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THE BISHOP-PHELPS-BOLLOBÁS THEOREM

FOR BILINEAR FORMS

MARÍA D. ACOSTA, JULIO BECERRA-GUERRERO, DOMINGO GARCÍA,
AND MANUEL MAESTRE

Abstract. In this paper we provide versions of the Bishop-Phelps-Bollobás
Theorem for bilinear forms. Indeed we prove the first positive result of this
kind by assuming uniform convexity on the Banach spaces. A characteriza-
tion of the Banach space Y satisfying a version of the Bishop-Phelps-Bollobás
Theorem for bilinear forms on �1 × Y is also obtained. As a consequence of
this characterization, we obtain positive results for finite-dimensional normed
spaces, uniformly smooth spaces, the space C(K) of continuous functions on a

compact Hausdorff topological space K and the space K(H) of compact oper-
ators on a Hilbert space H. On the other hand, the Bishop-Phelps-Bollobás
Theorem for bilinear forms on �1 × L1(μ) fails for any infinite-dimensional
L1(μ), a result that was known only when L1(μ) = �1.

1. Introduction

E. Bishop and R. Phelps in [4] proved that every continuous linear functional
x∗ on a Banach space X can be approximated, uniformly on the closed unit ball
of X, by a continuous linear functional y∗ that attains its norm. This result is
called the Bishop-Phelps Theorem. Shortly thereafter, B. Bollobás in [5] showed
that this approximation can be done in such a way that, moreover, the point at
which x∗ almost attains its norm is close in norm to a point at which y∗ attains
its norm. This is a “quantitative version” of the Bishop-Phelps Theorem, known
as the Bishop-Phelps-Bollobás Theorem. As usual, by BX and SX we will denote
the closed unit ball and the unit sphere of a Banach space X, respectively, and X∗

will be the dual of X.

Theorem 1.1 (Bishop-Phelps-Bollobás Theorem, [6, Theorem 16.1]). Let X be a

Banach space and 0 < ε < 1. Given x ∈ BX and x∗ ∈ SX∗ with |1 − x∗(x)| < ε2

4
,

there are elements y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖y − x‖ < ε and
‖y∗ − x∗‖ < ε.

In [1] the authors proved versions of the Bishop-Phelps-Bollobás Theorem for
operators. Amongst them is shown a characterization of the Banach spaces Y
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satisfying an analogous result of the Bishop-Phelps-Bollobás Theorem for operators
from �1 into Y . There are also positive results for operators from L1(μ) to L∞(ν)
[3] and for operators from an Asplund space to C(K) [2]. For more results on the
subject, also see [7].

Choi and Song initiated the study of versions of the Bishop-Phelps-Bollobás
Theorem for bilinear forms [9], showing that this theorem does not hold for �1× �1.
For two Banach spaces X and Y , by using the natural identification of the space
of the continuous bilinear forms on X × Y and the space L(X,Y ∗) of linear and
continuous operators from X into Y ∗, it is clear that the pair (X,Y ∗) satisfies the
BPBP for operators if the pair (X,Y ) has the BPBP for bilinear forms (see the
definitions below). The converse is not true even for X = Y = �1 (see [9] and [1,
Theorem 4.1]).

Our aim in this paper is to provide classes of spaces satisfying a version of the
Bishop-Phelps-Bollobás Theorem for bilinear forms. Before describing the results
that we obtained we will introduce some notation and definitions in order to be
more precise.

All the Banach spaces considered in this paper will be over the scalar field K

(R or C). Except when explicitly stated, all results in this paper hold for the real
and the complex cases. If A is a subset of a linear space, we will denote by coA
and |co|A the convex hull and the absolutely convex hull of A, respectively. For
a family of Banach spaces X1, . . . , Xn, Y we denote by Ln(X1 × · · · × Xn, Y ) the
Banach space of all continuous n-linear mappings from X1 × · · · ×Xn to Y . When
Y is the scalar field we remove it, i.e. we write Ln(X1 × · · · × Xn). If n = 1 we
simply write L(X,Y ) and X∗ when Y is the scalar field.

In [1] the following property was introduced to study versions of the Bishop-
Phelps-Bollobás Theorem for operators. To deal with the bilinear case we need a
natural modification of this property (see Definition 1.3 below).

Definition 1.2 ([1, Definition 1.1]). If X and Y are Banach spaces, the pair (X,Y )
satisfies the Bishop-Phelps-Bollobás property for operators (for short, BPBP for
operators) if given ε > 0, there are η(ε) > 0 and β(ε) > 0 with limt→0 β(t) = 0
such that for all T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖Tx0‖ > 1 − η(ε), then
there exist a point u0 ∈ SX and an operator S ∈ SL(X,Y ) satisfying the following
conditions:

‖S(u0)‖ = 1, ‖u0 − x0‖ < β(ε) , and ‖S − T‖ < ε.

Definition 1.3 ([9]). For two Banach spaces X and Y , the pair (X,Y ) satisfies
the Bishop-Phelps-Bollobás property for bilinear forms (for short, BPBP for bilinear
forms) if for every ε > 0, there are η(ε) > 0 and β(ε) > 0 with limt→0 β(t) = 0 such
that for any A ∈ SL2(X×Y ), if (x0, y0) ∈ SX×SY is such that |A(x0, y0)| > 1−η(ε),
then there are B ∈ SL2(X×Y ) and (u0, v0) ∈ SX × SY satisfying the following
conditions:

|B(u0, v0)| = 1, ‖u0 − x0‖ < β(ε), ‖v0 − y0‖ < β(ε) and ‖B −A‖ < ε.

In this definition we can replace (x0, y0) ∈ SX ×SY by (x0, y0) ∈ BX ×BY . Also
it is not difficult to check that limε→0+ η(ε) = 0.

We will also consider the BPBP for n-linear mappings, which is defined in an
analogous way.

The outline of the paper is as follows. Section 2 is devoted to positive results of
spaces satisfying the BPBP for n-linear or bilinear forms. Indeed if Xi (1 ≤ i ≤ n)
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are uniformly convex Banach spaces, then for every Banach space Y , the BPBP
for n-linear mappings from X1 × · · · × Xn to Y is satisfied. Up to now, this is
the only sufficient condition known that implies BPBP even for bilinear forms.
As a consequence of the previous result, one obtains the corresponding condition
for operators whose domain is uniformly convex. We already mentioned that the
BPBP for bilinear forms on X × Y implies the BPBP for operators from X into
Y ∗, and the converse is no longer true. However, if Y is uniformly convex, then
the converse also holds, a result that has also been proved independently by Dai
[10]. As a consequence, if Y is a uniformly convex Banach space whose dual satisfies
some isometric property (called AHSP), then the pair (�1, Y ) satisfies the BPBP for
bilinear forms. This result can be applied for instance to any Lp(μ) for 1 < p < ∞.

In Section 3 we obtain a characterization of the Banach spaces Y satisfying that
the pair (�1, Y ) has the BPBP for bilinear forms. In order to do this, we introduce
a geometrical property and prove that many classical Banach spaces enjoy this
property, including the finite-dimensional normed spaces, uniformly smooth spaces,
C(K) andK(H) (Section 4). On the other hand, the pair (�1, L1(μ)) does not satisfy
the BPBP for bilinear forms for any infinite-dimensional L1(μ), a result that was
known only when L1(μ) = �1. Let us notice that the set of norm attaining bilinear
forms is dense in L2(�1 × L1(μ)) (see [15]). For operators, the BPBP in the case
(�1, L∞(μ)) for every measure μ is also satisfied (see [1]).

