) sites for each enzyme. [A portion of this figure was reproduced with permission from P. Schaner et al.: J Biol Chem 272:19958–19968,
1997 (37).]
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densely innervated by neuropeptide Y (NPY) neurons. In
smaller numbers, SRIF and endogenous opioid peptide
(EOP) terminals are also in contact with TRH neurons (124).
In vivo, these various neuroendocrine inputs may affect the
levels of prepro-TRH mRNA and the posttranslational pro-
cessing of pro-TRH by influencing the biosynthesis and mat-
uration of PC1 and PC2. At the present time, the effect of this
input on pro-TRH processing is unknown. Evidence for co-
ordinated regulation of mRNAs for processing enzymes and
their substrates has been documented in several cases (127).
In contrast, outside the hypothalamus TRH is colocalized
with other substances. For example, in the descending bul-
bospinal pathway, TRH is colocalized with SP and serotonin
(5-HT) (128). Regulation of these TRH neuronal systems is
much less well characterized than the thyrotropic neurons of
the hypohyseal-portal system.

TRH-synthesizing neurons in the rat PVN receive a large
number of afferent neuroendocrine inputs. Axon collaterals
of parvocellular neurons ramify within the medial parvo-
cellular PVN and establish numerous synaptic contacts with
perikarya and dendrites of other parvocellular as well as
magnocellular neurons, e.g., SRIF afferents are derived from
the PVN itself (129). The majority of inputs to TRH neurons
are derived from the diencephalon, telencephalon, and brain-
stem (130). The paraventricular and medial parvocellular
divisions of the PVN are densely innervated by NE-contain-
ing and epinephrine (E)-containing inputs from the medulla
and pons (131). Further, NE-containing neurons densely in-
nervate the midregion of the external layer of the ME. These
inputs activate tuberoinfundibular neurons. Intracerebro-
ventricular (icv) injections of NE, E, and a2-adrenergic ago-
nists stimulate basal TSH secretion (132, 133), and NE/E
treatment of hypothalamic preparations stimulates TRH re-
lease (134). Inhibitors of catecholamine (CA) biosynthesis or
a2-adrenergic antagonists lead to a fall in basal TSH secre-
tion. Thus, NE and E exert a tonic, stimulatory regulation on
TSH secretion principally through a2-adrenergic receptors.
Stimulated release from the ME appears to be postsynapti-
cally mediated via a1-adrenergic receptors (135). In contrast,
locus coeruleus (LC) afferents are inhibitory, being activated
during stress (136). NE/E excitation of PVN TRH neurons
mediates the rise in TSH in response to acute cold exposure
or hypovolemia (135, 137, 138). However, it has also been
proposed that a1-adrenergic receptors mediate a phasic in-
hibitory regulation of TSH release. The data on NE/E mod-
ulation of TRH biosynthesis may be reconciled by an exam-
ination of how these inputs affect the posttranslational
processing of pro-TRH, as well as examining their effects on
PC biosynthesis. Peripheral levels of T3, T4, or TSH may also
influence NE/E effects on TRH biosynthesis and/or release.

The PVN also receives prominent dopamine (DA) inputs
from the posterior and dorsal areas of the hypothalamus, the
zona incerta of the subthalamic region, and the A14 region
of the anterior hypothalamus (124). Mesencephalic A9 and
A10 dopaminergic neurons also project to the PVN. In turn,
large terminal fields to the ME originate in the arcuate nu-
cleus and periarcuate nucleus regions of the hypothalamus.
In contrast to the NE/E system, DA inputs appear to inhibit
TRH secretion, mainly at the level of the ME (139). Aug-

mentation of DA neurotransmission inhibits basal and/or
cold-stimulated TSH release, while DA antagonism has the
opposite effect, although some studies have failed to repli-
cate these findings (124). In addition, TRH release may be
indirectly inhibited by DA-stimulated secretion of SRIF (140).
Conversely, DA stimulates TRH release from isolated hy-
pothalamic fragments (134, 140), again reinforcing the need
to examine TRH biosynthesis in both in vitro and in vivo
systems. Within the HPT axis, thyroid hormones appear to
modulate DA levels in the ME, and TSH increases the ability
of DA to inhibit TRH (141) (Table 1).

A wide array of neuropeptides, including NPY, TRH itself,
SRIF, EOPs, neurotensin (NT), and vasoactive intestinal
polypeptide (VIP), have inputs to the PVN and/or external
layer of the ME (142–146). Other mediators, including g-ami-
nobutyric acid (GABA) and various cytokines, also appear to
regulate TRH or TSH secretion, but there is as yet no ana-
tomical evidence to support a direct action on TRH neurons
in the PVN and/or ME (124). Anatomically, NPY appears
most prominent in its inputs to the periventricular and me-
dial parvocellular divisions of the PVN (147). NPY cell bodies
principally reside in the medulla, often coexisting with NE
and E (148), but other sources come from throughout the
brain, including the arcuate nucleus of the hypothalamus
itself. Indeed, the arcuate nucleus is the major source for NPY
fibers innervating the TRH neurons in the PVN (149). Few
NPY-containing axons project to the ME. The effects of NPY
on tuberinfundibular TRH are not yet well understood. NPY
neurons also innervate SRIF neurons in the PVN, which
would allow indirect regulation of TRH biosynthesis or se-
cretion (124). Central administration of NPY reduces NE
utilization in the PVN, as well as TSH release, indicating an
inhibitory influence. In vivo, NPY also increases hypotha-
lamic DA content, as well as DA turnover in the ME, the net
result of which would reduce TRH release as well (150).
Physiologically, NPY is critical to integrating thyroid func-
tion, food intake, and thermoregulation (151) (Table 1).

Inputs containing EOPs represent a second rich innerva-
tion to the PVN. These originate in the arcuate nucleus,
periarcuate area, and amygdala (144). The dorsal raphe
projects 5-HT/enkephalin (ENK) axons, and the posterior
hypothalamus-mammallary bodies send GABA/histamine/
ENK projections, to the PVN. The ME contains numerous
ENK, dynorphin, and endorphin (END) synapses originat-
ing from the PVN and arcuate nucleus. Both END and ENK
inhibit TRH release from the hypothalamus, and ENK and
morphine inhibit TRH secretion from the ME (152). There is
additional evidence that ENK indirectly inhibits tuberoin-
fundibular TRH via DA release (153).

Recent data indicate that pro-TRH processing is regulated
by opiate withdrawal (27). Opiate withdrawal increases pre-
pro-TRH mRNA, and the N-terminal prepro-TRH53–74 and
prepro-TRH83–106 peptides, in the rat PAG, whereas the level
of TRH is unaltered (27, 154). New data also show suckling
increases the production of prepro-TRH178–199 and prepro-
TRH186–199 (see Section IVC and E). (91). These results dem-
onstrate that levels of various products derived from pro-
TRH can be posttranslationally regulated in an independent
fashion under altered physiological conditions. Thus, it is
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logical that neuroendocrine inputs into the PVN can affect
pro-TRH processing as well.

Finally, we note that while the genomic organization of the
rat prepro-TRH gene is well described (155, 156), the mo-
lecular mechanisms regulating the expression of this gene are
incompletely understood. The 59-region of the prepro-TRH
gene contains TATA and GC box sequences, also present in
the promoter region of other neuropeptide genes (155). In
addition, sequences similar to a cAMP response element
(CRE), and negative thyroid response elements (TREs), are
present. The region between 247 and 16 of the rat prepro-
TRH gene is active in CA77 TRH-secreting medullary thy-
roid carcinoma cells (155, 157), but not in transgenic mice
(158). Inclusion of most of exon 1 (bp 247 to 184) increases
promoter activity in CA77 cells and activates the promoter in
transgenic mice, principally in prepro-TRH gene-producing
tissues. Thus, cis element(s) located within exon 1 are nec-
essary for the expression of the rat prepro-TRH gene in vivo
(158). In CA77 cells, the human prepro-TRH gene is regu-
lated by thyroid hormone through two distinct classes of
negative TREs (157), similar to other neuropeptide genes
such as prepro-SRIF (159).

F. Glucocorticoids modulate the biosynthesis and processing

of pro-TRH

Glucocorticoids evoke a broad spectrum of responses in
many eukaryotic cells by stimulating or repressing the tran-
scription of glucocorticoid-regulated genes, including those
of peptide hormones (160). The primary effect of glucocor-
ticoids on gene transcription can occur by specific binding of
the steroid receptor complex to DNA at the site of glucocor-
ticoid response elements. Glucocorticoids can also interfere
with the action of other transcription factors through protein-
protein interactions and may elicit secondary effects at the
posttranscriptional, translational, and posttranslational lev-
els (161–163). For example, glucocorticoids stimulate pro-

cessing of the precursors for atrial natriuretic factor and
neurotensin (NT) (162, 163). Glucocorticoids also regulate the
posttranslational maturation, the intracellular trafficking,
and the extracellular release of the mouse mammary tumor
virus (164).

Glucocorticoids enhance TRH gene expression in several
in vitro cell systems, including hypothalamic neurons, ante-
rior pituitary cells, and thyroid C cells, an effect that occurs,
at least in part, through transcriptional activation (165).
Dexamethasone substantially elevates biosynthesis of the 26-
kDa TRH prohormone and its intermediate products in cul-
tured anterior pituitary cells, consistent with an overall up-
regulation of both the biosynthesis and processing of the
TRH precursor (161). This explains why glucocorticoids act
not only at the transcriptional level, but also at the transla-
tional/post-translational level. This question can be ad-
dressed in experiments with AtT20 cells transfected with
prepro-TRH cDNA driven by a CMV-IE promoter not re-
sponsive to physiological signals. Dexamethasone causes a
75% increase in newly synthesized 26-kDa pro-TRH without
altering prepro-TRH mRNA levels, suggesting that glucocor-
ticoids raise translation rates and/or slow processing of pro-
TRH. In fact, dexamethasone treatment accelerates TRH pre-
cursor processing.

Interestingly, processing of the N- vs. the C-terminal in-
termediates in the AtT20 cells is influenced differentially by
glucocorticoids. Levels of the N-terminally derived peptide
prepro-TRH25–50 are enhanced while levels of the 5.4-kDa
C-terminally derived peptide are reduced. TRH content is
increased (Fig. 7) (161). How could dexamethasone differ-
entially affect the processing of N- vs. the C-terminal inter-
mediates? Glucocorticoids may alter pro-TRH processing
through changes in the expression of processing enzymes, as
well as morphological alterations in AtT20 cells. For example,
GC volume is obviously enlarged in AtT20 cells treated with
dexamethasone. Although speculative, these changes may

FIG. 7. Effect of dexamethasone on the accumulation and release of pro-TRH-derived peptides in AtT20 cells transfected with a prepro-TRH
cDNA. AtT20 cells were cultured in six-well plates; cellular extracts and release media (2 h basal release) were processed further for the
determination by RIA of the intracellular accumulation and basal release of the N-terminal peptide prepro-TRH25–50 (A), the C-terminal peptide
prepro-TRH208–255 (B), and TRH itself (C) whose five copies are derived from both N- and C-terminal intermediates. A representative experiment
(n 5 6 wells for each group) is depicted. Data are presented as mean values 6 SEM. * P , 0.05 compared with control. [Reproduced with permission
from T. O. Bruhn et al.: Endocrine 9:143–152, 1998 (161).]
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slow down the normal transport of intermediate products
from the TGN to ISGs, thereby altering the accumulation or
degradation of intermediate forms through changes in pro-
cessing enzyme exposure (84, 161).

In vivo, more diverse effects of glucocorticoids on TRH
gene expression have been reported. prepro-TRH mRNA-
expressing neurons outside the PVN do not appear to be
affected by changes in adrenal status, in contrast to the sup-
pression caused by glucocorticoids in the PVN (166). The
action of glucocorticoids on PVN prepro-TRH mRNA-
expressing neurons may involve the hippocampus and
amygdala, which convey negative feedback by glucocorti-
coids on CRF-expressing neurons in the PVN (167). Thus,
direct positive regulation by glucocorticoids may be over-
ridden by an indirect negative regulation causing a net
reduction of prepro-TRH mRNA in the PVN while positive
and negative regulation may sum to no change prepro-TRH
mRNA-expressing neurons outside of the PVN (166).

In conclusion, glucocorticoids induce changes in the bio-
synthesis and processing of pro-TRH by affecting both tran-
scription and translation rates, and by differentially influ-
encing the processing of N- vs. C-terminal intermediates of
pro-TRH. At the translational and posttranslational level,
these effects result in an increase in TRH production, with
more complicated differential effects on the accumulation of
other N- and C-terminal pro-TRH-derived peptides. It is
clear that control over the diverse range of pro-TRH-derived
peptides within a specific cell is accomplished mostly from
the regulation at the posttranslational level rather than the
translational or transcriptional levels. Three examples sup-
porting this hypothesis are presented in this review: 1) pro-
TRH processing in the PAG is regulated during the opiate
withdrawal, so that levels of TRH remain unchanged, but
other pro-TRH-derived peptides are induced (Section II.B.6);
2) pro-TRH processing is regulated during suckling, where
a selective, yet dramatic, increase in prepro-TRH178–199 and
prepro-TRH186–199 peptides is observed (Section IV.D and E);
and 3) in the absence of transcriptional effects, glucocorti-
coids induce differential processing of pro-TRH in both pri-
mary cultures of pituitary cells and transfected AtT20 cells
encoding prepro-TRH cDNA (this section).

G. Leptin regulates pro-TRH biosynthesis

Food deprivation in animals and humans results in en-
docrine and metabolic changes including decreases in cir-
culating thyroid hormones, TSH, insulin, GH, gonadal hor-
mones, and gonadotropins. Previous work in starved rats has
shown a decrease in hypothalamic, but not thalamic, retic-
ular, prepro-TRH mRNA, as well as decreased circulating
TRH. This supports the concept that hypothyroidism pro-
duced after starvation is of hypothalamic origin (168). Leptin
is a recently discovered peptide hormone that is synthesized
and released by adipose tissue. Leptin also is decreased in
starvation. Absence of leptin is responsible for the obese
phenotype of ob/ob mice, and administration of this hormone
to these animals decreases plasma corticosterone, suggesting
that leptin is capable of inhibiting the hypothalamic-pituitary
adrenal axis. In normal rats and mice, leptin inhibits hypo-
thalamic CRH release (169).

