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ABSTRACT

Context . Recent research has been constraining the retention fraction of black holes (BHs) in globular clusters by comparing the degree
of mass segregation with N-body simulations. They are consistent with an upper limit of the retention fraction being 50% or less.
Aims. In this work, we focus on direct simulations of the dynamics of BHs in star clusters. We aim to constrain the effective distribution
of natal kicks that BHs receive during supernova (SN) explosions and to estimate the BH retention fraction.
Methods. We used the collisional N-body code nbody6 to measure the retention fraction of BHs for a given set of parameters, which
are: the initial mass of a star cluster, the initial half-mass radius, and σBH, which sets the effective Maxwellian BH velocity kick
distribution. We compare these direct N-body models with our analytic estimates and newest observational constraints.
Results. The numerical simulations show that for the one-dimensional velocity kick dispersion σBH < 50 km s−1, clusters with radii of
2 pc and that are initially more massive than 5×103 M� retain more than 20% of BHs within their half-mass radii. Our simple analytic
model yields a number of retained BHs that is in good agreement with the N-body models. Furthermore, the analytic estimates show
that ultra-compact dwarf galaxies should have retained more than 80% of their BHs for σBH ≤ 190 km s−1. Although our models
do not contain primordial binaries, in the most compact clusters with 103 stars, we have found evidence of delayed SN explosions
producing a surplus of BHs compared to the IMF due to dynamically formed binary stars. These cases do not occur in the more
populous or expanded clusters.

Key words. methods: numerical – methods: analytical – galaxies: star clusters: general – stars: black holes

1. Introduction

Black holes (BHs) and their retention fraction in star clusters
play an important role in the evolution of the clusters, and are
relevant for other astrophysical fields including stellar evolution,
the formation of intermediate-mass/super-massive BHs and pre-
dictions of gravitational wave events (e.g. Belczynski et al. 2002;
Favata et al. 2004; Mackey et al. 2007; Banerjee et al. 2010;
Mapelli et al. 2011, 2013; Morscher et al. 2013; Ziosi et al.
2014; Banerjee 2017, 2018; Repetto et al. 2017). The retained
number of BHs also constrains the maximum mass of potentially
formed intermediate-mass/super-massive BHs in massive stellar
systems such as in globular clusters (GCs) and ultra-compact
dwarf galaxies (UCDs; Jeřábková et al. 2017).

Black holes can be observed and quantified either directly via
gravitational waves or indirectly via (i) mass accretion (which
requires the presence of gas and/or stellar companions), (ii)
gravitational lensing, or (iii) mass segregation in star clusters
(Baumgardt & Sollima 2017; Weatherford et al. 2017). Method
(iii) has been successfully used to establish an upper limit on
the BH retention fraction in GCs to be 50% or less (Peuten et al.
2016; Baumgardt & Sollima 2017). However, the constraints on
the initial retention fraction of BHs remain weak. By the initial
retention, which is what this study is concerned with, we mean
the fraction of BHs that are retained in the star cluster by the time
of the last core collapsed supernova (SN) leaving a BH. This cor-
responds to a time scale of about 12 Myr after the formation of the
cluster.

An asymmetric SN explosion gives the newly formed rem-
nant an initial momentum, pBH, to compensate for the excess
momentum of the stellar envelope going in the opposite direc-
tion, penv−, that is,

penv− = penv+ + pBH, (1)

where penv+ is the momentum vector of the envelope in the same
direction as pBH. The velocity kick, vkick, is then the initial rem-
nant’s velocity derived from its momentum and mass (Lyne &
Lorimer 1994).

Here we provide a systematic direct N-body survey of the ini-
tial retention fractions of BHs for different assumptions on the
kick velocities for a variety of star cluster radii and masses, that
is, in the range from 103 to 105 stars. We also compare these nu-
merical results with our own analytic estimates on the retention
fraction of BHs. Finally, we use this study to extrapolate to the
initial retention fraction in larger systems, that is, GCs and UCDs.

2. Numerical models

We performed over 1500 N-body simulations of isolated star
clusters. Clusters with lower numbers of stars (N < 25k) were
evolved with a single-central-processing-unit (CPU) nbody6 in-
tegrator. Clusters with more stars were integrated with a parallel
nbody6.sse version (Aarseth 2003; Nitadori & Aarseth 2012)1.