2. The Bishop-Phelps-Bollobás Theorem for multilinear mappings

on uniformly convex Banach spaces

We recall that a Banach space X is uniformly convex if for every ε > 0 there is
0 < δ < 1 such that

u, v ∈ BX ,
‖u+ v‖

2
> 1− δ ⇒ ‖u− v‖ < ε.

In such a case, the modulus of convexity of X is given by

δ(ε) := inf
{
1− ‖u+ v‖

2
: u, v ∈ BX , ‖u− v‖ ≥ ε

}
.

Given a bounded subset A of X, an element x∗ ∈ X∗ and α > 0, the slice
S(A, x∗, α) is the subset of A given by

S(A, x∗, α) := {z ∈ A : Re x∗(z) > sup
x∈A

Re x∗(x)− α}.

The following simple lemma will be useful in the proof of the main result in this
section.

Lemma 2.1. If X is uniformly convex, then for every ε > 0,

diam S(BX , x∗, δ(ε)) ≤ ε, for all x∗ ∈ SX∗ .

Proof. Indeed if x∗ ∈ SX∗ and we choose x, z ∈ S(BX , x∗, δ(ε)), then

‖x+ z‖ ≥ |x∗(x+ z)| > 2(1− δ(ε)).

So we deduce ‖x − z‖ < ε. Since this holds for every pair of elements x, z in the
slice, then diam S(BX , x∗, δ(ε)) ≤ ε, as we wanted to show. �

Our aim is now to show that the Bishop-Phelps-Bollobás Theorem holds for n-
linear mappings defined on uniformly convex Banach spaces. In the next assertion,
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given Banach spaces Xj (1 ≤ j ≤ n) we will denote by X = (X1×· · ·×Xn, ‖ · ‖∞),
‖ · ‖∞ being the supremum norm, and by S the set given by

S :=

⎧⎨
⎩x = (xj) ∈

n∏
j=1

Xj : xj ∈ SXj
, for all 1 ≤ j ≤ n

⎫⎬
⎭ .

Theorem 2.2. Let X1, . . . , Xn, Y be Banach spaces and assume that every Xj

is uniformly convex with modulus of convexity δj, 1 ≤ j ≤ n. Given ε > 0, if
0 < η < min{δj(ε) : 1 ≤ j ≤ n} ε

8+2ε , then for every A ∈ SLn(X1×···×Xn,Y )

and every x0 ∈ S such that ‖A(x0)‖ > 1 − η, there exist a point z0 ∈ S and
B ∈ SLn(X1×···×Xn,Y ) satisfying the following conditions:

‖B(z0)‖ = 1, ‖z0 − x0‖∞ ≤ ε and ‖B −A‖ < ε.

Moreover, if A belongs to some linear subspace of Ln(X1 × · · · ×Xn, Y ) containing
the finite-type n-linear mappings, then B belongs to the same subspace.

Proof. Let 0 < ε < 1. Since every Xj is uniformly convex, by Lemma 2.1,

diam S(BXj
, fj , δj(ε)) ≤ ε,

for all fj ∈ SX∗
j
and every 1 ≤ j ≤ n. We define α := min{δj(ε) : 1 ≤ j ≤ n} and

choose a real number η such that

0 < η <
αε

8 + 2ε
;

hence

1 +
ε

4

(
1− α

2

)
<

(
1 +

ε

4

)
(1− η).

Let A ∈ SLn(X1×···×Xn,Y ) and x0 = (x01, . . . , x0n) ∈ S such that ‖A(x0)‖ > 1− η.
For each 1 ≤ j ≤ n there is a functional x∗

j ∈ SX∗
j
such that x∗

j (x0j) = 1, and we

know that

(2.1) diam S(BXj
, x∗

j , α) ≤ ε , for all 1 ≤ j ≤ n.

We define the mapping C ∈ Ln(X1 × · · · ×Xn, Y ) by

C(x) := A(x) +
ε

4

⎛
⎝ n∏

j=1

x∗
j (xj)

⎞
⎠A(x0) (x = (xj) ∈ X).

Clearly,

C(x0) =
(
1 +

ε

4

)
A(x0),

and thus

(2.2) ‖C(x0)‖ =
(
1 +

ε

4

)
‖A(x0)‖ >

(
1 +

ε

4

)
(1− η).

Let T be the set given by T := {λ ∈ K : |λ| = 1}. Thus, if 1 ≤ j ≤ n and
zj ∈ BXj

\TS(BXj
, x∗

j ,
α
2 ), it is satisfied that

|x∗
j (zj)| ≤ 1− α

2
.

Hence, if z ∈ BX and there exists 1 ≤ j ≤ n with zj /∈ TS(BXj
, x∗

j ,
α
2 ), we have

that

‖C(z)‖ ≤ 1 +
ε

4
|x∗

j (zj)| ≤ 1 +
ε

4

(
1− α

2

)
.
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From (2.2) and the previous inequality it follows that

‖C(x0)‖ > ‖C(z)‖ , for all z ∈ BX \
n∏

j=1

TS
(
BXj

, x∗
j ,

α

2

)
.

This implies that ‖C‖ = sup
{
‖C(z)‖ : z ∈

∏n
j=1 S

(
BXj

, x∗
j ,

α
2

)}
, and

(2.3) z ∈ BX , ‖C(z)‖ >
(
1 +

ε

4

)
(1− η) ⇒ z ∈

n∏
j=1

TS
(
BXj

, x∗
j ,

α

2

)
.

It is also clear that

(2.4) ‖C −A‖ ≤ ε

4
.

By (2.2) we can choose 0 < γ < ε
4n such that

(2.5) ‖C(x0)‖ −
(
1 +

ε

4

)
(1− η) > nγ.

Let us consider the mapping φ : BX −→ R given by

φ(x) := ‖C(x)‖ (x ∈ BX) ,

which is continuous and bounded. Since Xj is uniformly convex for every 1 ≤ j ≤ n,
the space X is reflexive, so it has the Radon-Nikodým property. Hence BX is
a Radon-Nikodým set and we can apply [19, Theorem 14] to obtain an element
u0 ∈ BX and functionals z∗j ∈ X∗

j (1 ≤ j ≤ n) such that

(2.6) 0 < ‖z∗j ‖ ≤ γ , for all 1 ≤ j ≤ n

and the function

x = (x1, . . . , xn) 	→ ‖C(x)‖+
n∑

j=1

Re z∗j (xj) (x = (xj) ∈ BX)

attains its maximum at u0 ∈ BX . By using that C is an n-linear mapping and the
unit ball of a Banach space is balanced, it is immediate to deduce that

u0j ∈ SXj
, Re z∗j (u0j) = z∗j (u0j) = |z∗j (u0j)| , for all 1 ≤ j ≤ n ,

and indeed it is satisfied that

‖C(x)‖ ≤ ‖C(x)‖+
n∑

j=1

|z∗j (xj)| ≤ ‖C(u0)‖+
n∑

j=1

|z∗j (u0j)| , for all x = (xj) ∈ BX .

As a consequence ‖C‖ ≤ ‖C(u0)‖+
∑n

j=1 |z∗j (u0j)|, and so by using (2.6) and (2.5)
we have that

‖C(u0)‖ ≥ ‖C‖ − nγ >
(
1 +

ε

4

)
(1− η) > 0.

By now using (2.3) we obtain

(2.7) u0 ∈
n∏

j=1

TS
(
BXj

, x∗
j ,

α

2

)
.
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Let us write y0 :=
C(u0)

‖C(u0)‖
, and for each 1 ≤ j ≤ n choose u∗

j ∈ SX∗
j
such that

u∗
j (u0j) = 1. Now we define

D(x) := C(x) +
( n∑
j=1

z∗j (xj)
n∏

i=1

i �=j

u∗
i (xi)

)
y0 (x = (xj) ∈ BX).