Leptin may have an important role in the neuroendocrine
regulation of the HPT axis (170). During prolonged fasting in
rats, low levels of T3 and T4 are observed, and TSH is in the
low to normal range. As described above, this is due in part
to suppression of prepro-TRH gene expression in PVN neu-
rons. Since the decrease in thyroid hormone levels is blunted
in mice and rats by systemic leptin, it has been proposed that
the decrease in leptin detected during fasting alters the set
point for feedback inhibition by thyroid hormones on the
biosynthesis of prepro-TRH mRNA (170). The mechanism of
such leptin regulation of prepro-TRH biosynthesis is un-
known. It is hypothesized that leptin has direct actions on cell
bodies in the arcuate nucleus, positively regulating POMC,
and thus a-MSH, and negatively regulating NPY and the
Agouti-related peptide (151). NPY afferents on TRH neurons
are inhibitory (see Section II.E). In preliminary studies done
in this laboratory, both leptin and a-MSH elevate prepro-
TRH mRNA, pro-TRH, and TRH secretion in primary hy-
pothalamic cultures (our unpublished results). Using the
same primary cultures of hypothalamic neurons, leptin dose-
dependently increases pro-TRH synthesis and TRH secre-
tion. Immunocytochemical analysis reveals that approxi-
mately 40–50% of the hypothalamic cells are positive for the
leptin receptor. Of these, approximately 10–15% colocalize
with TRH (Fig. 8). These data suggest that the regulation of
pro-TRH biosynthesis and TRH release in response to star-
vation includes direct regulatory actions of leptin and
a-MSH on hypothalamic TRH neurons involved in HPT axis
homeostasis (171).

In summary, leptin effects on pro-TRH biosynthesis in-
clude: 1) an inhibitory action of leptin on NPY release from
the arcuate nucleus, which in turn may reduce the inhibitory
action of this peptide on TRH release from the PVN; 2) a
stimulatory action of leptin on a-MSH release from the ar-
cuate nucleus, which may stimulate TRH release from the
PVN; and 3) a direct action of leptin on TRH neurons located
in the PVN.

III. Function of TRH

A. The HPT axis

The hypophysiotropic role of TRH in the control of thyroid
function has been extensively reviewed elsewhere, and the
reader is referred to the excellent review by Scanlon and Toft
(172). Therefore, this section will only briefly describe the role
of TRH in the HPT axis, including relevant new reports, to
aid in the understanding of other sections of this review.

TSH is synthesized and secreted by the thyrotrophic cells
in the anterior pituitary and is the major regulator of the
thyroid gland. TSH secretion is primarily regulated by neg-
ative feedback from circulating thyroid hormone and by
stimulatory input from the hypothalamus through TRH ac-
tion on thyrotrophs. There are other factors known to reg-
ulate TSH secretion, including glucocorticoids in the sys-
temic circulation and SRIF and DA from the hypothalamus.
There is evidence supporting the view that glucocorticoids in
man suppress endogenous hypothalamic TRH secretion
(173). Further support for this hypothesis was demonstrated
in adrenalectomized rats in which pro-TRH mRNA levels
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increase 1.6-fold, an increase reversible with dexamethasone
(166). The role of glucocorticoids in vivo and in vitro has been
described in the previous sections. Both SRIF and DA inhibit
TSH release by direct effects on thyrotrophs. As discussed in
Section II.C., SRIF perikarya in the POA, periventricular parts
of the anterior hypothalamus, and a few in the PVN, and
TRH neurons in the PVN, project to the ME. TRH and SRIF
are the two main TSH-regulating hypophysiotropic neuro-
hormones released into the hypophysial portal vasculature.
The maintenance of euthyroidism is dependent on a highly
regulated balance of neuropeptides and neurotransmitters,
where the dominant positive hypothalamic control for TSH
is TRH, and the principal feedback control is through thyroid
hormones. However, thyroid hormones also provide direct
negative feedback on prepro-TRH gene expression as well.
The relationship of thyroid hormone regulation to pro-TRH
processing is undefined.

Even though TRH is the major regulator of the synthesis
and secretion of TSH, and thus plays a pivotal role in the HPT
axis, in a recent study, homozygous TRH gene knockout mice
were shown to be viable, fertile, and exhibit normal devel-
opment (174). Whereas the TRH2/2 mice showed normal
serum PRL and GH levels, thyroid hormone levels were
significantly reduced as compared with the wild-type het-
erozygous mice. The targeted disruption of the prepro-TRH

gene caused a characteristic tertiary hypothyroidism, and a
substantial decrease in insulin secretion resulting in a pro-
found hyperglycemia. These authors suggested that in ad-
dition to abnormalities of the thyroid function, TRH may be
involved in the pathogenesis of diabetes mellitus (174).

B. Extrahypophysiotropic TRH

More than two-thirds of iTRH in the brain is found outside
of the traditional “thyrotrophic zone” of the hypothalamus
(175, 176). This extrahypophysiotropic TRH is believed to
function as a neuromodulator of known neurotransmitters
(177, 178). Indeed, it might act as a neurotransmitter itself; it
is present in secretory granules whose exocytosis is respon-
sive to membrane depolarization, it acts through specific
receptors that are widely distributed throughout the CNS,
and it is rapidly cleared through specific catabolic pathways
(179).

While the following discussion focuses on TRH, many
other neuropeptides and neurotransmitters play critical roles
in the biological functions discussed below. In several areas
of the brain, TRH is colocalized with other neurotransmitters
and/or neuromodulators, including 5-HT and SP in the bul-
bospinal pathway, DA in the olfactory bulb, and histamine,
ENK, and NPY in various loci of the hypothalamus (128).

FIG. 8. Colocalization of pro-TRH with the leptin receptor (LR). Neuronal cells cultured for up to 14 days in four chamber labTeck slides were
fixed with 4% paraformaldehyde followed by immunoreaction with anti-LR and anti-pro-TRH. Fluorescein isothiocyanate conjugated to goat
antirabbit globulin was used as a probe. Texas Red-X-succimidylester directly conjugated to anti-pAV37 or anti-pST10 antibodies were used as
a probe for pro-TRH. Panel A shows positive immunostaining for LR in neurons untreated with Triton X-100. Staining is mainly localized on
the surface of cell body and dendrites. Panel B shows cells with positive immunostaining for pro-TRH using anti-pAV37 (red color, arrowhead)
and LR (green color, arrow). Colocalization of pro-TRH with LR (yellow-orange color indicated). The insets show the same cell with each individual
staining. A distinct population of neuronal cells contains pro-TRH but not LR and vice versa. Among the total cells with positive staining for
pro-TRH, approximately 30% or less of those cells colocalize with LR. Panel C shows positive immunostaining for pro-TRH using anti-pST10
(arrowheads, red) and for LR (arrows, green), which are present in different subcellular locations. Panel D shows positive immunostaining for
pro-TRH peptides (red color, arrowheads) that colocalize with LR (green color). Thirty millimeter slides were digitized with a video camera and
appropiate macro lens using BioVisionframe grabbera software (Perceptics Corp., Knoxville, TN). Images of the red and green planes were
combined using Adobe Systems to show areas of colocalization. The resulting images were printed with a Mitsubishi CP210 dye sublimation
printer (Apunix Computer Services, San Diego, CA).
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Where TRH is directly affected by, or directly affects, other
neuroactive agents, they have been discussed, but otherwise
their roles are left for review elsewhere. Further, in the fol-
lowing we describe many effects of TRH. In fact, these have
been demonstrated using TRH and/or TRH analogs. Due to
space constraints, we will not distinguish effects by TRH vs.
its analogs. Available TRH analogs have higher affinities for
the TRH receptor, longer half-lives, etc. and are reviewed
elsewhere (180, 181).

Finally, for several TRH effects, the metabolite histidyl-
proline diketopiperazine, or cyclo (His-Pro) (CHP) also has
agonist or antagonist effects. CHP is present in the CNS and
peripheral tissues in levels that often exceed levels of TRH
(182). While CHP is a known breakdown product of TRH,
there are data that CHP is also derived from precursors other
than TRH (183). Further, high-affinity binding sites for CHP
have not been identified (184) (but see Ref. 185). Thus, the
precise biological meaning of CHP effects is unknown. Fig-
ure 9 summarizes proposed physiological roles for extra-
hypophysiotropic TRH.

1. TRH and ergotrophic effects. In diverse ways TRH is exci-
tatory when infused into animals (179). Activation is re-
flected in organism-wide effects on arousal, sleep, cognition,
locomotion, and mood (186). Metcalf and Dettnar (187) first
used Hess’s term “ergotrophic” to describe the endogenous
activating effects of TRH in the brain that are described
below.

a. TRH in arousal and sleep: Systemic (188, 189) and central
(190) TRH increase wake time and/or decrease sleep time in
multiple species. More dramatic is the ability of TRH to
arouse animals from drug narcosis induced by alcohol (191,
192), b-endorphin (193), tetrahydrocannabinol (THC) (194),
benzodiazepines (195), and barbituates (196, 197). icv Anti-
TRH antiserum doubles anesthetic-induced sleep time, sup-
porting an endogenous role for TRH in arousal (198). Of
unclear significance, CHP is more effective than TRH in

decreasing sleep time and reversing ethanol-induced narco-
sis, but does not affect TRH modulation of barbiturate-
induced sleep time in mice (199, 200).

TRH analepsis is most strongly induced by infusions into
the medial septal area, the diagonal band of Broca, or the
nucleus basalis of Meynert (186, 201). TRH levels rise in the
medial septum as rats recover from ethanol-induced seda-
tion (202). Further, TRH enhances cholinergic activity in the
septo-hippocampal and nucleus basalis-cortical systems
(203–205), pathways that play a central role in reversal of
drug-induced narcosis (206). Atropine blocks both analepsis
and cholinergic enhancement when TRH is infused into these
areas. However, antagonism of the analeptic response to
systemic TRH requires both ACh and NE blockade, support-
ing mediation by other neuroanatomical sites (192, 207). The
posterior lateral hypothalamus, the midbrain reticular for-
mation, and TRH-containing fibers passing through, or syn-
apsing in, the dorsal septum are additional neuroanatomical
substrates that might mediate arousal through noradrenergic
mechanisms (203).

There are limited data that TRH may be useful to enhance
arousal in pathological states. TRH prevents the postcon-
cussive elevation of cortical ACh and reduction of cortical NE
seen in mice (208) and decreases time of unconsciousness in
head-injured mice (209). Canine models of narcolepsy show
improvement after treatment with TRH (189).

b. TRH in cognition: The ergotrophic effects of TRH on
consciousness and arousal are often detected along with
improvements in measures of learning and memory, con-
sistent with the important role of ACh in both processes
(210). TRH improves performance in learning-impaired
mice, an effect that is blocked by scopolamine (211). TRH
restores learning and/or memory deficits in rats made cog-
nitively deficient by anticholinergic treatment, electrochem-
ical shock treatment (ECS), or surgical lesions (212–214).
These effects are largely mediated by enhanced cortical ACh

FIG. 9. Physiological roles of extrahy-
pophysiotropic TRH. Extrahypophysio-
tropic TRH is implicated in a wide range
of physiological processes, as well as
processes affected by drugs of abuse.
These functions are broken down into
areas portrayed as ellipses within the
darker annulus surrounding extrahy-
pophysiotropic TRH in the center. Major
subjects discussed in the text for each
area are shown outside the ellipses.
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release with TRH infusion into the nucleus basalis of Meynert
and increased hippocampal ACh with TRH infusion into the
medial septum-diagonal band (215). Facilitated release of NE
(216) and N-methyl-d-aspartate (NMDA) receptor activation
(217) also are implicated in cognitive enhancement by TRH.
Human trials have demonstrated only modest cognitive im-
provements in patients with alcoholic dementia (218), in the
ECS postictal state (219), and in Alzheimer’s disease (220,
221).

c. TRH in locomotor activation: Systemic TRH elicits a num-
ber of motoric and behavioral activating effects in a wide
range of species (178, 222). Further, TRH antagonizes loco-
motor depression induced by alcohol (223) and b-endorphin
(193). TRH elicits locomotor activation when injected into the
NAc (224, 225), the ventral tegmental area (VTA), the caudate
(222), the septal nuclei (225), and the ventromedial hypo-
thalamus (226).

Locomotor activation by TRH principally is mediated by
DA. Repeated TRH treatment in rats elevates DA in the
cerebral cortex and increases tyrosine hydroxylase activity,
the rate-limiting enzyme in DA biosynthesis in the brain
stem. These effects correlate with dose- and time-dependent
increases in locomotor activity (227). DA antagonists and/or
DA depletion block locomotor activation by systemic TRH
(228). Consistent with TRH activity on the mesocorticolimbic
system, systemic TRH increases DA release in the NAc (224,
229), and bath application of TRH induces DA release from
NAc (230) and septal (231) brain slices.

Intraaccumbens TRH increases DA metabolism in the
NAc, while icv TRH or intra-VTA TRH do not, although
these latter treatments elicit locomotor excitation (222). Fur-
ther, TRH can stimulate locomotion at doses that have no
effect on NAc DA (232). These data support redundant but
distinct TRH mechanisms, in addition to those in the meso-
cortical DA system, that induce locomotion (233). Other stud-
ies indicate that opiate antagonists and a-adrenergic antag-
onists can attenuate TRH-induced locomotion (234). A single
study reports that CHP is able to stimulate locomotion (200).

d. TRH and antidepressant effects: In a number of behavioral
assays used to screen compounds for antidepressant efficacy,
TRH tests positively (235). This potentiation is independent
of effects on TSH or thyroid hormones; however, PRL sim-
ilarly can potentiate desipramine effects in the forced swim
test (236). For the most part, DA receptor antagonists block
the antidepressant effects of TRH (237), although it is difficult
to tease out locomotor effects from antidepressant effects in
some behavioral tests. TRH action in some antidepressant
screens is blocked by opioid receptor antagonists or a2-
adrenergic blockade (237). Further, antidepressant treat-
ments alter TRH levels in rat brain, but not in a clear “an-
tidepressant pattern” (238). In human trials, promising early
results (239, 240) have given way to larger studies that in-
dicate TRH is of limited benefit in depression (241, 242).
Recent studies using intrathecal TRH reveals significant re-
ductions in symptomatology of patients with refractory de-
pression, although tachyphylaxis to the effects develops rap-
idly (243, 244). Recently, a compelling model has been put
forward that clinical depression results from pathologically

overdriven glutamatergic circuits in the limbic forebrain that
have escaped inhibitory regulation by TRH (245).

