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The Bipolaron in the Strong Coupling Limit

Tadahiro Miyao∗ and Herbert Spohn

Abstract. The bipolaron are two electrons coupled to the elastic deformations
of an ionic crystal. We study this system in the Fröhlich approximation. If the
Coulomb repulsion dominates, the lowest energy states are two well separated
polarons. Otherwise the electrons form a bound pair. We prove the validity of
the Pekar–Tomasevich energy functional in the strong coupling limit, yielding
estimates on the coupling parameters for which the binding energy is strictly
positive. Under the condition of a strictly positive binding energy we prove
the existence of a ground state at fixed total momentum P , provided P is not
too large.

1. Introduction

The polaron is an electron coupled to the elastic deformations of an ionic crys-
tal. We rely here on the approximation proposed by H. Fröhlich [6], where the
phonons are represented as a Bose field over R

3, the dispersion relation is constant,
ω(k) = ω0, and the coupling function is proportional to 1/|k| in wave number space.
The Hilbert space of the polaron is then H = L2(R3)⊗F(L2(R3)) with F(L2(R3))
the bosonic Fock space and the hamiltonian is given by

Hp = −1
2
Δx ⊗ 1l +

√
αλ0

∫
R3

dk
(2π)3/2|k|

[
eik·x ⊗ a(k) + e−ik·x ⊗ a(k)∗

]
+ 1l⊗Nf

with λ0 = (2
√

2π)1/2. Here Δx is the Laplacian, Nf is the number operator, and
a(k), a(k)∗ are the bosonic annihilation and creation operators with commutation
relations [

a(k), a(k′)∗
]

= δ(k − k′) ,
[
a(k), a(k′)

]
= 0 =

[
a(k)∗, a(k′)∗

]
.

(The complete definition of Hp will be recalled in the subsequent section.) We
use units in which � = 1, ω0 = 1, and the bare mass of the electron me = 1.
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Since the coupling function is pure power, the only parameter in the model is the
dimensionless coupling constant

√
α.

The bipolaron, the subject of our paper, consists of two electrons coupled
to the elastic deformations of an ionic crystal. The Hilbert space is then H =
L2(R6) ⊗ F(L2(R3)) and, in the Fröhlich approximation, the hamiltonian reads

Hbp =
∑

j=1,2

{
−1

2
Δxj ⊗ 1l +

√
αλ0

∫
R3

dk
(2π)3/2|k|

[
eik·xj ⊗ a(k) + e−ik·xj ⊗ a(k)∗

]}

+
αU

|x1 − x2| ⊗ 1l + 1l⊗Nf .

xj ∈ R
3, j = 1, 2, are the coordinates of the two electrons. The electrons are spin-

less and no statistics is imposed. In addition to the interaction with the phonons,
the electrons repel each other through a static Coulomb interaction, which is pro-
portional to e2. Since

√
α is proportional to e, the strength of the Coulomb repul-

sion is written as αU with U a second dimensionless coupling parameter U ≥ 0.
As explained in [4], e.g., U ≥ √

2 in the Fröhlich approximation. For the purpose
of our study, we regard α,U as independent parameters, α ≥ 0, U ≥ 0.

The phonons induce an effective attraction between the electrons which com-
petes with the Coulomb repulsion. If the latter dominates we expect the low energy
states ofHp to consist of two far apart polarons, while if the coupling to the phonon
field dominates the electrons should form a bound pair. More precisely, let Ep(α)
and Ebp(α,U) be the lowest energy of Hp and Hbp, respectively. We define the
bipolaron binding energy as

Ebin(α,U) = 2Ep(α) − Ebp(α,U) .

One basic problem is then to characterize in the quadrant of couplings (α,U) a
domain with Ebin = 0 (two widely separated polarons) and a domain with Ebin > 0
(bound pair).

If α is small, one could use iterative techniques in the spirit of [1], see also
[10, 11], to approach the issue of a strictly positive binding energy. In this paper
we investigate the strong coupling regime, α→ ∞.

We first establish that Hp is a properly defined self-adjoint operator and that,
for Ep(α) = inf spec(Hp), one has limα→∞ Ep(α)/α2 = cp with cp a constant
defined as the minimum of the Pekar functional. (Numerically, one finds cp =
−0.1085. . . [19].) The strong coupling limit has been studied before by Donsker
and Varadhan [5], using functional integration, and by Lieb and Thomas [15, 16]
based on operator techniques. In fact, we slightly improve their results. In [5,15,16]
the authors consider a suitable cutoff version of Hp with ground state energy
E(κ)(α), κ denoting the ultraviolet cutoff. They define E(α) = limκ→∞ E(κ)(α)
and prove that limα→∞ E(α)/α2 = cp. Secondly we consider the bipolaron and
establish that in the strong coupling limit its ground state energy is given through
minimizing the Pekar–Tomasevich functional [22], see [27] for a review. An analysis
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of the Pekar–Tomasevich variational problem yields an information on the binding
energy for large α.

From our investigaton of the strong coupling limit it is a small step to study
the existence of a ground state for the bipolaron at constant total momentum P
following the strategy developed in [17]. We will prove that, if Ebin > 0, then Hbp

at total momentum P has a ground state, provided P is not too large (specified
quantitatively).

The bipolaron is a very well studied system, both experimentally and theo-
retically. We refer to [27] for a survey and to [12] for a listing of theoretical inves-
tigations. Spectral properties of the Fröhlich polaron are investigated in [20, 29].

The paper is organized as follows: Section 3 deals with the strong coupling
limit α → ∞ and Section 4 with the existence of a ground state. In the Appen-
dices A and B removal of the ultraviolet cutoff and self-adjointness are discussed.
In Appendix C it is established that the bipolaron hamiltonian is bounded from
below and in Appendix D a localization estimate is proved.

2. Main results

In general we denote the inner product and the norm of a Hilbert space h by
〈·, ·〉h and ‖ · ‖h respectively. If there is no danger of confusion, then we omit the
subscript h in 〈·, ·〉h and ‖ · ‖h. For a linear operator T on a Hilbert space, we
denote its domain by dom(T ). For a self-adjoint operator A on a Hilbert space,
we denote its spectrum (resp. essential spectrum) by spec(A) (resp. ess. spec(A)).

Let h be a Hilbert space. The Fock space over h is defined by

F(h) = ⊕∞
n=0 ⊗n

s h ,

where ⊗n
s h means the n-fold symmetric tensor product of h with the convention

⊗0
sh = C. The vector Ω = 1 ⊕ 0 ⊕ · · · ∈ F(h) is called the Fock vacuum.

We denote by a(f) the annihilation operator on F(h) with test vector f ∈ h
[24, Sect. X.7]. By definition, a(f) is densely defined, closed, and antilinear in f .
The adjoint a(f)∗ is the adjoint of a(f) and called the creation operator. We
frequently write a(f)# to denote either a(f) or a(f)∗. Creation and annihilation
operators satisfy the canonical commutation relations[

a(f), a(g)∗
]

= 〈f, g〉h1l ,
[
a(f), a(g)

]
= 0 =

[
a(f)∗, a(g)∗

]
on the finite particle subspace

F0(h) =
∞⋃

m=1

{
ϕ = ϕ0 ⊕ ϕ1 ⊕ · · · ∈ F(h) |ϕn = 0, forn ≥ m

}
,

where 1l denotes the identity operator. In the case of h = L2(R3), we often use the
symbolic notation for the annihilation and creation operator by the kernel:

a(f) =
∫

R3
dk f(k)∗a(k) , a(f)∗ =

∫
R3

dk f(k)a(k)∗ .
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We introduce a further important subspace of F(h). Let s be a subspace of h. We
define

Ffin(s) = Lin
{
a(f1)∗ . . . a(fn)∗Ω, Ω | f1, . . . , fn ∈ s, n ∈ N

}
,

where Lin{· · · } means the linear span of the set {· · · }. If s is dense in h, so is
Ffin(s) in F(h).

Let b be a contraction operator from h1 to h2, i.e., ‖b‖ ≤ 1. The linear
operator Γ(b) : F(h1) → F(h2) is defined by

Γ(b) � ⊗n
s h1 = ⊗nb

with the convention ⊗0b = 1l.
For a densely defined closable operator c on h, dΓ(c) : F(h) → F(h) is defined

by

dΓ(c) � ⊗̂n
s dom(c) =

n∑
j=1

1l ⊗ · · · ⊗ c
j th

⊗ · · · ⊗ 1l

and
dΓ(c)Ω = 0

where ⊗̂ means the algebraic tensor product. Here in the j-th summand c is at the
j-th entry. Clearly dΓ(c) is closable and we denote its closure by the same symbol.
As a typical example, the number operator Nf is given by Nf = dΓ(1l).

The bipolaron Hamiltonian with an ultraviolet cutoff κ > 0 is defined as

Hbp,κ =
∑

j=1,2

{
−1

2
Δxj ⊗ 1l+

√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k|

[
eik·xj ⊗ a(k)+ e−ik·xj ⊗ a(k)∗

]}

+
αU

|x1 − x2| ⊗ 1l + 1l ⊗Nf

with α,U ≥ 0. This linear operator acts in the Hilbert space L2(R6, dx1 ⊗ dx2) ⊗
F(L2(R3)). By the bound

‖a(f)#(Nf + 1l)−1/2‖ ≤ ‖f‖ (1)

and the Kato–Rellich theorem, it is easy to see that, for all 0 < κ < ∞ and
0 < α <∞, Hbp,κ is self-adjoint on the domain of the self-adjoint operator Lbp =
−∑j=1,2 Δxj ⊗1l+1l⊗Nf , bounded from below, and essentially self-adjoint on any
core for Lbp. We note that Hbp,κ strongly commutes with the total momentum
operator

Ptot = −i∇x1 ⊗ 1l − i∇x2 ⊗ 1l + 1l ⊗ Pf , (2)

where Pf = (dΓ(k1), dΓ(k2), dΓ(k3)), that is to say, eia·PtotHbp,κ ⊆ Hbp,κeia·Ptot

for all a ∈ R
3.

Let (xr, xc) be the center of mass coordinates defined by

xr = x1 − x2 , xc =
x1 + x2

2
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and let UC be the unitary operator from L2(R6, dx1 ⊗ dx2) to L2(R6, dxr ⊗ dxc)
given by

(UCf)(xr, xc) = f
(
xc +

xr

2
, xc − xr

2

)

for f(x1, x2) ∈ L2(R6, dx1 ⊗ dx2). We introduce a unitary operator U by

U = (Fxc ⊗ 1l) eixc·Pf (UC ⊗ 1l) ,

where Fxc is the Fourier transformation with respect to xc, i.e.,

(Fxcf)(P, xr) = (2π)−3/2

∫
R3

dxc e−ixc·P f(xr, xc)

for f(xr, xc) ∈ L2(R6, dxr ⊗ dxc). The unitary operator U induces the identifica-
tion L2(R6, dx1 ⊗ dx2) ⊗ F(L2(R3)) with

∫ ⊕
R3 L

2(R3, dxr) ⊗ F(L2(R3)) dP , that is
concretely written as

(Uϕ)(n)(P, xr, k1, . . . , kn)

= (2π)−3/2

∫
R3

dxc e−ixc·(P−∑n
j=1 kj)ϕ(n)

(
xc +

xr

2
, xc − xr

2
, k1, . . . , kn

)

for ϕ = ⊕∞
n=0ϕ

(n) ∈ L2(R6, dx1 ⊗ dx2) ⊗ F(L2(R3)). It is easily shown that

UPtotU∗ =
∫ ⊕

R3
P dP .

Hence the unitary operator U provides the direct integral decomposition of
L2(R6, dx1 ⊗ dx2) ⊗ F(L2(R3)) with respect to the value of the total momentum.

Since Hbp,κ strongly commutes with Ptot, UHbp,κU∗ is decomposable and
can be represented by the fiber direct integral

UHbp,κU∗ =
∫ ⊕

R3
Hκ(P ) dP ,

where

Hκ(P ) =
1
4
(P − 1l⊗ Pf)2 − Δxr ⊗ 1l +

αU

|xr| ⊗ 1l + 1l⊗Nf

+ 2
√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]
. (3)

By the Kato–Rellich’s theorem, Hκ(P ) is self-adjoint on dom(−Δxr ⊗1l)∩dom(1l⊗
P 2

f ) ∩ dom(1l ⊗Nf) for all κ <∞ and α <∞, and bounded from below. Further,
Hκ(P ) is essentially self-adjoint on any core for the self-adjoint operator

L = −Δxr ⊗ 1l + 1l⊗ P 2
f + 1l⊗Nf . (4)

We state our main results. Our first result concerns the existence of the
limiting Hamiltonians. Namely, we remove the ultraviolet cutoff from Hbp,κ and
Hκ(P ). No energy renormalization is required.
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Theorem 2.1.

