
UCLA
Papers

Title
The Bits and Flops of the N-hop Multilateration Primitive for Node Localization Problems

Permalink
https://escholarship.org/uc/item/94h847x9

Authors
Savvides, Andreas
Park, Heemin
Srivastava, Mani B.

Publication Date
2002-09-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94h847x9
https://escholarship.org
http://www.cdlib.org/

The Bits and Flops of the N-hop Multilateration Primitive
For Node Localization Problems

Andreas Savvides, Heemin Park and Mani B. Srivastava

Networked and Embedded Systems Lab
Electrical Engineering Department

University of California, Los Angeles
{asavvide,hmpark,mbs}@ee.ucla.edu

ABSTRACT
The recent advances in MEMS, embedded systems and wire-
less communication technologies are making the realization
and deployment of networked wireless microsensors a tan-
gible task. Vital to the success of wireless microsensor net-
works is the ability of microsensors to “collectively perform
sensing and computation”. In this paper, we study one of
the fundamental challenges in sensor networks, node local-
ization. The collaborative multilateration presented here,
enables ad-hoc deployed sensor nodes to accurately esti-
mate their locations by using known beacon locations that
are several hops away and distance measurements to neigh-
boring nodes. To prevent error accumulation in the net-
work, node locations are computed by setting up and solv-
ing a global non-linear optimization problem. The solution
is presented in two computation models, centralized and
a fully distributed approximation of the centralized model.
Our simulation results show that using the fully distributed
model, resource constrained sensor nodes can collectively
solve a large non-linear optimization problem that none of
the nodes can solve individually. This approach results in
significant savings in computation and communication, that
allows fine-grained localization to run on a low cost sensor
node we have developed.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network
Protocols

General Terms
Algorithms, Performance

Keywords
Ad-Hoc Localization, Distributed Localization, Sensor Net-
works

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSNA’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-589-0/02/0009 ...$5.00.

1. INTRODUCTION
Precise knowledge of node location in ad-hoc deployed

microsensor networks yields a wide variety of profound ad-
vantages. Knowledge of location can be used to report the
geographical origin of events, to assist in target tracking,
geographic aware routing [10], to administer the sensor net-
work and evaluate its coverage [11]. These together with
security and smart environment applications such as the
Smart Kindergarten [18] are only a few of the applications
where location aware nodes are required.

In many situations, wireless sensor nodes are expected to
be deployed in an ad-hoc fashion (i.e air-dropped over an
area). With ad-hoc deployment however, one cannot ac-
curately predict or plan a-priori the location of each sensor.
Based on this and the fact that direct line-of-sight with bea-
cons is not always feasible, we seek to develop an algorithm
that can perform precise localization of sensor nodes with
indirect line-of-sight by utilizing location information and
distance measurements over multiple hops. To achieve this
goal, nodes use their ranging sensors to measure distances
to their neighbors and share their measurement and loca-
tion information with their neighbors to collectively estimate
their locations.

In this paper we present collaborative multilateration that
we also refer to as the n-hop multilateration primitive. Col-
laborative multilateration consists of a set of mechanisms
that enables nodes found several hops away from location
aware beacon nodes collaborate with each other to estimate
their locations with high accuracy. This multihop capabil-
ity waives the line-of-sight to beacons requirement making
fine-grained localization possible while requiring very few
beacon nodes. Position estimates are obtained by setting
up a global non-linear optimization problem and solving it
using iterative least squares. Collaborative multilateration
is presented in two computation models, centralized and dis-
tributed. These can be used in a wide variety of network se-
tups from fully centralized where all the computation takes
place at a base station, to locally centralized (i.e computa-
tion takes place at a set of cluster heads) to fully distributed
where computation takes place at every node.

The fully distributed computation model presented here
is an approximation of its centralized counterpart and has
several properties favorable to sensor networks. It offers a
significant reduction in computation requirements thus al-
lowing the execution of collaborative multilateration on re-
source constrained sensor nodes such as the Medusa MK-2

node described in this paper. Using this mechanism, resource-
constrained nodes can collaborate with each other to jointly
estimate their locations, a task that none of the nodes can
perform individually because of their computation and mem-
ory limitations. The use of a fully distributed computation
model is also tolerant to node failures, and distributes the
communication cost evenly across the sensor nodes and does
not require any additional supporting mechanisms such as
leader election and multihop routing that would be required
for a fully centralized implementation.

The algorithms presented in this paper are validated on
a combined ns-2 and MATLAB simulation testbed, using
the measured parameters of our experimental sensor nodes.
The remainder of this paper is organized as follows. Next
section briefly describes the related work. Section 3 provides
some preliminary information and overview of our approach.
Section 4 describes the initial setup configuration for collab-
orative multilateration. Section 5 explains centralized and
distributed computation models. Our simulation results are
presented in section 6 and section 7 concludes the paper.

2. RELATED WORK
Node localization has been the topic of active research

and many systems have made their appearance in the past
few years. A detailed survey of such systems is provided by
Hightower and Boriello in [7]. Despite these efforts, very few
systems are actually ad-hoc. Even fewer methods are have
been proposed that offer a fully distributed operation. Do-
herty’s [3] convex position estimation approach for instance
describes a method for localizing ad-hoc nodes based only
on connectivity. This method is based on semi-definite pro-
gramming and requires rigorous centralized computation so
it is not always suitable for many ad-hoc setups.

Some forms of ad-hoc localization also exist in the domain
of mobile robotics [8, 13]. The localization problem in mo-
bile robotics is similar to the ad-hoc localization problem in-
vestigated in sensor networks. One main difference however
is that mobile robots have additional odometric measure-
ments that can help with estimating the initial robot po-
sitions, something that is not available in sensor networks.
Furthermore, localization studies in the sensor network com-
munity also consider scalability communication and power
consumption issues that are not studied by the robotics com-
munity.