2. TRH and autonomic nervous system function. The brainstem
distribution of TRH supports a prominent role in autonomic
nervous system (ANS) function. Fully 65% of medullary TRH
is associated with dorsal vagal complex (DVC) neurons of the
nucleus tractus solitaris (NTS), nucleus intercalatus and com-
misuralis, the dorsal motor nucleus (DMN) of the vagus, and,
to a lesser extent, the nucleus ambiguus (246). Injection of
TRH onto DMN neurons is uniformly excitatory, while ap-
plications onto NTS neurons are inhibitory (247). The ma-
jority of DVC iTRH derives from fibers arising from the
medullary raphe nuclei that pass through the DVC (93, 248).
However, cells within the DMN express prepro-TRH mRNA
and pro-TRH (95, 249), consistent with some endogenous
TRH production.

A descending bulbar-spinal pathway, in particular, from
the nucleus interfascicularis hypoglossi and the nucleus
paragigantocellularis lateralis, projects to the intermediolat-
eral (IML) column of the spinal cord (250). Fibers and ter-
minals of this tract are closely apposed to preganglionic
sympathetic neurons. TRH fibers and preganglionic sympa-
thetic neurons are also found around the central canal and in
the intermediate gray matter of lamina VII (93, 251). While
some studies indicate that more than 90% of TRH immuno-
reactive neurons also stain positively for 5-HT, and 75%
express immunoreactive SP (252), only 43% of IML TRH is
ablated by 5-HT neurotoxins (250). Indeed, more than 90%
depletion of 5-HT in the spinal cord reduces spinal cord TRH
by only 66% (253). Thus, a sizable pool of TRH-containing
neurons are not serotonergic.

a. TRH and gastrointestinal function. TRH inhibits food and
water intake: TRH inhibits food and water intake, consistent
with its high levels in the ventromedial hypothalamus (176,
254), a center important to regulation of food intake (255),
and its interaction with NPY and NE, both important to
intake behavior (93). Systemic TRH reduces food intake less
effectively than icv TRH, arguing for a central effect (256).
Parenteral TRH can suppress eating without altering blood
glucose levels (257) and without affecting TSH (256). icv TRH
also reduces water intake (258), although others have re-
ported icv TRH reduces food intake far more than water
intake (259). icv TRH suppression of stress-induced eating is
antagonized by d-ala-met-enkephalin (260), although DA
transmission in the nigrostriatal pathway and lateral hypo-
thalamus also affects stress-induced eating (261).

The hypothalamus serves as a principal brain substrate to
coordinate hunger and satiety; it is generally held that the
ventromedial hypothalamus serves to signal satiety, and the
lateral hypothalamus, hunger (255). Injection of TRH into the
ventromedial hypothalamus is most potent in producing
adipsia and anorexia, and lateral hypothalamus injection is
selectively potent for adipsia (262). Iontophoretic application
of TRH onto ventromedial hypothalamic neurons results in
facilitation of glucoreceptors, and hence, decreased feeding
drive (263). However, others argue that the lateral, not ven-
tromedial, hypothalamus is most critical for TRH-induced
anorexia (226). TRH administration into the NAc is mildly
anorexic (262). Systemic and icv CHP also suppress sponta-
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neous food and water intake and stress-induced feeding,
although it is less potent than TRH in feeding (264). In water-
deprived rats, CHP is equipotent with TRH in reducing
drinking (265). Thus, it cannot be ruled out that the TRH
effects discussed above are actually the result of CHP as a
TRH metabolite.

TRH enhances gastric acid secretion: Vagal preganglionic neu-
rons arising from the rat DVC and nucleus ambiguus ter-
minate in the gastrointestinal tract (266, 267), in close prox-
imity to nerve efferents of the greater curvature and pylorus
of the stomach (268). These comprise the major medullary
projections to the stomach. In the cat, retrograde tracing does
not support a descending tract from the nucleus ambiguus,
but the remainder of the DVC participates in the bulbogastric
projection (268). The high concentration of TRH receptors in
the DVC (269, 270) in close proximity to NTS vagal afferents
(266) is consistent with modulation by TRH afferents from
the NTS and the medullary raphe nuclei. As well, peripheral
signals of gastric distention and gastric secretion are carried
by vagal afferents back to the medulla to activate DVC neu-
rons. The codistribution of afferent and efferent pathways in
the vagus provide a means for bulbogastric TRH neurons to
modulate gastrointestinal responses to physiological signals,
such as gastric distension, the cephalic phase of gastric acid
secretion, etc. (271, 272).

Central TRH is far more potent than iv TRH in inducing
gastric acid secretion (18, 273). icv Anti-TRH inhibits gastric
acid secretion in pylorus-ligated (274) and cold-restrained
(18) rats, supporting an endogenous role for the peptide.
TRH stimulates gastric acid secretion independent of hy-
pophysiotropic effects or effects on gastrin (275, 276). Fur-
ther, TRH injection into the DVC is 10 times more potent than
icv TRH in stimulating gastric acid secretion (18, 277, 278).
Bilateral DVC injection of anti-TRH antiserum significantly
reduces gastric acid secretion in response to icv TRH (279),
or chemical or electrical activation of medulla raphe pallidus
(RPa) neurons (280), supporting the central role of the DVC
in TRH effects on gastric acid secretion.

Atropine injection into the DMN does not completely
block TRH-stimulated gastric acid secretion (279), because
other loci, including the nucleus ambiguus, lateral hypothal-
amus, and the ventromedial hypothalamus, can mediate
TRH-induced gastric acid secretion (18, 281). TRH action also
is partly mediated through a2-adrenergic receptors and en-
hanced sympathetic outflow that modulates the vagus (275,
277, 282). By unknown mechanisms a number of peptides in
the DVN, including CRF, bombesin, calcitonin gene-related
peptide (CGRP), calcitonin (CT), endogenous opiates, and,
curiously, gastrin releasing peptide, inhibit TRH-induced
gastric acid secretion (18). CHP and TRH-OH have no such
activity (277, 283).

Kainic acid stimulation of afferent nucleus raphe obscurus
(ROb) neurons mimics the induction of gastric acid secretion
by TRH injection into the DVC (278). In addition, the caudal
raphe nuclei-DVC pathway mediates cold-induced vagal
stimulation of gastric acid secretion and erosion formation
(284). Further, anti-TRH antisera injected into the DMN abol-
ishes the ability of excitatory amino acid injection into the
RPa to enhance indomethacin-induced gastric erosion for-

mation (285). Thus, excitation of the raphe nuclei enhances
DVC outflow, and one of the mediators of this effect is TRH.
5-HT (286) and SP (287) afferents from the raphe nuclei to the
DVC modulate TRH effects.

icv TRH administration indirectly affects gastric acid se-
cretion by increasing pepsin secretion and gastric mucosal
blood flow and secretion (18). This effect is partly inhibited
by DVC injection of anti-TRH antiserum, and surprisingly, is
independent of increased gastric acid secretion (279). Thus,
TRH may provide a means to regulate pepsinogen secretion
without altering acid production. Intracerebral (ic) TRH-
stimulated gastric mucosal blood flow is vagally mediated,
via stimulation of an l-arginine-nitric oxide (NO) pathway
independent of histamine H1 receptors or capsaicin-sensitive
afferents (288). In addition, ic TRH enhances gastric secretion
of 5-HT and 5-HT entry into the portal vasculature, an effect
that again is vagally mediated (289).

TRH effects on gastrointestinal contractility and transit: ic, But
not iv, TRH increases gastric contractions and gastric emp-
tying in most species (290–292). Enhanced gastric motility is
reproduced by direct infusion into the DMN but not the
nucleus ambiguus (268), an effect completely blocked by
vagotomy (293). Systemic morphine (294), or DVC injections
of CRF (295), bombesin (296), and interleukin-1b (IL-1b) (297)
inhibit the TRH effect. Since gastric contractility is inhibited
by excitatory amino acid injection into the DVC (298), it is
likely that TRH is inhibitory to DVC neurons controlling
gastric contractility. Indeed, TRH injections onto NTS neu-
rons reduce their spontaneous activity (299).

The ROb, RPa, and nucleus raphe magnus (RMg) provide
afferents to the DVC (300, 301). In the cat, the DMN receives
its strongest inputs from the caudal RPa and ROb, where
TRH neurons are enriched (301). Glutamate or electrical ex-
citation of the caudal RPa and ROb, but not rostral RPa or
RMg, results in enhanced gastric contraction. This effect is
abolished by vagotomy and anti-TRH antibody injection into
the DVC (302). Surprisingly, TRH stimulates ROb and RPa
TRH afferents to the DVC. This effect is completely abolished
by vagotomy or atropine into the ROb, markedly attenuated
by atropine into the RPa (303), and antagonized by SP or VIP
into the ROb (304). ic Antisense oligonucleotides to the TRH
receptor block the increase in gastric motility seen with TRH
injection into either the ROb or the downstream DVC, while
glutamate excitation is unaffected. Thus, TRH activates both
TRH and cholinergic afferents to the DVC, which in turn
increase gastric motility (305). Finally, gastric contractility
also is increased by TRH injection into the hypothalamic
paraventricular nucleus or the central nucleus of the amyg-
dala, an effect abolished by subdiaphragmatic vagotomy.
However, unlike medullary effects, the frequency of gastric
contractions after these injections is attenuated (306, 307).

Motility in the proximal small intestine and ascending
colon and cecum is also mediated by a central effect on vagal
outflow (291, 308). However, central depletion of brain cat-
echolamines blocks the contractile response in the duode-
num, indicating a critical role for catecholamines as well as
ACh in TRH central regulation of bowel motility, at least in
some regions of the gut (309). Acceleration of small intestinal
transit appears to occur through a separate pathway from
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that described for the stomach (310). TRH ($100 ng) in-
creases small intestine transit only when injected into the
medial septum, or lateral and anterior hypothalamus, in
anesthetized rats. icv, But not iv TRH, also reverses net water
absorption in the jejunum and ileum, an effect entirely abol-
ished by vagotomy (311). Large colon transit in rabbits is
increased by iv or icv TRH (312) and is associated with
accumulations of fluid in the colon (289). TRH effects on
colonic transit are mediated by vagal and sacral cord para-
sympathetic outflow, as well as serotonergic transmission
(18). In humans, iv TRH retards glucose and xylose absorp-
tion by the gut (313).

TRH effects on pancreas and liver. In normoglycemic rats, acute
systemic TRH will induce hypoglycemia, with little effect on
peripheral pancreatic hormones (314). Central TRH potently
blocks epinephrine-induced hyperglycemia, presumably via
combined parasympathetic/sympathetic induction of insu-
lin secretion (315). Central TRH antagonizes hyperglycemia
induced by treatments other than epinephrine, including
central injections of CRF, ENK, and glucagon, as well as
systemic 2-deoxyglucose, foot shock, immobilization, or en-
dotoxin (315).

Pancreatic effects of TRH are most likely paracrine. TRH
is synthesized in the insulin-producing b-cells (316). In neo-
natal pancreas, TRH and insulin appear to be secreted via the
same potassium-, cAMP-, and protein kinase C-responsive
pathways (317); in adult pancreas, TRH secretion is inversely
related to insulin secretion (318). While TRH does not affect
insulin release (319), TRH and CHP inhibit 2-deoxyglucose-
stimulated pancreatic secretion in a dose-dependent manner
(320), and TRH enhances arginine-stimulated glucagon re-
lease (319). In isolated rat pancreas perfusates, anti-TRH
antiserum reduces glucose- and arginine-stimulated gluca-
gon secretion, and exogenous TRH enhances basal glucagon
secretion if endogenous TRH is first cleared (318).

TRH also mediates central effects on pancreatic secretion.
CSF injection of TRH, and microinjection into the DVC, stim-
ulates exocrine pancreatic volume, protein, and bicarbonate
secretion via vagal outflow (321, 322). VIP is also an impor-
tant nonmuscarinic mediator of TRH-stimulated pancreatic
secretion, while CGRP, via noradrenergic mechanisms, op-
poses TRH pancreatic stimulation (321). Curiously, in iso-
lated rat pancreatic acinar cells, TRH inhibits carbachol- and
ceruletide-stimulated, but not OAG- or CCK-stimulated
amylase secretion (320, 323). Thus, certain pancreatic secre-
tory pathways may show opposite peripheral and central
effects by TRH. Finally, TRH has a trophic effect on the
pancreas (324). Chronic administration of TRH for 10 days
via gastric fistula significantly increases pancreatic weight,
DNA content, and protein content, although enzyme con-
centrations are not proportionally elevated, so that their final
concentrations are reduced.

ic RX77368, a TRH analog, stimulates hepatic DNA syn-
thesis 24–72 h post injection in a dose-dependent manner
(325). iv Administration is ineffective. The effect is abolished
by hepatic vagotomy or atropine. Further, ic RX77368 en-
hances hepatic blood flow 15–90 min post injection. This
regulation is abolished by hepatic vagotomy, atropine, in-

domethacin, or the NO synthesis inhibitor, NG-nitro-l-argi-
nine methyl ester (326).

b. TRH and cardiovascular function: TRH reverses shock of
varying etiologies in a number of animal species (327). How-
ever, the precise cardiovascular changes induced by TRH
vary markedly with dosage, species, and experimental state,
in particular, whether the animal is anesthetized or con-
scious, and normotensive vs. hypotensive. While TRH dis-
plays many cardiovascular effects, CHP and TRH-OH have
minimal cardiovascular activity (328).

In rabbits, both anesthetized and conscious, iv TRH in-
creases blood pressure and causes peripheral vasoconstric-
tion (328, 329). Effects in anesthetized rats are the same,
except peripheral vasodilatation is seen (330); this peripheral
vasodilatation is reversed by cholinergic blockade (328).
Overall, TRH modulates blood pressure through combined
parasympathetic and sympathetic effects (328, 330, 331). DA
plays a lessor role (332), and naloxone is ineffective in al-
tering these effects (333). As well, iv TRH in rats completely
reverses systemic NT-induced hypotension and attenuates
the central pressor effect of NT (334).