(i) For all α < ∞ and U < ∞, there exists a self-adjoint operator Hbp that is
bounded from below such that Hbp,κ converges to Hbp in the strong resolvent
sense as κ→ ∞.

(ii) For all α <∞, U <∞ and P ∈ R
3, there exists a self-adjoint operator H(P )

that is bounded from below such that Hκ(P ) converges to H(P ) in the strong
resolvent sense as κ→ ∞.

(iii) UHbpU∗ is decomposable and

UHbpU∗ =
∫ ⊕

R3
H(P ) dP . (5)

Let Hp,κ be the Hamiltonian for a single polaron with the ultraviolet cutoff κ,

Hp,κ = −1
2
Δx ⊗ 1l +

√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k|

[
eik·x ⊗ a(k) + e−ik·x ⊗ a(k)∗

]

+ 1l ⊗Nf .

The linear operator Hp,κ acts in the Hilbert space L2(R3)⊗F(L2(R3)). Moreover,
for all 0 < κ < ∞ and 0 < α < ∞, Hp,κ is self-adjoint on the domain of the
self-adjoint operator Lp = −Δx ⊗1l+1l⊗Nf , bounded from below, and essentially
self-adjoint on any core for Lp. In a way similar to the proof of Theorem 2.1 (i),
we can show the following.

Proposition 2.2. For any coupling α, there exists a self-adjoint operator Hp,
bounded from below, such that Hp,κ converges to Hp in the strong resolvent sense
as κ→ ∞.

Let

Ebp = inf spec(Hbp) , Ep = inf spec(Hp) .

The binding energy Ebin is defined by

Ebin = 2Ep − Ebp .

In order to display the dependence on α and U , we also denote the binding energy
by Ebin(α,U).

We introduce the Pekar energy functional by

Ep(ϕ) =
1
2

∫
dx |∇xϕ(x)|2 − 1√

2

∫
dxdy

|ϕ(x)|2|ϕ(y)|2
|x− y| (6)

for ϕ∈W 1(R3), whereW 1(Rd) is the space of functions on R
d such that ‖∇ϕ‖L2(Rd)

and ‖ϕ‖L2(Rd) are finite. For U ≥ 0, the Pekar–Tomasevich energy functional is
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defined by

EU
bp(ϕ) =

1
2

∫
dx1dx2 |∇x1ϕ(x1, x2)|2 +

1
2

∫
dx1dx2 |∇x2ϕ(x1, x2)|2

+ U

∫
dx1dx1

|ϕ(x1, x2)|2
|x1 − x2|

− 1√
2

∑
i,j=1,2

∫
dx1dx2dy1dy2

|ϕ(x1, x2)|2|ϕ(y1, y2)|2
|xi − yj | (7)

for ϕ ∈ W 1(R6).

Theorem 2.3. Let

cp = inf
{Ep(ϕ) |ϕ ∈W 1(R3), ‖ϕ‖L2(R3) = 1

}
, (8)

cbp(U) = inf
{EU

bp(ϕ) |ϕ ∈W 1(R6), ‖ϕ‖L2(R6) = 1
}
. (9)

For any Coulomb strength U ≥ 0,

lim
α→∞

Ebin(α,U)
α2

= 2cp − cbp(U) .

The Pekar energy functional is studied in [13]. In a separate work [18] we
investigate the Pekar–Tomasevich energy functional and quote only

Theorem 2.4 ([18]).

(i) For all U ≥ 0, 2cp − cbp(U) ≥ 0. Moreover, 2cp − cbp(U) is monotone
decreasing, convex and continuous in U .

(ii) Let Uc = sup{U ∈ [0,∞) | 2cp − cbp(U) > 0}. Then
√

2 < Uc.

Remark 2.5. If ϕ(x1, x2) = φ0(x1)φ0(x2) with φ0 the minimizer of Ep(·), up to
translation, then E

√
2

bp (ϕ) = 2cp. Theorem 2.4 asserts that the energy is lowered
through correlations. Numerically one uses trial functions [28] or variational ac-
tions [4]. On this basis the value for Uc is approximately (1.1)

√
2.

Returning to finite α we characterize the existence of the ground state for
H(P ) in terms of the binding energy in the following way.

Theorem 2.6. For all P , coupling strength α and Coulomb strength U , one has

inf ess. spec
(
H(P )

)− inf spec
(
H(P )

) ≥ min
{
1, Ebin

}− P 2

4
.

Thus, if Ebin > 0, then H(P ) has a ground state provided

|P | < 2 min
{
1,
√
Ebin

}
.

Combining both theorems yields a domain of coupling parameters and P for
which H(P ) has a ground state.

Corollary 2.7. Suppose that the strength U of the Coulomb interaction satisfies
U < Uc. Then, there exists an αc such that, for any α > αc, H(P ) has a ground
state for |P | < 2.
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3. Strong coupling limit

3.1. The Pekar variational problem

In this subsection we summarize properties of the Pekar–Tomasevich energy func-
tional. They are proven in [18].

Lemma 3.1.

(i) There exists a constant Ap > −∞ such that for all ϕ ∈ W 1(R3) with
‖ϕ‖L2(R3) = 1 the bound Ep(ϕ) ≥ Ap holds. Hence, cp > −∞.

(ii) There exists a constant Abp > −∞ such that for all ϕ ∈ W 1(R6) with
‖ϕ‖L2(R6) = 1 the bound EU

bp(ϕ) ≥ Abp holds. Hence, cbp(U) > −∞.

Lemma 3.2.

(i) cp = inf
{Ep(ϕ) |ϕ ∈ C∞

0 (R3), ‖ϕ‖L2(R3) = 1
}
.

(ii) cbp(U) = inf
{EU

bp(ϕ) |ϕ ∈ C∞
0 (R6), ‖ϕ‖L2(R6) = 1

}
for all U ≥ 0.

Lemma 3.3. cbp(U) is continuous in U ≥ 0.

3.2. Infinimum of spectrum for α→ ∞
Lemma 3.4. For all α > 0 and Coulomb strength U , we have the following.

(i) Ep ≤ cpα
2.

(ii) Ebp ≤ cbp(U)α2.

Proof. (i) We will apply the variational principle. Let ϕ ∈ C∞
0 (R3) with

‖ϕ‖L1(R3) = 1. Set

ρ(k) =
1

(2π)3/2

∫
dx e−ik·x|ϕ(x)|2 .

We choose ξ = ϕ⊗ Ψ as a trial function, where

Ψ = exp

{
iλ
∫
|k|≤κ

dk
|k|
[
− iρ̄(k)a(k) + iρ(k)a(k)∗

]}
Ω

with λ =
√
αλ0. By the standard calculation, we have

〈ξ,Hp,κξ〉 =
1
2

∫
dx |∇xϕ(x)|2 − λ2

∫
|k|≤κ

dk
|ρ(k)|2
|k|2 .

Thus

Ep,κ ≤ 1
2

∫
dx |∇xϕ(x)|2 − λ2

∫
|k|≤κ

dk
|ρ(k)|2
|k|2 .

Here Ep,κ is the ground state energy for Hp,κ. Taking the limit κ→ ∞, we have

Ep ≤ 1
2

∫
dx |∇xϕ(x)|2 − λ2

∫
dk

|ρ(k)|2
|k|2

=
1
2

∫
dx |∇xϕ(x)|2 − α√

2

∫
dxdy

|ϕ(x)|2|ϕ(y)|2
|x− y|
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by Proposition B.1 (ii). Here we use the following fact [14]:
∫

R3
dk

¯̂
f(k)ĝ(k)

k2
=

1
4π

∫
R3

∫
R3

dxdy
f̄(x)g(y)
|x− y| , (10)

for f, g ∈ L6/5(R3), where f̂(k) = (2π)−3/2
∫

R3 dx e−ik·xf(x). Finally we remark
that, by the scaling argument and Lemma 3.2 (i), we get

inf
{

1
2

∫
dx |∇xϕ(x)|2− α√

2

∫
dxdy

|ϕ(x)|2|ϕ(y)|2
|x− y|

∣∣∣ϕ ∈ C∞
0 (R3), ‖ϕ‖L2 = 1

}

= cpα
2 .

(ii) The proof of (ii) is almost same as (i). Our choice of the trial function is

ξ = ϕ⊗ Ψ , ϕ ∈ C∞
0 (R6) with ‖ϕ‖L2(R6) = 1 ,

Ψ = exp

{
iλ
∫
|k|≤κ

dk
|k|
[
− iρ̄(k)a(k) + iρ(k)a(k)∗

]}
Ω with λ =

√
αλ0 ,

ρ(k) = ρ1(k) + ρ2(k) ,

ρ1(k) =
1

(2π)3/2

∫
dx1dx2 e−ik·x2 |ϕ(x1, x2)|2 ,

ρ2(k) =
1

(2π)3/2

∫
dx1dx2 e−ik·x1 |ϕ(x1, x2)|2 .

Then, we get

〈ξ,Hbp,κξ〉 = Tbp(ϕ) + αU

∫
dx1dx2

|ϕ(x1, x2)|2
|x1 − x2| − λ2

∫
|k|≤κ

dk
|ρ(k)|2
k2

with Tbp(ϕ) = 1
2

∫
dx1dx2 |∇x1ϕ(x1, x2)|2 + 1

2

∫
dx1dx2 |∇x2ϕ(x1, x2)|2. Accord-

ingly, by Proposition B.1 (i), we obtain that

Ebp ≤ Tbp(ϕ) + αU

∫
dx1dx2

|ϕ(x1, x2)|2
|x1 − x2| − λ2

∫
dk

|ρ(k)|2
k2

.

Let ρ1(k;x1) :=(2π)−3/2
∫
dx2e−ik·x2 |ϕ(x1,x2)|2. Then, by Fubini’s theorem and (10),

λ2

∫
dk

|ρ1(k)|2
k2

= λ2

∫
dx1dy1

∫
dk

ρ̄1(k;x1)ρ1(k; y1)
k2

= λ2

∫
dx1dy1

(
1
4π

∫
dx2dy2

|ϕ(x1, x2)|2|ϕ(y1, y2)|2
|x2 − y2|

)

= − α√
2

∫
dx1dx2dy1dy2

|ϕ(x1, x2)|2|ϕ(y1, y2)|2
|x2 − y2|

Calculating the other terms contained in λ2
∫

dk |ρ(k)|2/k2 by the similar way, we
obtain

−λ2

∫
dk

|ρ(k)|2
k2

= −
∑

i,j=1,2

α√
2

∫
dx1dx2dy1dy2

|ϕ(x1, x2)|2|ϕ(y1, y2)|2
|xi − yj |



1342 T. Miyao and H. Spohn Ann. Henri Poincaré

Now the assertion follows from Lemma 3.2 (ii) and the scaling argument. �
Lemma 3.5.

(i) Ep ≥ cpα
2 + O(α9/5).

(ii) Ebp ≥ cbp((1 − c1α
−1/5)(1 − c2α

−1/5)U)α2 + O(α9/5), where c1 and c2 are
positive constants.

Proof. The assertion (i) has been proven in [15, 16], essentially. Although the au-
thors consider a finite volume model, their arguments are still valid in our case.
More precisely, first we apply the methods in [15,16] to Hp,κ, and obtain the bound

Ep,κ ≥ cpα
2 + O

(
α9/5

)

for sufficiently large κ. The important point is that the error term O(α9/5) is
independent of κ. Now taking the limit κ → ∞, we have the desired result by
Proposition B.1 (ii). The details of the argument are provided in Appendix C. As
for (ii), one can extend the proof of (i) to the bipolaron Hamiltonian Hbp,κ with
some slight modifications. For the convenience of the reader, we give a sketch of
the proof in Appendix C. �
Proof of Theorem 2.3. By Lemma 3.4 and 3.5, we have

2cpα2 − cbp

((
1 − c1α

−1/5
)(

1 − c2α
−1/5

)
U
)
α2 + O(α9/5

) ≥ 2Ep − Ebp

≥ 2cpα2 − cbp

(
U
)
α2 + O(α9/5

)
.

Taking Lemma 3.3 into consideration, we get

lim
α→∞

Ebin(α,U)
α2

= 2cp − cbp(U) . �

4. Existence of a ground state

4.1. Properties of the ground state energy

Let Ebp,κ and Ep,κ be the ground state energy for Hbp,κ and Hp,κ respectively.
Further we denote inf spec(Hκ(P )), resp. inf spec(H(P )), by Eκ(P ), resp. E(P ).