It is clear that D ∈ Ln(X1 × · · · ×Xn, Y ) and

(2.8) ‖D − C‖ ≤
n∑

j=1

‖z∗j ‖ ≤ nγ <
ε

4
.

For any x = (xj) ∈ BX we have that

‖D(x)‖ ≤ ‖C(x)‖+
n∑

j=1

|z∗j (xj)|
( n∏

i=1

i �=j

‖u∗
i ‖
)

≤ ‖C(x)‖+
n∑

j=1

|z∗j (xj)|

≤ ‖C(u0)‖+
n∑

j=1

|z∗j (u0j)|.

Also it is satisfied that

‖D(u0)‖ =
∥∥∥C(u0) +

n∑
j=1

z∗j (u0j)y0

∥∥∥

=
∥∥∥C(u0) +

n∑
j=1

|z∗j (u0j)|y0
∥∥∥

= ‖C(u0)‖+
n∑

j=1

|z∗j (u0j)|.

As a consequence D attains its norm at u0.
In view of (2.7), for every 1 ≤ j ≤ n there is λj ∈ T such that λju0j ∈

S(BXj
, x∗

j ,
α
2 ). By using (2.1) we deduce that

‖λju0j − x0j‖ ≤ diam S
(
BXj

, x∗
j ,

α

2

)
≤ ε , for all 1 ≤ j ≤ n.

If we write z0 := (λju0j), then z0 ∈ BX , D attains its norm at z0 and

(2.9) ‖z0 − x0‖∞ ≤ ε.

Let us notice that D−A is an n-linear mapping of finite type. Indeed it is the sum
of (at most) n+ 1 n-linear mappings of the form

x 	→
n∏

j=1

x∗
j (xj)y (x = (xj) ∈ X),

where x∗
j ∈ X∗

j for every j and y ∈ Y .
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By taking B := D
‖D‖ we have that B ∈ SLn(X1×···×Xn,Y ), B attains its norm at

z0 and

‖B −A‖ ≤ ‖B −D‖+ ‖D −A‖
≤ |1− ‖D‖ |+ ‖D −A‖ ≤ 2‖D −A‖

≤ 2
(
‖D − C‖+ ‖C −A‖

)
< ε (by (2.8) and (2.4)).

We have proved that the BPBP for n-linear mappings from X1 × · · · ×Xn to Y is
satisfied. �

We deduce the following immediate consequence for operators:

Corollary 2.3. Let X and Y be Banach spaces, and assume that X is uniformly
convex. Then given ε > 0, there is η > 0 such that for every R ∈ SL(X,Y ) and
x0 ∈ SX such that ‖R(x0)‖ > 1 − η, there exist a point u0 ∈ SX and T ∈ SL(X,Y )

satisfying the following conditions:

‖T (u0)‖ = 1, ‖u0 − x0‖ ≤ ε and ‖T −R‖ < ε.

Actually any 0 < η < εδ(ε)
8+2ε satisfies the above condition.

In addition, if R belongs to some linear space M ⊂ L(X,Y ) containing the
finite-rank operators, then T also belongs to M .

As we already mentioned, the BPBP for operators from X into Y ∗ is satisfied if
the pair (X,Y ) satisfies the BPBP for bilinear forms and the converse is not true.
However, we will provide a class of Banach spaces for which the converse holds.
The next result has also been proved independently by Dai [10, Theorem 3.1].

Proposition 2.4. Let X and Y be Banach spaces and assume that Y is uniformly
convex. If the pair (X,Y ∗) has the Bishop-Phelps-Bollobás property for operators,
then (X,Y ) satisfies the Bishop-Phelps-Bollobás property for bilinear forms.

Proof. Given ε0 > 0, we can see that the pair (X,Y ∗) has the BPBP for operators
for ε > 0 small enough such that max{ε, β(ε)} < min{ε0, 1

3δ(ε0)}, where δ(ε0) is the
modulus of convexity of Y . Let 0 < η < min

{
η(ε), 13δ(ε0)

}
. Take A ∈ SL2(X×Y )

and assume that (x0, y0) ∈ SX × SY is such that |A(x0, y0)| > 1 − η. By rotating
A if necessary, we can assume that |A(x0, y0)| = A(x0, y0). If T ∈ L(X,Y ∗) is the
operator associated to A, then we know that

‖T‖ = ‖A‖ = 1, and Re T (x0)(y0) = Re A(x0, y0) > 1− η.

By assumption, there are an operator S ∈ SL(X,Y ∗) and an element z0 ∈ SX

satisfying

‖S(z0)‖ = 1, ‖z0 − x0‖ < β(ε), ‖S − T‖ < ε.

As a consequence we have

Re S(z0)(y0) > Re T (z0)(y0)− ε > Re T (x0)(y0)− ε− ‖z0 − x0‖

> 1− η − ε− β(ε) > 1− δ(ε0).

Since Y is uniformly convex, then Y is reflexive, and so there is u0 ∈ SY such that
S(z0)(u0) = 1.

Therefore we have

1− δ(ε0)

2
< Re

S(z0)(u0 + y0)

2
≤ ‖Sz0‖

‖u0 + y0‖
2

≤ ‖u0 + y0‖
2

.
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By using that Y is uniformly convex we deduce

‖u0 − y0‖ < ε0.

Hence, if we denote by B the bilinear form associated to S, then we have that

B(z0, u0) = S(z0)(u0) = 1 = ‖B‖,

‖B −A‖ < ε0, ‖z0 − x0‖ < β(ε) < ε0, ‖u0 − y0‖ < ε0.

So the bilinear form B satisfies all the required conditions. �

Now we will recall the isometric property that was already used in [1] to describe
the Banach spaces Y such that the pair (�1, Y ) satisfies the BPBP for operators.

Definition 2.5 ([1, Remark 3.2]). A Banach space X is said to have the Approx-
imate Hyperplane Series property (for short, AHSP) if for every ε > 0 there exist
0 < η, δ < ε such that for every sequence (xk) ⊂ SX and every convex series∑∞

k=1 αk with ∥∥∥
∞∑
k=1

αkxk

∥∥∥ > 1− η,

there exist a subset A ⊂ N, a subset {zk : k ∈ A} ⊂ SX and x∗ ∈ SX∗ satisfying

(1)
∑

k∈A αk > 1− δ, and
(2) (a) ‖zk − xk‖ < ε for all k ∈ A,

(b) x∗(zk) = 1 for each k ∈ A.

Corollary 2.6. If Y is a uniformly convex Banach space and Y ∗ has the Ap-
proximate Hyperplane Series property, then the pair (�1, Y ) has the Bishop-Phelps-
Bollobás property for bilinear forms.

The previous statement is a consequence of the fact that the pair (�1, Y
∗) has

the BPBP for operators only when Y ∗ has the AHSP (see [1, Theorem 4.1]) and
Proposition 2.4. Examples of classes of spaces having the AHSP can be found in
[1] and [7]. For instance, it is known that the finite-dimensional spaces, C(K),
L1(μ) and uniform convex Banach spaces have this property. Indeed, every almost
CL-space satisfies the AHSP (see for instance [13] for the definitions and also [7]).
Furthermore every lush space has the AHSP (see [8]). Also, spaces whose dual
norm satisfies some uniform condition of smoothness (USSD) at some boundary
have this property (see [12] and [7]).

3. The Bishop-Phelps-Bollobás Theorem for bilinear mappings

on the product of �1 and another Banach space

By looking directly at the proof of the BPBP for bilinear forms on the product
�1 × Y (Y a Banach space) we will obtain a more general result than the one
appearing in Corollary 2.6. The Banach spaces Y such that the pair (�1, Y ) satisfies
the BPBP for bilinear forms do have a geometric property that we will characterize
in this section.