The AHLoS system we proposed in [16] uses iterative mul-
tilateration which relies on a small set of nodes initially con-
figured as beacons to estimating node locations in an ad-hoc
setup. This work identified two main problems: 1) without
relatively large beacon densities, the iterative multilatera-
tion may get stuck in regions of the network that are rel-
atively sparse, and 2) error propagation becomes an issue
in large networks. The collaborative multilateration algo-
rithms presented in this paper address these two issues.

In parallel to our work some other ad-hoc node localiza-
tion approaches have been independently proposed in [12]
and [15]. In both these approaches anchor node location
information is propagated in the network. Nodes with un-
known location note the shortest hop distance to each of
the anchor nodes a multiply this an average hop distance
to get an approximate distance to each of the anchor nodes.
With this information nodes perform a multilateration to get
an initial estimate of their locations. To obtain better esti-
mates, the authors of [15] also use a further refinement phase

that uses least squares to refine node positions based on lo-
cal computation. The authors claim that their approaches
are independent of ranging technologies and can deliver lo-
calization accuracy within one third of the communication
range.

Despite the similarities, the work presented here has sev-
eral fundamental differences from the aforementioned ap-
proaches. We provide a mechanism for limiting error propa-
gation by computing in the context of over-constrained node
configurations (the collaborative subtrees). At the same
time, we provide a fully distributed computation model and
we demonstrate its scalability. Our algorithms are targeted
for a fine-grained ad-hoc localization system that we are
currently developing.

3. PRELIMINARIES

3.1 Establishing Local Coordinate Systems
The initial locations beacon nodes can be obtained ei-

ther by manual placement or by automatically establishing
a local coordinate system. One method for establishing a
coordinate system is to deploy some nodes that are capable
of accurate long distance ranging (i.e. long range ultrasound
or laser range finders). These nodes establish a local coordi-
nate system as shown in figure 1. In this figure nodes A, B
and Γ are equipped with laser range finders. The nodes can
communicate with each other and decide on a local coordi-
nate system. One solution is that node A becomes the origin
with coordinates (0, 0), while Γ has coordinates (ĀΓ, 0) and
B has coordinates (AB sin α, AB cos α). Such local coordi-
nate systems can be established at different places inside
the network. Capkun et. al. in [1] describe a very similar
method for forming and merging local coordinate systems.
The scheme described in [1] creates a local coordinate sys-
tems at each node and merges them together into a global
coordinate systems. This approach is purely based on ge-
ometric manipulations that can potentially result in signif-
icant error accumulation in the network. In our approach,
the formation of local coordinate systems is performed as
part of a tiered architecture that establishes a set of initial
anchor points, the beacon nodes, but the core localization
relies on collaborative multilateration in order to prevent
error accumulation.

Α

Β

Γ

β

α γ

Figure 1: Establishing Local Coordinate Systems

3.2 Example Sensor Node and Ranging Con-
siderations

Figure 2 shows our second generation node, the Medusa
MK-2, a low cost wireless sensor node we have developed
for experimenting with node localization problems. This
node consists of a 4MHz 8-bit AVRMega128L microcon-
troller from Atmel and a low power RFM radio, in a con-
figuration that is similar to UC Berkeley’s Mica motes. In
addition the MK-2 node carries a more powerful 40MHz
AT91FR4081 ARM THUMB coprocessor with 136KB of
RAM and 1MB of on board FLASH memory for more inten-
sive computation tasks. The details and additional features
of the MK-2 architecture are described in [17].

For localization, the node is equipped with 40KHz ultra-
sonic sensors that have an effective range of 5 meters and ap-
proximately 1cm accuracy. Similar technologies can produce
longer ranges, but we found this range to be more appro-
priate for indoor settings. The wideband acoustic method
presented by Girod and Estrin in [5] is also a notable ranging
technology that provides some immunity to common multi-
path effects and would provide a good ranging alternative.

Figure 2: Our experimental node

3.3 Solution Outline
In this paper the single hop multilateration operation per-

formed by GPS is extended to operate on multiple hops.
This enables nodes that are not directly connected to bea-
con nodes to collaborate with other intermediate nodes with
unknown locations situated between themselves and the bea-
cons to jointly estimate their locations. One of the main
challenges in this problem is to prevent error accumulation
inside the network. To prevent error accumulation, the node
localization problem is set up as a least squares estimation
problem with respect to the global network topology.

Collaborative multilateration takes place in three main
phases: 1) formation of collaborative subtrees, 2) compu-
tation of initial estimates, 3) position refinement. During
the first phase, the nodes form a well-constrained or over-
constrained configuration of unknowns and beacons, the col-
laborative subtrees (section 4.1). This configuration forms
a system of at least n non-linear equations and n unknown
variables to be determined. Collaborative subtrees also en-
sure that each unknown member of the computation subtree
has a unique possible solution. This prevents the iterative
least squares refinement process in the first phase from com-
puting estimates that are numerically correct but are not the
correct solutions. The nodes that do not meet the criteria for
collaborative subtrees cannot participate in this configura-
tion. The position estimates for such nodes are determined
later in a post-processing phase. In the second phase, each

unknown node computes an initial estimate of its location
based on the known beacon locations and the inter-node dis-
tance measurements. These initial estimates are used to ini-
tialize the refinement process in the third phase. The third
phase computes a least squares estimate of the node loca-
tions. Finally, a post-processing phase uses the computed
node estimates to refine the position estimates of nodes that
could not participate in the computation subtree configura-
tion. This phase has the similar functionality as the phase
for computing initial estimates but it is more constrained by
the newly computed location estimates in the computation
subtree.