Proposition 4.1. For all α,U > 0 and κ ≤ ∞, the following holds.
(i) Eκ(P ) ≤ Eκ(0) + P 2/4 for all P .
(ii) Eκ(0) ≤ Eκ(P ) for all P .
(iii) Eκ(0) = Ebp,κ.

Proof. These are well-known relations. However, for the reader’s convenience, we
give a proof.

(i) Let T be the time reversal operator which is defined by complex con-
jugation the wave function, reversing all phonon momenta. T is antiunitary and
THκ(P )T = Hκ(−P ). Thus we conclude that

Eκ(−P ) = Eκ(P ) . (11)
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Let F (P ) := Eκ(P ) − P 2/4. Since 〈ϕ, [Hκ(P ) − P 2/4]ϕ〉 is linear in P , F is
concave. Moreover, by (11), F (−P ) = F (P ). Thus,

F (0) = F

(
P

2
− P

2

)
≥ 1

2
F (P ) +

1
2
F (−P ) = F (P ) .

(ii) Let

K(P ) =
1
4
(P − 1l⊗ Pf)2

and

H = −Δxr ⊗ 1l +
αU

|xr| ⊗ 1l + 1l ⊗Nf

+ 2
√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]
.

Then, Hκ(P ) = K(P )+̇H , where +̇ means the form sum. We consider the Schrö-
dinger representation L2(Q, dμ) of the Fock space F(L2(R3)), where dμ is the
Gaussian measure with mean 0 and covariance 1/2. Let ϑ be the unitary operator
which gives the natural identification from L2(R3) ⊗ F(L2(R3)) onto L2(R3 ×
Q, dxr⊗dμ). We note that ϑe−tHϑ∗ is positivity preserving, see, e.g., [2]. Moreover,
since

e−t(Pj−1l⊗Pf,j)
2/4 =

∫
dμG(λ) eiλ(Pj−1l⊗Pf,j) , j = 1, 2, 3 ,

where μG is the Gaussian measure with mean zero and variance t/2, and ϑe−iλPf,j ϑ∗

is positivity preserving (see, e.g., [26]), we get
∣∣ϑe−t(Pj−1l⊗Pf,j)

2/4ϑ∗ϕ
∣∣ ≤

∫
dμG(λ) |ϑe−iλ1l⊗Pf,jϑ∗ϕ|

≤
∫

dμG(λ)ϑe−iλ1l⊗Pf,jϑ∗|ϕ|

≤ ϑe−t1l⊗P 2
f,j/4ϑ∗|ϕ| .

(Here we use the following fact: if A is positivity preserving, then |Aϕ| ≤ A|ϕ|.)
Therefore we conclude that

|ϑe−tK(P )ϑ∗ϕ| ≤ ϑe−tK(0)ϑ∗|ϕ| . (12)

Let Tn = (e−tK(P )/ne−tH/n)n. By the Trotter product formula, limn→∞ Tn(P ) =
e−tHκ(P ). On the other hand, by the positivity preserving property for ϑe−tHϑ∗

and (12), we get |ϑTn(P )ϑ∗ϕ| ≤ ϑTn(0)ϑ∗|ϕ|. Taking the limit n → ∞, we arrive
at |ϑe−tHκ(P )ϑ∗ϕ| ≤ e−tHκ(0)|ϕ| which implies that〈

ϕ, ϑe−tHκ(P )ϑ∗ϕ
〉
≤
〈
|ϕ|, ϑe−tHκ(0)ϑ∗|ϕ|

〉
. (13)

Now we can derive (iii) from the above inequality.



1344 T. Miyao and H. Spohn Ann. Henri Poincaré

(iii) To show Eκ(0) ≥ Ebp,κ is easy. To prove the converse, we just note that,
by (ii),

〈
ϕ,Hbp,κϕ

〉
=
∫

dP
〈
(Uϕ)(P ), Hκ(P )(Uϕ)(P )

〉
L2(R3)⊗F(L2(R3))

≥
∫

dPEκ(P )
∥∥(Uϕ)(P )

∥∥2

L2(R3)⊗F(L2(R3))

≥ Eκ(0)‖ϕ‖2 . �
4.2. Properties of the ionization energy

We introduce the ionization energy Σκ(P ) by

Σκ(P ) = lim
R→∞

inf
ϕ∈DR, ‖ϕ‖=1

〈
ϕ,Hκ(P )ϕ

〉
,

where DR =
{
ϕ ∈ dom

(
Hκ(P )

) |ϕ(x) = 0 if |xr| < R
}
.

Proposition 4.2. For all α,U > 0 and κ <∞, the following holds.
(i) Σκ(P ) ≥ Σκ(0) for all P .
(ii) Σκ(0) ≥ 2Ep,κ.

Remark 4.3. We can apply similar arguments in [8] to our model and see that
Σκ(0) = 2Ep,κ. However the above inequality in (ii) is enough for our purpose.

Proof. (i) We consider the Schrödinger representation introduced in the previous
subsection. By (13), we have

1
t

〈
ϕ,
(
1l − ϑe−t(Hκ(P )−Eκ(0))ϑ∗

)
ϕ

〉
≥ 1
t

〈
|ϕ|,

(
1l − ϑe−t(Hκ(0)−Eκ(0))ϑ∗

)
|ϕ|
〉
≥ 0

for all t>0. By taking the limit t↘ 0, we can conclude that if ϕ∈dom(ϑ|Hκ(P )|1/2

ϑ∗), then |ϕ| ∈ dom(ϑ|Hκ(0)|1/2ϑ∗) and〈
ϕ, ϑHκ(P )ϑ∗ϕ

〉 ≥ 〈|ϕ|, ϑHκ(0)ϑ∗|ϕ|〉 (14)

as an inequality of forms. Let

Σ̃R,κ(P ) = inf
{〈
ϕ,Hκ(P )ϕ

〉 ∣∣ϕ ∈ dom
(|Hκ(P )|1/2

)
,

‖ϕ‖ = 1 and ϕ(xr) = 0 if |xr| < R
}
. (15)

Then, by (14), we get

Σ̃R,κ(P ) ≥ Σ̃R,κ(0) . (16)

Since, by Lemma 4.4 below, limR→∞ Σ̃R,κ(P ) = Σκ(P ), we conclude the desired
assertion.

(ii) Let

Σ (Hbp,κ) = lim
R→∞

inf
{
〈ϕ,Hbp,κϕ〉

∣∣ϕ ∈ dom(Hbp,κ), ‖ϕ‖ = 1

and ϕ(x1, x2) = 0 if |x1 − x2| < R
}
.
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The inequality Σκ(P ) ≥ Σ(Hbp,κ) has been essentially proven in [7]. Namely as-
sume that there exists P0 such that Σκ(P0) < Σ(Hbp,κ). Then there exists an
R > 0 such that Σκ,R(P0) < ΣR(Hbp,κ), where

Σκ,R(P ) = inf
{〈
ϕ,Hκ(P )ϕ

〉 |ϕ ∈ DR, ‖ϕ‖ = 1
}
,

ΣR(Hbp,κ) = inf
{〈
ϕ,Hbp,κϕ

〉 |ϕ ∈ dom(Hbp,κ), ‖ϕ‖ = 1 and ϕ(x1, x2) = 0

if |x1 − x2| < R
}
.

Set γR = ΣR(Hbp,κ) − Σκ,R(P0) > 0. There exists a ϕ ∈ DR so that ‖ϕ‖ = 1 and
〈ϕ,Hκ(P0)ϕ〉 ≤ ΣR(Hbp,κ)− γR/2. Since 〈ϕ,Hκ(P )ϕ〉 is continuous in P , there is
a δ > 0 such that, for all P with |P − P0| ≤ δ, 〈ϕ,Hκ(P )ϕ〉 ≤ ΣR(Hbp,κ) − γR/4.
Choose f ∈ C∞

0 (R3) as suppf ⊆ {P ∈ R
3 | |P − P0| ≤ δ} with ‖f‖ = 1 and

define ϕf = f × ϕ for ϕ ∈ DR with ‖ϕ‖ = 1. Then we have 〈ϕf ,UHbp,κU∗ϕf 〉 ≤
ΣR(Hbp,κ) − γR/4. Notice that (U∗ϕf )(x1, x2) = 0 if |x1 − x2| < R. Hence one
arrives at ΣR(Hbp,κ) ≤ ΣR(Hbp,κ) − γR/4 which means a contradiction.

On the other hand, for ϕ ∈ dom(Hbp,κ) such that ‖ϕ‖ = 1 and ϕ(x1, x2) = 0
if |x1 − x2| < R, we have that, by (16),

〈ϕ,Hbp,κϕ〉 =
∫

dP
〈
(Uϕ)(P ), Hκ(P )(Uϕ)(P )

〉
L2(R3)⊗F(L2(R3))

≥
∫

dP Σ̃R,κ(P )
∥∥(Uϕ)(P )

∥∥2

L2(R3)⊗F(L2(R3))

≥ Σ̃R,κ(0) ,

which implies Σ(Hbp,κ) ≥ Σκ(0) by Lemma 4.4 below. Hence we obtain that
Σκ(0) = Σ(Hbp,κ).

Let φ̄ be the smooth nonnegative function on R
3, identically one outside the

ball of radius 2 and vanishing inside the unit ball. Set φ̄R(x1, x2) = φ̄(|x1−x2|/R).
By Lemma D.1, we have that〈

φ̄Rϕ,Hbp,κφ̄Rϕ
〉 ≥ 2Ep,κ‖φ̄Rϕ‖2 +O(1) ,

where O(1) is the error term satisfying |O(1)| ≤ G(R)(〈ϕ,Hbp,κϕ〉 + b‖ϕ‖2) with
G(R) vanishing as R → ∞, and some positive constant b > Ebp,κ. Choose ϕ ∈
dom(Hbp,κ) with ‖ϕ‖ = 1 and ϕ(x) = 0 if |x1 − x2| < 2R. (Note that φ̄Rϕ = ϕ.)
Then, by the above inequality, we have that (1 + G(R))Σ2R(Hbp,κ) ≥ 2Ep,κ −
bG(R). Taking R→ ∞, we conclude that Σ(Hbp,κ) ≥ 2Ep,κ. �

Lemma 4.4. Let Σ̃R,κ(P ) be given by (15). Then,

lim
R→∞

Σ̃R,κ(P ) = Σκ(P ) .

Proof. It is clear that Σ̃R,κ(P ) ≤ ΣR,κ(P ) which implies limR→∞ Σ̃R,κ(P ) ≤
Σκ(P ). We will prove the converse. Fix R for a while. For arbitrary ε > 0, there
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exists ϕ ∈ dom(|Hκ(P )|1/2) such that ‖ϕ‖ = 1, ϕ(xr) = 0 if xr < R and
〈
ϕ,Hκ(P )ϕ

〉 ≤ Σ̃R,κ(P ) +
ε

2
.

For this ϕ, there exists a sequence {ϕn} ⊂ dom(Hκ(P )) such that ‖ϕn‖ = 1,
limn→∞ ‖ϕ− ϕn‖ = 0 and

〈
ϕn, Hκ(P )ϕn

〉 ≤ 〈
ϕ,Hκ(P )ϕ

〉
+
ε

2
for all sufficiently large n. Let χ and χ̄ be the two localization functions with
χ2 + χ̄2 = 1, χ is identically one on the unit ball and vanishing outside the ball
of radius 2. We introduce χR(xr) = χ(2xr/R) and χ̄R(xr) = χ̄(2xr/R). Then,
since χ̄Rϕn ∈ dom(Hκ(P )) and (χ̄Rϕn)(xr) = 0 if |xr| < R/2, we get, by the IMS
localization formula, that〈

ϕn, Hκ(P )ϕn

〉
=
〈
ϕn, χRHκ(P )χRϕn

〉
+
〈
ϕn, χ̄RHκ(P )χ̄Rϕn

〉
− 〈

ϕn, (∇xrχR)2ϕn

〉− 〈
ϕn, (∇xr χ̄R)2ϕn

〉

≥ Eκ(P )‖χRϕn‖2 + ΣR/2,κ(P )‖χ̄Rϕ‖2 − C

R2
,

where C is a positive constant independent of n and ε. Combining these results,
we arrive at

Eκ(P )‖χRϕn‖2 + ΣR/2,κ(P )‖χ̄Rϕn‖2 − C

R2
≤ Σ̃R,κ(P ) + ε .

First, we take n→ ∞. Notice that s-limn→∞ χRϕn = 0 and s-limn→∞ χ̄Rϕn = ϕ.
Hence,

ΣR/2,κ(P ) − C

R2
≤ Σ̃R,κ(P ) + ε .

Since ε is arbitrary, we have that ΣR/2,κ(P ) − C/R2 ≤ Σ̃R,κ(P ). Next, we take
R → ∞, then we get the desired result. �

4.3. Existence of a ground state under the ultraviolet cutoff

We define the binding energy with the ultraviolet cutoff κ by

Ebin,κ = 2Ep,κ − Ebp,κ .