1 Both nbody versions used here are from June 13, 2017.
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All the initial conditions were set up with a random seed by the
integrator as follows.

The models presented contain 1k, 3k, 10k, 25k, 50k, and
100k stars; see Table 1 for their detailed integration parameters.
We assumed the canonical initial mass function (IMF, Kroupa
2001; Kroupa et al. 2013) with masses in the range from 0.08 M�
to 100 M� and the distribution of positions of stars according to
Plummer (1911) and Aarseth et al. (1974). For each model, we
used three values of the initial virial radius, rv = 0.5, 1, and 2 pc;
the value of the initial Plummer radius is rP = 3π

16 rv and the half-
mass radius is rh ≈ 1.305 rP (Kroupa 2008). Neither primordial
binaries nor a gas component were included in the models.

For the stellar evolution, we invoked the algorithm by
Hurley et al. (2000) for single stars and Hurley et al. (2002) for
binary stars. For that we assumed a metallicity [Fe/H] = −1.30
which corresponds to the average metallicity of GCs in the Galaxy
(Baumgardt & Sollima 2017). We have also performed one addi-
tional calculation of a vastly expanded star cluster (rv = 20.0 pc)
with the same metallicity and IMF and no primordial binaries
in order to estimate the time scale needed for a single star to
evolve into a BH. In an extended cluster like this, dynamical ef-
fects and binary evolution may be neglected. The last BH appeared
at≈11.7 Myr from the beginning of the integration. Therefore, all
our simulations were closely followed over that time.

Finally, in each set-up, we assumed a different value for the
one-dimensional (1D) dispersion, σBH, the Maxwellian distribu-
tion from which we drew the initial BH kick velocities, vkick,i. It
has been suggested, for example by Jonker & Nelemans (2004)
or Repetto et al. (2012), that BHs may receive kicks as high as
neutron stars (NSs), therefore the highest value of σBH comes
from the best fit of the velocity distribution of the observed
NSs (Hansen & Phinney 1997), that is, σBH = 190 km s−1. We
set the lowest value of σBH to 3 km s−1 and a moderate value
to 50 km s−1. In the case of our 1 pc models, we also included
σBH = 10 and 25 km s−1; see Table 1. The kick velocity is com-
posed of three random deviates chosen from a Gaussian distri-
bution with a 1D dispersion σBH (e.g. Kroupa 2008).

In this work, we do not treat a detailed kick velocity mech-
anism (we simply assume a Maxwellian distribution). There are
currently different models of how the kicks are produced dur-
ing the SN explosions: After a SN explosion, the initial veloc-
ity kick, vkick,i, may be reduced by the mass that falls back onto
the remnant. One possibility is that the kick velocity scales with
the ratio between the mass of the envelope, menv, and the mass
of the star before the SN explosion as

vkick = vkick,i
menv

mBH + menv
, (2)

where mBH is the remnant’s mass (Aarseth 2003). However, ac-
cording to a recent study by Belczynski et al. (2008) the rem-
nant’s velocity should be scaled by a fraction of the envelope
mass, ∆menv, that is,

vkick = vkick,i

(
1 −

∆menv

menv

)
· (3)

Fryer et al. (2012) use the same prescription for the final mag-
nitude of the velocity kick and they also argue that the fall-back
mass is proportional to the mass of the envelope, although they
determined the mass differently. In either case, the recoil is given
by the momentum conservation due to an asymmetric spatial dis-
tribution of the mass of the envelope; see Eq. (1), and the final
velocity is scaled by the mass that falls back (∆menv). Therefore,
the total mass of the star before a SN, as in Eq. (2), may not be a
valid scaling parameter for the fall-back since it cannot help us

Table 1. Parameters of the star-cluster models used in this paper.