In anesthetized rabbits, but not conscious rabbits, cerebral
vasodilatation is induced by iv TRH, bringing cerebral blood
flow back to the level observed in conscious animals. Once
cerebral blood flow is normalized, TRH has little effect (329).
Cerebral vasodilatation is not the result of alterations in
peripheral blood pressure, blood gases, loss of autoregula-
tion, change in cerebral metabolism, or change in oxygen
saturation gradients (328). Cerebral vasodilatation in anes-
thetized rabbits is partially blocked by the a2-adrenergic
antagonist yohimbine, although yohimbine has no effect on
TRH-induced elevation of mean arterial pressure (335). Nei-
ther vagotomy nor cholinergic blockade reduces these effects
(328). Transection at the mesencephalic pons abolishes TRH-
induced cerebral vasodilatation without affecting its sys-
temic pressor effect (336). Cordotomy at the C1 level abol-
ishes the pressor effect of TRH, but not its effect on the
cerebral vasculature. Thus, peripheral pressor and vasocon-
striction effects are mediated more caudally than those in-
creasing cerebral blood flow.

icv TRH significantly elevates blood pressure and heart
rate in anesthetized (337, 338) and conscious (339) rats. In
anesthetized rats, icv TRH increases blood flow to most or-
gans, and this is abolished by bilateral vagotomy (328). In
conscious rats, much more peripheral vasoconstriction is
found (340), although this effect is reversed in hypovolemic
states (341). icv TRH elevates plasma levels of NE and E
independently of plasma renin activity or vasopressin. The
vascular effects of icv TRH in rats are mimicked by TRH
activation of sympathetic nuclei within the brain (342); in-
trathecal TRH induces its pressor response in rats and hu-
mans via increased sympathetic activity to the peripheral
vasculature and adrenals (343), an effect mediated in rats by
TRH receptors in the IML (344). Interestingly, sympathetic
nerve responses in rats are partially attenuated by reduced
thyroid activity, providing a second route for TRH regulation
of cardiovascular function (345). Taken together, the data in
rabbits and rats suggest that central TRH regulation of car-
diac functions and organ blood flow distribution principally
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are mediated through the sympathetic nerves and the adre-
nal medulla (339).

Selective electrolytic lesions have identified the dorsal ra-
phe nuclei as mediating the pressor response induced by icv
TRH. Reductions in blood pressure induce prepro-TRH
mRNA in the RPa (346). These changes, in turn, effect the
descending bulbospinal tracts and ascending tracts to the
PVN (342). TRH infusion directly into the dorsal raphe nuclei
reproduces the pressor, tachycardic, and sympatho-excita-
tory effects of icv TRH, and these effects are blocked by
ganglioplegia with pentolinium. Further, chemical lesioning
by the 5-HT-preferring toxin 5,7-dihydroxytryptamine (5,7-
DHT) obliterates TRH-induced tachycardia, while the NE/
DA-selective toxin 6-hydroxydopamine does not. These data
strongly implicate the descending bulbospinal pathway to
the IML column to boutons on preganglionic sympathetic
neurons as the neuroanatomical pathway mediating the pe-
ripheral cardiovascular effects of TRH (347).

TRH in experimental CVS disease: In experimental models of
anaphylactic shock, hemodynamic parameters in mice (348)
and guinea pigs (349) are improved by iv TRH, largely
through elevation of plasma E and NE (350). icv TRH mimics
the protective effect of iv TRH (351). TRH action in endotoxic
shock also is mediated through the sympathetic nervous
system (350). In hemorrhagic shock, TRH elevates blood
pressure either by improvement in cardiac output, or by
increasing peripheral vascular resistance (352). However, af-
ter effects of the latter may be harmful and could explain why
TRH efficacy for survival after hemorrhagic shock has varied
among species (353, 354). Although principally mediated by
catecholamines, icv TRH-induced hemodynamic improve-
ments in shock are partially blocked by d-opiate receptor
antagonism (354) and vagotomy or atropine sulfate (355).

Few studies have examined the converse effect of shock on
TRH. In rats, hemorrhagic shock decreases TRH in frontal
cortex, septum, hippocampus, and hindbrain (356). TRH re-
ceptor binding is significantly decreased in septum and hind-
brain. However, other experiments indicate that elevations of
TRH in the medulla, midbrain, cortex, striatum, and cere-
bellum after hemorrhage are associated with better survival
(357). Thus it appears that reductions in TRH neurotrans-
mission in certain parts of the brain may contribute to the
pathophysiology of shock. Further, TRH effects may be me-
diated, in part, by downstream effects on the thyroid axis
(358) and plamsa vasopressin (204).

In spontaneously hypertensive rats (SHR), CSF TRH, pre-
pro-TRH mRNA, TRH, and TRH receptor binding in the
POA are all significantly elevated compared with Wistar-
Kyoto (WKY) control rats (359). In SHR, elevated TRH re-
ceptor binding in striatum and hypothalamus correlates with
the development of hypertension (360). Further, iv or icv
TRH antiserum lowers arterial blood pressure in SHR rats,
but not WKY rats. Chronic enalapril, a vasodilator, decreases
blood pressure and reduces POA TRH levels, although an-
other vasodilator, diltiazem, has no effect (359).

Animal models of stroke have provided a testbed for po-
tential therapeutic application of TRH. In rats with middle
cerebral artery (MCA) occlusion-induced infarcts, icv TRH
given at 15 min and 24 h post surgery significantly improves

survival, protects against ischemic damage, and reduces in-
farct size 10 days after surgery (361). Also in MCA infarcts,
TRH increases blood flow to the infarct area (362). ip And oral
TRH improve neurological deficits in MCA stroke (363) and
improve recovery in cerebral damage induced by experi-
mental hematoma (363). However, in gerbil and dog models
of stroke, TRH fails to display efficacy (352).

c. TRH and respiration. icv TRH, in doses as low as 3 ng,
significantly elevates blood pressure and heart rate in anes-
thetized rats, but a minimum 16 ng is required to raise the
respiratory rate (364). Respiratory frequency is increased
much more than tidal volume (16). Increases of respiratory
frequency greater than tidal volume are also seen in con-
scious rats (365) and in rabbits (366). icv TRH raises respi-
ratory rates in anesthetized rats partly through a DA D2
receptor mechanism (332). Further, icv TRH-induced respira-
tory stimulation is potentiated by pretreatment with naloxone,
methylatropine, or low doses of GABA, but is unaffected by
b-adrenergic blockade and is independent of TSH (367). TRH
antagonism of opiate-induced respiratory depression (368)
is described in more detail below in Subsection 7.

In isolated brain stem-spinal cord preparations from rat
neonates, bath application of TRH induces respiratory rhyth-
mic neural discharges (369). icv TRH produces rhythmic
bursting activity in neurons of the NTS (370), and local in-
jection of TRH into the NTS induces tachypnea, although
with a slower onset than seen with icv TRH (367). The
respiratory effect occurs in the absence of any change in
blood pressure or heart rate. Shortening of inspiratory times,
but not tachypnea, results from TRH injections into the ROb
(371). Tachypnea, without cardiovascular or locomotor ef-
fects, is seen with microinjection into the interpeduncular
nucleus of the reticular activating system (372).

There is significant anatomical support for a role of TRH
in respiratory control. Botzinger neurons in the medulla,
which inhibit respiratory motoneurons, and the more caudal
ventral respiratory group, form close associations with TRH-
immunoreactive boutons (373). These connections appear to
be functional, since TRH injected into the pre-Botzinger com-
plex in neonatal rat medullary slices increases respiratory
discharge frequency (369). TRH-immunoreactive boutons
are also prominent near nucleus ambiguus motoneurons that
display rhythmic fluctuations with phrenic nerve discharges
(374).

Developmental studies support a direct effect for TRH on
hypoglossal motoneurons in the caudal medulla. These neu-
rons innervate tongue muscles critical for airway inspiratory
control and display respiratory-related activity. TRH in-
creases hypoglossal neuron discharge frequency, duration,
and amplitude in neonatal mouse slices. In adult rat brain-
stem slice preparations, high doses of TRH depolarize hy-
poglossal neurons and reduce their firing threshold (375).
More rostral to the hypoglossal nucleus, TRH enhances the
responsiveness of inspiratory neurons in the ventrolateral
medulla (376).

iv Or ic TRH significantly stimulates diaphragmatic ac-
tivity and antagonizes morphine depression of diaphrag-
matic activity (377). TRH potentiates the excitability of dia-
phragmatic motor nerve terminals (378). Further, injections
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of TRH as low as 1 ng into the retrotrapezoid nucleus of
anesthetized rats increase phrenic nerve firing frequency and
amplitude. Only at 5 ng does TRH raise blood pressure. Both
CHP and TRH-OH increase phrenic nerve firing frequency,
but not amplitude, starting at 5 ng (379).

Preclinical literature describes the importance of thyroid
hormones and steroid treatment on fetal lung development
(380). However, in human trials TRH coadministration in
steroid and surfactant therapy does not reduce newborn
respiratory distress syndrome, chronic lung disease or as-
sociated neonatal complications, or death (381, 382).

3. TRH and seizure modulation. TRH was first reported to
potentiate the anticonvulsant actions of phenobarbital in
mice in 1975 (383) and has since been shown to be anticon-
vulsant in multiple animal models of seizures (384–386).
Despite extensive preclinical data indicating that TRH is
likely to serve as an anticonvulsant, or a potentiator of known
anticonvulsants, few large trials with this agent have been
conducted. For intractable epilepsy, modest results have
been achieved (387, 388).

a. TRH and electroconvulsive seizures: One seizure paradigm
commonly used to test the efficacy of anticonvulsant drugs
is electroconvulsive seizure (ECS) (389). A single stage 5
seizure, induced after five ECS treatments given on alternate
days (ECS 3 5), elevates TRH in hippocampus, amygdala/
pyriform cortex, whole cortex, and striatum, 48 h post seizure
(17). Subconvulsive shocks given on alternate days for 5 days
result in regulation only in the striatum. A separate study
reported that ECS 3 5 decreased NAc and lumbar spinal cord
TRH 24 h after the last shock (390). In sum, ECS effects center
on the hippocampus, amygdala and surrounding cortex, and
the dorsal and ventral striatum.

The hippocampus most consistently demonstrates TRH
induction after chronic ECS (391). A significant percentage of
hippocampal TRH derives from extrinsic sources. ECS in-
duction of prepro-TRH mRNA in the entorhinal cortex pre-
sumably leads, via the perforant pathway, to TRH increases
in the dentate gyrus (17). In the hilar subregion of the hip-
pocampus, which contains few or no perforant path termi-
nals, fimbrae-fornix lesions do not block ECS induction of
TRH, consistent with endogenous biosynthesis (392). There
is no difference in basal TRH release from hippocampal slices
dissected from ECS-treated vs. sham-treated animals. How-
ever, potassium-stimulated TRH release increases linearly
12, 24, and 48 h post seizure, and tissue content remains
uniformly elevated throughout the postseizure period (393).
Thus, in addition to elevations in steady state levels, there is
a time-dependent shift of intracellular TRH into a potassium-
responsive pool (394), which may enhance TRH release in
response to afferent signaling.

Given the documented effect of TRH to increase cholin-
ergic transmission in the hippocampus (395) and cortex (396,
397), it is logical to speculate that TRH could be used to
reverse ECS-induced neurochemical and behavioral deficits
(398, 399). Indeed, in rats post-ECS performance deficits are
reversed by TRH.

b. TRH in kindled seizures: A second paradigm used to
model epilepsy is kindling, where repeated electrical or

chemical stimulation of limbic structures progressively low-
ers seizure threshold until an initial subthreshold stimulation
becomes capable of reliably stimulating generalized (stage 5)
seizures (400). In fully amygdala-kindled rats (five consec-
utive stage 5 seizures), prepro-TRH mRNA levels are sig-
nificantly elevated 24 h following a stage 5 seizure in the
dentate gyrus granular layer and the pyriform, entorhinal,
and perirhinal cortices (401, 402). More detailed time course
studies in fully kindled animals report significant elevations
of prepro-TRH mRNA in the dentate gyrus granular layer,
several nuclei of the amygdala, and layers II and III of the
pyriform and entorhinal cortices. Increased levels are de-
tected 3 h post seizure, peaks occur at 6–12 h post seizure,
and levels return to baseline 24–48 h post-seizure (246, 392).
The time course is similar in all regions, although slightly
delayed in entorhinal cortex. The induction in prepro-TRH
mRNA seen after full kindling may be observed unilaterally
24 h after partial kindled (stage 1–4) seizures, but is reliably
and bilaterally observed only after fully kindled, generalized
(stage 5) seizures (401).

Kindled seizures induce c-fos mRNA and Fos-related pep-
tides, which in turn are postulated to induce prepro-TRH
transcription via the AP-1 site in the prepro-TRH gene pro-
moter (155, 403). Fos-like immunoreactivity and prepro-TRH
mRNA are extensively colocalized, in some cases in up to
70% of cells, in the pyriform cortex, entorhinal cortex, and
dentate gyrus granule cells (404). A second potential tran-
scriptional regulator of prepro-TRH gene expression, corti-
costerone, also is rapidly induced during kindled seizures
(166, 405).

Carbamazepine given contingently with kindling treat-
ments attenuates prepro-TRH mRNA increases in the den-
tate gyrus, pyriform cortex, and ipsilateral entorhinal cortex.
No attenuation is seen when carbemazepine is given non-
contingently, i.e., after the kindling treatment (406). These
results are intriguing, indicating that the carbamazepine-
TRH interaction might be altered by behavioral or other
nonpharmacological interventions.

Regulation of TRH peptide levels, measured 48 h post
seizure, correlates with the progression of amygdala kin-
dling. Partial kindling induces TRH in pyriform cortex, with
greater regulation in stage 3–4 seizures than stage 2 seizures
(17, 407). In fully kindled rats, TRH is increased even more
in pyriform cortex 48 h after stage 5 seizure. Increases are also
seen in cingulate and frontal cortex, hippocampus, amyg-
dala, and ventral striatum (408, 409). Similarly, chemically
kindled rats show TRH induction in hippocampus, amyg-
dala, pyriform cortex, and anterior cortex 48 h after stage 5
seizures (17). Both kindling and TRH regulation after kin-
dling persist for 6 months after kindling.