We remark that, by Proposition B.1, limκ→∞ Ebin,κ = Ebin. In this subsection, we
will prove the following proposition.

Proposition 4.5.

inf ess. spec
(
Hκ(P )

)− Eκ(P ) ≥ min{1, Ebin,κ} − P 2

4
. (17)

Remark 4.6. Since the phonon dispersion relation is constant, we can not apply
the method developed in [3,9,17] directly. The main purpose of this subsection is
to show how to overcome this difficulty.

Before we enter the proof, we note the following.
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Proof of Theorem 2.6. The assertion directly follows from Proposition 4.5, B.1
and B.2. �

Let j1 and j2 be two smooth localization functions so that j21 + j22 = 1 and j1
is supported in a ball of radius L. We introduce a linear operator j from L2(R3)
to L2(R3) ⊕ L2(R3) by

jf = j1(−i∇k)f ⊕ j2(−i∇k)f

for f ∈ L2(R3). Note that j∗j = 1l. Let U be the unitary operator from F(L2(R3)⊕
L2(R3)) to F(L2(R3)) ⊗ F(L2(R3)) defined by

Ua(f1 ⊕ g1)∗ · · ·a(fn ⊕ gn)∗Ω =
[
a(f1)∗ ⊗ 1l + 1l⊗ a(g1)∗

] · · ·[
a(fn)∗ ⊗ 1l + 1l⊗ a(gn)∗

]
Ω ⊗ Ω ,UΩ = Ω ⊗ Ω .

We set

Γ̌(j) = UΓ(j) : F
(
L2(R3)

)→ F
(
L2(R3)

)⊗ F
(
L2(R3)

)
.

Then Γ̌(j) is also isometry and we have the following localization formula in a
similar way to [17], see also [9, Lemma A.1]. (We also remark that essential idea
here was first established in [3].)

Lemma 4.7. Let H⊗
κ (P ) be the self-adjoint operator on L2(R3) ⊗ F(L2(R3)) ⊗

F(L2(R3)) defined by

1
4
(
P − 1l ⊗ Pf ⊗ 1l − 1l⊗ 1l ⊗ Pf

)2 +
(
−Δxr +

αU

|xr|
)
⊗ 1l ⊗ 1l

+ 1l ⊗Nf ⊗ 1l + 1l ⊗ 1l⊗Nf

+ 2
√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]⊗ 1l .

(i) Let χ be a smooth nonnegative function on R
3 that is compactly supported.

Then, for ϕ ∈ C∞
0 (R3)⊗̂Ffin(C∞

0 (R3)),
〈
χϕ,Hκ(P )χϕ

〉
=
〈
Γ̌(j)χϕ,H⊗

κ (P )Γ̌(j)χϕ
〉

+ oL(ϕ) ,

where oL(ϕ) is the error term which satisfies
∣∣oL(ϕ)

∣∣ ≤ õ(L0)
(‖Hκ(P )ϕ‖2 + ‖ϕ‖2

)
.

Here õL(L0) is a function of L does not depend on ϕ and vanishes as L→ ∞.
(ii) Let Δκ(P ) = Eκ(0) − Eκ(P ) + 1. For ϕ ∈ dom(H⊗

κ (P )),
〈
ϕ,H⊗

κ (P )ϕ
〉 ≥ 〈

ϕ,
[
Eκ(P ) + (1l − PΩ)Δκ(P )

]
ϕ
〉
,

where PΩ is the orthogonal projection onto L2(R3) ⊗ F(L2(R3)) ⊗ Ω.
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Let φ and φ̄ be smooth nonnegative functions with φ2 + φ̄2 = 1, φ iden-
tically one on the unit ball, and vanishing outside the ball of radius 2. Define
φR(xr) = φ(xr/R) and φ̄R(xr) = φ̄(xr/R). It is not hard to see that, for Ψ ∈
C∞

0 (R3)⊗̂Ffin(C∞
0 (R)),〈

Ψ, Hκ(P )Ψ
〉

=
〈
φRΨ, Hκ(P )φRΨ

〉
+
〈
φ̄RΨ, Hκ(P )φ̄RΨ

〉
− 〈

Ψ, (∇xrφR)2Ψ
〉− 〈

Ψ, (∇xr φ̄R)2Ψ
〉
. (18)

By Proposition 4.2, we get〈
φ̄RΨ, Hκ(P )φ̄RΨ

〉 ≥ Σκ,R(P )‖φ̄RΨ‖2

≥ Σκ(P )‖φ̄RΨ‖2 + õ(R0)‖Ψ‖2

≥ Σκ(0)‖φ̄RΨ‖2 + õ(R0)‖Ψ‖2

≥ 2Ep,κ‖φ̄RΨ‖2 + õ(R0)‖Ψ‖2 , (19)

where Σκ,R(P ) = infϕ∈DR,‖ϕ‖=1〈ϕ,Hκ(P )ϕ〉. On the other hand, by Lemma 4.7
and the fact ‖PΩφR ⊗ Γ̌(j)Ψ‖ = ‖φR ⊗ Γ(j1(−i∇k))Ψ‖, we obtain〈
φRΨ, Hκ(P )φRΨ

〉 ≥ (
Eκ(P ) + Δκ(P )

)‖φRΨ‖2

− Δκ(P )‖φR ⊗ Γ
(
j1(−i∇k)

)
Ψ‖2 + õ(L0)‖Ψ‖2

Hκ(P ) , (20)

where ‖ϕ‖2
A = ‖Aϕ‖2 + ‖ϕ‖2 for a self-adjoint operator A. To summarize, by

combining (18), (19), (20) and the facts Δκ(P ) ≥ 1 − P 2/4 and 2Ep,κ −Eκ(P ) ≥
Ebin,κ − P 2/4 which follow from Proposition 4.1 (i), we have the following.

Lemma 4.8. For Ψ ∈ dom(Hκ(P )),

〈
Ψ, Hκ(P )Ψ

〉 ≥
(
Eκ(P ) + min{1, Ebin,κ} − P 2

4

)
‖Ψ‖2

− Δκ(P )‖φR ⊗ Γ
(
j1(−i∇k)

)
Ψ‖2 + o(1)‖Ψ‖2

Hκ(P ) , (21)

where o(1) is the error term vanishing uniformly in Ψ as both L,R→ ∞.

We set

R
3
≤κ =

{
k ∈ R

3 | |k| ≤ κ
}
, R

3
>κ =

{
k ∈ R

3 | |k| > κ
}

for each κ > 0. It is well-known that there exists a unitary operator Vκ such that

VκF
(
L2(R3)

)
= F

(
L2(R3

≤κ)
)⊗ F

(
L2(R3

>κ)
)
, (22)

Vκa(f)V ∗
κ = a(f≤κ) ⊗ 1l + 1l ⊗ a(f>κ) (23)

with f≤κ = χκf and f>κ = (1 − χκ)f . (Here χκ(k) = 1 for |k| ≤ κ, χκ(k) = 0
otherwise.) We also note that, for a multiplication operator h by the function h(k),

VκdΓ(h)V ∗
κ = dΓ(h≤κ) ⊗ 1l + 1l ⊗ dΓ(h>κ) .

In particular,

VκNfV
∗
κ = N≤κ ⊗ 1l + 1l⊗N>κ (24)
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where N≤κ and N>κ are the number operators on F(L2(R3
≤κ)) and F(L2(R3

>κ)),
respectively. For notational simplicity, we denote the unitary operator 1l⊗Vκ acting
in L2(R3) ⊗ F(L2(R3)) by the symbol Vκ. Let Hκ = L2(R3) ⊗ F(L2(R3

≤κ)). Then,
we can easily see that

VκL
2(R3) ⊗ F

(
L2(R3)

)
= Hκ ⊗ F

(
L2(R3

>κ)
)

= Hκ ⊕
∞⊕

n=1

[
Hκ ⊗ (⊗n

s L
2(R3

>κ)
)]

= Hκ ⊕
∞⊕

n=1

L2
sym

(
R

3
>κ × · · · × R

3
>κ︸ ︷︷ ︸

n

;Hκ

)
, (25)

where L2
sym

(
R

3
>κ × · · · × R

3
>κ︸ ︷︷ ︸

n

;Hκ

)
is the Hκ-valued symmetric L2-space on

R
3
>κ × · · · × R

3
>κ︸ ︷︷ ︸

n

. Under the natural identification (25), the Hamiltonian Hκ(P )

can be identified as

VκHκ(P )V ∗
κ

= H≤κ(P ) ⊕
∞⊕

n=1

⎡
⎣
∫ ⊕

|k1|,...,|kn|>κ

⎛
⎝H≤κ

(
P−

n∑
j=1

kj

)
+n

⎞
⎠dk1 · · ·dkn

⎤
⎦ , (26)

where

H≤κ(P ) =
1
4
(P − 1l ⊗ Pf,≤κ)2 +

(
−Δxr +

αU

|xr|
)
⊗ 1l + 1l⊗N≤κ

+ 2
√
αλ0

∫
|k|≤κ

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]

which is acting in Hκ and Pf,≤κ =
∫
|k|≤κ

dk ka(k)∗a(k). We note that, by the
Kato–Rellich theorem,H≤κ(P ) is self-adjoint on dom(−Δxr⊗1l)∩dom(1l⊗P 2

f,≤κ)∩
dom(1l ⊗ N≤κ) for all P . Therefore, by the closed graph theorem, there exists a
positive constant C such that∥∥(− Δxr ⊗ 1l + 1l⊗ P 2

f,≤κ + 1l ⊗N≤κ

)
ϕ
∥∥ ≤ C

(‖H≤κ(P )ϕ‖ + ‖ϕ‖) (27)

for ϕ ∈ dom(−Δxr ⊗ 1l) ∩ dom(1l ⊗ P 2
f,≤κ) ∩ dom(1l ⊗N≤κ).

Lemma 4.9. Let Cκ(P ) = Eκ(P ) + min{1, Ebin,κ} − P 2/4.

inf ess. spec
(
H≤κ(P )

) ≥ Cκ(P ) .

Proof. By Lemma 4.8, we get〈
ψ,H≤κ(P )ψ

〉 ≥ Cκ(P )‖ψ‖2 − Δκ(P )‖φR ⊗ Γ
(
j1(−i∇k)

)
V ∗

κ ψ ⊗ Ω>κ‖2

+ o(1)‖ψ‖2
H≤κ(P ) (28)
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for ψ ∈ dom(H≤κ(P )), where Ω>κ is the Fock vacuum in F(L2(R3
>κ)). By Weyl’s

criterion, for any λ ∈ ess. spec(H≤κ(P )), there is a normalized sequence {ψn} ⊂
dom(H≤κ(P )) such that w-limn→∞ ψn = 0 and limn→∞ ‖(H≤κ(P ) − λ)ψn‖ = 0.
Then, by (28),

〈
ψn, H≤κ(P )ψn

〉 ≥ Cκ(P ) − Δκ(P )
∥∥φR ⊗ Γ

(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω>κ

∥∥2

+ o(1)‖ψn‖2
H≤κ(P ) . (29)

We remark that, by (27),

〈V ∗
κ ψn ⊗ Ω>κ, 1l⊗NfV

∗
κ ψn ⊗ Ω>κ〉 = 〈ψn, 1l⊗N≤κψn〉 ≤ C <∞ ,

where C is a positive constant independent of n. From this, it follows that
∥∥φR ⊗ (

1l − χM (Nf)
)
Γ
(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω>κ

∥∥ ≤ Const.
M

. (30)

Let η be a continuous positive function on R
3 that is identically one on the unit

ball, and vanishing outside the ball of radius 2. Set ηκ(k) = η(k/κ). We note that

V ∗
κ ψn ⊗ Ω>κ = 1lL2(R3) ⊗ Γ(ηκ)V ∗

κ ψn ⊗ Ω>κ (31)

for all n ∈ N. Hence, we obtain
∥∥φR ⊗ χM (Nf)Γ

(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω
∥∥2

=
〈
(−Δxr + 1l)1/2 ⊗ χM (Nf)Γ

(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω>κ,

(−Δxr + 1l)−1/2φ2
R ⊗ χM (Nf)Γ

(
j1(−i∇k)

)
Γ(ηκ)V ∗

κ ψn ⊗ Ω>κ

〉
.

It is not hard to check that, by (27),

∥∥(−Δxr + 1l)1/2 ⊗ χM (Nf)Γ
(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω>κ

∥∥2

≤ Const.
〈
ψn,

(
H≤κ(P ) + 1l

)
ψn

〉
.