N rv (pc) trh (Myr) tcr (Myr) tend (Myr)
(Mtot(M�))

1k 0.5 6.1 0.61 65
(5 × 102) 1.0 19 1.9 201

2.0 49 4.9 523

3k 0.5 9.3 0.36 38
(1.6 × 103) 1.0 27 1.0 110

2.0 75 3.0 313

10k 0.5 15 0.20 35
(5.5 × 103) 1.0 42 0.56 99

2.0 118 1.6 280

25k 0.5 21 0.13 23
(1.4 × 104) 1.0 60 0.36 64

2.0 168 1.0 179

50k 0.5 28 0.088 16
(2.8 × 104) 1.0 79 0.25 45

2.0 223 0.71 125

100k 0.5 37 0.062 17
(5.6 × 104) 1.0 107 0.18 43

2.0 301 0.50 119

Notes. For each number of stars (with an approximate total mass), there
are the initial virial radius, half-mass relaxation time, crossing time,
and the approximate time up to which we followed the integration. The
estimated time of formation of the last BH in our models is ≈11.7 Myr.

establish by how much the fall-back fraction of the envelope ac-
tually slows the remnant. Because in our case the masses of the
BHs are similar, the effect of fall-back on the final kick velocity
is comparable to evaluating different values of σBH. Therefore,
in our models, there is no rescaling of the kick velocity, that is,
vkick = vkick,i.

In our calculations, if a star explodes as a SN while bound in
a binary system, the remnant does not receive a kick. This is the
case in less than 2% of stars that lead to SNe, so this does not sig-
nificantly affect the results. Because the kick velocity dispersion
σBH is an assumed quantity, it is to be interpreted as an effective
kick velocity dispersion. This means that any physical process
that changes the actual kick, vkick,i, to the velocity of the BH
when it is free streaming in the cluster (e.g. after dissociating
from a binary) is not considered here.

We note that, according to Belczynski et al. (2010, 2016),
for example, BH masses may grow larger for lower metallici-
ties than according to Hurley et al. (2000). This, however, does
not have any effect on our present calculations of the kick veloc-
ity because in our models, vkick does not depend on the BH mass.
The only possible effect could be through the cluster’s expansion
as a result of larger masses of the lost BHs. In the models pre-
sented, about 6% of the mass of the cluster can be lost if all BHs
escape. This value could increase by a maximum factor of two if
we consider the approach of Belczynski et al. (2010). Although
this would be useful to study in the future, it should not have a
significant effect on our results; see, for example, Fig. 1 where
we compare the cluster’s expansion by means of the half-mass
and tidal radii. In the models with σBH = 190 km s−1, almost all
BHs escaped, while in the models with σBH = 3 km s−1 only a
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Fig. 1. Evolution of the half-mass radii (rh ≈ 0.769 rv, solid lines) and
tidal radii (dotted lines) in our models. We compare models with the
lowest and highest σBH. Models with different N are colour-coded as
given by the key at the top of the figure.

small fraction did (see Sect. 4). Nevertheless, no significant dif-
ference between those two plots can be seen.

3. Methods

3.1. Retention fraction

In each realisation of our models, we tracked the positions of all
newly formed and existing BHs. The retention fraction, hereafter
denoted as ηBH, corresponds to the fraction of BHs that are inside
a certain radius, for example, the half-mass radius or the cut-
off radius.

Both of these radii are derived with respect to the density
centre, provided by nbody6 (according to Casertano & Hut
1985). The cut-off radius, rt, is taken to be the tidal radius (e.g.
Binney & Tremaine 1994)

rt = rG

(
MC

3MG

) 1
3

, (4)

where MC is the mass of the cluster within this radius, rG is the dis-
tance of the cluster from the centre of the Galaxy (assumed to be
5 kpc), and MG is the mass of the Galaxy comprised in the radius
rG. According to Faber & Gallagher (1979) and Bland-Hawthorn
& Gerhard (2016), we took MG ≈ 5×1010 M�. At each time step,
the half-mass radius is calculated from the stars that are bound to
the cluster, that is, up to rt from Eq. (4).

Certain dynamical effects, for example, close encounters of
two stars or single stars with binaries, are able to significantly re-
duce the fraction of BHs that are in the cluster on a time scale

Fig. 2. Average ratio between the number of BHs that received
vkick > vesc during a SN explosion (NBH,kick) and the number of BHs
that are outside the tidal radius at 12 Myr (NBH,tide). Each colour corre-
sponds to a different kick velocity dispersion σBH listed above the plots.
The error bars correspond to the Poisson uncertainties; see Eq. (9).

of hundreds of millions of years. Other effects, such as dynam-
ical friction, can slow down escaping BHs sufficiently to main-
tain the BH population inside a cluster for longer. In order to
reduce the influence of these effects as much as possible, we eval-
uate the BH retention soon after the last BH has formed in each
model (given the metallicity, this is at approximately 12 Myr).
We are aware that the latest BHs with velocities drawn from a
Maxwellian distribution with σBH = 3 km s−1 may not be able to
escape from the cluster by that time. On the other hand, their vkick
would barely exceed vesc, so our results should hold (see Sect. 4
and Fig. 2).