In fully kindled animals, all subregions of the hippocam-
pus show reduced levels of TRH 1 h after seizure, consistent
with synaptic release and rapid degradation. Levels rise to
control levels at 6 h, are elevated at 24 and 48 h, and again
return to control levels at 144 h after seizure. Increases are
largest in the dorsal hippocampus, including the dentate
gyrus, hilus, and CA3 region. It is hypothesized (17, 409) that
TRH elevations may mediate the postictal refractory period
(410). In fully kindled rats, bilateral hippocampal TRH in-
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fusions decrease seizure after-discharge duration and overt
seizure duration in a dose-dependent manner, consistent
with an anticonvulsant action in the hippocampus (394).

TRH receptor binding in the dentate gyrus and perirhinal
cortex is decreased in amygdala-kindled rats compared with
sham-kindled animals (402, 406). After a single stage 5 sei-
zure in electrically kindled rats, hippocampal membrane
TRH receptor binding is reduced 23–29%, and amygdaloid
membrane binding is reduced by 21–22% (409, 411). Curi-
ously, in amygdala-kindled rats, dorsal striatal receptor
binding is increased 24 h after seizure and persists signifi-
cantly elevated at 21 days, although no regulation in striatal
TRH is reported. Thus, only in certain brain regions do re-
ceptor adaptations appear to compensate for elevated TRH
levels.

c. TRH in chemically induced seizures: TRH regulation in
other types of seizures differs somewhat from that seen in
ECS and kindling. Limbic seizures induced by systemic
kainic acid substantially increase TRH in the posterior cortex
and in the underlying dorsal and ventral hippocampus (412).
Smaller increases are detected in the anterior cortex, amyg-
dala/pyriform cortex, and corpus striatum. The increases in
TRH are longer lasting than described for ECS, peaking at
2–4 days and resolving by 14 days, except for the dorsal
hippocampus, where TRH elevations persist beyond 2
weeks. TRH is rapidly elevated in the septum, hippocampus,
and thalamus/midbrain after a single pentylenetetrazol-
induced seizure. Pyriform cortex was not tested (384). Pen-
tylenetetrazol-induced tonic-clonic seizures in dogs increase
TRH in pyriform and frontal cortex, hippocampus, and
amygdala 48 h after seizure (413). Soman-induced seizures
mediated by excessive cholinergic activity result in particu-
larly high induction of TRH in frontal cortex, hippocampus,
pyriform cortex, and entorhinal cortex, and lower induction
in the amygdala (414).

d. Mechanisms of TRH anticonvulsant action: Irrespective of
the precise mechanism of seizure induction, repeated sei-
zures ultimately induce prepro-TRH mRNA in pyriform cor-
tex, amygdala, and hippocampus. These areas contain well
characterized TRH receptor binding (415, 416). Further, the
pyriform cortex region is a primary site for initiation of grand
mal seizure activity, and the prepyriform region is exquis-
itely sensitive to direct application of chemical convulsants
(417). One mechanism of TRH anticonvulsant effects may be
through inhibition of l-glutamate excitation of neurons (418,
419), especially neurons of the perforant pathways synapsing
with dentate gyrus granule cells (420). This inhibition would
increase after treatments such as kindling that elevate TRH,
providing a feedback control for further sensitization in phe-
nomena such as kindling and long-term potentiation. Kno-
blach and Kubek (407) suggest that TRH may be coreleased
with excitatory neurotransmitters at these sites as a means to
modulate neuronal response. If TRH is inhibitory to calcium
influx secondary to reducing excitatory amino acid neuro-
transmission, it may also serve a neuroprotective role. Also
it is speculated that hippocampal TRH may interact with
coexpressed endogenous opioid peptides in seizure-
involved pathways to modulate seizure activity (93).

4. TRH and motor control.

a. TRH stimulates ventral horn motoneurons: Bulbospinal
neurons that express prepro-TRH mRNA and iTRH descend
from the medullary raphe nuclei, and the parapyramidal and
paraolivar regions, to end in close apposition to motor neu-
rons in lamina IX, and sparsely in lamina VIII, of the ventral
horn of the spinal cord (421, 422). The raphe projections
provide dense innervation of spinal motoneurons and are
likely to enhance motor excitability, principally of proximal
muscle groups (423, 424). In rat (425), rabbit (426), and human
(427) spinal cord, the highest concentrations of TRH are
found in the ventral horn. TRH is present in large granules
within terminal boutons that synapse with dendrites, sup-
porting a synaptic role (422). Some 60–90% of these bul-
bospinal neurons coexpress 5-HT with TRH (428, 429). Im-
munocytochemical and ablation studies also support
coexpression of TRH with SP (422), although SP appears to
have a more prominent role in autonomic nervous system
function than in voluntary motor control (430). Surprisingly,
in most species the ventral horn of the spinal cord is not
enriched in TRH receptor binding (431). However, the hu-
man spinal cord displays elevated TRH receptor densities in
laminae IX, which contains a-motoneurons (432).

An extensive literature describes TRH excitation of spinal
cord ventral horn motoneurons (423, 433, 434) and hypo-
glossal motor neurons (435) by suppression of a distinct K1

current and development of an associated Ca11-sensitive
inward current (436). In addition, TRH enhances motor neu-
ron firing in response to excitatory amino acids (423), in-
creases motoneuron recruitment by antidromic stimulation
(437), and depolarizes ventral roots (438). The net effect of
this excitation is augmentation of muscle tone, contractility,
and spinal reflexivity (438). It should be noted that while
TRH, SP, and 5-HT each can enhance excitatory amino acid
activation of motoneurons, TRH excitation of ventral horn
motoneurons is slower and less reliable than that observed
with application of 5-HT or SP (423, 439). Neither TRH-OH
nor CHP have any demonstrated effect on spinal motoneu-
rons, so motoneuron effects are presumed to be direct actions
of TRH (434, 436).

Denervation of the plantar foot muscles by botulinum
toxin injection reveals reinnervation deficiencies in adult rats
that have undergone ablation of the descending bulbospinal
5-HT/TRH neurons (440). However, gross motor perfor-
mance, muscle cell count, electrophysiological properties, or
a-motoneuron counts are not made abnormal by this abla-
tion, arguing for an insignificant role for TRH in adult ani-
mals. White et al. (439) argue that TRH function is more
significant in developing animals or on damaged motoneu-
rons. TRH trophic effects (441) and enhancement of contrac-
tility (442) are demonstrated best in embryonic/neonatal
preparations. More importantly, TRH-induced depolariza-
tion shows significantly less tachyphylaxis in isolated neo-
natal rat spinal cord preparations than in adult preparations
(443). NE inputs in the ventral horn enhance both microion-
tophoretically applied TRH-induced excitation of motoneu-
rons (444) and behavioral excitation elicited by intrathecal
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TRH (426). Thus, TRH may function only under certain phys-
iological states, such as stress or healing, that were not well
tested in previous paradigms.

In preclinical studies, TRH displays significant beneficial
effects in the Rolling mouse Nagoya (RMN), a mouse model
of ataxia (445, 446). TRH is also effective in ameliorating
ataxia induced by 3-acetylpyridine degeneration of the in-
ferior olive in rats (446) and by cytosine arabinoside treat-
ment in mice (447). Immobility and fall index scores for other
ataxic mice models, including staggerer, reeler, weaver, and
mice with Purkinje cell degeneration, are reduced by TRH
(448, 449). The NMDA antagonist MK-801 completely blocks
TRH improvement of ataxia induced by 3-acetylpyridine,
providing one of the few clues as to how TRH might mediate
its antiataxic effects (450).

Several clinical studies support potential utility for TRH in
the treatment of inherited ataxias such as spinocerebellar
degeneration. Several studies demonstrate improvements by
TRH of motor, occulomotor, and electrophysiological abnor-
malities in inhereted ataxias such as spinocerebellar degen-
eration (451, 452). For the motor neuron disease amyotrophic
lateral sclerosis (ALS), studies using higher doses of TRH
demonstrate some transient imporvement in symptoms, par-
ticularly speech, swallowing, and respiratory function. Un-
fortunately, longer term results with systemic or intrathecal
TRH (453, 454) indicate that TRH fails to slow progressive
motor neuron loss and provides only temporary symptom-
atic relief.

b. TRH promotes recovery in experimental spinal cord and brain
injury: TRH accumulates superior to the site of traumatic or
ischemic spinal cord injuries (455, 456). In both cervical and
lumbar injuries, TRH elevations are accompanied by modest
but detectable down-regulation of TRH receptor binding
proximal to the injury, in lamina X and the ventral horn gray
matter, but not in the dorsal gray (457). The decrease in TRH
receptor binding is detectable 48 h after injury and recovers
by 3 weeks. Recovery of TRH receptor binding parallels the
functional neurological recovery that occurs late after CNS
injury (458). In mouse models of spinal cord motoneuron
degeneration, TRH metabolism and levels are increased at
sites of damage (459, 460).

Whether increased TRH is a neuroprotective adaptation or
a damaging mediator of the disease process is unknown.
However, it appears likely that TRH is beneficial. TRH is
superior to naloxone or high-dose steroid treatment in pro-
moting recovery in experimental CNS trauma models (461).
In most studies, sc or iv TRH improves electrophysiological
recovery of damaged spinal cord tissue (462, 463). Improve-
ment may result from trophic effects of TRH on spinal mo-
toneurons (204, 464, 465), from the ability of TRH to increase
spinal cord blood flow (466, 467), or from the ability to reduce
edema (468) at the site of spinal cord injury. TRH efficacy in
spinal trauma recovery requires continuous intrathecal in-
fusion of native TRH, presumably due to its short half-life.
Further, while TRH and all its analogs activate spinal mo-
toneurons (434), only analogs that preserve the C terminus
of native TRH are beneficial in spinal trauma, indicating the
healing and activating effects of TRH are separately medi-
ated (469).

TRH and its analogs are also efficacious in promoting
recovery in animal models of head injury. Cats with brain
stem compression injury show improved neurological and
EEG parameters (470), and mice with head impact injuries
demonstrate less behavioral disturbance (471), after TRH
treatment. In rats with fluid percussion-induced brain injury,
the TRH analog NS-3 given 30 min after injury improves
survival, neurological parameters, and motor function at 24 h
post injury, and improvements persist for at least 4 weeks
(472). There is significant interest in TRH as a treatment for
human traumatic brain injury and spinal cord injury, either
to prevent damage progression or to speed neuronal recov-
ery (473). However, TRH effects on head trauma, or recovery
in spinal cord trauma, have been modest at best (474).

5. TRH and antinociception. The presence of TRH and TRH
receptors in the midbrain PAG, the raphe nuclei, and, to a
limited extent, in the dorsal horn of the spinal cord is highly
suggestive of a role in pain modulation (93). Antinociception
to chemical stimuli has been demonstrated in mice with iv
and sc TRH (475) and for icv TRH against visceral chemical
and mechanical pain (476). In the rat, icv TRH increases
reaction latencies to visceral acetic acid (477). TRH displays
potencies comparable to morphine in some of these studies.
Thermal analgesia with icv TRH has been demonstrated in
the hot-plate test (476) and less frequently in the tail-flick test
(477). icv TRH also potentiates stress-induced analgesia, in-
cluding foot shock-induced analgesia and swim-induced an-
algesia (478). In general, the antinociceptive effects of TRH
are short lived, typically lasting for less than 15 min (479).

icv CHP in mice is variably reported to induce antinoci-
ception to mechanical, thermal, and chemical stimuli (480),
or to mechanical stimuli but not chemical stimuli (481). This
effect is significantly less potent, but longer lasting, than that
of TRH and is antagonized to a greater extent by sc naloxone
than is TRH. TRH-OH also is reported to be antinociceptive
to mechanical and chemical stimuli in mice (481). Thus, it is
likely that both TRH and its metabolites are active in TRH-
induced antinoception in its various forms.

The PAG is critical for integration of pain perception and
the behavioral response to pain (482). The PAG expresses
moderately high levels of prepro-TRH mRNA (28, 249), and
significant amounts of iTRH are detected in cell perikarya
and neuronal fibers of the PAG (93, 421, 483), and TRH
receptor binding is detected at moderate levels (484)
throughout the PAG. The neuroanatomical distribution of
TRH and TRH receptor binding in all regions of the PAG
implicates it in both opiate-dependent and opiate-indepen-
dent pain mechanisms. The dorsolateral PAG mediates an-
tinociception that is not modified by naloxone and is pre-
sumed to be opiate independent, while the ventrolateral PAG
is more commonly associated with opioid-dependent an-
tinociception (482). This may relate to the finding that TRH
infusions into the ventral PAG decrease cold-water swim-
induced antinociception in the rat in a dose-dependent man-
ner, while dorsal PAG infusion has the opposite effect (485).
Curiously, TRH in both placements antagonizes morphine
antinociception and reduces swim-induced hypothermia
and morphine-induced hyperthermia, while the converse,
analgesia produced by TRH infusion into the ventral PAG,
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is blocked by opiate antagonists (486, 487). TRH has no de-
monstrable effect on m-, d-, or k-opiate receptor binding, or
receptor occupancy, arguing against direct TRH regulation
of opioid peptide release. It is postulated that TRH activates
one or more types of inhibitory interneuron, which in turn
reduce excitation of pain-excited opiate-responsive neurons
in the PAG.

Complete blockade of TRH-induced antinociception by
opiate antagonists occurs in some PAG infusion paradigms,
but not with systemic TRH, which presumably activates non-
opiate pain pathways in which TRH functions. Separate
studies indicate that TRH injections into the NAc (488) and
amygdala (477) produce antinociception. TRH antagonizes
NT-induced antinociception (489) and both TRH and CHP
antagonize THC-induced antinociception (194).

Clearly then, the relationship of TRH antinociception to
endogenous and exogenous opiate systems is complex. As
opposed to opiate-induced hypothermia, locomotor depres-
sion, catalepsy, and respiratory depression, systemic TRH
does not antagonize acute opiate-induced analgesia (490),
although hyperalgesia induced by high-dose naloxone is an-
tagonized by TRH (491). In contrast to the case with drug-
naive mice, TRH does not display antinociceptive effects to
chemical stimuli in morphine-tolerant mice (487). In partic-
ular, Bhargava and colleagues (490) argue that TRH interacts
preferentially with the k-opiate system in mice. Other studies
(487) indicate that tolerance either to morphine (m- and d-spe-
cific) or ethylketocyclazocine methanesulfonate (k-prefer-
ring) equally antagonize TRH antinociception. Most studies
indicate that TRH-opiate interactions do not occur via TRH
modulation of opiate receptor binding, or through TRH-
stimulated release of endogenous opioids. Rather, TRH acts
through intermediary systems that, in turn, modulate opiate-
mediated pain transmission, and perhaps vice versa. In the
spinal cord, likely intermediary systems involve 5-HT and SP
(492).