The first and second phases are independent from each
other and can take place in parallel in an actual network.
Phase three can start as soon as the first two phases are
completed and it can terminate at different stages depend-
ing on the demands of the application. If computation is
done at a central point (either a central computer for the
whole network, or a local cluster head), the process will
terminate when the unknown nodes receive their position
estimates. If the distributed computation form is used, then
the processes termination depends on the demands of the
application. If the application requires just an indication
of proximity, the localization process can only perform the
second phase and terminate. If more accurate localization
is required, the distributed computation will continue until
required precision is achieved.

4. INITIAL CONFIGURATION

4.1 Phase 1: Collaborative subtrees
A computation subtree constitutes a configuration of un-

knowns and beacons for which the solution to the position
estimates of the unknowns can be uniquely determined. This
is achieved by obtaining a well determined or preferably
over-determined set of equations - n variables to be esti-
mated and at least n equations. Before attempting to solve
these equations, the solution uniqueness is determined to
prevent the estimation of erroneous locations. Collabora-
tive subtrees have another desirable property that will be-
come apparent when we discuss our distributed computation
model in section 5.2. To determine the requirements for so-
lution uniqueness we develop our discussion by reviewing the
requirements of the single hop multilateration. Later on, we
augment these requirements to cover the multihop case.

4.1.1 One-Hop Multilateration Requirements
In the single hop setup of figure 3a, the basic requirement

for one unknown node to have a unique solution on a 2D
plane is that it is within range of at least three beacons. If
the beacons lie in a straight line, the node configuration is
symmetric, and there is more than one possible solution.

4.1.2 Two-Hop Multilateration Requirements
Using the one-hop multilateration requirements as a start-

ing point, the corresponding set of requirements for a two-
hop multilateration can be established. A two-hop multilat-
eration represents the case where the beacons are not always
directly connected to the node but they are within a two-
hop radius from the unknown node. In this situation, two
or more unknown nodes can utilize the beacon location in-
formation and the intermediate distance measurements be-
tween themselves and the beacons to jointly estimate their

1
2

3

4

0

1

2

3 4

5

6

(a) (b)

3 4

1

2

4

3

1

2

5

(c) (d)

Figure 3: a) One-hop multilateration, b)Two-hop
multilateration, c) Symmetric case, d) Each un-
known has one independent reference

locations. Like the one-hop case, each unknown node needs
to be connected to at least three nodes, but these nodes are
not required to be beacons. Instead, unknown nodes need
to determine which of their neighbors have only one pos-
sible position solution and use them as reference points to
determine if their position solution is unique. From this per-
spective, a position solution is tentatively unique if it has at
least three neighbors that are either beacons or their solu-
tions are tentatively unique. Figure 3b illustrates the most
basic case. Nodes 3 and 4 are unknown and they are both
connected to three nodes. Note that from the perspective
of node 3, one of its links terminates to an unknown, node
4. Node 4 however, has two more outgoing links to beacons
5 and 6. If we assume that node 3 has a unique position
solution, then node 4 also has a unique position solution. If
however, node 4 has a unique position solution, then node 3
is also collaborative because it is connected to 3 collabora-
tive nodes - 1,2 and 4. This condition is necessary but not
sufficient to guarantee that there is only one possible node
position estimate. Many symmetric topologies that meet the
above requirement can yield more than one possible position
estimate.

Condition 1. To have a unique possible position solu-
tion, it is necessary that an unknown node be connected to
at least three nodes that have unique possible positions.

The fist symmetric case follows from the conditions of the
single hop setup - the nodes with tentatively unique solu-
tions used as references for an unknown should not lie in a
straight line. If they lie in a straight line, then the unknown
node will have two possible positions so the solution to the
location estimate is not unique.

Condition 2. It is necessary for an unknown node to use
at least one reference point that is not collinear with the rest
of its reference points.

Although the positions of the reference points are not
known, one can test for this condition using basic trigonom-
etry. In figure 4, assuming that nodes A,C and D are known
to have unique solutions, node B tries to establish if its posi-
tion solution is unique. To do so node B computes the angles
ABC, CBD and ABD. Using the angle ABD, node B can cal-
culate the distance —AD—. If the computed distance AD
is equal to the sum of distances AC and CD then the nodes
are collinear 1 hence node B decides that its solution is not
unique.

1Here we loosely use the term ’equal’ for clarity and simplic-
ity of the explanation, in practice we also need to consider
the noise incurred by the distance measurement process

A

B

C

D

××
−−=∠ −

||||2

||||||
cos

222
1

ACAB

BCABAC
ABC

××
−−=∠ −

||||2

||||||
cos

222
1

BDBC

BDBCCD
CBD

Figure 4: Detecting collinear configurations

Another type of setup that can cause symmetry problems
is shown in figure 3c. Nodes 3 and 4 both have 3 links
to nodes with tentatively unique positions but the setup
is symmetric since the two nodes can be swapped without
any violation of the constraints imposed by the intra-node
distance measurements. To avoid this situation where the
whole network can be rotated over two pivot points (nodes
1 and 2 in this example) an additional condition is set.

Condition 3. In each pair of unknown nodes that use
the link to each other as a constraint, it is necessary that
each node has at least one link that connects to a different
node from the nodes used as references by the other node.

The network in figure 3d is an example configuration that
satisfies this property. Both unknown nodes 3 and 4 have at
least one independent reference. Node 4 has beacon 1 and
node 3 has beacon 2. The above three conditions are in-
dividually necessary but jointly sufficient to guarantee that
if an unknown node is within two hops from at least three
beacons then the unknown has a single possible position so-
lution.

4.1.3 N-Hop Multilateration Requirements
To determine if nodes located within n hops from the bea-

cons have unique solutions a similar set of criteria is applied.
Starting from an unknown node we test if it has at least three
neighbors with tentatively unique positions. If the node has
three neighbors that do not already know if their solution is
unique, then a recursive call is executed at each neighbor to
determine if its position is unique. To meet the requirements
of condition 3 each node used as an independent reference
is marked as used. This prevents other nodes from subse-
quent recursive calls to re-use that node as an independent
reference. At every step, each node checks if the criteria for
condition 2 are also met.