3.2. Analytic estimate

To estimate the retention fraction analytically, we generated a set
of star clusters with the canonical IMF in the same mass range
as our N-body models. First, we assume that, at the time of the
kick, the systems are Plummer (1911) models with the virial ra-
dius rv and that the kick velocities, vkick, follow a Maxwellian
distribution,

P(vkick) =

√
2
π

v2
kick exp

(
−

v2
kick

2σ2
BH

)
σ3

BH

, (5)

with a velocity dispersion σBH. The values of σBH used in these
estimates are the same as we used in the initial conditions in the
above N-body models.
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The BH retention fraction is the fraction of BHs that do not
escape from the cluster. Here, we assume that the stellar rem-
nants are lost if their velocity after a SN kick is larger than the
escape velocity at their current radius r from the centre of the
star cluster. This limit-velocity is defined as

vesc(r) =

 2GMC√
r2 + r2

P


1
2

, (6)

where MC is the mass of the cluster, G is the gravitational con-
stant, and rP is the Plummer radius from the initial conditions of
our models. The predicted ratio of retained BHs is then given by

ηBH =

∫ vesc

0 P(v)dv∫ ∞
0 P(v)dv

· (7)

4. Results

4.1. Retention fraction

If no stellar dynamics is taken into account, for a given effec-
tive kick velocity dispersion (σBH), the value of ηBH should be
stationary and depend only on the number of heavy stars in the
model, that is, the initial cluster mass (given that we use the
same IMF and stellar evolution in all models). In Fig. A.1 and
Table A.1, we document the evolution of the mean retention frac-
tion in our models. The results show that almost all BHs are kicked
out of the clusters in our simulations with σBH = 190 km s−1

and also that the retention fraction increases with a decreasing
σBH. In Fig. 1, we compare the temporal evolution of the half-
mass and tidal (or cut-off) radii of our clusters with the lowest
and highest σBH. The half-mass radii calculated from these two
classes of models show not more than a marginal difference in the
overall evolution. As the mass contained in the BHs is around 6%
of the total mass, it is expected that the whole cluster would not
feel their absence.

We have also evaluated dynamical effects on the retention of
BHs. In Fig. 2 we plot the ratio

Q ≡
NBH,kick

NBH,tide
· (8)

Here, NBH,kick is the number of BHs that received a kick with a
higher velocity than the escape velocity at their current distance
from the cluster centre from Eq. (6), that is, vkick > vesc. The de-
nominator, NBH,tide, is the number of BHs that are outside the
tidal radius of the cluster at 12 Myr, that is, the approximate time
necessary for BHs to form in our models. We also include the
Poisson uncertainties defined as the square root of the value.
Based on the propagation of uncertainty, the plotted error bars
correspond to

σQ =
NBH,tide

√
NBH,kick − NBH,kick

√
NBH,tide

N2
BH,tide

· (9)

When confronted with the final ηBH, this ratio indicates one of
three scenarios: all the BHs have been ejected because of a SN
kick (Q = 1), some of the kicked BHs were dynamically retained
inside the cluster (Q > 1), or how many BHs, not retained in the
cluster, have been expelled dynamically through encounters with
other stars or other BHs (Q < 1).

We deduced that natal kicks are a dominant factor influenc-
ing the resulting initial retention fraction, ηBH, in our models

Fig. 3. Time of BH formation in the presented models. Circles corre-
spond to the time of the last BH formation (i.e. fBH = 100%), triangles
represent the time when a fraction fBH > 97% of BHs formed. For
reference, the dotted line marks 11.7 Myr, as deduced from the Hurley
et al. (2000) algorithm.

with σBH ≥ 10 km s−1. The only models where dynamical pro-
cesses have a major influence on ηBH are those withσBH = 3 kms
(black lines in Fig. 2), where Q < 1. Nonetheless, even in
those models, the retention fraction in the tidal radius is 82% or
higher (see Table A.1). Ejecting a BH merely through dynamical
processes is, therefore, rare on such a short time scale.