PAG-mediated antinociception is mediated via outputs to
the ROb, RPa, and RMg (482), nuclei that express high levels
of prepro-TRH mRNA (249). Further, antinociception by ex-
citation of the nucleus reticularis paragiganticellularis
(RPGi) is mediated, in large part, through reciprocal con-
nectivity to the RMg (493). TRH into either the RMg or RPGi
is antinociceptive (477). icv TRH also inhibits pain-excited
neurons in the mesencephalic reticular formation (MAF)
(494). The MAF is believed to form a second integration
circuit for autonomic response to painful stimuli (495).

In addition to the descending bulbospinal pathway, TRH
is also found in an intrinsic system of cell bodies in laminae
II and the lamina II/III border of the dorsal horn (251, 496).
Dorsal horn iTRH is not depleted by 5-HT neurotoxins, un-
like ventral horn TRH (250). Laminae II also exhibit a high
level of TRH binding in many species (250, 432, 484). Intra-
thecal TRH antagonizes morphine analgesia in the tail-flick
test at most doses, indicating that the net action of TRH
within the dorsal horn is to enhance transmission of noci-
ceptive somatosensory information (492). iv TRH is reported
to facilitate nociceptive transmission through the dorsal horn
via positive modulation of NMDA receptor-mediated trans-
mission (497).

6. TRH in thermoregulation. TRH plays a prominent role in
integrating a number of thermogenic responses to cold (509).
CNS injection of TRH elevates body temperature (498), and
TRH antagonizes the hypothermic effects of a number of
agents, including barbiturates, ethanol, chlorpromazine,
bombesin, NT, and b-endorphin (204). Systemic TRH antag-
onizes morphine-induced hypothermia, while having little
effect on analgesia (499). icv Anti-TRH antibodies in rats
produce hypothermia, supporting an endogenous role for
TRH in body temperature elevation (500). A principal site of
TRH thermoregulation is the anterior hypothalamic POA
(498). TRH into the POA inhibits heat-sensitive neurons and
activates cold-sensitive neurons (501), which results in in-
creased body temperature through peripheral vasoconstric-
tion, increased metabolic heat production, and shivering
(502). These effects require intact catecholamine neurotrans-
mission (502).

Ablation of the POA does not eliminate TRH antagonism
of pentobarbital-induced hypothermia, indicating that sites
other than the POA can mediate TRH thermoregulation
(503). Cold exposure elevates prepro-TRH mRNA levels
(504) and TRH secretion (505) in the PVN. These changes
elevate thyroid hormones and increase heat generation in
brown adipose tissue (506). Systemic TRH has similar effects,
e.g., systemic TRH improves thermoregulation in neonatal
lambs through increased fat oxidation (507). We note that
cold exposure elevates TSH levels before TRH levels, prob-
ably because SRIF, which tonically inhibits TSH secretion, is
rapidly down-regulated in the PVN by cold (508).

Cold-induced increases in prepro-TRH mRNA also are
seen in the DMN (509) and caudal raphe nuclei (510). The
raphe nuclei, which receive sensory information from the
skin, project to spinal cord preganglionic sympathetic neu-
rons. Further, the raphe nuclei provide TRH afferents to the
NTS (511), which, in turn, projects to the DMN, and then the
spinal cord preganglionic neurons. 5-HT projections from
the NTS to the PVN provide feedback regulation to this
stimulation (512). Excitation of spinal cord preganglionic
sympathetic neurons results in postganglionic NE release
and increased facultative thermogenesis via b- and a1-ad-
renoreceptors on brown adipocytes (513). Additional stim-
ulation comes from direct projections of TRH neurons from
the dorsal cap of the PVN to preganglionic sympathetic neu-
rons in the thoracic and sacral spinal cord (514).

In mice, icv TRH and CHP antagonize ip THC-induced
hypothermia (517). However, CHP elicits hypothermia when
injected into the cerebral ventricles, an effect antagonized by
TRH (515). The POA is believed to be the sole site mediating
this action of CHP (516). Thus, the hypothermic response to
icv TRH seen under certain conditions such as warm envi-
ronments may result from TRH catabolism to CHP (501).

7. TRH and drugs of abuse. The psychomotor theory of ad-
diction states that a common biological mechanism mediates
both positive reinforcement and motor activation by drugs of
abuse (518). Given the ergotrophic effect of TRH as a loco-
motor activator, interaction between TRH and drugs of abuse
is likely. While the main focus of drug abuse research has
centered on two principal loci in the mesolimbic DA path-
way, the NAc and the VTA (519), a more extensive network,
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the “limbic-motor circuit,” with inputs to the NAc coming
from many limbic areas and outputs going to both limbic
areas and motor areas, is now appreciated (520).

In rats, systemic TRH and intra-NAc TRH mimic cocaine
by inducing locomotor activation via release of DA and 5-HT
in the NAc and striatum (222, 521, 522). Conversely, DA D2
agonists increase TRH release from striatal and NAc slices
(523). Downstream components of the HPT axis act to rein-
force psychostimulant effects (524). TRH neurons of the PVN
receive DA and NE inputs that are regulated by cocaine (124).
Further, DA and cocaine both activate the HPA axis; stress
(or CRF) and cocaine elevate NAc and medial prefrontal
cortex DA and cause similar neuronal adaptions (525, 526).

Few studies have directly examined the link between TRH
and psychostimulants. Acute amphetamine lowers TRH in
the caudate, NAc, and lateral septum (527, 528). Over time,
TRH levels show some adaptation to chronic amphetamine,
and TRH receptor binding increases (528). Acute cocaine
significantly decreases prepro-TRH mRNA levels in the
amygdala and hippocampus, 45 min after injection (529).
Chronic cocaine regulates prepro-TRH mRNA in the NAc,
amygdala, hippocampus, and hypothalamus. Prepro-TRH
mRNA regulation is strongly dependent on the length of
time after cocaine cessation and persists beyond 72 h post
injection in the amygdala.

The role of TRH in morphine actions also is not well
understood. TRH antagonizes a number of morphine’s de-
pressant effects, including sedation, hypothermia, and cat-
alepsy (530, 531). Chronic TRH inhibits the development of
tolerance to opiate-induced hypothermia and catalepsy (499,
532). d- And k-opiate receptor activation reduces TRH re-
ceptor binding, but TRH does not effect opiate binding (533).
More directly, morphine reduces cortical and diencephalic
TRH concentrations (534). Within the HPT axis, a clearer
relationship between TRH and opioids exists. Morphine and
opioid peptides reduce plasma TSH (535) and blunt cold-
induced TSH release (536). Further, exogenous morphine at
pharmacological doses inhibits TRH release via opiate re-
ceptors on TRH-secreting hypothalamic nerve terminals
(509).

TRH is more strongly implicated in opiate withdrawal.
While cessation of chronic cocaine use induces relatively
little physical withdrawal (537), chronic morphine results in
the development of physical dependence and the aversive
state of withdrawal upon cessation of morphine use (537).
The expression of the physical symptoms of withdrawal is
mediated principally by the LC and PAG (538). A large body
of data indicates that the intrinsic NE neurons of the LC
undergo an up-regulation of their cAMP second messenger
system in response to chronic morphine. When unopposed
during morphine withdrawal, the up-regulated cAMP sys-
tem drives increased firing by LC neurons (539). Extrinsic
excitatory amino acid inputs from the nucleus paragiganti-
cellularis lateralis contribute an additional 50% to LC neu-
ronal excitability during withdrawal (540, 541). The medial
hypothalamus, medial thalamus, amygdala, frontal cortex,
hippocampus, and RMg also are implicated in withdrawal
(542, 543).

The PAG expresses high levels of prepro-TRH mRNA (28).
Mature TRH (483) and TRH receptor binding (484) are

present in moderate levels throughout the PAG. Prepro-TRH
mRNA is strongly induced in the PAG during opiate with-
drawal (28). Fos-like immunoreactivity is greatly increased
in the ventrolateral PAG during withdrawal (544) and may
mediate induction of prepro-TRH mRNA (401).

While TRH levels in the PAG remain unchanged during
opiate withdrawal (154), it has been found that ic TRH pre-
vents withdrawal-induced hypothermia and decreases
jumping during withdrawal in morphine-dependent mice
(545). In contrast, ic TRH induces wet-dog shakes in normal
animals, arguing that it augments withdrawal-like symp-
tomatology (546). Opiate withdrawal increases TRH in the
lateral hypothalamus, suggesting this region may also play
a physiological role in opiate withdrawal (154). Thus, much
remains to be learned about TRH effects on opiate with-
drawal at sites other than the PAG.

The TRH analog TA0910 reduces alcohol-intake in alcohol-
preferring rats (547) and in primates (548) in a dose-depen-
dent manner. This appears mediated by DA D2 receptors
(549). Behavioral reward to alcohol, as measured by pun-
ished responding rates, is enhanced by iv TRH (550). Alcohol
alters TRH receptor binding (551). In long-sleep (LS) and
short-sleep (SS) mice that display differential CNS sensitivity
to ethanol, SS mice have greater sensitivity to TRH than LS
mice during postnatal days 8–14 (552). It is hypothesized that
a TRH receptor-mediated alteration results in enhanced de-
velopment of the thyroid gland in SS mice. Alcohol-prefer-
ring rats compared with nonpreferring rats have signifi-
cantly lower TRH levels in the medial and lateral septum.
Upon exposure to alcohol, preferring rats are able to right
themselves earlier than nonpreferring rats, and this corre-
lates with elevations of medial septal TRH. However, these
findings may be nonspecifically related to the analeptic ac-
tion of TRH in this region (202). Of unclear relationship to
alcohol preference, chronic ethanol in rats partially “uncou-
ples” PVN TRH expression from peripheral thyroid response
(553, 554) and, like opiates, ethanol blocks the TSH response
to cold (553, 554).

A wide range of other addictive substances alter TRH
receptor binding, including THC and chlordiazepoxide (551,
555). Furthermore, as described above, behavioral reward to
pentobarbital and chlordiazepoxide, as well as alcohol, as
measured by punished responding rates, is enhanced up to
3.5-fold by iv TRH (550). Goeders et al. (556) recently pre-
sented evidence that levels of benzodiazepine receptor bind-
ing are affected by the development of either behavioral
tolerance or sensitization to cocaine. Conversely, benzodi-
azepines specifically attenuate cocaine self-administration
(557). Since a number of benzodiazepines displace 3H-meth-
yl-TRH from TRH receptors (558, 559), this provides another
suggestive link between TRH and drugs of abuse.

In summary, there are multiple pathways through which
TRH affects virtually all classes of abused drugs. Under-
standing these interactions is likely to advance our under-
standing of addiction in general. More importantly, this un-
derstanding may provide new pharmacological approaches
for the clinical treatment of substance abuse.

8. TRH outside of the CNS. TRH is phylogenetically old,
present in invertebrates such as the lamprey that lack TSH or
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the snail that lacks a pituitary (560, 561). It appears that
mammalian endocrine functions for TRH have been “co-
opted” (562) for a peptide already functioning in more basic
ways. TRH is detected in many nonneural vertebrate tissues,
although its functions in these tissues are not well under-
stood. In most cases, peripheral TRH is not regulated coor-
dinately with the HPT axis (563).

Prominent among the TRH-containing tissues are the gas-
trointestinal organs, including the stomach, duodenum,
small intestine, colon, and rectum (562), where TRH may
have peripheral effects to modulate gastrointestinal contrac-
tility. The pancreas is a rich source of TRH. Indeed, in ne-
onates a significant portion of circulating TRH is derived
from pancreas (561). Prepro-TRH mRNA is expressed in
b-cells of the pancreatic islet (564), and TRH and somatosta-
tin have opposing paracrine effects on glucagon secretion
(565).

TRH is present at high levels in the genitourinary system
including the ventral prostate, Leydig cells of the testes, the
epididymis, and seminal vesicles (566, 567). Interestingly,
propylthiouracil-induced hypothyroidism increases TRH in
prostate and testis but reduces TRH in epididymis (566, 568).
TRH receptor mRNA is expressed in the ovary and uterus
(569), and TRH is present in placenta, amniotic fluid, and
breast milk (177, 570). Again, reproductive TRH may act as
a paracrine regulator (571).

TRH is also present in retina (572, 573), where its levels are
light entrained (572). icv TRH raises intraocular pressure and
induces marked mydriasis via combined sympathetic and
parasympathetic effects (574). TRH receptor mRNA is found
in human peripheral blood monocytes (PBMCs) and rat
splenocytes (575). It affects secretion of TSH and immuno-
globulins from blood elements (576, 577) and may be a tro-
phic factor for certain blood elements (578). In the heart, TRH
is expressed and has direct ionotopic effects (579, 580).

IV. Function of non-TRH pro-TRH-Derived Peptides

The rat TRH precursor yields, in addition to TRH, seven
pro-TRH-derived peptides that display region-specific dis-
tributions (19, 82, 87, 96, 581). In addition, TRH progenitors,
i.e., extended forms of TRH that have not been fully pro-
cessed, are found. Of these, the following discussion will
focus on the immediate TRH progenitor, TRH-Gly. From the
first immunohistochemical studies describing the distribu-
tion of pro-TRH, it was clear that precursor immunoreac-
tivity was present in areas of the brain where mature TRH
had not been localized (82, 95, 582). These regions included
nuclei in the olfactory bulb, sexual dimorphic area of the
POA, reticular nucleus of the thalamus, amygdala, hip-
pocampus, cerebral cortex, and PAG (95). These conclusions
were based on immunohistochemical localization of TRH in
colchicine-treated animals. However, TRH localization
based on micropunch isolation and RIA, where animals need
not be colchicine treated, has detected TRH in many of these
regions, including the amygdala and surrounding cortical
regions, the hippocampus, and PAG. Still, certain regions,
such as the reticular nucleus of the thalamus, appear to
contain little or no mature TRH, while studies using antisera

raised against non-TRH pro-TRH-derived in brain extracts
demonstrate significant amounts of pro-TRH-derived prod-
ucts in this nucleus (Table 1). Thus, while in situ immuno-
histochemical studies remain of value, one must be aware
that they are beset with difficulties in variable immunore-
activity in different loci of the brain, and they lack precise
definition of the immunoreactive peptide moieties that are
being detected.