4.2 Phase 2: Obtaining Initial Estimates
The initial estimates are obtained by applying the dis-

tance measurements as constraints on the x and y coordi-
nates of the unknown nodes. Figure 5 shows how the dis-
tance measurement from two beacons A and B can be used
to obtain the x coordinate bounds for the unknown node C.
If the distance between an unknown and the beacon A is a
then the x coordinates of node C are bounded by a to the
left and to the right of the x coordinate of beacon A, xA −a
and xA + a. Similarly, beacon B which is two hops away
from C, bounds the coordinates of C through the length of
the minimum weight path to C, b + c, so the bounds for
C’s x-coordinates with respect to B are xB − (b + c) and
xB + (b + c). By knowing this information C can determine
that its x coordinate bounds with respect to beacons A and
B are xB + (b + c) and xA − a. This operation selects the

a

a

a

b+c

b

c

b+c

C

B

A

x coordinate bounds for node C:

[])(cbxB ++[]axA − tofrom

Figure 5: Initial Estimates

Beacons

Unknowns

Initial estimates

Figure 6: Initial estimates over multiple hops

tightest left hand side bound from and the tightest right
hand side bound from each beacon. The same operation is
applied on the y coordinates. The node then combines its
bounds on the x and y coordinates, to obtain a bounding
box of the region where the node lies. To obtain this bound-
ing box, the locations of all the beacons are forwarded to all
unknowns along a minimum weight path. This forwarding
is the same idea as distance vector routing but using the
measured distances instead of hops as weights.

The initial position estimate of a node is taken to be as
the center of the bounding box. When these constraints
are combined with the conditions for position uniqueness,
they provide a good set of initial estimates for the position
refinement phase. The resulting initial estimates for a 10
node network with 3 beacons is shown in figure 6. One
challenge in this method is that the quality of the initial
estimates suffers when the beacon-unknown topology is not
convex. The unknown nodes that lie within a convex hull
created by the beacons can produce good initial estimates.
In some configurations, where some of the unknown nodes
lie outside the convex hull the initial estimates are still suf-
ficient. In our experiments with large networks we therefore
assume that beacons surround the unknown nodes.

5. PHASE 3: POSITION REFINEMENT
In the third phase, the initial node positions are refined,

using least-squares estimation. Our implementation uses a
Kalman Filter [20], which provides the same location esti-
mates as iterative least squares in a static network [6]. The
Kalman Filter was chosen because of its ability to fuse mea-
surements from multiple sensing modalities and to track the
nodes after the localization process is complete. Position
refinement can be implanted in one of two possible compu-

tation models, centralized or distributed that are described
next.

5.1 Computing at a Central Node
Using the collaborative subtrees and the initial position

estimates, the unknown node position estimates can be com-
puted at a central point. The edges of the computation sub-
tree give a well-determined or over-determined set of equa-
tions, which can be solved using non-linear optimization.
The non-linear of equations for the network in figure 3b is
shown in equations 1 2. As in the one hop case, the objective
is to minimize the residuals between the measured distances
between the nodes and the distances computed using the
node location estimates.

f2,3 = R2,3 −
�

(x2 − ex3)2 + (y2 − ey3)2

f3,5 = R3,5 −
�

(ex3 − x5)2 + (ey3 − y5)2

f4,3 = R4,3 −
�

(ex4 − ex3)2 + (ey4 − ey3)2

f4,5 = R4,5 −
�

(ex4 − x5)2 + (ey4 + y5)2

f4,1 = R4,1 −
�

(ex4 − x1)2 + (ey4 − y1)2

(1)

The Ri,j quantities represent the measured distances be-
tween two nodes and the quantities under the square root
indicate the estimated distances. fi,j represent the residual
between the measured and estimated quantities. The ob-
jective function in 2 is to minimize the mean square error
over all equations. The difference of this from its one hop
counterpart is that in this process, unknown-unknown links
are also used as constraints.

F (x3, y3, x4, y4) = min
�

f2
i,j (2)

The solution to this optimization problem can be obtained
using some of the standard least squares methods. In our
implementation, this is done using a Kalman Filter.

5.1.1 Kalman Filter Implementation
A Kalman Filter consists of two phases, a time update

phase and a measurement update phase. The former is a
prediction in time (equations 3, and 4). This time predic-
tion x̂−

k is based on a known model of the system behavior,
represented by matrix A. uk is a zero mean gaussian ran-
dom variable and B is the error covariance matrix for this
random variable. P−

k is the apriori estimate of the error
covariance and Q is the process noise. The latter is an up-
date of the current time estimate based on a measurement
that was just obtained. K represents the Kalman Filter
gain and it serves a weight to the residual of the filter. The
residual is the difference between the measurement, (repre-
sented by zk) and the predicted measurement Hx̂−

k . ẑk the
distance between nodes, based on the current position esti-
mate. Matrix H is the Jacobian of ẑk with respect to the
apriori estimates (found in x̂−

k) of the locations. Matrix R is
the measurement noise covariance matrix. This contains the
known noise covariance of the distance measurement system
(i.e based on the characterization of our ultrasonic system
we assume white gaussian noise with standard deviation =
20 mm). x̂k is the new estimate obtained after the predic-
tion and measurement are combined. This new prediction

2the prefix e in front of x, y denotes estimated coordinates,
as opposed to known coordinates

measurement has a new error covariance matrix P . Matrix
I stands for the identity matrix.