According to the single stellar evolution algorithm by Hurley
et al. (2000) which is parametrised only by mass and metallic-
ity of individual stars, the last SN explodes at ≈11.7 Myr. For
the small N systems, we also see a systematic shift to a BH
production beyond this time (in Fig. 3). The reason is that the
IMF sampled for 1000 stars gives only a couple of massive stars
(sometimes only one). Due to dynamical processes, those few
massive stars sink to the centre of the cluster and form a bi-
nary star that has a very small chance of being disrupted by
the less-massive stars surrounding it. The binary stellar evolu-
tion algorithm (Hurley et al. 2002) introduces additional pa-
rameters, for example, mass transfer, accretion, and collisions,
which lead to a rejuvenation of the star, causing a delayed SN
explosion. This process is particularly pronounced, even by a
factor of two (see the top panel of Fig. 3), for the rv = 0.5 pc clus-
ters in which the binaries that form are sufficiently compact for
the rejuvenation to occur. Individual cases, for example, the 100k
model with rv = 1.0 pc and σBH = 190 km s−1 (orange circle in
the middle panel of Fig. 3), or the 10k model with rv = 0.5 pc
and σBH = 3 and 190 km s−1 (black and orange circles in the
middle panel of Fig. 3, respectively), also delayed the last BH
formation to above 12 Myr. We interpret those as being due to
rejuvenated stars as well.
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Fig. 4. Ratio of BHs per total initial number of stars in our models. Each
vertical bar goes from the lowest to the highest number of BHs found
within the realisations.

In the most compact models, that is, rv = 0.5 pc with 1k
(and also 3k) stars, we see an overproduction of BHs compared
to other models (even with the same number of stars) – com-
pare the top panel of Fig. 4 with the lower two. Any random ef-
fect of sampling of the initial conditions may be ruled out be-
cause we have done several realisations of each model (hun-
dreds in the case of 1k models). We explain this increment of
BHs by the stellar evolution in binary stars. The effect of delayed
SN explosions of massive stars has been systematically stud-
ied, for example by Podsiadlowski et al. (1992) and De Donder
& Vanbeveren (2003), or more recently by Zapartas et al. (2017).
In our models, especially in those compact and not very populous
clusters, high-mass binaries are easy to form and difficult to de-
stroy. We demonstrate this in Fig. 5 where we plot the mean life-
time of a BH progenitor in a binary before becoming a BH. In the
most compact clusters (top panel), especially for a low number
of stars, the binary evolution is clearly more significant than in
more massive or larger clusters (middle and bottom panels). Due
to mass transfer in the binary, even an initially less massive star
(which would have ended as a NS) can accrete enough mass from
its more massive companion to eventually become a BH. There-
fore, we end up with an additional BH. This effect is not as pro-
found in less dense star clusters (lower binary production rate) or
in more populous star clusters (higher binary disruption rate).

4.2. Analytic estimate in comparison to N-body models

We separate the results into several plots (Figs. A.2, A.3 and A.4)
depending on the initial virial radius of the model, which defines
the value of the Plummer radius in Eq. (6) by rP = 3π

16 rv. The
upper limit of the predicted ηBH is calculated as if all the BHs were

Fig. 5. Mean time that a star, which ended up as a BH, spent in a binary
(or multiple) system before becoming a BH. The vertical uncertainties
represent one half of the output period.

ejected directly from the centre of the cluster, that is, r = 0 pc. For
the lower limit, we assumed that the ejections take place at the tidal
radius determined from Eq. (4) with MC = Mtot (other parame-
ters are the same as in the tidal radius of the models in Sect. 3.1).
If our simple analytic estimate is correct, we expect the retention
fraction determined from the models to be within the shaded area
between 0 and rt. For a better understanding of the scale, in the
plots, we also include a dotted line that corresponds to the escape
radius of r = 10 pc (which is roughly the radius of an expanded
star cluster) and a dashdotted line equal to the initial virial radius
of each cluster, that is, rv = 0.5, 1.0, and 2.0 pc.