In comparison to the known roles of TRH reviewed in
Section III.B, there is precious little known about the biolog-
ical activities of the other pro-TRH-derived peptides. In the
hypothalamus and testis, both these non-TRH peptides and
TRH are regulated within HPT parameters, while in other
tissues, both TRH and non-TRH peptides are not (563, 583).
Both TRH-Gly and prepro-TRH178–199 are regulated by dexa-
methasone in the hypothalamus, but not in cerebellum, brain
stem, retina, and stomach (583). Thus, clues to the roles of
pro-TRH-derived peptides other than TRH must come from
an examination of their regional distribution or evidence
of regulation under specific physiological or pathological
conditions.

A. prepro-TRH160–169 (pST10)

Prepro-TRH160–169 is the best characterized of the non-
TRH pro-TRH-derived peptides. It is released from rat hy-
pothalamic slices and the ME, thus making a hypophysio-
tropic role likely (20). Prepro-TRH160–169 (also known as Ps4
and TRH-potentiating peptide) enhances TRH-stimulated
TSH release from the anterior pituitary and stimulates TSHb

gene promoter activity (21). Thus, it acts in an opposite man-
ner to feedback by T3, which decreases TSH secretion (172)
and inhibits TSH subunit gene expression (584). The peptide
has been isolated from bovine hypothalamus and its amino
acid sequence confirmed by Edman degradation (585). Pre-
pro-TRH160–169 is also unique in that a receptor for this pep-
tide has been characterized (see Section VI) (586). Prepro-
TRH160–169 receptor binding is developmentally regulated,
with an increase from birth to weaning, and then a gradual
decline to adult levels at postnatal day 60 (587).

Within the CNS, prepro-TRH160–169 is most enriched in
hypothalamus, with lesser amounts in the spinal cord and
olfactory bulb. The pituitary and striatum contain moderate
levels. Its receptor binding is highest in the pituitary, hypo-
thalamus, spinal cord, olfactory bulb, and hippocampus
(588). Prepro-TRH160–169 is rich in rat testis, but trace levels
are detected in urinary bladder, vas deferens, and heart.
Receptor binding is high in urinary bladder and vas deferens,
heart, and testis (588). In adrenal extracts, RIA detects lesser
amounts of prepro-TRH160–169, which has been confirmed
further in this tissue by chromatographic fractionation. The
pancreas contains prepro-TRH160–169 within b-cell secretory
granules (318). Finally, prepro-TRH160–169 function is not
restricted to a hypophysiotropic one. In parallel fashion to its
role in the pituitary, prepro-TRH160–169 does not influence
basal gastric acid secretion when injected into the DMN,
but does potentiate the ability of TRH to do so. Prepro-
TRH178–199 has no effect when coinjected with TRH into the
DMN, and neither does prepro-TRH160–169 when coinjected
with TRH into the nucleus ambiguus (22).
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ECS elevates prepro-TRH160–169 in hippocampus, amyg-
dala, pyriform cortex, and anterior cortex, but not corpus
striatum, motor cortex, LC, or ventrolateral medulla (589). In
these studies, elevations of prepro-TRH160–169 correlated
with elevations in TRH-Gly and TRH in the hippocampus,
amygdala, and pyriform cortex. Thus, prepro-TRH160–169

may share a role with TRH in seizure modulation (17). More
recently it has been reported that prepro-TRH160–169 levels in
the hippocampus and amygdala correlate with immobility
times in the Porsolt forced-swim test, leading to speculation
that the peptide may act independently or in concert with
TRH to affect mood, learning, or memory (589). A review of
the distribution and postulated functions of this peptide
recently has been presented (590).

B. prepro-TRH178–199 (pFE22)

The second most studied non-TRH pro-TRH-derived pep-
tide, prepro-TRH178–199, is also released from rat hypotha-
lamic slices and the ME (20, 591) and is localized in dense-
core granules of PVN neurons that project down to the ME.
prepro-TRH178–199 has been reported to be a corticotropin-
inhibiting factor, acting to reduce POMC mRNA and inhibit
ACTH release (592, 593). These data fit the clinical phenom-
enon of increased TSH in isolated ACTH deficiency (594).
Further, a2-adrenergic inputs stimulate release of both pro-
TRH products and ACTH (595), and thus, prepro-TRH178–199

and ACTH may be coreleased into the ME, allowing the
pro-TRH product to modulate ACTH release. Despite this
logic, the relationship between the HPA and HPT axes re-
mains incompletely understood, and other investigators
have been unable to reproduce corticotropin inhibition by
prepro-TRH178–199 (25). The pancreas produces prepro-
TRH178–199, within the b-cell secretory granules (316), sug-
gesting a potential involvement for this peptide in the reg-
ulation of glucose metabolism. Finally, prepro-TRH178–199

acts as a PRL secretagogue in primary pituitary cultures.
However, as described in the next section, it may be broken
down to peptide products that also induce PRL secretion, so
a direct effect remains to be proven. Prepro-TRH178–199 levels
rise during the early phases of suckling in rat pups (91).
Again, a precise role for the peptide in lactation, suckling, etc.
remains to be determined.

C. prepro-TRH178–185 and prepro-TRH186–199 (pFQ7 and

pSE14)

Suckling increases prepro-TRH mRNA in PVN and mark-
edly increases TRH release during the first period of lactation
(596). In experiments where we coexpressed rat prepro-TRH
cDNA with PC1, PC2, and 7B2 in GH4C1 cells (Section II.D),
we detected two novel peptides, prepro-TRH178–185 (pFQ7)
and prepro-TRH186–199 (pSE14). These peptides are generated
by cleavage of prepro-TRH178–199 (pFE22) by PC2 (see Section
II.D and Figs. 1 and 6). We subsequently determined that
these peptides are present in the rat PVN. In examining
whether pro-TRH processing is altered by suckling, we
found that in addition to prepro-TRH178–199, the products
prepro-TRH178–185 and prepro-TRH186–199 also increase re-
lease of PRL from primary pituitary cultures. Prepro-

TRH178–185 was the most active PRL secretagogue. In suck-
ling experiments, where pups were separated from their
mothers for 6 h and then reunited for 45 min to suckle, a
5-fold increase in PVN prepro-TRH178–199 and prepro-
TRH186–199 and a 6-fold increase in serum PRL were observed
over nonsuckling controls. While these data implicate these
novel peptides in suckling, or a response to PRL, further
experiments are required to rule out nonspecific effects of
stress (91).

D. prepro-TRH53–74 (pFT22)

Prepro-TRH53–74 displays a unique localization in the ros-
tral two-thirds of the ventrolateral PAG (95, 597). Electrical
stimulation of, or injection of excitatory amino acids into, this
region of the PAG produces analgesia (598, 599), and this
region of the PAG is most sensitive to production of mor-
phine-induced antinociception (600). Although the lateral
PAG is more commonly associated with non-opioid-medi-
ated antinociception (482), there is limited evidence that non-
opioid antinociception is also mediated within the ventro-
lateral PAG (601). Thus, prepro-TRH53–74 may be a candidate
molecule to mediate nonopiate pain perception in this region
or play a modulatory role in opiate-mediated pain mecha-
nisms.

As described in Section III.B.5, the expression of prepro-
TRH mRNA in the reticular nucleus of the thalamus, the
PAG, the raphe nuclei, and, to a limited extent, in the dorsal
horn of the spinal cord is highly suggestive of a role in pain
modulation (93). Prepro-TRH53–74 similarly is prominent in
the ventrolateral PAG, RMg, and thalamic reticular nucleus,
suggesting a role in opiate-dependent pain perception (95,
597). The reticular nucleus serves in gating of peripheral
somatic sensory information from the dorsal thalamus to the
cortex (602). Opiate withdrawal induces prepro-TRH53–74 in
the rat PAG, while TRH levels are unaltered (27), suggesting
that the peptide may interact with opiate pain mechanisms
in these pathways (406, 597).

E. prepro-TRH83–106 (pEH24) and prepro-TRH208–255

As described above (Section III.B.10), during opiate with-
drawal prepro-TRH mRNA is increased in the PAG (27, 28).
Peptide analysis in the PAG demonstrates an accumulation
of the N-terminal peptides prepro-TRH53–74 (see subsection
7 above) and prepro-TRH83–106, a reduction in the C-terminal
peptide prepro-TRH208–255, and no change in prepro-
TRH178–199 or TRH, in opiate-withdrawal vs. control animals
(154). Opiate withdrawal also increases prepro-TRH83–106 in
the lateral hypothalamus. We speculate that during opiate
withdrawal, pro-TRH processing may be altered in several
brain regions, resulting in increased levels of N-terminally
derived peptides (prepro-TRH53–74 and prepro-TRH83–106)
and decreased levels of some C-terminally derived peptides
(prepro-TRH208–255).

F. TRH-Gly

Immunoreactivity of the immediate precursor of TRH,
TRH-Gly, is widespread and detectable throughout the CNS
in a similar distribution to TRH and is also present in the
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prostate, serum, spleen, adrenals, kidney, and gastrointesti-
nal organs. Levels of TRH-Gly are up-regulated by hypo-
thyroidism and by thermal stress, following the pattern for
TRH itself (603). The pancreas contains TRH-Gly within
b-cell secretory granules (603). The ratio of TRH/TRH-Gly is
highest in pituitary and hypothalamus and much lower else-
where in neural tissue. TRH-Gly is much better characterized
than other pro-TRH-derived peptides discussed above. TRH-
Gly is increased in several limbic regions after chronic ECS,
including hippocampus and pyriform cortex (391). These
authors hypothesize that the increase correlates with effec-
tiveness in increasing swim times in the forced-swim test,
and thus it may serve an antidepressant and/or anticonvul-
sant function. TRH-Gly, independent of conversion to TRH,
stimulates gastric acid secretion in a dose-dependent man-
ner, although with a potency 100-fold less than TRH (18).
Interestingly, TRH-Gly can directly activate TRH receptors in
high concentrations (100 and 1000 nm). The IC50 of TRH-Gly
for displacement of MeTRH (12 mm) is significantly higher
than the TRH receptor dissociation constant (Kd) of 1.7 nm for
MeTRH (604).

TRH in pathological conditions may induce secretion of
GH (124). In normal controls TRH-Gly does not increase
secretion of TSH, PRL, or GH (605). However, iv TRH-Gly
can induce secretion of GH in patients with acromegaly and
stimulate PRL and TSH release in women with anorexia
nervosa. Preclinical studies indicate estrogen/progesterone
treatment, as well as starvation, can enhance the ability of
TRH-Gly to stimulate TSH and PRL release, although at a
potency far below that for TRH (606). In most cases, TRH-Gly
effects are difficult to separate from effects resulting from
subsequent conversion to TRH. However, TRH-Gly may
prove useful as a pharmacological challenge agent, even if an
endogenous role in pituitary release is not confirmed.

V. Non-TRH pro-TRH-Derived Peptides Outside of

the CNS

In vertebrates, non-TRH pro-TRH-derived peptides are
only reported in tissues where TRH is also found. Their
functions are a matter of conjecture, based on their regional
and developmental patterns of expression. Anti-pCC10,
which detects immediate TRH precursors flanked by paired
basic residues as well as larger intermediates, detects im-
munoreactivity in the pancreas (607), specifically the devel-
oping islet b-cells in rat neonatal pancreas (608). Levels of
TRH peak at postnatal days 2–4 in parallel with levels of
prepro-TRH160–169 and prepro-TRH178–199. Both TRH and the
pro-TRH-derived peptides are nearly completely abolished
by streptozocin treatment, indicating that they are derived
principally from b-cells (564). Likewise, prepro-TRH53–74,
extended forms of this peptide, and the octa-TRH progenitor
are localized to developing b-cells (608, 609). Immunoreac-
tive pCC10 is also found in the retina (607). In adrenal ex-
tracts, not only TRH and immunoreactive pCC10 (607), but
also prepro-TRH160–169, is detected by RIA and confirmed
chromatographically.

In CA77 thyroid parafollicular cells, prepro-TRH mRNA,
7-kDa and 3-kDa species recognized by anti-prepro-

TRH53–74, and TRH are detected (86). In thyroid tissue, pre-
pro-TRH mRNA, the 7-kDa and 3-kDa species of immuno-
reactive prepro-TRH53–74, and immunoreactive prepro-
TRH115–151 are found. Part of this immunoreactivity
comigrates with synthetic prepro-TRH115–151 standard on gel
filtration and reversed-phase HPLC. In addition, immuno-
histochemical studies localize prepro-TRH53–74 to parafol-
licular cells in thyroid tissue (610). Thus, within the thyroid,
significant biological functions for non-TRH peptides remain
to be deciphered.

TRH-Gly is present in high levels in the ventral prostate of
the rat, as well as in the testis, epididymis, and seminal
vesicles (566). Both TRH and TRH-Gly in the epididymis and
prostate are regulated along with the HPT axis under certain
conditions (566). Prepro-TRH160–169 is also detected in high
levels in the testis. Further, prepro-TRH160–169 receptor bind-
ing is high in urogenital organs, second only to CNS tissues
(586). Human placenta contains appreciable quantities of the
human TRH progenitor octa-TRH and a larger non-TRH
peptide, human prepro-TRH192–222 (611).

VI. TRH and Other pro-TRH-Derived Peptide

Receptors

A. The TRH receptor

Although a complete discussion of TRH receptors is be-
yond the scope of this review, some review is important as
regards the fate of pro-TRH products that are released. Full-
length cDNA clones for the first TRH receptor (TRH-R1) have
been identified in mouse (612), rat (613), and human (614).
Although there are splice variants for rat and mouse that
differ at their C terminus, functional differences between
these isoforms, or characterization of their relative occur-
rence in tissues and under various physiological conditions,
has not been determined (615). A second TRH receptor, TRH-
R2, has recently been cloned (616, 617). This G protein-
coupled receptor is approximately 50% related to the
TRH-R1 at the amino acid level and modulates calcium influx
upon binding TRH. The expression of TRH-R2 differs from
that of TRH-R1, being restricted to the CNS and being en-
riched in the spinothalamic tract, dorsal horn of the spinal
cord, pontine nuclei, and cerebellum. This distribution in the
first two sites is suggestive of a role in sensory perception and
antinoception, while the later two areas of expression suggest
a role in motor control. The identification of TRH receptor
species, be they subtypes or members of a new family with
distinct pharmacological and/or neuroanatomical profiles, is
critical if we are to utilize our growing knowledge of TRH
functions in the development of clinically useful therapeu-
tics.