For the purposes of the collaborative multilateration, the
network is assumed to be static. Since the positions of the
nodes, do not change in time, the time update phase is not
used. Based on this, the discussion in this section focuses
on the second part of the Kalman Filter, the measurement
update phase.

x̂− = Ax̂k−1 + Buk (3)

Pk
− = APk−1A

T + Q (4)

K = Pk
−HT (HPk

−HT + R)−1 (5)

x̂k = Kk(zk − Hk̂)−1 (6)

Pk = (I − KkH)P−
k (7)

To estimate the unknown locations, our algorithm pro-
ceeds as follows:

1. Set the vector to the initial estimates obtained in sec-
tion 4.2

2. Evaluate equations 5, 6 and 7 - the measurement up-
date phase

3. Evaluate the stopping criterion
�

(x̂k)2 − �x̂−
k

�2 ≤ ∆

where ∆ is some predefined tolerance (0.01 in our ex-
periments). If the criterion is met then the algorithm
terminates and has the new position estimates. Oth-
erwise,

4. Set the prediction x̂−
k to the new estimate x̂k and goto

step 2.

The term ∆ is used as an indicator of the gradient of
the Kalman Filter and shows how far the process is from
convergence. For illustrative purposes we provide the setup
of the Kalman Filter in terms of figure 3c. The initial es-
timates (denoted by ex and ey) are placed in vector, x̂−

k ,
so x̂−

k = [ex3, ey3, ex4, ey4]. The ranging measurements are
placed in vector zk, zk = [R2,3, R3,5, R3,4, R4,1, R4,5]. Vec-
tor ẑk contains the ranging distances based on the current
estimates

ẑT
k =

�
�����

�
(x2 − ex3)2 + (y2 − ey3)2�
(ex3 − x5)2 + (ey3 − y5)2�

(ex3 − ex4)2 + (ey3 − ey4)2�
(ex4 − x1)2 + (ey4 − y1)2�
(ex4 − x5)2 + (ey4 − y5)2

�
				

Matrix H is the jacobian of ẑk with respect to x̂−
k .

H =

�
������

ex3−x2
ẑ(1)

ey3−y2
ẑk(1)

0 0
ex3−x5
ẑk(2)

ey3−ey5
ẑk(2)

0 0
ex3−ex4

ẑk(3)
ey3−ey4

ẑk(3)
ex4−ex3

ẑk(3)
ey4−ey3
(̂z)k(3)

ex4−x1
ẑk(4)

ey4−y1
ẑk(4)

0 0
ex4−x5
ẑk(5)

ey4−y5
ẑk(5)

0 0

�
					

The above illustration shows how the matrix size and sub-
sequently the amount of computation increases with the
number of nodes. Each edge in the collaborative subtree
contributes one entry in the measurement matrix zk. In ma-
trix H , the number of unknown nodes determines the num-
ber of columns and the number of edges determines the num-
ber of rows. Each beacon-unknown edge adds two entries to
the row and each unknown-unknown edge adds four entries.
The noise covariance matrices P−

k and Pk are square matri-
ces whose size depends on the number of unknown nodes and
the measurement noise matrix R is a square matrix and it
size determined by the number of edges in the collaborative
subtree. These changes in matrix sizes dramatically increase
the amount of computation that has to be performed. Fur-
thermore, from our simulation experience, we noted that
when the Kalman Filter has more variables to estimate, it
takes more iterations to converge. Unfortunately, since the
estimation process is an iterative process we cannot quantify
the amount of computation required for the filter to con-
verge analytically. Instead, we evaluate this empirically in
our simulations by measuring the number of FLOPS MAT-
LAB consumes 3 until the Kalman Filter converges. This
description also shows that although node positions can be
estimated accurately using this method, such computation
cannot be performed using a low cost microcontroller avail-
able on the sensor nodes. To facilitate this type of computa-
tion, we have developed a distributed approximation where
every node participates in the computation.

5.2 Computing at Every Node
In the distributed version, of our algorithm, computation

is spatially distributed across the network and each unknown
node is responsible for computing its own location estimate.
This is achieved by performing local computation and com-
munication with the neighboring nodes. This idea is similar
to using a distributed Kalman Filter [13, 14], but also has
some differences:

• The Kalman Filter executes in the context of a collabo-
rative subtree and each node executes a one hop multi-
lateration based on its distance measurements and the
location information from its neighbors.

• Instead of using a decentralized Kalman Filter, we use
an approximation in which nodes do not exchange co-
variance information is used. This conserves energy
since it reduces communication, and simplifies imple-
mentation.

• The computation is driven by ad-hoc networking pro-
tocols.

The underlying principle of our distributed scheme is that
after the completion of the first two phases, each node inside
the computation tree computes an estimate of its location.
Since most unknown nodes, are not directly connected to
beacons, they use the initial estimates (obtained in section
4.2) of their neighbors as the reference points for estimating
their locations. As soon as an unknown computes a new

3Note that the FLOPS measure obtained from MATLAB is
used as a means for relative comparison of the computation
cost between our centralized and distributed schemes. In our
actual implementation, the Kalman Filters are implemented
in C and they execute on the node processor.

estimate, it broadcasts this estimate to its neighbors, and
the neighbors use it to update their own position estimates.
This computation is repeated from node to node across the
network until all the nodes reach the pre-specified tolerance

∆,

��
(x̂k)2 − �x̂−

k

�2 ≤ ∆

�
. Figure 7 is a pictorial repre-

sentation of the computation process. First node 4 computes
its location estimate using beacons 1 and 5 and node 3 as
references. Once node 4 broadcasts its update, node 3 re-
computes its own estimate using beacons 2 and 5 and the
new estimate received from node 4. Node 3 then broadcasts
the new estimate and node 4 uses this to compute a new
estimate that is more accurate than its previous estimate.