In all the figures, we see a general agreement of the analytic
estimates and the results from the N-body simulations. Espe-
cially for the retention fraction in the half-mass radius. The best
results are achieved for higher initial masses of the star clusters
or wider models (larger rv). This is partially expected from the
nature of the escape velocity in Eq. (6), which is proportional to
the square root of the mass of the cluster and inversely propor-
tional to the square root of the initial Plummer radius.

Our analytic prediction does not consider more complicated
effects, for example, dynamical friction, which can slow the BHs
and increase their retention in the cluster (as we have shown
in Fig. 2); the dynamics of core collapse (especially for small
clusters <10k); or BHs bound in binary systems (mainly in the
more compact clusters). Those could very easily shift the limits
upwards and yield an even better agreement between ηBH and the
results of the numerical models. In the case of higher σBH, where
the analytic predictions are very strictly giving us ηBH = 0, we
see more fluctuations in the value of ηBH taken from our models
with rv = 0.5 or 1.0 pc. Those are also the cases that need more
investigation from the point of view of the dynamical effects.
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Our analytic estimate has no upper limit for the total mass of
the cluster. In Figs. A.2, A.3 and A.4 we are showing the results up
to 5× 106 M� where GCs would be. The trend set by our clusters
provides a good indication of how the retention fraction in GCs
could behave in those plots. Even further out to the right, outside
of these plots, is the mass domain of the UCDs which is docu-
mented separately in Fig. A.5. We note that in the latter case, we
use the birth radius according to Eq. (7) from Marks & Kroupa
(2012), which is a reasonable assumption since the UCDs are ex-
pected to significantly expand to the observed present-day radii
(Dabringhausen et al. 2008, 2010). The retention fraction of
BHs in young UCDs should therefore be very high, as shown in
Fig. A.5, but self-consistent modelling will be needed to make
improved estimates of how the retention fraction evolves as the
UCDs expand as a result of the stellar-evolution mass loss.

5. Conclusions

The BH retention fraction grows with the increasing initial mass
of a star cluster. This is shown by direct N-body simulations
which corroborate our analytic estimates. Therefore, we con-
clude that it is possible to estimate the BH retention fraction
using a simple analytic formula, according to which the num-
ber of escaping BHs is the number of BHs in the tail of the
Maxwellian distribution above the escape velocity from the clus-
ter; see Eq. (7). This implies that UCDs should have retained
more than 80% of their BHs for σBH ≤ 190 km s−1.

The estimate agrees with our N-body results, especially for the
retention fraction within the half-mass radius and for star clusters
with an initial mass greater than 104 M� and an initial virial ra-
dius rv ≥ 1 pc. In the cases where the analytic prediction does not
follow the numerical results, the former serves as a good lower
estimate for the retention fraction. When applying the standard
velocity dispersion of SN kicks (σBH ≈ 190 km s−1), only a few
BHs remained bound to the modelled star clusters. Those BHs
were either in binaries or they received only a very small kick by
chance. With such a highσBH, the only places where BHs could be
retained is in very massive GCs, UCDs, or an environment com-
parable to a nuclear cluster. Other possibilities for retaining BHs
with high σBH are: (a) the kick velocity is to be scaled by a frac-
tion of the envelope that falls back onto the BH, for example, from
Eq. (3) Belczynski et al. (2002), or (b) they might implode, leav-
ing BH remnants without any kick, that is, putting penv+,− = 0
in Eq. (1). Due to those reasons, if the upper limit of the retent-
ion fraction of BHs is about 50% in GCs (Peuten et al. 2016;
Baumgardt & Sollima 2017), then the velocity distribution of
the kicks cannot be just one Maxwellian distribution with a ve-
locity dispersion of σBH & 190 km s−1. This suggests that, if
σBH & 50 km s−1, implosions or some bimodal kick velocity dis-
tribution could be valid, as implied for neutron stars by Verbunt
et al. (2017).