TRH-R1 is highly conserved between species, e.g., at the
nucleotide level the human receptor is 90.3% and 89.2%
homologous to the mouse and rat receptors, respectively; the
three receptors are approximately 95% conserved at the
amino acid level. The receptors are members of the G protein-
coupled receptor superfamily. Intracellular signal transduc-
tion is principally mediated by coupling to Gq and G11. Li-
gand binding results in activation of phosphoinositide-
specific phospholipase C (PPI-PLC) (618), resulting in PIP2
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hydrolysis, and subsequent production of inositol 1,4,5-
triphosphosphate (IP3) and 1,2-diacylglycerol. This stimu-
lates increased intracellular calcium, although the exact con-
tributions of increased calcium influx vs. mobilization of
intracellular stores is controversial (619). Downstream acti-
vation of protein kinase C (620), calcium/calmodulin-
dependent protein kinase (621, 622), and mitogen-activated
protein kinase (623, 624) also occurs. Under specific condi-
tions in certain cell types, the TRH receptor also couples Gi2

and Gi3 and to a Gs-like protein that does not activate ade-
nylate cyclase (625). These complexes are less well studied
and represent the minority of TRH signal transduction.

Of particular interest to the potential clinical usefulness of
TRH or TRH analogs is the phenomeneon of TRH receptor
desensitization. Pituitary TRH receptors after several hours
exposure to TRH display markedly reduced TSH, but not
PRL release. The IP3 response to TRH displays homologous
desensitization in as little as 10 sec of TRH exposure in
transfected HEK 293 cells (626). This occurs by rapid uncou-
pling of the receptor and a decrease in PPI-PLC activity. In
the same model system, intracellular calcium mobilization
displays heterologous acute desensitization, with effects on
other receptors whose signal transduction also depends on
calcium elevation (627). While most G protein-coupled re-
ceptors undergo acute desensitization by phosphorylation
(628), this has not been demonstrated for TRH receptors.
Neither a specific protein kinase nor calcium concentration
have been clearly implicated in TRH receptor desensitization
(625). Because G11, Gq, and PPI-PLC have not been shown to
be targets for desensitization, it still is believed some form of
modification of the TRH receptor may explain acute desen-
sitization. Not to be overlooked, if TRH exhibits slowed
dissociation from the TRH-receptor complex, reactivation of
the receptor cannot occur (629). Acute desensitization of the
TRH receptor is also dependent on cell type, with pituitary
cells displaying the most desensitization (630).

A second principal mechanism for TRH receptor desen-
sitization is agonist-induced internalization (631). Up to 80%
of TRH receptors are internalized by pituitary cells, with a
half-time of 2–3 min (631). Thus, this mechanism is used by
TRH receptors to a greater extent than for many other G
protein-coupled receptors and may represent a significant
mechanism for clearance of secreted TRH. However, recent
studies indicate that desensitization does not depend upon
internalization, i.e., if internalization is blocked, receptor un-
coupling can still mediate desensitization (629). This is sim-
ilar to the angiotensin II and muscarinin M3 receptors that
are also coupled to Gq and G11. While the TRH receptor
undergoes internalization and recyclization without ligand
binding, this “housekeeping” function is slow relative to
TRH-induced endocytosis (632). THR receptor-ligand com-
plexes are internalized in clathrin-coated vesicles (632). A
portion of the receptor is targeted to lysosomes, while the
remainder is recycled to the cell surface. Similarly, the ligand
may remain associated with the receptor to return to the cell
surface, or if it dissociates intracellularly, will be degraded in
lysosomes or, possibly, reach the cell surface as well (633).
Internalization of the TRH receptor is dependent upon se-
quence motifs within its C terminus (634), as well as se-
quences within the second transmembrane region or third

intracellular loop that are necessary for G protein coupling
(633). Further, optimal rates of internalization appear to re-
quire coupling to Gq/11 and PPI-PLC (635).

Over longer periods of time, TRH receptor binding is also
reduced by down-regulation of receptor number. TRH re-
ceptor down-regulation occurs in response to TRH, thyroid
hormones, and agents that raise cAMP levels (625, 636). Like
acute desensitization, receptor down-regulation is depen-
dent upon the cell of expression, as determined in transfected
cell experiments (637). The best characterized mechanism of
reduced TRH receptor number is reduction in TRH-R1
mRNA levels in GH3 and GH4C1 cells treated with TRH
(638, 639). TRH-R1 mRNA regulation is tightly coupled to
activation of the TRH signal transduction elements, protein
kinase C, IP3, and intracellular calcium (638–640). Desensi-
tization of TRH-R1 by cAMP is also mediated by protein
kinase A. Conversely, a number of conditions, including
hypothyroidism (641), and treatment with dexamethasone
(639), estradiol (642), and cycloheximide elevate TRH-R1
mRNA. Both for TRH-R1 mRNA down- and up-regulation,
direct effects on gene transcription rates can be demon-
strated.

There is also considerable evidence for regulation of TRH
receptor mRNA stability. In GH3 cells transfected with the
TRH-R1 coding sequence under control of a cytomegalovirus
promoter, TRH increases degradation of TRH-R1 mRNA
(643). TRH-R1 mRNA degradation is induced in pituitary cell
types by phorbol esters (644). Narayanan and co-workers
(645) present evidence in GH3 pituitary cells that TRH-R1
mRNA degradation is controlled both by cis-acting elements
within the mRNA 39-untranslated region and by induction of
RNases. Cell transfection studies indicate that regulation of
TRH-R1 mRNA degradation does not occur in nonpituitary
cells (644, 646). Estradiol-induced increases in TRH receptor
mRNA also appear to be mediated through reduction in TRH
receptor mRNA degradation (642).

B. The prepro-TRH160–169 (pST10) receptor

Of the other pro-TRH-derived peptides, only prepro-
TRH160–169 has characterized receptor binding (647). Recep-
tors for prepro-TRH160–169 seem to be of a single class, with
a higher affinity for [Tyr0] pST10 (IC50 5 8.3 6 1.2 nm) than
the native pST10 (IC50 5 9.3 6 1.2 mm). Recent studies indicate
that pST10 receptors cosegregate with S-100 protein-positive
cells in pituitary cultures, supporting their expression in the
folliculo-stellate cells of the anterior pituitary. Binding sites
for pST10 are developmentally regulated, with an increase
from birth to weaning, and then a gradual decline to adult
levels at postnatal day 60 (587). Signal transduction by these
receptors is not yet characterized. Within the CNS, pST10

receptor binding is highest in pituitary, the hypothalamus,
spinal cord, and olfactory bulb, as well as the hippocampus
(648). Its receptor binding is very high, two-thirds of that in
the pituitary, in urinary bladder, and vas deferens and in the
heart and testis, at a level equivalent to the hypothalamus
(588).
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VII. TRH Degradation

The rapid degradation of TRH after release from cells
represents a significant drawback in its potential use as a
therapeutic agent. To overcome these difficulties, various
analogs have been synthesized and evaluated by many
group of investigators (181). Specific enzymes that act on
TRH are found in many tissues including the brain, spinal
cord, pituitary, liver, kidney, pancreas, adrenal glands, and
blood. These enzymes not only inactivate TRH, but act in
concert with biosynthetic processes to determine the steady
state levels of TRH, and its metabolites, CHP and TRH-OH.
The distribution and biological effects of TRH metabolites are
discussed more fully in Section III.B.

Four key enzymes breakdown TRH: PAP I, PAP II, and
thyroliberinase give rise to the stable cyclized metabolite
CHP (also known as histidyl-proline-diketopiperazine or
His-Pro-DKP), and prolyl endopeptidase gives rise to the
deamidated free acid, TRH-OH (182). These enzyme path-
ways are shown schematically in Fig. 10. In the CNS, the
soluble PAP I and prolyl endopeptidase, and the membrane-
bound PAP II, are the principal enzymes acting to metabolize
TRH (649). TRH degradation in serum and many peripheral
tissues is through the serum enzyme thyroliberinase (172).
Each enzyme is described below in more detail.

Pyroglutamyl aminopeptidase I (PAP I) (EC 3.4.19.3) is a
soluble cysteine protease that removes the N-terminal py-
roGlu residue from TRH (649). It also cleaves peptides such
as LHRH, NT, and bombesin. Prolyl endopeptidase (EC
3.4.21.26) is a soluble serine protease that cleaves on the
carboxyl side of the TRH proline residue to generate
TRH-OH (649). It also acts on other neuropeptides, including
LHRH, NT, and SP. These two enzymes are present in many
of the same tissues, so that both CHP and TRH-OH can be
generated from TRH.

Displaying greater substrate specificity is the ectoenzyme
pyroglutamyl aminopeptidase II (PAP II) (EC 3.4.19.6) (650).
Like PAP I, this 260-kDa metalloenzyme removes pyro-Glu
from TRH. The distinguishing features of PAP II are its
greater substrate specificity and being membrane bound.
PAP II is present in CNS synaptosomal fractions, in adeno-
hypophyseal plasma membrane, and liver and serum par-
ticulate fractions. Highest activity is observed in the hip-
pocampus and cerebral cortex. PAP II has been identified in
many species, being highest in rabbit CNS, and in most cases

retains similar features. However, its substrate specificity in
bovine synaptosomes, where it has been extensively char-
acterized, is not as narrow as in other species (651). The
localization of PAP II in the CNS is consistent with its pro-
posed role in the degradation of synaptic TRH (652).

In the hypothalamus, PAP II activity is maximal at day 8
after birth, decreasing to adult values at day 45, while in the
adenohypophysis it appears at day 8, peaks at day 30, and
then decreases to adult values. In addition, thyroid hormone
regulates the PAP II in the anterior pituitary but not in the
brain (653, 654). In the PVN, TRH levels and PAP II activity
do not correlate during pregnancy and lactation, indicating
that PAP II is not the principal determinant of TRH levels
(655). PAP II activity does vary with the estrous cycle (655).
Furthermore, in brain areas other than the hypothalamus,
PAP II activity decreases from days 9–20 coincident with
increases in TRH and decreases in CHP (656), indicating PAP
II activity can be a critical determinant of TRH steady state
levels in some tissues. In sum, it appears that PAP II in areas
under prominent endocrine control, such as the pituitary and
PVN, subserves a different role than that in nonendocrine
tissues.

Thyroliberinase, a fourth TRH-degrading enzyme, present
in serum, is similar to PAP II but does not have the trans-
membrane anchor of PAP II. Like PAP II, thyroliberinase
displays greater substrate specificity than PAP I or prolyl
endopeptidase (657, 658). Thyroliberinase may be regulated
by thyroid hormone; TRH half-life ranges from about 2 min
in the plasma of thyrotoxic animals to 6 min in hypothyroid
animals. In humans, the half-life of TRH is similar (172).

In studies examining the ontogeny of TRH catabolizing
enzymes in pancreas, PAP I and prolyl endopeptidase are
detected at early stages of rat pancreatic development, while
PAP II remains undetectable. PAP I-specific activity in-
creases until day 3 and decreases after day 5, and prolyl
endopeptidase levels peak at 20 days. Because this develop-
ment does not parallel that seen for TRH levels, it appears
that TRH levels in neonatal rat pancreas are principally de-
termined by biosynthetic rates (659).

The physiological significance of the soluble enzymes PAP
I and prolyl endopeptidase within the brain and spinal cord
are unclear, since in the case of neurotransmitter inactivation,
TRH is probably degraded outside the neuron by ectoen-
zymes located on the cell surface, or within lysosomes after
endocytosis. Membrane-bound ectoenzymes that are specific
for TRH, such as PAP II, are more logically located for hy-
drolysis of synaptically released peptides. Soluble enzymes
are better situated to control degradation of TRH during its
transport in the hypophyseal portal vessels and systemic
TRH. The exact mechanisms that control the amount of TRH
that ultimately reaches the pituitary remain to be elucidated.

VIII. Concluding Remarks

This review describes the latest knowledge on pro-TRH
research by providing new insights into its biosynthesis and
processing, the neuroendocrine regulation thereof, the bio-
logical actions of its products, and the signal transduction
and catabolic pathways used by those products. We empha-

FIG. 10. Metabolic degradation of TRH by different TRH-degrading
enzymes.
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size the wide diversity of non-TRH pro-TRH-derived pep-
tides that are now known, and the intracellular pathways
they take to reach maturity. The recent information available
on tissue-specific processing of pro-TRH in the brain adds a
further dimension to our understanding of differential pro-
cessing and its importance in generating biological diversity.

Understanding of the role of non-TRH pro-TRH-derived
peptides represents an exciting new frontier in pro-TRH
research. During biosynthesis, these sequences within the
precursor may function as structural or targeting elements
that guide the folding and sorting of pro-TRH and its larger
intermediates so that subsequent processing and secretion
are properly regulated. The unique anatomical distribution
of the pro-TRH end products, as well as regulation of their
levels by neuroendocrine or pharmacological manipulations,
described in this review, argues that these peptides will have
unique biological roles. Some of these roles, such as for
prepro-TRH160–169, will be within the HPT axis, while many
others will be unrelated to traditional thyroid function. This
review also gathers together an extensive array of data in-
dicating that TRH can function far beyond the HPT axis and
should command significant future effort as a focus to de-
velop new therapeutics. These therapeutics, in the form of
TRH analogs or nonprotein peptidomimetics, and perhaps
using novel delivery systems, will advance our ability to
develop TRH and non-TRH pro-TRH-derived peptide ago-
nists and antagonists that can target pro-TRH-derived pep-
tides functioning in specific tissues or brain loci. It is hoped
that these new drugs might provide novel treatment ap-
proaches for some of today’s most difficult health and so-
cietal issues, including drug abuse, depression, chronic pain
disorders, and sequelae of CNS injury.
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