4

3

1

2

5

Uncertainty of estimate
after first iteration

Uncertainty of estimate
after second iteration

Iteration 1

Iteration 2

Figure 7: Initial estimates over multiple hops

If this process proceeds uncontrolled, then the nodes will
converge at local minimal and erroneous estimates will be
produced. Imagine a computation subtree with many un-
known nodes (i.e 20). If two neighboring unknown nodes A
and B that compute and broadcast their updates as soon as
an update from each other is received, then their updating
process will proceed faster than the remaining nodes in the
computation subtree. This introduces a ”local oscillation”
in the computation that makes the nodes converge to their
final estimates much faster but without complying with the
global gradient, thus yielding erroneous estimates.

To prevent this problem, the multilaterations at each node
are executed in a sequence across all the unknown mem-
bers of the computation subtree. This sequence is repeated
until the multilaterations of all the members of the com-
putation subtree converge to a pre-specified tolerance. The
in-sequence execution of the multilaterations inside the com-
putation subtree establishes a gradient with respect to the
global topology constraints at each node, thus enabling the
node to compute its global optimum locally.

Figure 8 is an excerpt from our combined ns-2-matlab
simulation which demonstrates the execution of distributed
position refinement on a network of 34 nodes and 6 bea-
cons 4. The unknown nodes in the network have an average
degree of 4, 15 meters 5 range and the 20 mm white gaus-
sian noise in the distance measurement system. The x-axis
shows the number of packets (estimate updates) transmitted
by each node, the node ids are shown in the y-axis and the
z-axis shows the error in millimeters. The values of the error

4For clarity and good visibility purposes the graph only
shows how the process proceeds on the even numbered
nodes.
5In our actual node testbed this is reduced to 5 meters to
facilitate multiple hops in a lab setting

5
10

15
20

25
30

35
40

0

20

40

60

80

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Node id
Packets

E
rr

or
 (

m
m

)

Figure 8: Progress of distributed computation

before any packets are transmitted, at packets = 0 on the
x-axis, represent the errors of the initial estimates (obtained
in section 4.2). As it can be seen form the figure, each node
starts at different levels of error. After a few iterations of
executing the node sequences in the computation subtree,
a global gradient is established that drives the error down
across the whole subtree. In the end, each node succeeds in
estimating its node location with a 3-centimeter accuracy.
Error accumulation is prevented by the global constraints of
the collaborative subtree.

The order of nodes executing in the computation subtree
sequence does not need to be specified but it needs to be
consistent over successive iterations of the sequence. This
entails that the order with which nodes compute their po-
sition updates has to be consistent across iterations. One
possible way to initiate this distributed computation pro-
cess is to use Distributed Depth First Search (DDFS). DDFS
search is started at an arbitrary unknown node within the
computation tree and it runs for two iterations. During the
traversal of the subtree by DDFS, when each node is marked
visited, the node it computes and broadcasts its location es-
timate and starts a timer. In the second iteration of DDFS,
nodes compute and broadcast their locations. At this point
the nodes also stop the previously set timer. The time be-
tween the two visits denotes the time interval at which each
node should recompute and broadcast a new position up-
date. The distributed algorithm for driving the distributed
computation process is shown in figure 9. The DDFS algo-
rithm for this example was obtained from [19].

Before finalizing this design decision we verified that the
results obtained by this approximation do not compromise
the overall quality of our estimates. We tested this by com-
paring the outputs of our centralized and distributed posi-
tion refinement phases. The tests where run on a test suite of
42 networks of different sizes varying from 10 to 100 nodes.
From this comparison we found out that the difference in
the results between the centralized Kalman Filter the dis-
tributed approximation we used is very small. Figure 10
depicts the result of the comparison. The mean difference
is 0.015 millimeters with a standard deviation of 0.54mm.
Based on this result we verified that our distributed ap-
proximation of the Kalman Filter does not compromise our
computation accuracy.

6. EVALUATION
We evaluate the performance of the collaborative multilat-

eration through a set of simulations. The Kalman Filters are

Start the algorithm (initiator only!)
visitedu := true
for i:=1 : 2
for w ∈ Neighu

do begin send 〈bfs〉 to w; statusu[w] := cal end

Upon receipt of 〈bfs〉 from v:
if not vistitedu(i) then
begin

visitedu(i):=true;statusu(i)[v]:=father
compute new location estimate and broadcast it
if i=0 t1:=time(); i:=i + 1
else updatePeriod = time()-t1;
timer.schedule(updadePeriod)

end
if statusu(i)[v]=unused then
begin send 〈bfs〉 to v;statusu(i)[w]:= ret end

else if there is a w with statusu(i)[w] :=unused then
begin send 〈bfs〉 to w statusu(i)[w]:=cal end

else if there is a w with statusu(i)[w]=father then
begin send 〈bfs〉 to w end

else (* initiator *) stop

Upon a timeout:
if converged = false or update needed = true
begin
compute a new location estimate and broadcast it

end

if
�

(x̂k)2 − �x̂−
k

�2 ≤ ∆

begin converged := true end
begin timer.schedule(updadePeriod) end

Upon receipt of a updated location broadcast:
if converged = true
begin update needed := true end

Figure 9: Distributed computation algorithm driven
by DDFS

implemented in MATALB and they are linked into the ns-2
simulator using the MATLAB compiler and the MATLAB
C++ library. The required protocols for communication are
implemented inside ns-2. Using this simulation setup we car-
ried out a series of experiments on a test suite of 200 different
scenarios. Our simulation parameters are set to match the
parameters of our experimental node. Each node has an ef-
fective radio range of 15 meters and each node can measure
distances between its neighbors with the same range as the
radio. The measurement noise is modeled as a zero mean
gaussian random variable with 20 mm standard deviation.