The right hand side of this inequality is uniformly bounded in n. Furthermore,
(−Δxr +1l)−1/2φ2

R⊗χM (Nf)Γ(j1(−i∇k))Γ(ηκ) is a compact operator which implies

s- lim
n→∞(−Δxr + 1l)−1/2φ2

R ⊗ χM (Nf)Γ
(
j1(−i∇k)

)
Γ(ηκ)V ∗

κ ψn ⊗ Ω>κ = 0 .

From these facts, one concludes that

lim
n→∞

∥∥φR ⊗ Γ
(
j1(−i∇k)

)
V ∗

κ ψn ⊗ Ω>κ

∥∥ = 0

and, by (29),

λ ≥ Cκ(P ) + o(1)(λ2 + 1) . (32)

Taking L→ ∞ and R → ∞, we obtain the desired result. �
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Proof of Proposition 4.5. By (26), we have

inf ess. spec
(
Hκ(P )

)
= min

{
inf ess. spec

(
H≤κ(P )

)
, τ(P )

}
, (33)

where

τ(P ) = inf
n≥1

inf
k1,...,kn∈R

3
>κ

⎡
⎣inf spec

⎛
⎝H≤κ

(
P −

n∑
j=1

kj

)⎞
⎠+ n

⎤
⎦ .

First, we show that

τ(P ) ≥ Eκ(0) + 1 . (34)

Since 〈
V ∗

κ f ⊗ Ω>κ, Hκ(P )V ∗
κ f ⊗ Ω>κ

〉
=
〈
f,H≤κ(P )f

〉
,

we have that
Eκ(P ) ≤ inf spec

(
H≤κ(P )

)
for all P . Combining this with Proposition 4.1 (iii), we can check (34).

From Proposition 4.1 (i), Lemma 4.9 and (34), it follows that

inf ess. spec
(
Hκ(P )

)− Eκ(P ) ≥ min
{
min

{
1, Ebin,κ

}−P 2

4
, Eκ(0)−Eκ(P )+1

}

≥ min
{

min{1, Ebin,κ} − P 2

4
, 1 − P 2

4

}

= min
{
1, Ebin,κ

}− P 2

4
. �

Appendix A. Self-adjointness, fiber decomposition

A.1. Proof of Theorem 2.1 (i)

The basic idea of the proof is due to Nelson [21]. Let K < κ, and let the linear
operator Tκ,K be given by

Tκ,K =
∑

j=1,2

∫
|k|≤κ

dk βK(k)
[
eik·xj ⊗ a(k) − e−ik·xj ⊗ a(k)∗

]

with

βK(k) = −
√
αλ0

(2π)3/2|k|(1 + k2/2)
(
1 − χK(k)

)
,

where χK(k) = 1 for |k| ≤ K, χK(k) = 0 otherwise. Tκ,K is a skew symmetric
operator. We denote the closure of Tκ,K by the same symbol. Then Tκ,K is a skew-
adjoint operator: T ∗

κ,K = −Tκ,K . The unitary operator Uκ,K = eTκ,K is called the
Gross transformation. We can easily observe that

Uκ,Kpj ⊗ 1lU∗
κ,K = pj ⊗ 1l−Aκ,K(xj) −Aκ,K(xj)∗ , (35)

Uκ,K1l⊗ a(k)U∗
κ,K = 1l ⊗ a(k) +

∑
j=1,2

βK(k)χκ(k)e−ik·xj ⊗ 1l , (36)
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where

Aκ,K(x) =
∫
|k|≤κ

dk kβK(k)eik·x ⊗ a(k)

and we use the symbol pj = −i∇xj (j = 1, 2). Using these formulae one gets

Uκ,KHbp,κU
∗
κ,K = Hbp

κ,K (37)

on C∞
0 (R6)⊗̂Ffin(L2(R3)), where

Hbp
κ,K =

∑
j=1,2

{
− 1

2
Δj ⊗ 1l +

1
2
(− 2pj ·Aκ,K(xj) − 2Aκ,K(xj)∗ · pj

+Aκ,K(xj)2 +Aκ,K(xj)∗2 + 2Aκ,K(xj)∗ · Aκ,K(xj)
)

+
√
αλ0

∫
|k|≤K

dk
1

(2π)3/2|k|
(
eik·xj ⊗ a(k) + e−ik·xj ⊗ a(k)∗

)}

+ 1l⊗Nf + Vκ,K(x1 − x2) ⊗ 1l +
αU

|x1 − x2| ⊗ 1l + Eκ,K , (38)

Vκ,K(x1 − x2) =
∑
i=j

∫
|k|≤κ

dk
{
βK(k)2 +

2
√
αλ0

(2π)3/2|k|βK(k)
}

e−ik·(xi−xj) ,

Eκ,K = −2αλ2
0

∫
K≤|k|≤κ

dk
1

(2π)3(1 + k2/2)|k|2 .

Notice that Eκ,K is finite even for κ = ∞. Hbp
κ,K is closable and we denote its

closure by the same symbol.

Proposition A.1. For any α < ∞, U < ∞, κ < ∞ and K, Hbp
κ,K is self-adjoint on

dom(Lbp), essentially self-adjoint on any core for Lbp and bounded from below.
Moreover

Uκ,KHbp,κU
∗
κ,K = Hbp

κ,K .

Proof. By the inequality (1), and

‖a(f)#a(g)#ϕ‖ ≤ 8‖f‖‖g‖‖(Nf + 1l)ϕ‖ ,
one can check that

‖Hbp
κ,Kϕ‖ ≤ C(‖Lbpϕ‖ + ‖ϕ‖) , ϕ ∈ dom(Lbp)

with some positive constant C <∞. (Note that the finiteness of κ is crucial here.)
From this we have

‖Hbp,κUκ,Kϕ‖ = ‖U∗
κ,KHbp,κUκ,Kϕ‖ ≤ C(‖Lbpϕ‖ + ‖ϕ‖) (39)

for ϕ ∈ C∞
0 (R6)⊗̂Ffin(C∞

0 (R3)). Since dom(Hbp,κ) = dom(Lbp), we have

‖LbpUκ,Kϕ‖ ≤ C
′
(‖Lbpϕ‖ + ‖ϕ‖) , ϕ ∈ C∞

0 (R6)⊗̂Ffin

(
C∞

0 (R3)
)
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by the closed graph theorem and (39). Thus we conclude that Uκ,Kdom(Lbp) ⊆
dom(Lbp). Similarly U∗

κ,Kdom(Lbp) ⊆ dom(Lbp) and hence dom(Uκ,KHbp,κU
∗
κ,K) =

dom(Uκ,KLbpU
∗
κ,K) = dom(Lbp) = dom(Hbp,κ). Since

Uκ,KHbp,κU
∗
κ,Kϕ = Hbp

κ,Kϕ

for all ϕ ∈ C∞
0 (R6)⊗̂Ffin(C∞

0 (R3)), we conclude that U∗
κ,KHbp,κUκ,K = Hbp

κ,K as
an operator equality. �

The quadratic form

Bκ,K(ϕ, ψ) =
∑

j=1,2

{
− 〈

pj ⊗ 1lϕ,Aκ,K(xj)ψ
〉− 〈

Aκ,K(xj)ϕ, pj ⊗ 1lψ
〉

+
1
2
〈
ϕ,Aκ,K(xj)2ψ

〉
+

1
2
〈
Aκ,K(xj)2ϕ, ψ

〉

+
〈
Aκ,K(xj)ϕ,Aκ,K(xj)ψ

〉}

+ 〈ϕ,HIKψ〉 +
〈
ϕ, Vκ,K(x1 − x2) ⊗ 1lψ

〉

+
〈
ϕ,

αU

|x1 − x2| ⊗ 1lψ
〉

+ Eκ,K〈ϕ, ψ〉 (40)

is well defined on dom(L1/2
bp ) × dom(L1/2

bp ) for all κ ≤ ∞ and K, where

HIK =
√
αλ0

∑
j=1,2

∫
|k|≤K

dk
(2π)3/2|k|

[
eik·xj ⊗ a(k) + e−ik·xj ⊗ a(k)∗

]
.

Lemma A.2. For all ε > 0, there is a 0 < Cε,K <∞ such that

|Bκ,K(ϕ,ϕ)| ≤ (
4C(K)2 + 4C(K) + ε

)∥∥L1/2
bp ϕ

∥∥2 + Cε,K‖ϕ‖2 (41)

for all κ ≤ ∞, where

C(K)2 =
∫

dk k2βK(k)2 =
∫
|k|>K

dk
αλ2

0

(2π)3(1 + k2/2)2
.

Proof. First we note that, for ϕ ∈ dom(Lbp),

‖pj ⊗ 1lϕ‖ ≤ ‖(Lbp + 1l)1/2ϕ‖ , (42)

‖Aκ,K(xj)#ϕ‖ ≤ C(K)‖(Lbp + 1l)1/2ϕ‖ (43)

by (1). From these inequalities, it follows that∣∣〈pjϕ,Aκ,K(xj)ϕ
〉∣∣ ≤ C(K)‖(Lbp + 1l)1/2ϕ‖2 ,∣∣〈ϕ,Aκ,K(xj)2ϕ
〉∣∣ ≤ C(K)2‖(Lbp + 1l)1/2ϕ‖2 .

On the other hand, for any ε1 > 0, we have

|〈ϕ,HIKϕ〉| ≤ ε1‖(Lbp + 1l)1/2ϕ‖2 +
4
ε1
C2(K)‖ϕ‖2
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by (1), where C2(K) = αλ2
0

∫
|k|≤K

dk/(2π)3|k|2. Moreover,

∣∣〈ϕ, Vκ,K(x1 − x2) ⊗ 1lϕ
〉∣∣ ≤ 2

∫
dk

{
βK(k)2 +

2
√
αλ0

(2π)3/2|k| |βK(k)|
}
‖ϕ‖2

=: 2C3(K)‖ϕ‖2

and, for any ε2 > 0, there exists bε2 > 0 such that
∣∣∣∣
〈
ϕ,

Uα

|x1 − x2| ⊗ 1lϕ
〉∣∣∣∣ ≤ ε2‖L1/2

bp ϕ‖2 + bε2‖ϕ‖2 .

Combining these results, we obtain the desired assertion. �

Choose K sufficiently large as 4C(K)2 + 4C(K) < 1. Then, by Lemma A.2
and the KLMN theorem (see, e.g., [23]), for κ ≤ ∞, there exists a unique self-
adjoint operator Hbp′

κ,K such that
〈
ϕ,Hbp′

κ,Kϕ
〉

=
〈
L

1/2
bp ϕ,L

1/2
bp ϕ

〉
+Bκ,K(ϕ,ϕ) .

For κ <∞, by Proposition A.1, we have

Hbp′
κ,K = Hbp

κ,K = Uκ,KHbp,κU
∗
κ,K .

From this fact, it is natural to denote Hbp′
∞,K as Hbp

∞,K .

Lemma A.3.

lim
κ→∞Bκ,K(ϕ,ϕ) = B∞,K(ϕ,ϕ)

uniformly on any set of ϕ in dom(L1/2
bp ) for which ‖L1/2

bp ϕ‖ + ‖ϕ‖ is bounded.

Proof. By the similar argument in the proof of Lemma A.2, we have

|Bκ,K(ϕ,ϕ) −B∞,K(ϕ,ϕ)| ≤ 4
(
C(κ) + 2C(K)C(κ)

)‖(Lbp + 1l)1/2ϕ‖2

+
(
2C3(κ) + |E∞,K − Eκ,K |)‖ϕ‖2 , (44)

where C(κ) (resp. C3(κ)) is C(K) (resp. C3(K)) with K replaced by κ. �

Applying [23, Theorem VIII. 25], we immediately obtain the following.

Proposition A.4. For K satisfying 4C(K)2+4C(K) < 1, Hbp
κ,K converges to Hbp

∞,K

as κ→ ∞ in the norm resolvent sense.

Proof of Theorem 2.1 (i). Since Uκ,K converges to U∞,K strongly, we have the
desired assertion by Proposition A.4. �
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A.2. Proof of Theorem 2.1 (ii) and (iii)

Let Hbp
κ,K be the Hamiltonian given by (38). It is not hard to see that UHbp

κ,KU∗

is also decomposable and

UHbp
κ,KU∗ =

∫ ⊕

R3
H

bp
κ,K(P ) dP .