Definition 3.1. For a Banach space Y we will say that the pair (Y, Y ∗) satisfies the
Approximate Hyperplane Series property (for short, AHSP) if for every ε > 0 there
are 0 < δ, η < ε satisfying that for every convex series

∑
n αn and for every sequence
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of functionals {y∗n} in SY ∗ and y0 ∈ SY such that Re
∑

n αny
∗
n(y0) > 1− η, there

are a subset C ⊂ N, {z∗k : k ∈ C} ⊂ SY ∗ and z0 ∈ SY such that∑
k∈C

αk > 1− δ, ‖z∗k − y∗k‖ < ε, z∗k(z0) = 1 , for all k ∈ C and ‖z0 − y0‖ < ε.

It is not difficult to check that by assuming in Definition 3.1 that the sequence
{y∗n} is contained in BY ∗ , an equivalent condition is obtained. It is also clear that
if the pair (Y, Y ∗) has the AHSP, then Y ∗ has the AHSP. As we will see later, as
a consequence of our results and previous work, both properties are not equivalent
(see Proposition 4.8).

The following elementary result is slightly more general than [1, Lemma 3.3],
and the proof is almost the same.

Lemma 3.2. Let {cn} be a sequence of complex numbers with |cn| ≤ 1 for every
n, let η > 0 and let {αn} be a sequence of nonnegative real numbers such that∑∞

n=1 αn ≤ 1. Assume also that Re
∑∞

n=1 αncn > 1−η. Then for every 0 < r < 1,
the set A := {i ∈ N : Re ci > r} satisfies the estimate∑

i∈A

αi > 1− η

1− r
.

The following result will be useful in order to provide examples of spaces Y
satisfying that the pair (Y, Y ∗) has the AHSP. It has the advantage that the use of
convex series is avoided.

Proposition 3.3. Let Y be a Banach space. If for every ε > 0 there is δ > 0
satisfying that for every finite set F and for every finite sequence of functionals
{y∗i : i ∈ F} ⊂ SY ∗ and y0 ∈ SY such that Re y∗i (y0) > 1− δ, for every i ∈ F there
are {z∗k : i ∈ F} ⊂ SY ∗ and z0 ∈ SY such that

‖z∗i − y∗i ‖ < ε, z∗i (z0) = 1, for all i ∈ F, and ‖z0 − y0‖ < ε ,

then the pair (Y, Y ∗) satisfies the Approximate Hyperplane Series property.

Proof. Given ε > 0 there is δ > 0 satisfying the assumption and we can clearly
assume δ < ε < 1. Let us consider a convex series

∑
αn, a sequence {y∗n} in SY ∗

and y0 ∈ SY such that

Re

∞∑
n=1

αny
∗
n(y0) > 1− δ2,

and choose N large enough such that Re
∑N

k=1 αky
∗
k(y0) > 1− δ2. Let us define

C := {n ∈ N : n ≤ N,Re y∗n(y0) > 1− δ}.
By Lemma 3.2 applied with η = δ2 and r = 1− δ, we obtain

(3.1)
∑
n∈C

αn > 1− δ.

By using the assumption for the finite set C we obtain a finite set

{z∗i : i ∈ C} ⊂ SY ∗ , and an element z0 ∈ SY ,

satisfying

‖z∗i − y∗i ‖ < ε, z∗i (z0) = 1, for all i ∈ C, ‖z0 − y0‖ < ε,

and we also know that
∑

n∈C αn > 1− δ, as we wanted to show. �
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Let us notice that the above condition is a version of the Bishop-Phelps-Bollobás
Theorem which uses any finite set of functionals instead of one. We will see later
that this change really makes a difference.

For a Banach space X and x ∈ SX , we will denote

D(x) := {x∗ ∈ SX∗ : x∗(x) = 1}.
The set-valued mapping D : SX 	→ SX∗ is called the duality mapping of X. It is
clear that from Proposition 3.3 the following result can be deduced.

Corollary 3.4. Let X be a Banach space. If for every ε > 0 there is δ > 0 such
that for every x ∈ SX there is y ∈ SX satisfying

(1) ‖y − x‖ < ε,
(2) if x∗ ∈ SX∗ satisfies Re x∗(x) > 1− δ, then dist (x∗, D(y)) < ε,

then the pair (X,X∗) satisfies the Approximate Hyperplane Series property.

Now, we characterize the Banach spaces Y satisfying that the pair (�1, Y ) has
the BPBP for bilinear forms. The following elementary fact will be useful for this
purpose.

Lemma 3.5. Let z be a complex number with |z| ≤ 1 and 0 < r < 1. If Re z > r,
then |z − 1|2 < 2(1− r).

Proof. It is clear that

|z − 1|2 = (Re z − 1)2 + Im 2z

= Re 2z + Im 2z + 1− 2Re z

≤ 2(1− Re z) < 2(1− r).

�

Theorem 3.6. Let Y be a Banach space. Then the pair (�1, Y ) has the Bishop-
Phelps-Bollobás property for bilinear forms if and only if the pair (Y, Y ∗) satisfies
the Approximate Hyperplane Series property.

Proof. Assume that the pair (�1, Y ) has the BPBP for bilinear forms. Then for
every ε > 0 there are β(ε) and η(ε) satisfying the conditions of Definition 1.3.

Given 0 < ε0 < 1, we are going to show that (Y, Y ∗) has the AHSP for δ =

β(ε) +
√
β(ε) and η = η(ε), where ε > 0 is so that

(3.2) 3
√
2
(
η(ε) + 2β(ε) + ε

)
+
(
4β(ε)

) 1
4 + ε < ε0.

Let us take a convex series
∑

n αn, a sequence of functionals {y∗n} in SY ∗ and
y0 ∈ SY such that Re

∑
n αny

∗
n(y0) > 1− η(ε).

Now we define the bilinear form A on �1 × Y given by

A(x, y) =

∞∑
n=1

x(n)y∗n(y) ((x, y) ∈ �1 × Y, x = (x(n))).

It is clear that A is well defined and, moreover, A ∈ SL2(�1×Y ) since for every
(x, y) ∈ �1 × Y it holds that

|A(x, y)| ≤
∞∑

n=1

|x(n)||y∗n(y)| ≤
∞∑
n=1

|x(n)|‖y‖ = ‖x‖1‖y‖
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and also A(e1, y) = y∗1(y), so ‖A‖ ≥ supy∈SY
|y∗1(y)| = ‖y∗1‖ = 1. Here ‖·‖1 denotes

the usual norm and (en) the canonical basis in �1.
The condition Re

∑
n αny

∗
n(y0) > 1 − η(ε) implies that the element x0 = (αn)

satisfies |A(x0, y0)| > 1 − η(ε). By assumption we can find elements (u0, v0) ∈
S�1 × SY and a bilinear form B ∈ SL2(�1×Y ) such that

(3.3) ‖B −A‖ < ε, ‖u0 − x0‖1 < β(ε), ‖v0 − y0‖ < β(ε), |B(u0, v0)| = 1 .

Since |B(u0, v0)| = 1, there is a real number θ ∈ R satisfying eiθ = B(u0, v0).
We clearly have that

1 = |B(u0, v0)| = e−iθB(u0, v0) = Re e−iθB(u0, v0)

= Re
( ∑
u0(n) �=0

|u0(n)|e−iθ u0(n)

|u0(n)|
B(en, v0)

)

=
∑

u0(n) �=0

|u0(n)|Re
(
e−iθ u0(n)

|u0(n)|
B(en, v0)

)

≤
∑

u0(n) �=0

|u0(n)| = 1.