The primary goal of our ns-2 implementation is to verify
the correct operation of our distributed computation scheme
over a wireless ad-hoc network. The distributed version of
collaborative multilateration is implemented as a routing
layer in ns-2. This routing layer also contains a minimal
protocol that discovers the two-hop neighborhood of each
node, and a forwarding mechanism for forwarding packets
with beacons locations as described in section 4.2. These
minimal routing requirements are sufficient to form collab-

Figure 10: Comparison of centralized and dis-
tributed outputs

orative subtrees in a fully distributed fashion, to obtain the
initial estimates and to perform the distributed localization
process. At the MAC layer we use a modified version of the
IEEE 802.11 protocol with a 15-meter transmission range
and an effective data rate of 20kbps.

For the centralized case, DSR was used as the routing
protocol, IEEE 802.11 as the MAC and the Kalman Filter
was placed at the application layer.

6.1 Computation Cost Comparison

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

10 20 30 40 50 60 70 80 90 100

No. of Unknown Nodes

M
F

lo
p

s

Distributed Centralized

Figure 11: Computation cost comparison

Our first experiment compares the computation overhead
between the distributed and centralized computation meth-
ods by recording the number of FLOPS consumed by MAT-
LAB to compute the position estimates in each case. The
scenarios used for this test have 6 beacons and varying num-
ber of unknowns ranging from 10 to 100 nodes. The num-
ber of unknowns was used in increments of 10, and the re-
sults show the average for 20 scenarios of each type. In all
cases the network density is kept constant and each node
has an average of 6 neighbors. The cumulative number of
MFLOPS for the centralized and distributed implementa-
tion are shown in figure 11. From this result, we found that
the computation overhead of the centralized computation
model increases fast with the number of unknown nodes. In
this particular test, the computation overhead appears to be
cubic with the number of nodes. The distributed computa-
tion model on the other hand scales linearly with the number
of nodes. The slope for the distributed case in figure 11 is
3.7MFLOPS, meaning that each node spends approximately
3.7MFLOPS to compute an estimate of its location. Similar
trends were also observed when we simulated networks with
increasing density.

From this comparison, we conclude that the distributed

computation model is a better choice for computing node
locations. Even if computation is performed at a central
point, the use of the distributed computation model will
help to reduce computation latency. This is particularly the
case for low cost processors like the AT91FR4081 processor
on the Medusa MK-2 node.

20

21

22

23

24

25

26

27

28

20 30 40 50 60 70 80 90 100

No. of Unknown Nodes

E
rr

o
r

D
is

ta
n

ce
 [

m
m

]

Distributed Centralized

Figure 12: Localization error as unknown nodes in-
crease

6.2 Localization Accuracy
To quantify the accuracy of the localization error we ap-

plied two tests. The first test evaluates accuracy of the local-
ization process based on the measurement noise parameters
of our ultrasonic distance measurement system. Figure 12
shows how the error in the estimates increases as the network
scales. The ratio of beacons with respect to the unknowns
is kept constant at 20 percent. The error in the estimates
increases very gracefully as the network scales.

Figure 13 shows the cumulative error distribution over all
scenarios used in this experiment for both the distributed
and centralized cases. In both cases the average error was
27.7 millimeters with a standard deviation of 16 mm.

We observed a similar trend when we computed the error
in the estimates at different variances in the ranging mea-
surement error. This reflects how the collaborative multilat-
eration would perform with less accurate distance measure-
ment systems as the percentage of beacons decreases. The
results of our simulation are shown in figure 14, and are
based on different network sizes ranging from 10 to 100 un-
known nodes, 20 networks for each set. In all cases the num-
ber of beacons is kept constant, 6 beacons were used in each
network. In this particular test we also found that the per-
formance of the distributed version degrades faster in net-
works of more than 100 nodes. This occurred in cases where
the Kalman Filter sequence started by estimating the loca-
tions of nodes with accurate initial estimates using neighbor-

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Error Distance [mm]

F
re

q
eu

n
cy

Distributed Centralized

Figure 13: Estimated error distribution

ing unknown nodes with less accurate initial estimates. One
possible approach to mitigate this effect is to take the size
of the bounding box (computed in section 4.2)into account.
We expect that if the Kalman Filter computation sequence
starts at the nodes with the largest bounding boxes then the
problem mentioned above could be avoided and the conver-
gence will be faster.

1

21

41

61

81

101

121

141

161

181

201

10 20 30 40 50 60 70 80 90 100

Ranging Error Variance

A
ve

ra
ge

 E
rr

or
 D

is
ta

nc
e

[m
m

]

100 Unknown Nodes

90 Unknown Nodes

80 Unknown Nodes

70 Unknown Nodes

60 Unknown Nodes

50 Unknown Nodes

40 Unknown Nodes

30 Unknown Nodes

20 Unknown Nodes

10 Unknown Nodes

Figure 14: Errors in estimates at different measure-
ment noise levels

6.3 Communication Cost and Convergence La-
tency Considerations

The convergence latency and communication aspects of
collaborative multilateration are more difficult to evaluate
because of their dependence on multiple system attributes.
In the fully distributed case, convergence latency depends
on the available communication bandwidth and the node
processing power. Convergence latency also depends on the
size of the computation tree. As the number of nodes in-
creases, the sequence of Kalman Filter executions will take
longer to complete and more iterations of the sequence are
required. The communication pattern is uniform across all
the nodes.

When computing at a single point in the network, the
convergence latency of the collaborative multilateration is
a function of the communication latency for transmitting
the packets from each member of the computation subtree
and back, and also depends on the power of the central pro-
cessor. If the computation tree is large, the computation
latency will be the dominant component. Evaluating the
communication cost is more complex. In a clustered ar-
chitecture, the communication cost depends on the cost of
electing a cluster head and the routing cost for propagating
the information back and forth from the cluster head.

To illustrate the communication trends, figure 15 shows a
comparison of the communication cost for in the centralized
and fully distributed cases, executed on a network of 44 un-
known nodes and 6 beacons. The figure shows the total num-
ber of bytes transmitted by each node during the collabora-
tive multilateration process. The average number of bytes
transmitted is 4596 for the centralized scheme and 4485 for
the distributed scheme. Although on average the communi-
cation cost is almost the same, the distributed scheme has
an even distribution of transmitted bytes.