Another result we find here is that compact clusters provide
an environment in which particularly massive binaries form dy-
namically and then evolve by binary star evolution to enhance the
number of SNe (exploding later than the original SN) providing
additional delayed BH formation. Instead of the last SN exploding
at ≈12 Myr, which is typical for the metallicity and mass range of
our models, several BHs needed twice this time to get to the SN
stage. This is evident especially in the smallest and most compact
clusters, that is, 1k stars with rv = 0.5 pc, although the tendency
to later SN explosion is visible in all 1k models, and individual
cases of more populous models. The stellar evolution in dynam-
ically formed binary stars (the models here have no primordial
binaries) affects mostly the evolution of high-mass stars in small

and compact clusters as it is virtually impossible to disrupt them
in such systems. The other effect of living in a binary for most of
the star’s life is the overproduction of BHs. An initially relatively
less-massive star in a binary system can accrete enough mass to
explode as a SN and leave an additional BH that cannot be pre-
dicted from the IMF. We have detected this in the case of our 1k
model with rv = 0.5 pc. More populous and less dense clusters
also produce dynamically formed binaries, but these do not evolve
to produce additional late SNe and BHs.
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Appendix A: Additional tables and figures

Table A.1. BH retention fraction in our models.

N rv (pc) : 0.5 1.0 2.0
σBH (km s−1) ηBH(rh) ηBH(rt) ηBH(rh) ηBH(rt) ηBH(rh) ηBH(rt)

1k 3 0.23 0.43 0.14 0.28 0.05 0.24
10 – – 0.01 0.03 – –
25 – – 0.01 0.02 – –
50 0.05 0.08 0.00 0.00 0.00 0.00

190 0.04 0.05 0.00 0.00 0.00 0.00

3k 3 0.40 0.61 0.26 0.62 0.16 0.48
10 – – 0.02 0.16 – –
25 – – 0.11 0.11 – –
50 0.07 0.07 0.06 0.06 0.00 0.00

190 0.16 0.17 0.04 0.04 0.00 0.00

10k 3 0.64 0.82 0.60 0.88 0.29 0.68
10 – – 0.08 0.21 – –
25 – – 0.04 0.05 – –
50 0.14 0.15 0.03 0.05 0.00 0.01

190 0.10 0.10 0.04 0.04 0.00 0.00

25k 3 0.76 0.84 0.80 0.98 0.38 0.82
10 – – 0.30 0.45 – –
25 – – 0.06 0.09 – –
50 0.09 0.16 0.00 0.00 0.00 0.00

190 0.08 0.13 0.03 0.03 0.00 0.00

50k 3 0.89 0.92 0.83 0.96 0.46 0.96
10 – – 0.44 0.73 – –
25 – – 0.04 0.11 – –
50 0.03 0.03 0.03 0.05 0.00 0.00

190 0.04 0.04 0.00 0.00 0.00 0.00

100k 3 0.87 0.96 0.80 0.99 0.63 0.97
10 – – 0.56 0.87 – –
25 – – 0.09 0.22 – –
50 0.03 0.06 0.02 0.05 0.00 0.00

190 0.02 0.03 0.01 0.01 0.00 0.01

Notes. It is evaluated for each set of the initial conditions (i.e. N, σBH and rv) in the half-mass radius (rh) and the tidal radius (rt); see Eq. (4), after
the last BH has formed (tBH).
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Fig. A.1. Evolution of the retention fraction, ηBH, within the half-mass radius (orange) and the tidal radius (red). The black line shows the ratio
of BHs that have formed with respect to the final number of BHs in the cluster. The curves for 1k and 10k models are averaged over 100 and 10
realisations, respectively.
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Fig. A.2. A comparison of the retention fraction from the N-body models (with rv = 1.0 pc) with the analytic estimate. The limits from our analytic
estimate, Eq. (6), are represented by a shaded area delimiting the escape radius from 0 pc (solid line) to the tidal radius (dashed line) determined
from Eq. (4). We also include the curve for an escape radius of 10 pc (dotted line) and the virial radius (dashdotted line). The squares and crosses
represent the retention fraction from our numerical simulations in the half-mass and tidal radius, respectively.
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Fig. A.3. As in Fig. A.2 but for the models with the initial virial radius rv = 0.5 pc.

Fig. A.4. As in Fig. A.2 but for the models with the initial virial radius rv = 2.0 pc.
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Fig. A.5. Analytic estimate of the retention fraction for a broader range of masses. Here, we use the relation from Marks & Kroupa (2012, Eq. (7))
to compute the appropriate radius of the system with a given mass. The escape velocity, Eq. (6), is calculated from 0 pc (solid line), the tidal radius
(dashed line) determined from Eq. (4), and the half-mass radius of the model (dashdotted line).
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