It follows that

n ∈ N, u0(n) �= 0 ⇒ Re
(
e−iθ u0(n)

|u0(n)|
B(en, v0)

)
= 1(3.4)

⇒ u0(n)

|u0(n)|
B(en, v0) = eiθ.

By using (3.3) we also have that

1− β(ε) = e−iθB(u0, v0)− β(ε)

< Re e−iθB(x0, v0) = Re

∞∑
n=1

αne
−iθB(en, v0).

Since we fixed ε at the beginning, we write r := 1−
√
β(ε) and define

H := {n ∈ N : Re e−iθB(en, v0) > r} .

In view of Lemma 3.2 we obtain that

(3.5)
∑
n∈H

αn > 1−
√
β(ε).

Now we define C := H ∩ {n ∈ N : u0(n) �= 0}. Then we deduce that∑
n∈C

αn =
∑
n∈H

αn −
∑
n∈H

u0(n)=0

αn ≥
∑
n∈H

αn − ‖u0 − x0‖1(3.6)

> 1−
√
β(ε)− β(ε) = 1− δ.

Now it suffices to give the functionals {z∗n : n ∈ C} that will satisfy the condition
needed in order to prove that the pair (Y, Y ∗) has the AHSP. For this purpose we
will consider appropriate small perturbations of the functionals y 	→ B(en, y).

Let us fix n ∈ C. Since ‖B‖ = 1 and Re e−iθB(en, v0) > r = 1 −
√
β(ε), by

Lemma 3.5 we deduce that

(3.7) |e−iθB(en, v0)− 1|2 < 2
√
β(ε).
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On the other hand, by using (3.3) it follows that

Re eiθ = Re B(u0, v0) > Re A(u0, v0)− ‖A−B‖
> Re A(x0, v0)− ‖x0 − u0‖1 − ‖A−B‖

> Re A(x0, y0)− ‖y0 − v0‖ − ‖x0 − u0‖1 − ‖A−B‖
> 1− η(ε)− 2β(ε)− ε.

Now we can apply Lemma 3.5 to obtain that

(3.8) |eiθ − 1|2 < 2
(
η(ε) + 2β(ε) + ε

)
.

By again applying Lemma 3.5 we also deduce that

(3.9) n ∈ H ⇒ |e−iθB(en, v0)− 1|2 < 2
√
β(ε).

Hence for every n ∈ C, in view of (3.4) we obtain that∣∣∣ u0(n)

|u0(n)|
− 1

∣∣∣ ≤
∣∣∣ u0(n)

|u0(n)|
− u0(n)

|u0(n)|
B(en, v0)

∣∣∣+
∣∣∣ u0(n)

|u0(n)|
B(en, v0)− 1

∣∣∣
= |1−B(en, v0)|+ |eiθ − 1|

≤ |1− eiθ|+ |eiθ −B(en, v0)|+ |1− eiθ|

< 2
√
2
(
η(ε) + 2β(ε) + ε

)
+ |1− e−iθB(en, v0)| (by (3.8)),

< 2
√
2
(
η(ε) + 2β(ε) + ε

)
+
(
4β(ε)

) 1
4 (by (3.9)).

That is,

(3.10)
∣∣∣ u0(n)

|u0(n)|
− 1

∣∣∣ ≤ 2
√
2
(
η(ε) + 2β(ε) + ε

)
+
(
4β(ε)

) 1
4 , for all n ∈ C.

Finally we define the functionals z∗n by

z∗n(y) :=
u0(n)

|u0(n)|
e−iθB(en, y) and v∗n(y) := B(en, y) (n ∈ C).

Clearly it is satisfied that {z∗n : n ∈ C} ⊂ SY ∗ , and in view of (3.4) we know that

(3.11) z∗n(v0) = 1, for all n ∈ C.

Also we have that

‖z∗n − y∗n‖ =
∥∥∥ u0(n)

|u0(n)|
e−iθv∗n − y∗n

∥∥∥
≤

∥∥∥ u0(n)

|u0(n)|
e−iθv∗n − e−iθv∗n

∥∥∥+
∥∥e−iθv∗n − v∗n

∥∥+
∥∥v∗n − y∗n

∥∥

≤
∣∣∣ u0(n)

|u0(n)|
− 1

∣∣∣+ ∣∣e−iθ − 1
∣∣+ ‖B −A‖

≤ 3
√
2
(
η(ε) + 2β(ε) + ε

)
+
(
4β(ε)

) 1
4 + ε < ε0 (by (3.10), (3.8) and (3.3)).

In view of (3.6), the above inequality, (3.3) and (3.11) we have proved that the
pair (Y, Y ∗) has the AHSP.

Conversely, assume that (Y, Y ∗) satisfies the AHSP. Given 0 < ε < 1, there
are 0 < δ, η < ε

2 satisfying the conditions in Definition 3.1 for ε
2 . Suppose that

A ∈ SL2(�1×Y ) and for some pair (x0, y0) ∈ S�1×SY it holds that |A(x0, y0)| > 1−η.
By rotating A if necessary we can assume that A(x0, y0) > 0. Also, by applying a
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convenient isometry on �1 we may assume that x0(n) ≥ 0 for every natural number
n. Hence we have that

Re

∞∑
n=1

x0(n)A(en, y0) > 1− η.

Since ‖A‖ = 1, the sequence of functionals {y∗n} given by y∗n(y) := A(en, y), n ∈ N,
is a subset of BY ∗ . By using the AHSP for the pair (Y, Y ∗) we can find a subset
C ⊂ N such that ∑

n∈C

x0(n) > 1− δ,

and a subset of functionals {z∗k : k ∈ C} ⊂ SY ∗ and z0 ∈ SY such that

‖z∗k − y∗k‖ <
ε

2
, z∗k(z0) = 1, for all k ∈ C and ‖z0 − y0‖ <

ε

2
.

Now we define the bilinear form B on �1 × Y given by

B(x, y) =
∑
n∈C

x(n)z∗n(y) +
∑
n/∈C

x(n)A(en, y) ((x, y) ∈ �1 × Y, x = (x(n))).

It is immediate to check that B is bounded since ‖z∗n‖ = 1 for every n ∈ C and
‖A‖ = 1. Since C is nonempty, it is easy to deduce that B ∈ SL2(�1×Y ). Also,

‖B −A‖ ≤ sup
n

sup
y∈BY

|(B − A)(en, y)|

= sup
n∈C

sup
y∈BY

|(B −A)(en, y)|

= sup
n∈C

‖z∗n − y∗n‖ ≤ ε

2
< ε.

Let us take u0 := 1∑
n∈C x0(n)

∑
n∈C x0(n)en that satisfies u0 ∈ S�1 . Also,

‖u0 − x0‖1 =
∥∥∥ 1∑

n∈C x0(n)

∑
n∈C

x0(n)en − x0

∥∥∥
1

≤
∥∥∥ 1∑

n∈C x0(n)

∑
n∈C

x0(n)en −
∑
n∈C

x0(n)en

∥∥∥
1
+
∥∥∥∑
n/∈C

x0(n)en‖

= 1−
∑
n∈C

x0(n) +
∑
n/∈C

x0(n) < 2δ < ε.

Finally we have that

B(u0, z0) =
∑
n∈C

u0(n)B(en, z0)

=
1∑

n∈C x0(n)

∑
n∈C

x0(n)z
∗
n(z0) = 1.