From a latency prespective, distributed collaborative mul-
tilateration offers a favorable tradeoff. This can be observed
in figure 8. During the latest part of the process, a lot of
computation and communication effort is spent to achieve a
relatively small refinement of the position estimate. At this
point, higher-level applications can have the option stopping
the position refinement phase by adjusting the stopping cri-

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

Node id

B
yt

es

centralized
distributed

Figure 15: Communication cost on a 50 node net-
work (6 beacons, 44 unknowns)

terion ∆ in the interest of energy conservation.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have described collaborative multilater-

ation for node localization problems. We have shown that
using this three phase approach nodes that are indirectly
connected to beacon nodes can estimate their locations with
similar accuracies at the single hop multilateration. Also,
with our distributed approach colonies of constrained sensor
nodes can collectively solve a global optimization problem
that an individual node cannot solve. The use of a global
gradient for computing a global optimum locally reinforces a
distributed computation model with other potential applica-
tions in sensor networks. In addition to the distributed com-
putation model the collaborative multilateration appears to
be an attractive choice for assisting infrastructure based lo-
calization systems to better handle obstructions. In this
paper we have developed the computational part of collabo-
rative multilateration. The remaining challenge is to study
its feasibility with respect to the physical effects. To this
end, as part of our future work we plan to study the inter-
action of our algorithms with the physical world using our
sensor network testbed of Medusa MK-2 nodes.

Acknowledgments
This paper is based in part on research funded through
NSF under grant number ANI-008577, and through DARPA
SensIT and Rome Laboratory, Air Force Material Com-
mand, USAF, under agreement number F30602-99-1-0529.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the NSF, DARPA, or Rome Laboratory, USAF.

8. REFERENCES
[1] S. Capkun, M. Hamdi, J. P. Hubaux, GPS-Free

Positioning in Mobile Ad-Hoc Networks,
[2] awaii International Conference on System Sciences,

HICCSS-34 Jan. 2001
[3] L. Doherty, L. El Ghaoui, K. S. J. Pister, Convex Position

Estimation in Wireless Sensor Networks, Proceedings of
Infocom 2001, Anchorage, AK, April 2001.

[4] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next
Century Challenges: Scalable Coordination in Sensor

Networks, Proceedings of the fifth annual international
conference on Mobile computing and networking, Seattle,
Washington, 1999, Pages: 263 - 270

[5] L. Girod and D. Estrin , Robust range estimation using
acoustic and multimodal sensing Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2001), Maui, Hawaii, October 2001.

[6] E. Foxlin, M. Harrington, and G. Pfeiffer
Constellation(tm): A Wide-Range Wireless
Motion-Tracking System for Augmented Reality and
Virtual Set Applications, Proceedings of Siggraph 98,
Orlando, FL, July 19 - 24, 1998

[7] J. Hightower and G. Boriello, Location Systems for
Ubiquitous Computing, IEEE Computer, 34(8):57-66, Aug
2001

[8] A. Howard, M. J Mataric and G. S. Sukhatme, Relaxation
on a mesh: a formalism for generalized localization,
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS01), pages
1055–1060, 2001

[9] Intersense Inc http://www.isense.com
[10] M. Mauve, J. Widmer and H. Hartenstein, A Survey on

Position Based Routing in Mobile Ad-hoc Networks, IEEE
Network Magazine, 15(6):30–39, November 2001

[11] S. Meguerdichian, F. Koushanfar, G. Qu, M. Potkonjak,
Exposure In Wireless Ad Hoc Sensor Networks,
International Conference on Mobile Computing and
Networking (MobiCom ’01),pp. 139-150, Rome, Italy, July
2001..

[12] D. Nicolescu and B. Nath, Ad-Hoc Positioning System
Proceedings of IEEE GlobeCom, November 2001

[13] Roumeliotis, S.I.; Bekey, G.A. Synergetic localization for
groups of mobile robots, Proceedings of the 39th IEEE
Conference on Decision and Control, Sydney, NSW,
Australia, 12-15 Dec. 2000.) Piscataway, NJ, USA: IEEE,
2000. p.3477-82 vol.4. 5 vol. (lxiii+li+5229)

[14] BS Rao and HF Durrant-Whyte, Fully Decentralized
algorithm for multisensor Kalman filtering IEE
Proceedings-D, Vol. 138, No.5 September 1991

[15] C. Savarese, J. Rabay and K. Langendoen, Robust
Positioning Algorithms for Distributed Ad-Hoc Wireless
Sensor Networks USENIX Technical Annual Conference,
Monterey, CA, June 2002

[16] A. Savvides, C. C. Han and M. B. Srivastava Dynamic
Fine-grained Localization in Ad-Hoc Networks of Sensors,
Proceedings of the seventh annual international conference
on Mobile computing and networking, Mobicom 2001, pp
166-179,Rome, Italy, July 2001

[17] A. Savvides and M. B. Srivastava, A Distributed
Computation Platform for Wireless Embedded Sensing to
appear in the proceedings of ICCD 2002, Freiburg,
Germany

[18] M. B. Srivastava, R. Muntz and M. Potkonjak, Smart
Kindergarten: Sensor-based Wireless Networks for Smart
Developmental Problem-solving Environments, Proceedings
of the seventh annual international conference on Mobile
computing and networking, Mobicom 2001, pp 132-139
Rome, Italy, July 2001

[19] G. Tel Distributed Graph Exploration Obtained from
http://carol.wins.uva.nl/ de-
laat/netwerken college/explo.pdf

[20] G. Welch and G. Bishop An Introduction to the Kalman
Filter Available from
http://www.cs.unc.edu/ welch/kalman/kalmanIntro.html