On C∞
0 (R3)⊗̂Ffin(C∞

0 (R3)), we can represent H
bp
κ,K(P ) as follows,

H
bp
κ,K(P ) =

1
4
(P − 1l ⊗ Pf)2

− Δxr ⊗ 1l +
αU

|xr| ⊗ 1l + 1l ⊗Nf

+
∑

j=1,2

{
−
[
(−1)j−1(−i∇xr) ⊗ 1l +

1
2
(P − 1l ⊗ Pf)

]
·Aκ,K

(
(−1)j−1 xr

2

)

−Aκ,K

(
(−1)j−1 xr

2

)∗
·
[
(−1)j−1(−i∇xr) ⊗ 1l +

1
2
(P − 1l ⊗ Pf)

]

+
1
2
Aκ,K

(
(−1)j−1 xr

2

)2

+
1
2
Aκ,K

(
(−1)j−1xr

2

)∗2

+Aκ,K

(
(−1)j−1 xr

2

)∗
· Aκ,K

(
(−1)j−1 xr

2

)}

+ 2
√
αλ0

∫
|k|≤K

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]

+ Vκ,K(xr) ⊗ 1l + Eκ,K . (45)

The symmetric operator Hbp
κ,K(P ) is now defined by the right hand side of (45).

Clearly this operator is closable and we denote its closure by the same symbol.

Proposition A.5. For all κ < ∞, K < ∞, α < ∞ and P ∈ R
3, Hbp

κ,K(P ) is self-
adjoint on dom(−Δxr ⊗ 1l) ∩ dom(1l ⊗ P 2

f ) ∩ dom(1l ⊗Nf), essentially self-adjoint
on any core for the self-adjoint operator L defined by (4). Moreover,

UHbp
κ,KU∗ =

∫ ⊕

R3
Hbp

κ,K(P ) dP . (46)

Proof. In the proof of Propsotion A.1, we have proved that dom(Uκ,KLbpU
∗
κ,K) =

dom(Lbp). Thus, by the closed graph theorem, there is a constant C such that

‖Uκ,KLbpU
∗
κ,Kϕ‖2 + ‖ϕ‖2 ≤ C

(‖Lbpϕ‖2 + ‖ϕ‖2
)

for all ϕ ∈ dom(Lbp). Choose ϕ as Uϕ = ηn ⊗ψ with ψ ∈ C∞
0 (R3)⊗̂Ffin(C∞

0 (R3))
and

ηn = n3/2χMn(P ) , (47)
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with Mn(P ) = {k ∈ R
3
∣∣ |kj −Pj | ≤ 1

2n , j = 1, 2, 3}, where χS is the characteristic
function for the set S. Then, we get that∫

R3
dk ηn(k)2‖Wκ,KL(k)W ∗

κ,Kψ‖2 ≤ C

(∫
R3

dk ηn(k)2‖L(k)ψ‖2 + ‖ψ‖2

)
,

where

L(P ) =
1
4
(P − 1l⊗ Pf)2 − Δxr ⊗ 1l + 1l⊗Nf

and

Wκ,K = exp

{∑
j=1,2

∫
dk βK(k)

[
eik·(−1)j−1xr/2 ⊗ a(k)−e−ik·(−1)j−1xr/2 ⊗ a(k∗)

]}
.

Note here that we have used the following facts:

UUκ,KU∗ =
∫ ⊕

R3
Wκ,K dP , (48)

ULbpU∗ =
∫ ⊕

R3
L(P ) dP .

Taking the limit n→ ∞, we get

‖W ∗
κ,KL(P )Wκ,Kψ‖2 + ‖ψ‖2 ≤ C

(∥∥L(P )ψ
∥∥2 + ‖ψ‖2

)
.

Since C∞
0 (R3)⊗̂Ffin(C∞

0 (R3)) is a core for L(P ), we can extend this inequality
to dom(L(P )) = dom(−Δxr ⊗ 1l) ∩ dom(1l ⊗ P 2

f ) ∩ dom(1l ⊗ Nf). Thus, we have
Wκ,Kdom(L(P )) ⊆ dom(L(P )) for all P . SimilarlyW ∗

κ,Kdom(L(P )) ⊆ dom(L(P ))
and we conclude that

dom
(
Wκ,KHκ(P )W ∗

κ,K

)
= dom

(
Wκ,KL(P )W ∗

κ,K

)
= dom

(
L(P )

)
.

Since

Wκ,KHκ(P )W ∗
κ,K = Hbp

κ,K(P ) (49)

on C∞
0 (R3)⊗̂Ffin(C∞

0 (R3)), we arrive at Wκ,KHκ(P )W ∗
κ,K = Hbp

κ,K(P ) as an op-
erator equality. Thus, Hbp

κ,K(P ) is self-adjoint on dom(L(P )). To show (46) is an
easy exercise. �

Lemma A.6. UHbp
∞,KU∗ is decomposable and can be represented as

UHbp
∞,KU∗ =

∫ ⊕

R3
H̃bp

∞,K(P ) dP .

Moreover, for a.e. P , Hbp
κ,K(P ) converges to H̃bp

∞,K(P ) in the norm resolvent sense
as κ→ ∞.

This is a direct consequence of the following abstract theory.
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Lemma A.7. Let An (n ∈ N) and A be self-adjoint operators on a Hilbert space∫ ⊕
M hdμ(m). Suppose that An is decomposable for all n ∈ N, i.e., An =

∫ ⊕
M An(m)

dμ(m). Suppose that An converges to A in the norm resolvent sense as n → ∞.
Then,

(i) A is also decomposable. Hence we can represent A as the fiber direct integral
A =

∫ ⊕
M A(m) dμ(m),

(ii) For μ-a.e. m, An(m) converges to A(m) in the norm resolvent sense as
n→ ∞.

Proof. (i) An is decomposable if and only if eitAnF = F eitAn for all t ∈ R and
F ∈ L∞(M, dμ). Taking n→ ∞, we arrive at eitAF = F eitA which means that A
is decomposable and can be written as A =

∫ ⊕
M
A(m) dμ(m).

(ii) For μ-a.e. m, we obtain that
∥∥(An(m) + i

)−1 − (
A(m) + i

)−1∥∥ ≤ ‖(An + i)−1 − (A+ i)−1‖ → 0 (n→ ∞) .�

We note that Lemma A.6 guarantees the existence of the limiting Hamiltonian
H̃bp

∞,K(P ) only for a.e. P . To prove the existence of the limiting Hamiltonian for
all P , we need more technical preparations.

Let B̃P
κ,K(ϕ, ψ) be the quadratic form on dom(L(P )1/2)× dom(L(P )1/2) de-

fined by

B̃P
κ,K(ϕ, ψ) =

∑
j=1,2

{
−
〈[

(−1)j−1(−i∇xr) ⊗ 1l

+
1
2
(P − 1l⊗ Pf)

]
ϕ,Aκ,K

(
(−1)j−1 xr

2

)
ψ

〉

−
〈
Aκ,K

(
(−1)j−1xr

2

)
ϕ,
[
(−1)j−1(−i∇xr) ⊗ 1l +

1
2
(P − 1l ⊗ Pf)

]
ψ

〉

+
1
2

〈
ϕ,Aκ,K

(
(−1)j−1 xr

2

)2

ψ

〉
+

1
2

〈
Aκ,K

(
(−1)j−1 xr

2

)2

ϕ, ψ

〉

+
〈
Aκ,K

(
(−1)j−1xr

2

)
ϕ,Aκ,K

(
(−1)j−1xr

2

)
ψ

〉}

+

〈
ϕ, 2

√
αλ0

∫
|k|≤K

dk
(2π)3/2|k| cos

k · xr

2
⊗ [

a(k) + a(k)∗
]
ψ

〉

+
〈
ϕ, Vκ,K(xr) ⊗ 1lψ

〉
+
〈
ϕ,
αU

|xr| ⊗ 1lψ
〉

+ Eκ,K〈ϕ, ψ〉 (50)

for K < κ ≤ ∞.

Lemma A.8. (i) For all ε > 0, there is a Cε,K > 0 such that

|B̃P
κ,K(ϕ,ϕ)| ≤ (

4C(K)2 + 4C(K) + ε
)‖L(P )1/2ϕ‖2 + Cε,K‖ϕ‖2 .
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(ii)

lim
κ→∞ B̃P

κ,K(ϕ,ϕ) = B̃P
∞,K(ϕ,ϕ)

uniformly on any set of ϕ in dom(L(P )1/2) for which ‖L(P )1/2ϕ‖2 + ‖ϕ‖2

is bounded.

Proof. (i) Let ηn be the vector defined by (47). Choose ϕ as Uϕ = ηn ⊗ ψ with
ψ ∈ dom(L(0)1/2). Then we have

Bκ,K(ϕ,ϕ) =
∫

R3
dP ηn(P )2B̃P

κ,K(ψ, ψ)

where Bκ,K is the quadratic form given by (40). By Lemma A.2, we get
∣∣∣∣
∫

dP ηn(P )2B̃P
κ,K(ψ, ψ)

∣∣∣∣
≤ (

4C(K)2 + 4C(K) + ε
) ∫

dP ηn(P )2‖L(P )1/2ψ‖2 + Cε,K‖ψ‖2 .

Taking the limit n → ∞, we conclude (i). (Here we use the fact dom(L(0)1/2) =
dom(L(P )1/2) for all P .) Similarly we can prove

|B̃P
κ,K(ψ, ψ) − B̃P

∞,K(ψ, ψ)| ≤ 4
(
C(κ) + 2C(K)C(κ)

)∥∥(L(P ) + 1l
)1/2

ψ
∥∥2

+
(
2C3(κ) + |E∞,K − Eκ,K |)‖ψ‖2 (51)

by (44). �

Proof of Theorem 2.1 (ii) and (iii). From Lemma A.8 and the KLMN theorem [24],
it follows that, for sufficiently large K as 4C(K)2 + 4C(K) < 1, there exists a
unique self-adjoint operator Hbp′

κ,K(P ) such that

〈
ϕ,Hbp′

κ,K(P )ϕ
〉

=
〈
L(P )1/2ϕ,L(P )1/2ϕ

〉
+ B̃P

κ,K(ϕ,ϕ) .

For κ < ∞, it can be easily shown that Hbp′
κ,K(P ) = Hbp

κ,K(P ). (From now on, we

also denoteHbp′
∞,K(P ) byHbp

∞,K(P ).) Moreover, by Lemma A.8,Hbp
κ,K(P ) converges

to Hbp
∞,K(P ) in the norm resolvent sense for all P . Since W ∗

κ,K converges to W ∗
∞,K

strongly, we conclude (ii) by (49)
Finally we show (iii) in Theorem 2.1. Since H̃bp

∞,K(P ) = Hbp
∞,K(P ) for a.e. P ,

we have that ∫ ⊕

R3
H̃bp

∞,K(P ) dP =
∫ ⊕

R3
Hbp

∞,K(P ) dP .

Noting that the operator equality (48) is valid for κ = ∞, we have the desired
assertion. �
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Appendix B. Convergence of the ground state energies and the
bottom of the essential spectrum

Let Ebp,κ and Ep,κ be the ground state energy for Hbp,κ and Hp,κ respectively.
Further we denote inf spec(Hκ(P )), resp. inf spec(H(P )), by Eκ(P ), resp. E(P ).

Proposition B.1. For all α,U > 0, the following holds.

(i) limκ→∞Ebp,κ = Ebp.
(ii) limκ→∞Ep,κ = Ep.
(iii) limκ→∞Eκ(P ) = E(P ) for all P .

Proof. (i) and (iii) are direct consequences of Lemma A.3 and A.8. (Note that
Ebp,κ = inf spec(Hbp

κ,K) and Ebp = inf spec(Hbp
∞,K). Also note that Eκ(P ) =

inf spec(Hbp
κ,K(P )) and E(P ) = inf spec(Hbp

∞,K(P )) for all P .) We can show (ii)
in a similar way. �

Proposition B.2. For all α,U > 0,

lim
κ→∞ inf ess. spec

(
Hκ(P )

)
= inf ess. spec

(
H(P )

)
. (52)

Proof. Let Hbp
κ,K(P ) be the Hamiltonian defined by the form sum L(P )+ B̃P

κ,K for
a sufficiently large K, see (50). Notice that (52) is equivalent to

lim
κ→∞ inf ess. spec

(
Hbp

κ,K(P )
)

= inf ess. spec
(
Hbp

∞,K(P )
)

(53)

because Wκ,KHκ(P )W ∗
κ,K = Hbp

κ,K(P ) for all κ ≤ ∞. By Lemma A.8 (i), we have
that, for all κ ≤ ∞ and large K,

L(P ) + 1l ≤ C
(
Hbp

κ,K(P ) + 1l
)

where C is independent of κ. Combining this with (51), we can conclude that

Hbp
κ,K(P ) ≤ (

1 +D(κ)
)
Hbp

∞,K(P ) +D(κ)

and

Hbp
∞,K(P ) ≤ (

1 +D(κ)
)
Hbp

κ,K(P ) +D(κ) ,

where D(κ) is a positive constant satisfying limκ→∞D(κ) = 0. By the min-max
principle, we have that

inf ess. spec
(
Hbp

κ,K(P )
) ≤ (

1 +D(κ)
)
inf ess. spec

(
Hbp

∞,K(P )
)

+D(κ)

and

inf ess. spec
(
Hbp

∞,K(P )
) ≤ (

1 +D(κ)
)
inf ess. spec

(
Hbp

κ,K(P )
)

+D(κ) .