Therefore (�1, Y ) has the BPBP for bilinear forms. �
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4. Banach spaces X such that (X,X∗) has the Approximate

Hyperplane Series property

In this section we are going to provide many classes of Banach spaces X such
that (X,X∗) has the AHSP, and so by Theorem 3.6 the pair (�1, X) has the BPBP
for bilinear forms. We begin with the class of uniformly smooth Banach spaces.
We recall that a Banach space is uniformly smooth if its norm is uniformly Fréchet
differentiable at the points of the unit sphere.

Proposition 4.1. If X is a uniformly smooth Banach space, then the pair (X,X∗)
has the Approximate Hyperplane Series property.

Proof. If X is uniformly smooth, then X∗ is uniformly convex (see for instance [14,
Theorem 5.5.12]). We will check that the assumption of Proposition 3.3 is satisfied.

Given ε > 0, we take δ := 2δX∗(ε), where δX∗(ε) is the modulus of convexity
of X∗, which is a positive real number. Now assume that x∗ ∈ SX∗ and x0 ∈ SX

satisfy Re x∗(x0) > 1− δ = 1− 2δX∗(ε). If x∗
0 ∈ SX∗ satisfies x∗

0(x0) = 1, then

1− δX∗(ε) < Re
x∗ + x∗

0

2
(x0) ≤

‖x∗ + x∗
0‖

2
.

Hence ‖x∗ −x∗
0‖ < ε. By applying Proposition 3.3 we obtain that the pair (X,X∗)

has the AHSP. �

Let us recall that a Banach space X is smooth if D(x) is a singleton for every
x ∈ SX . Not every finite-dimensional space is smooth. However, we will show that
every finite-dimensional normed space X also satisfies that (X,X∗) has the AHSP.
This fact is a consequence of a refinement of [1, Lemma 3.4] that we will now show.
We include the proof of this result for the sake of completeness.

Proposition 4.2. Every finite-dimensional normed space X satisfies that (X,X∗)
has the Approximate Hyperplane Series property.

Proof. We are going to check that the hypotheses of Corollary 3.4 hold. We argue
by contradiction. Assume that there is some positive real number ε0 not satisfying
those hypotheses. Thus, for every positive δ > 0 there exists xδ ∈ SX satisfying
the following condition:

y ∈ SX , ‖y − xδ‖ < ε0 ⇒(4.1)

∃x∗ ∈ SX∗ : Re x∗(xδ) > 1− δ and dist (x∗, D(y)) ≥ ε0.

Hence, for every n ∈ N, there is an element xn ∈ SX satisfying (4.1) for δ = 1
n .

Since dimX < ∞ we can also assume that (xn) → x ∈ SX and ‖x − xn‖ < ε0 for
every natural number n.

So by using (4.1), for every n there is x∗
n ∈ SX∗ satisfying

(4.2) Re x∗
n(xn) > 1− 1

n
and dist (x∗

n, D(x)) ≥ ε0.

By passing to a subsequence, if needed, we can assume that (x∗
n) → x∗ ∈ SX∗ .

In view of (4.2) we have that

x∗(x) = 1 and dist (x∗, D(x)) ≥ ε0 ,

which is a contradiction. �

Now we will briefly discuss the assumptions in Corollary 3.4.
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Remark 4.3. If X is a smooth Banach space and satisfies the assumptions in Corol-
lary 3.4, then X∗ is uniformly convex (equivalently, X is uniformly smooth). Fur-
thermore, if X is smooth and (X,X∗) has the Approximate Hyperplane Series
property, then X∗ is uniformly convex.

Proof. We will prove the first statement. The same argument also proves the
stronger assertion.

By assumption, for every ε > 0 there is δ satisfying the hypotheses in Corollary
3.4. Take u∗, v∗ ∈ SX∗ such that ‖u∗+v∗‖ > 2−δ. Hence there is x ∈ SX satisfying
that Re (u∗ + v∗)(x) > 2− δ, and so we have that

Re u∗(x) > 1− δ, Re v∗(x) > 1− δ.

By assumption, there is y ∈ SX such that dist (u∗, D(y)) < ε and dist (v∗, D(y)) <
ε. Since X is smooth, then D(y) = {y∗}, and so we have that ‖u∗ − y∗‖ < ε and
‖v∗ − y∗‖ < ε. Finally,

‖u∗ − v∗‖ ≤ ‖u∗ − y∗‖+ ‖y∗ − v∗‖ < 2ε.

Hence X∗ is uniformly convex. �
Now we will provide an important class of classical Banach spaces that are very

far from the uniformly smooth spaces but still satisfy the fact that there is a version
of the Bishop-Phelps-Bollobás Theorem for bilinear forms on the product of �1 and
any space in this class.

Proposition 4.4. For every locally compact Hausdorff topological space Ω, the
space Y = C0(Ω), of real or complex-valued and continuous functions on Ω vanishing
at infinity, satisfies that (Y, Y ∗) has the Approximate Hyperplane Series property.

Proof. We prove both the real and the complex cases. It suffices to check that
C0(Ω) satisfies the assumptions of Proposition 3.3. In order to do that we will use
the Riesz Theorem to identify the topological dual of C0(Ω) with the space M(Ω)
of real or complex Radon measures on Ω, endowed with the norm given by the total
variation, i.e. given x∗ ∈ C0(Ω)∗ there exists a unique μ ∈ M(Ω), such that

x∗(f) =

∫
Ω

fdμ, for all f ∈ C0(Ω)

and ‖x∗‖ = |μ|(Ω), where |μ| denotes the positive measure called the total variation
of μ (see e.g. [16, 6.19 Theorem]). It is well known that |μ| is a finite positive
regular measure on Ω and there exists a Borel measurable function h : Ω → C with
|h(t)| = 1 for all t in Ω so that

x∗(f) =

∫
Ω

fhd|μ|, for all f ∈ C0(Ω)

(see e.g. [16, 6.12 Theorem]). Given 0 < ε < 1, we choose 0 < η < 1 such that
2η +

√
2η < ε. Let {y∗j : j ∈ F} ⊂ SC0(Ω)∗ be a finite set and f0 ∈ SC0(Ω) such that

Re y∗j (f0) > 1− η2, for every j ∈ F . Let {μj : j ∈ F} ⊂ SM(Ω) be such that

y∗j (f) =

∫
Ω

fdμj , for all f ∈ C0(Ω) and all j ∈ F.

Let {hj : j ∈ F} be the Borel measurable functions on Ω such that

|hj | = 1 and y∗j (f) =

∫
Ω

fhj d|μj |, for all j ∈ F and all f ∈ C0(Ω).
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We are assuming that∫
Ω

Re(f0hj)d|μj | = Re
(∫

Ω

f0hjd|μj |
)
= Re y∗j (f0) > 1− η2, for all j ∈ F.

Now for each j ∈ F let us consider the Borel set

Bj =
{
t ∈ Ω : Re(f0(t)hj(t)) > 1− η}.

For every j ∈ F we also have

1− η2 <

∫
Ω

Re(f0hj) d|μj | =
∫
Bj

Re(f0hj)d|μj |+
∫
Ω\Bj

Re(f0hj) d|μj |

≤
∫
Bj

d|μj |+ (1− η)

∫
Ω\Bj

d|μj |

= |μj |(Bj) + (1− η)|μj |(Ω\Bj) = η|μj |(Bj) + 1− η.

Hence
|μj |(Bj) > 1− η.

Since each |μj | is regular, then for each j ∈ F there is a compact set Kj ⊂ Bj , such
that

(4.3) |μj |(Kj) > 1− η > 0, for all j ∈ F.

As a consequence,

(4.4) |μj |(Ω\Kj) < η, for every j ∈ F.

Let us take K :=
⋃

j∈F Kj , which is a compact subset of Ω satisfying

K =
⋃
j∈F

Kj ⊂
⋃
j∈F

Bj ⊂ {t ∈ Ω : |f0(t)| > 1− η}.