Taking the limit κ→ ∞, we obtain the desired assertion (53). �
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Appendix C. Lower energy bound

The proof of Lemma 3.5 (ii) is a modification of the single polaron case established
in [15]. For more details we refer to [15, 16].

Step 1 (Elimination of the hard phonons). Let Z(1) = (Z(1)
1 , Z

(1)
2 , Z

(1)
3 ) and

Z(2) = (Z(2)
1 , Z

(2)
2 , Z

(2)
3 ) be given by

Z
(i)
j =

√
αλ0

∫
K≤|k|≤κ

dk
kjeik·xi

(2π)3/2|k|3 ⊗ a(k) , i = 1, 2 , j = 1, 2, 3 .

Let Dy be the generalized partial differential operator in the variable y. By the
standard calculation, one checks that∑

i=1,2

∑
j=1,2,3

[
−iDxij , Z

(i)
j − Z

(i)∗
j

]
= Hint , (54)

where we use the symbols x1 = (x11, x12, x13), x2 = (x21, x22, x23), and

Hint =
√
αλ0

∑
i=1,2

∫
K≤|k|≤κ

dk
(2π)3/2|k|

[
eik·xi ⊗ a(k) + e−ik·xi ⊗ a(k)∗

]
.

On the other hand, for arbitrary ε > 0∣∣∣∣
∑

j=1,2,3

〈
ϕ,
[
− iDxij , Z

(i)
j − Z

(i)∗
j

]
ϕ

〉∣∣∣∣
≤ 2‖(−Δxi)

1/2 ⊗ 1lϕ‖
∥∥∥
(
Z(i) − Z(i)∗

)
ϕ
∥∥∥

≤ 2‖(−Δxi)
1/2 ⊗ 1lϕ‖

{
2
〈
ϕ,
(
Z(i)∗Z(i) + Z(i)Z(i)∗

)
ϕ

〉}1/2

≤ ε‖(−Δxi)
1/2 ⊗ 1lϕ‖2 +

2
ε

〈
ϕ,
(
Z(i)∗Z(i) + Z(i)Z(i)∗

)
ϕ

〉

≤ ε‖(−Δxi)
1/2 ⊗ 1lϕ‖2 +

4
ε

〈
ϕ,Z(i)∗Z(i)ϕ

〉
+

1
ε

αλ2
0

π2K
.

In the last inequality we used that
∑

j=1,2,3[Z
(i)
j , Z

(i)∗
j ] = αλ2

0

∫
K≤|k|≤κ

dk/(2π)3|k|4 ≤ αλ2
0/2π

2K. Moreover, by a standard number operator estimate,
we have

∑
j=1,2,3

∥∥∥Z(i)
j ϕ

∥∥∥2

≤ αλ2
0

2π2K
‖1l⊗N≥Kϕ‖ , (55)

where N≥K = dΓ(1 − χK) =
∫

K≤|k| dk a(k)
∗a(k). Choose ε = 4αλ2

0/π
2K. To

summarize, combining (54) with (55), we obtain that

−〈ϕ,Hintϕ〉 ≤ 8αλ2
0

π2K

〈
ϕ,

(
−1

2
Δx1 −

1
2
Δx2

)
⊗ 1lϕ

〉
+ 〈ϕ, 1l ⊗N≥Kϕ〉 +

1
4
. (56)
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Let

HK =
(

1 − 8αλ2
0

π2K

)(
−1

2
Δx1 −

1
2
Δx2 +

αU

|x1 − x2|
)
⊗ 1l + 1l⊗N<K

+
∑

i=1,2

√
αλ0

∫
|k|<K

dk
(2π)3/2|k|

[
eik·xi ⊗ a(k) + e−ik·xi ⊗ a(k)∗

]
,

where N<K = dΓ(χK) =
∫
|k|<K dk a(k)∗a(k). Then, by (56),

Hbp,κ −HK =
8αλ2

0

π2K

(
−1

2
Δx1 −

1
2
Δx2

)
⊗ 1l + 1l ⊗N≥K +Hint ≥ −1

4
,

that is, Hbp,κ ≥ HK − 1/4. From now on, we take K = 8α6/5λ2
0/π

2c1 with some
positive c1 independent of α.

Step 2 (Localization of the electrons). Let CL(a) = (0, π(3/L)1/2)6 + a ⊂ R
6

(a ∈ R
6). For arbitrary ε > 0, take Ψ ∈ C∞

0 (R6)⊗̂Ffin(C∞
0 (R3)) with ‖Ψ‖ = 1

and 〈Ψ, HKΨ〉 ≤ inf spec(HK) + ε/2. For ϕ ∈ C∞
0 (CL(0)), set ϕy(x) = ϕ(x − y).

A direct calculation leads to∫
dy 〈ϕyΨ, HKϕyΨ〉 ≤ inf spec(HK) +

ε

2
+

1
2

∑
j=1,2

‖∇xjϕ‖2 .

Consider the Dirichlet Laplacian −ΔD for CL(0) and let φ0 be its ground state with
ground state energy 2L. At this point we would like to choose ϕ to be equal to φ0.
Unfortunately φ0 does not belong to C∞

0 (CL(0)). However it can be approximated
by ϕ ∈ C∞

0 (CL(0)) such that
∑

j=1,2 ‖∇xjϕ‖2 ≤ 2L+ ε. Hence∫
dy
〈
ϕyΨ,

[
HK − inf spec(HK) − L− ε

]
ϕyΨ

〉
≤ 0 .

Accordingly there must be a point y0 ∈ R
6 such that 〈ϕy0Ψ, HKϕy0Ψ〉/‖ϕy0Ψ‖2 ≤

inf spec(HK) + L+ ε which implies

inf
Ψ∈DL, ‖Ψ‖=1

〈Ψ, HKΨ〉 ≤ inf spec(HK) + L ,

where DL = C∞
0 (CL(y0))⊗̂Ffin(C∞

0 (R3)). (Here we have used the fact that
ϕy0Ψ ∈ DL.) Henceforth, we take L = c2α

9/5. Combining this choice with Step 1,
we arrive at

Ebp,κ ≥ inf
Ψ∈DL, ‖Ψ‖=1

〈Ψ, HKΨ〉 − c2α
9/5 − 1

4
. (57)

Step 3 (Block decomposition of the phonons). Let P = c3α
3/5 and, for n =

(n1, n2, n3) ∈ Z
3, let DP (n) = [n1P − P/2, n1P + P/2] × [n2P − P/2, n2P +

P/2] × [n3P − P/2, n3P + P/2]. We introduce ΛP = {n ∈ Z
3 |DP (n) ∩BK �= ∅},

where BK = {k ∈ R
3 | |k| ≤ K}. (Recall here that K = 8α6/5λ2

0/π
2c1.) Then

#ΛP (the cardinality of ΛP )= 4π
3 K

3/P 3 +lower oder = O(α9/5). For each n∈ΛP ,
set

B(n) =

{
DP (n) , if DP (n) ⊂ BK

DP (n) ∩BK , if DP (n) � BK
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and let kB(n) be any fixed point in B(n). Recall the definition of CL(a) and y0
which are given in Step 2. We write y0 as y0 = (y01, y02) with y0j ∈ R

3 (j = 1, 2).
For k ∈ B(n) and x = (x1, x2) ∈ CL(y0), noting that xi − y0i ∈ (0, π(3/L)1/2)3,
we have∣∣eik·xi − eikB(n)·xi

∣∣ =
∣∣eik·(xi−y0i) − eikB(n)·(xi−y0i)

∣∣ ≤ |k − kB(n)||xi − y0i|

≤ 3
2
c3

(
6
c2

)1/2

πα−3/10 .

Thus, for any δ > 0, we obtain

∑
n∈ΛP

{
δ1l⊗NB(n) +

√
αλ0

∑
i=1,2

∫
B(n)

dk
(2π)3/2|k|

[(
eik·xi − eikB(n)·xi

)⊗ a(k)

+
(
e−ik·xi − e−ikB(n)·xi

)⊗ a(k)∗
]}

≥ −αλ
2
0

2δ

∑
n∈ΛP

∫
B(n)

dk
(2π)3|k|2

∣∣∣∣∣
∑

i=1,2

(
eik·xi − eikB(n)·xi

)∣∣∣∣∣
2

≥ − 12c23
δc1c2

α8/5 ,

where NB(n) = dΓ(χB(n)) =
∫

B(n) dk a(k)∗a(k). Take δ = c4α
−1/5. From the

above inequality, it follows that, for any Ψ ∈ DL,

〈Ψ, HKΨ〉 ≥
〈
Ψ, H̃K

({kB(n)}
)
Ψ
〉
− 12c23α

9/5/c1c2c4 (58)

with

H̃K

({kB(n)}
)

= (1 − c1α
−1/5)

(
−1

2
Δx1−

1
2
Δx2 +

αU

|x1 − x2|
)
⊗ 1l

+
∑

n∈ΛP

{
(1 − δ)1l ⊗NB(n)

+
√
αλ0

∑
i=1,2

∫
B(n)

dk
(2π)3/2|k|

[
eikB(n)·xi ⊗ a(k)

+ e−ikB(n)·xi ⊗ a(k)∗
]}

.

An important point here is that the exponential factors e±ixi·kB(n) in the electron-
phonon interaction term contained in H̃K({kB(n)}) are independent of k within
B(n), because kB(n) is fixed. Next we introduce a block annihilation operator
An (n ∈ ΛP ) by

An =

(∫
B(n)

dk
(2π)3|k|2

)−1/2 ∫
B(n)

dk
(2π)3/2|k| a(k) .
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Each An is a normalized boson mode satisfying [An, A
∗
n′ ] = δn,n′ . Moreover it

satisfies that A∗
nAn ≤ NB(n). By this fact, we conclude that, for each Ψ ∈ DL,

〈Ψ, H̃K({kB(n)})Ψ〉 ≥ 〈Ψ, HBlock
K ({kB(n)})Ψ〉 with

H̃K

({kB(n)}
)

= (1 − c1α
−1/5)

(
−1

2
Δx1 −

1
2
Δx2 +

αU

|x1 − x2|
)
⊗ 1l

+
∑

n∈ΛP

{
(1 − c4α

−1/5)1l ⊗A∗
nAn

+
√
αλ0

(∫
B(n)

dk
(2π)3|k|2

)1/2 ∑
i=1,2

[
eikB(n)·xi ⊗An

+ e−ikB(n)·xi ⊗A∗
n

]}
.

Therefore, by (58),

〈Ψ, HKΨ〉 ≥
〈
Ψ, HBlock

K

({kB(n)}
)
Ψ
〉
− 12c23α

9/5/c1c2c4 .

Summarizing the results obtained in Step 2 and 3, we get

Ebp,κ ≥ inf
Ψ∈DL, ‖Ψ‖=1

sup
{kB(n)}

〈
Ψ, HBlock

K

({kB(n)}
)
Ψ
〉

+ O(α9/5) . (59)

Step 4.