The set U := {t ∈ Ω : |f0(t)| > 1 − η} is open. Since every locally compact
space is completely regular, there is a function m ∈ C0(Ω) that separates the closed
set Ω \ U and the compact set K, i.e., such that 0 ≤ m ≤ 1, m(K) = {1} and
m(Ω \ U) = {0}. So the function h0 defined on Ω by

h0(t) :=

⎧⎨
⎩

f0(t)
|f0(t)|m(t) if t ∈ U,

0 if t ∈ Ω\U
is continuous, and since it vanishes outside the relatively compact set U , it belongs
to C0(Ω). We take g0 := h0 + (1−m)f0, which is also a continuous function on Ω
vanishing at infinity.

It is also clear that g0 satisfies

|g0(t)| ≤ m(t) + 1−m(t) = 1, for all t ∈ Ω

and |g0|(K) = {1}, so g0 ∈ SC0(Ω).
Now we will check that

(4.5) ‖g0 − f0‖ ≤ η < ε.

If t ∈ U , then |f0(t)| > 1− η, so

|g0(t)− f0(t)| =
∣∣∣ f0(t)|f0(t)|

m(t)−m(t)f0(t)
∣∣∣ = m(t)

∣∣1− |f0(t)|
∣∣ < η.

In the case that t ∈ Ω\U we have that m(t) = 0 = h0(t), so g0(t)− f0(t) = 0.
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Now we will provide the new set of continuous functionals that satisfy the desired
condition. For each j ∈ F let us define the functional

z∗j (f) :=
1

|μj |(Kj)

∫
Kj

f
f0
|f0|

d|μj | (f ∈ C0(Ω)).

Obviously {z∗j : j ∈ F} ⊂ SC0(Ω)∗ , and for every f ∈ C0(Ω) we have

|y∗j (f)− z∗j (f)| ≤
∣∣∣
∫
Ω\Kj

fhjd|μj |
∣∣∣+

∣∣∣
∫
Kj

(
f − f

f0
|f0|

hj

)
hjd|μj |

∣∣∣

+
( 1

|μj |(Kj)
− 1

)∣∣∣
∫
Kj

f
f0
|f0|

d|μj |
∣∣∣

≤ |μj |(Ω \Kj)‖f‖+
∫
Kj

∣∣∣
(
1− f0

|f0|
hj

)
f
∣∣∣d|μj |+

( 1

|μj |(Kj)
− 1

)
|μj |(Kj)‖f‖

≤ η‖f‖+
∫
Kj

√
2η‖f‖d|μj |+

(
1− |μj |(Kj)

)
‖f‖ (by (4.4) and Lemma 3.5),

≤
(
η +

√
2η + η

)
‖f‖ =

(
2η +

√
2η

)
‖f‖ (by (4.3)).

Hence

(4.6) ‖y∗j − z∗j ‖ ≤ 2η +
√
2η < ε, for all j ∈ F.

Finally, for each j ∈ F we have that

z∗j (g0) =
1

|μj |(Kj)

∫
Kj

g0
f0
|f0|

d|μj | =
1

|μj |(Kj)

∫
Kj

f0
|f0|

f0
|f0|

d|μj | = 1.

In view of (4.5), (4.6) and the last equality, the proof is completed. �
Corollary 4.5. For every Hausdorff and compact topological space K, the space
Y = C(K), of real or complex-valued and continuous functions on K, satisfies that
(Y, Y ∗) has the Approximate Hyperplane Series property.

Corollary 4.6. If X = c0 (real or complex case), then (X,X∗) has the Approximate
Hyperplane Series property.

Proposition 4.7. If H is a Hilbert space and X = K(H), the space of compact
operators on H, then (X,X∗) has the Approximate Hyperplane Series property.

Proof. In the finite-dimensional case it suffices to use Proposition 4.2. So we can
assume that H is infinite-dimensional.

We will use the standard identification of K(H)∗ and the space of nuclear op-
erators on H, endowed with the nuclear norm (see for instance [18, Theorem 1,
p. 46], [17, Theorem 5.6] or [11, Theorem 16.50]). Indeed we will prove that the
assumptions of Corollary 3.4 are satisfied.

Given ε > 0, we choose 0 < η < 1
2 such that

2
√

2η + 5η < ε.

Let us fix any element S0 ∈ SK(H). By using the polar decomposition of S0 (see
for instance [17, Lemma 5.5]), there are orthonormal systems (yn) and (xk) in H
such that

S0 :=

∞∑
n=1

aky
∗
k ⊗ xk,
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where (ak) is a decreasing sequence of real numbers convergent to zero, 1 = ‖S0‖ =
max{an : n ∈ N} and y∗k(x) = (x|yk) for each k ∈ N and x ∈ H, where (·|·) denotes
the inner product of H. Let us take s := 1− η and

B := {n ∈ N : an > s} .

It is clear that B is finite and non-empty. So the operator T0 on H, defined as

T0 :=
∑
n∈B

y∗k ⊗ xk +
∑

n∈N\B
aky

∗
k ⊗ xk,

belongs to SK(H) and satisfies

(4.7) ‖T0 − S0‖ = max{1− an : n ∈ B} < 1− s = η < ε.

Now take t := 1−η4 and choose any element z∗ ∈ SK(H)∗ such that Re z∗(S0) >
t. By the description of K(H)∗ there are a sequence (bn) ∈ �1 of nonnegative real
numbers, and orthonormal systems (fn) and (en) in H such that

z∗(T ) =
∞∑

n=1

bn(T (en)|fn), for all T ∈ K(H).

Also, it is satisfied that 1 = ‖z∗‖ =
∑∞

n=1 bn (see for instance [18, Theorem 5, p. 42]
or [17, Lemma 5.41]). In such a case we will write z∗ =

∑∞
n=1 bnf

∗
n ⊗ en. We have

1− η4 = t < Re z∗(S0) = Re

∞∑
n=1

bn(S0(en)|fn).

If we consider the set C given by C := {n ∈ N : Re (S0(en)|fn) ≥ 1 − η3}, then
Lemma 3.2 with r := 1− η3 gives

(4.8)
∑
n∈C

bn > 1− η > 0, and so
∑

n∈N\C
bn < η.

Now we define the element y∗ ∈ K(H)∗ given by

y∗ =
1∑

n∈C bn

∑
n∈C

bnf
∗
n ⊗ en.

Then ‖y∗‖ ≤ 1, and in view of (4.8) we have that

(4.9)

‖y∗ − z∗‖ =
∥∥ 1∑

n∈C bn

∑
n∈C

bnf
∗
n ⊗ en −

∞∑
n=1

bnf
∗
n ⊗ en

∥∥

≤
( 1∑

n∈C bn
− 1

)∥∥∑
n∈C

bnf
∗
n ⊗ en

∥∥+
∥∥ ∑
n∈N\C

bnf
∗
n ⊗ en

∥∥

≤ 2
(
1−

∑
n∈C

bn
)
< 2η.

Now for each n ∈ C we will use the parallelogram law for the elements S0(en) and
fn and obtain that

r2 + 1 + 2r + ‖S0(en)− fn‖2

≤
(
Re ((S0(en) + fn)|fn)

)2

+ ‖S0(en)− fn‖2

≤ ‖S0(en) + fn‖2 + ‖S0(en)− fn‖2

= 2
(
‖S0(en)‖2 + ‖fn‖2

)
≤ 4.
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We deduce that∥∥S0(en)− fn
∥∥2 ≤ 4− (r2 + 2r + 1) < 4η3, for all n ∈ C.