Proof of Lemma 3.5 (ii). As preliminary, we recall some fundamental properties of
coherent states. Let a and a∗ be the annihilation and creation operators in L2(R),
and |0〉 be the ground state of the harmonic oscillator: a|0〉 = 0. For ξ ∈ C, a
normalized coherent state for a single oscillator is given by |ξ〉 = π−1/2 exp[− 1

2 |ξ|2+
ξa∗]|0〉. We denote the orthogonal projection onto the coherent state |ξ〉 by |ξ〉〈ξ|.
Then
∫

dξdξ∗ |ξ〉〈ξ| = 1l ,
∫

dξdξ∗ ξ|ξ〉〈ξ| = a ,

∫
dξdξ∗ (|ξ|2 − 1)|ξ〉〈ξ| = a∗a , (60)

where the above integral is understood as a weak integral.
For ξ = {ξn}n∈ΛP , ξn ∈ C, let |ξ〉 = Πn∈ΛP π

−1/2 exp[− 1
2 |ξn|2 + ξnA

∗
n]Ω be

a normalized coherent state for block oscillators introduced in Step 3. For any
normalized Ψ ∈ DL, set Ψξ(x) = 〈ξ,Ψ(x)〉F(L2(R3)). Note that, since Ψ ∈ DL, Ψξ

is in C∞
0 (CL(y0)). Using (60) for each block oscillator, we have

〈
Ψ, HBlock

K

({kB(n)}
)
Ψ
〉

=
∫

Πn∈ΛP dξndξ∗n
〈
Ψξ, hξ

({kB(n)}
)
Ψξ

〉
L2(R6)

,
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where hξ({kB(n)}) is the Schrödinger operator given by

hξ

({kB(n)}
)

= (1 − c1α
−1/5)hel +

∑
n∈ΛP

{
(1 − c4α

−1/5)(|ξn|2 − 1)

+

(∫
B(n)

dk
(2π)3|k|2

)1/2 √
αλ0

∑
i=1,2

[
ξneikB(n)·xi + ξ∗neikB(n)·xi

]}

with hel = −Δx1/2−Δx2/2+αU |x1−x2|−1. By completing the square and taking
the supremum over {kB(n)},

sup
{kB(n)}

〈
Ψ, hξ

({kB(n)}
)
Ψ
〉

L2(R6)

≥ (1 − c1α
−1/5)〈Ψξ, helΨξ〉

− inf
{kB(n)}

∑
n∈ΛP

αλ2
0

(1 − c4α−1/5)

∫
B(n)

dk
|ρ̂ξ(kB(n))|2

|k|2‖Ψξ‖2
L2(R6)

− (1 − c4α
−1/5)‖Ψξ‖2

L2(R6)#ΛP ,

where ρ̂ξ(k) = (2π)−3/2
∫

R3 dx e−ik·xρξ(x) with ρξ(x) =
∫

R3 dx1 |Ψξ(x1, x)|2 +∫
R3 dx2 |Ψξ(x, x2)|2. We remark that

inf
{kB(n)}

∑
n∈ΛP

∫
B(n)

dk
|ρ̂ξ(k{B(n)})|2

|k2|

≤
∫
|k|≤K

dk
|ρ̂ξ(k)|2
|k2| ≤

∫
R3

dk
|ρ̂ξ(k)|2
|k2|

=
1
4π

∑
i,j=1,2

∫
dx1dx2dy1dy2

|Ψξ(x1, x2)|2|Ψξ(y1, y2)|2
|xi − yj |

by (10). Taking the fact that #ΛP = O(α9/5) and the above remark into consid-
eration, we have

sup
{kB(n)}

〈
Ψ, HBlock

K

({kB(n)}
)
Ψ
〉

≥
∫

Πn∈ΛP dξndξ∗n ‖Ψξ‖2
L2(R6)

[
(1 − c1α

−1/5)〈Ψ̃ξ, helΨ̃ξ〉

− α√
2(1 − c4α−1/5)

∑
i,j=1,2

∫
dx1dx2dy1dy2

|Ψ̃ξ(x1, x2)|2|Ψ̃ξ(y1, y2)|2
|xi − yj |

]

+ O(α9/5) , (61)
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where Ψ̃ξ = Ψξ/‖Ψξ‖L2(R6). The integrand of the right hand side of the above
inequality is the Pekar–Tomasevich energy functional. Thus

RHS of (61) ≥
∫

Πn∈ΛP dξndξ∗n ‖Ψξ‖2
L2(R6)(1 − c1α

−1/5)

× cbp

(
(1 − c1α

−1/5)(1 − c4α
−1/5)U

)
α2 + O(α9/5)

= (1 − c1α
−1/5)cbp

(
(1 − c1α

−1/5)(1 − c4α
−1/5)U

)
α2 + O(α9/5) .

Combining this result with (59), we have that

Ebp,κ ≥ cbp

(
(1 − c1α

−1/5)(1 − c4α
−1/5)U

)
α2 + O(α9/5)

for any κ > K. (Note that the error term O(α9/5) does not depend on κ.) Taking
κ→ ∞, we obtain the desired result. �

Appendix D. Localization formula

In this appendix, we consider the Hamiltonian in configuration space. Namely let
ǎ(x) and ǎ(x)∗ be the creation and annihilation operators in configuration space.
In this representation, the Hamiltonian Hbp,κ is written as

Hbp,κ =
∑

j=1,2

{
−1

2
Δxj ⊗ 1l +

√
αλ0

∫
R3

dy
[
hxj (y) ⊗ ǎ(y) + hxj (y) ⊗ ǎ(y)∗

]}

+
αU

|x1 − x2| ⊗ 1l + 1l ⊗Nf ,

where

hx(y) = (2π)−3

∫
|k|≤κ

dk
e−ik·(x−y)

|k| .

Clearly hx(y) is real and hx(y) = h0(y − x).
Let χ be the smooth nonnegative function on R

3, identically one on the unit
ball, and vanishing outside the ball of radius 2. Set

g1(y;x) = 1 − χ

(
y − x

L

)
, g2(y;x) = χ

(
y − x

L

)

and introduce

j1,L(y;x) =
g1(y;x)√

g1(y;x)2 + g2(y;x)2
, j2,L(y;x) =

g2(y;x)√
g1(y;x)2 + g2(y;x)2

.

Remark that

j1,L(· ;x)2 + j2,L(· ;x)2 = 1 (62)
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for each x ∈ R
3. For each x2 ∈ R

3, we define a linear operator j(L)
x2 from L2(R3

y)
to L2(R3

y) ⊕ L2(R3
y) by(
j(L)
x2
f
)

(y) = j1,L(y;x2)f(y) ⊕ j2,L(y;x2)f(y) .

It is easy to check that j(L)
x2 is an isometry by (62). Let U be the unitary operator

from F(L2(R3
y) ⊕ L2(R3

y)) to F(L2(R3
y)) given by the relation

Uǎ(f ⊕ g)#U∗ = ǎ(f)# ⊗ 1l + 1l ⊗ ǎ(g)# .

Now we introduce an isometry operator from L2(R6) ⊗ F(L2(R3
y)) to L2(R6) ⊗

F(L2(R3
y)) ⊗ F(L2(R3

y)) by

UL(x) = UΓ
(
j(L)
x2

)
,

where x = (x1, x2) ∈ R
6 are the electron coordinates.

Let H⊗
bp,κ be the Hamiltonian acting in L2(R6) ⊗ F(L2(R3

y)) ⊗ F(L2(R3
y))

defined by

H⊗
bp,κ =

(
−1

2
Δx1 −

1
2
Δx2

)
⊗ 1lF ⊗ 1lF + 1lL2 ⊗Nf ⊗ 1lF + 1lL2 ⊗ 1lF ⊗Nf

+
√
αλ0

∫
R3

dy
[
hx1(y) ⊗ ǎ(y) ⊗ 1lF + hx1(y) ⊗ ǎ(y)∗ ⊗ 1lF

]

+
√
αλ0

∫
R3

dy
[
hx2(y) ⊗ 1lF ⊗ ǎ(y) + hx2(y) ⊗ 1lF ⊗ ǎ(y)∗

]
.

Clearly inf spec(H⊗
bp,κ) = 2Ep,κ. Recall the definition of φ̄R(x1, x2) given in the

proof of Proposition 4.2 (ii).

Lemma D.1. For ϕ ∈ dom(Hbp,κ),

〈ϕ, φ̄RHbp,κφ̄Rϕ〉 =
〈
ϕ,UR/4(x)∗φ̄RH

⊗
bp,κφ̄RUR/4(x)ϕ

〉
+O(1) ,

where O(1) is the error term satisfying |O(1)| ≤ G(R)(〈ϕ,Hbp,κϕ〉 + b‖ϕ‖2) with
G(R) vanishing as R → ∞, and some positive constant b > Ebp,κ.

Proof. The proof is almost in parallel to that of [9, Lemma A.1]. However, for the
convenience of the reader we provide a sketch of the proof. First we investigate
the difference of the electron-phonon interaction terms, namely,
∑

j=1,2

φ̄R

∫
R3

dy
[
hxj (y) ⊗ ǎ(y) + hxj (y) ⊗ ǎ(y)∗

]
φ̄R

− UR/4(x)∗φ̄R

∫
R3

dy
[
hx1(y) ⊗ ǎ(y) ⊗ 1lF + hx1(y) ⊗ ǎ(y)∗ ⊗ 1lF

]
φ̄RUR/4(x)

− UR/4(x)∗φ̄R

∫
R3

dy
[
hx2(y) ⊗ 1lF ⊗ ǎ(y) + hx2(y) ⊗ 1lF ⊗ ǎ(y)∗

]
φ̄RUR/4(x) .

(63)
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It suffices to show∥∥[φ̄Rǎ(hx1)
#φ̄R − UR/4(x)∗φ̄Rǎ(hx1) ⊗ 1lFφ̄RUR/4(x)

]
ϕ
∥∥ = Õ(1) (64)

and∥∥∥∥
[
φ̄Rǎ(hx2)

#φ̄R−UR/4(x)∗φ̄R

∫
R3

dy hx2(y) ⊗ 1lF ⊗ ǎ(y)#φ̄RUR/4(x)
]
ϕ

∥∥∥∥ = Õ(1) ,

(65)

where Õ(1) satisfies Õ(1) ≤ G(R)
′
(〈ϕ,Hbp,κϕ〉 + b‖ϕ‖2)1/2 with G(R)

′
vanishing

as R → ∞. To show (64), note that

φ̄R ǎ(hx1)
#φ̄R − UR/4(x)∗φ̄R ǎ(hx1) ⊗ 1lF φ̄RUR/4(x)

= UR/4(x)∗φ̄R

∫
R3

dy
(
j1,R/4(y;x2) − 1

)
hx1(y) ⊗ ǎ(y)# ⊗ 1lF φ̄RUR/4(x)

+ UR/4(x)∗φ̄R

∫
R3

dy j2,R/4(y;x2)hx1(y) ⊗ 1lF ⊗ ǎ(y)# φ̄RUR/4(x) =: I1+I2 .

The standard number operator estimate leads to

‖I1ϕ‖ ≤
{

sup
x1,x2

φ̄R(x1, x2)2
∥∥[j1,R/4(·, x2) − 1

]
hx1

∥∥
}
‖1lL2 ⊗ (Nf + 1)1/2ϕ‖ .

Since the number operator Nf is relatively bounded with respect to the Hamil-
tonian Hbp,κ, we have that Nf ≤ c1Hbp,κ + c2 for some positive constant c1
and c2, and hence ‖1lL2 ⊗ (Nf + 1l)1/2ϕ‖2 ≤ c1〈ϕ,Hbp,κϕ〉 + c2‖ϕ‖2. Noting
the support properties supp(1 − j1,R/4(·, x2)) ⊆ {y ∈ R

3 | |y − x2| ≤ R/2} and
suppφ̄R ⊆ {x = (x1, x2) ∈ R

6 | |x1 − x2| ≥ R}, we have that

φ̄R(x1, x2)
∥∥[j1,R/4(· ;x2) − 1

]
hx1

∥∥2

≤ 4φ̄R(x1, x2)
∫
|y−x2|≤R/2 and |x1−x2|≥R

dy |hx1(y)|2

≤ 4φ̄R(x1, x2)
∫
|y−x1|≥R/2

dy |hx1(y)|2

= 4φ̄R(x1, x2)
∫
|Y |≥R/2

dY |h0(Y )|2 .

Therefore we can conclude that ‖I1ϕ‖ = Õ(1). Similarly,

‖I2ϕ‖ ≤
{

sup
x1,x2

φ̄R(x1, x2)2‖j2,R/4(·;x2)hx1‖
}
‖1lL2 ⊗ (Nf + 1l)1/2‖

and

φ̄R(x1, x2)‖j2,R/4(·;x2)hx1‖2 ≤ φ̄R(x1, x2)
∫
|Y |≥R/2

dY |h0(Y )|2
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which imply ‖I2ϕ‖ = Õ(1). To show (65), we apply a similar reasoning and only
remark that

φ̄R(x1, x2)‖j1,R/4(·;x2)hx2‖2 ≤ φ̄R(x1, x2)
∫
|Y |>R/4

dY |h0(Y )|2

and

φ̄R(x1, x2)
∥∥[j2,R/4(·;x2) − 1

]
hx2

∥∥2 ≤ 4φ̄R(x1, x2)
∫
|Y |>R/4

dY |h0(Y )|2 .

It is clear that

UR/4(x)∗(1lL2 ⊗Nf ⊗ 1lF + 1lL2 ⊗ 1lF ⊗Nf)UR/4(x) = 1lL2 ⊗Nf .

To show that〈
ϕ, φ̄R

∑
j=1,2

(−Δxj ) ⊗ 1lFφ̄R ϕ

〉

−
〈
ϕ,UR/4(x)∗φ̄R

∑
j=1,2

(−Δxj ) ⊗ 1lF ⊗ 1lFφ̄RUR/4(x)ϕ

〉
= O(1) ,

one follows the proof of [9, Lemma A.1]. �
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