Now by using (4.7) we deduce

‖T0(en)− fn‖ ≤ ‖T0(en)− S0(en)‖+ ‖S0(en)− fn‖(4.10)

≤ ‖T0 − S0‖+ 2η ≤ 3η, ∀n ∈ C.

We also know that ‖S0(en)‖ ≥ r for every n ∈ C. Let us denote by P the
orthogonal projection on H onto the subspace Y generated by {yk : k ∈ B}. For
each n ∈ C we have that

r2 ≤ ‖S0(en)‖2

=
∥∥∥∑
k∈B

ak(en|yk)xk +
∑

k∈N\B
ak(en|yk)xk

∥∥∥2

≤
∑
k∈B

|ak|2|(P (en)|yk)|2 +
∑

k∈N\B
|ak|2 |(en − P (en)|yk)|2

≤ ‖P (en)‖2 + s2‖en − P (en)‖2

= ‖P (en)‖2 + s2
(
1− ‖P (en)‖2

)
= ‖P (en)‖2(1− s2) + s2.

Hence

‖P (en)‖2 ≥ r2 − s2

1− s2
= 1− η2(2− η3)

2− η
> 1− η > 0,

that is,

‖en − P (en)‖2 < η .

As a consequence
∥∥∥en − P (en)

‖P (en)‖

∥∥∥2 =
∥∥∥P (en)−

P (en)

‖P (en)‖

∥∥∥2 + ‖en − P (en)‖2

= |1− ‖P (en)‖|2 + ‖en − P (en)‖2 ≤ 2η.

We just checked that ∥∥∥en − P (en)

‖P (en)‖

∥∥∥ ≤
√
2η.

Let us denote ẽn := P (en)
‖P (en)‖ for each n ∈ C. Then we know that

(4.11) ẽn ∈ SH ∩ Y and ‖ẽn − en‖ ≤
√
2η, for all n ∈ C.

Finally we take the functional x∗ ∈ K(H)∗ given by

x∗ =
1∑

n∈C bn

∑
n∈C

bnT0(ẽn)
∗ ⊗ ẽn.

It is clear that x∗ ∈ BK(H)∗ . It is also clear that ‖T0(ẽn)‖ = 1 for every n ∈ C,
and so

(4.12) x∗(T0) =
1∑

n∈C bn

∑
n∈C

bn
(
T0(ẽn)|T0(ẽn)

)
= 1, hence x∗ ∈ SK(H)∗ .
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Now we estimate∑
n∈C

bn‖x∗ − y∗‖ =
∥∥∥∑
n∈C

bnT0(ẽn)
∗ ⊗ ẽn −

∑
n∈C

bnf
∗
n ⊗ en

∥∥∥

≤
∥∥∥∑
n∈C

bnT0(ẽn)
∗ ⊗ ẽn −

∑
n∈C

bnT0(ẽn)
∗ ⊗ en

∥∥∥

+
∥∥∥∑
n∈C

bnT0(ẽn)
∗ ⊗ en −

∑
n∈C

bnT0(en)
∗ ⊗ en

∥∥∥

+
∥∥∥∑
n∈C

bnT0(en)
∗ ⊗ en −

∑
n∈C

bnf
∗
n ⊗ en

∥∥∥

≤ 2
∑
n∈C

bn‖ẽn − en‖+
∑
n∈C

bn‖T0(en)− fn‖

≤
∑
n∈C

bn
(
2
√

2η + 3η
)

(by (4.11) and (4.10)).

We have obtained that

‖x∗ − y∗‖ ≤ 2
√
2η + 3η.

Finally, in view of (4.9) we have that

‖x∗ − z∗‖ ≤ ‖x∗ − y∗‖+ ‖y∗ − z∗‖

≤ 2
√
2η + 5η < ε.

By (4.7), (4.12) and the previous inequality, we can apply Corollary 3.4, and this
completes the proof. �

Choi and Song [9] proved that there is no version of the Bishop-Phelps-Bollobás
Theorem for bilinear forms. Indeed it happens for �1. Hence, by Theorem 3.6
the pair (�1, �

∗
1) does not have the AHSP. Actually we will show that for every

infinite-dimensional L1(μ) the pair (L1(μ), L1(μ)
∗) fails the AHSP.

Proposition 4.8. For every infinite-dimensional space L1(μ), the pair (L1(μ),
L1(μ)

∗) fails the Approximate Hyperplane Series property.

Proof. Since L1(μ) is infinite-dimensional, there exists a sequence (An)
∞
n=1 of pair-

wise disjoint measurable sets with 0 < μ(An) < ∞ for every n ∈ N. Assume that
the pair (L1(μ), L1(μ)

∗) has the AHSP. Given 0 < ε < 1
2 , let 0 < δ, η < ε be

the positive real numbers satisfying the conditions in Definition 3.1. Let us choose
n ∈ N, n ≥ 2 such that 1

n < min{δ, η} and take

f0 =
1

n

n∑
j=1

1

μ(Aj)
χAj

and gi =
n∑

j=1,j �=i

χAj
,

for 1 ≤ i ≤ n. It is clear that f0 ∈ SL1(μ) and gi ∈ L∞(μ) with ‖gi‖∞ = 1 for every
i, where ‖ · ‖∞ denotes the usual norm in L∞(μ). Since 0 < μ(Aj) < ∞ for every
j, gi is associated to an element in the unit sphere of L1(μ)

∗. We will denote by x∗
i

the element in L1(μ)
∗ corresponding to gi for 1 ≤ i ≤ n. It is satisfied that

x∗
i (f0) =

∫
Ω

gif0 dμ =
1

n

n∑
j=1,j �=i

1

μ(Aj)

∫
Ω

χAj
dμ =

n− 1

n
,
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for i = 1, . . . , n. Thus, the convex series
∑n

i=1
1
nx

∗
i satisfies

( n∑
i=1

1

n
x∗
i

)
(f0) =

n− 1

n
> 1− δ.

Since we are assuming that the AHSP is satisfied, there exist C ⊂ {1, . . . , n} and
{y∗k : k ∈ C} ⊂ SL1(μ)∗ and f ∈ SL1(μ) such that

card(C)

n
> 1− δ, ‖y∗k − x∗

k‖ < ε, y∗k(f) = 1, for all k ∈ C, and ‖f − f0‖1 < ε ,

where ‖ · ‖1 denotes the usual norm in L1(μ). Now let us notice that for every

function h ∈ SL∞(μ) satisfying
∣∣∣∫Ω fhdμ

∣∣∣ = 1, if for some measurable set A we have

‖hχA‖∞ < 1, since

1 =
∣∣∣
∫
Ω

fhdμ
∣∣∣ ≤

∫
A

‖hχA‖∞|f |dμ+

∫
Ω\A

|f |dμ = 1 + (‖hχA‖∞ − 1)

∫
Ω

|f |χAdμ,

then it follows that |f |χA = 0 almost everywhere. In our case, since the support
of f is a countable union of measurable sets of finite measure and every Ai has
finite measure, if we take B := supp f ∪

⋃n
j=1 Aj , the restriction of y∗k to L1(μ|B)

is represented by a function hk ∈ L∞(μ) for every k ∈ C. Hence we have that

y∗k(f) =

∫
Ω

fhkdμ = 1, ‖hk − gk‖∞ ≤ ‖y∗k − x∗
k‖ < ε, for all k ∈ C,

and so ‖hkχAk
‖∞ < ε for k ∈ C. Thus fχAk

= 0 a.e. for every k ∈ C. As a
consequence

‖f − f0‖1 ≥
∫
⋃

k∈C Ak

|f0| dμ =
card(C)

n
> 1− δ >

1

2
> ε,

which is a contradiction. �
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