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1 Introduction

The work of Bekenstein [1] and Hawking [2] has spurred extensive research on the so-called

‘information paradox’. The premise of the paradox is that in a collapse of matter forming

a black hole, the intermediate state post-collapse is a black hole that can be characterized

by a small number of physical parameters (mass, charge, angular momentum, etc.). A

semi-classical calculation as the one Hawking originally did, however, suggests that black

holes radiate as black bodies, namely with a thermal spectrum. This seems to suggest a

gross violation of unitary evolution as all information about the exact in-state that went

into forming the black hole appears to have been lost after its evaporation.

The emergence of string theory, holography [3–5] and gauge-gravity duality [6–8] has

shed significant light on this problem. In fact, it is often claimed that if one were to

believe gauge-gravity duality, the paradox is solved ‘in-principle’ as the boundary theory

is unitary by construction and the duality states an equivalence (at the level of partition

functions) between the gravitational and boundary field theories. Nevertheless, the strength

of this claim is questionable [9–11] and even within the best understood examples of gauge-

gravity duality, there is no general consensus on the exact process of information retrieval.

Furthermore, the best understood examples of the said duality, while providing for a very

useful toolbox, typically involve bulk space-times with a negative cosmological constant

and are far from the real world. Technology at this stage is far from established to reliably

understand more realistic space-times. Additionally, why intricate details of string theory

or the duality may be absolutely necessary for our understanding of the evolution of general
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gravitational dynamics is not apparent. While the fuzzball program [12–16] provides some

arguments for why stringy details may be important, it is fair to say that there is no general

consensus on the matter.

Years before gauge-gravity duality was proposed and was seen as a possible resolution

to the information paradox, there was an alternative suggestion by ’t Hooft [3, 17, 18]. The

proposal was to consider particles of definite momenta ‘scattering’ off a black-hole horizon.

These particles were to impact the out-going Hawking quanta owing to their back-reaction

on the geometry. With the knowledge that the black hole is made out of a large, yet

finite, number of in-states, one may scatter particles of varying momenta repeatedly, until

all in-states that may have made up the black hole have been exhausted. This led to a

construction of an S-Matrix that maps in to out states. This matrix was shown to be

unitary. A further advancement for spherically symmetric horizons was made recently [19–

21], where a partial wave expansion allowed for an explicit writing of the S-Matrix for each

spherical harmonic. However, this construction has its own short-comings. It presumes

that the S-Matrix can be split as

Stotal = S−∞ Shorizon S+∞ , (1.1)

where S±∞ correspond to matrices that map asymptotic in-states to in-going states near

the horizon and outgoing states near the horizon to asymptotic out-states respectively.

And Shorizon is the S-Matrix that captures all the dynamics of the horizon. Whether such

an arbitrarily near-horizon region captures all the dynamics of the black hole is not entirely

clear. The construction is also done in a ‘probe-limit’ in that the back-reaction is not taken

to impact the mass of the black hole. Only its effect on outgoing particles is captured.

Furthermore, throwing a particle into a black hole is not an exactly spherically symmetric

process. While a non-equilibrium process initiated by the in-going particle does break

spherical symmetry, it may be expected that the black hole settles down into a slightly

larger, spherically symmetric solution after some characteristic time-scale that depends on

the interactions between the various degrees of freedom that make up the black hole. This

scattering can be decomposed into partial waves. And the different waves are assumed to

evolve independently. However, one expects that the partial waves are not independent

and that they indeed ‘interact’ in a generic evolutionary process; it is not clear how one

may incorporate this interaction in this construction. Furthermore, the scattering algebra

possibly would need modification in a more general setup. Another important limitation is

that the back-reaction calculations ignore transverse effects [22, 23] which grow in increasing

importance as we approach Planckian scales. Finally, while it may not be a fundamental

difficulty, the splitting of the wave function via (1.1) needs further investigation.

As is evident from the above, it is surprisingly easy to criticize even the most promising

approaches to quantum black hole physics. In this article, we seek to address some of the

criticisms of the S-Matrix approach to quantum black holes. Inspired by old ideas from

non-critical 2d string theory [24–31], we construct a theory — of a collection of quantum

mechanics models with inverted harmonic oscillator potentials — that exactly reproduces

the S-Matrix of ’t Hooft for every partial wave; the inverted potentials arise naturally to

allow for scattering states, as opposed to bound states in a conventional harmonic oscillator.
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The intrinsically quantum nature of the model dispenses with the critique that the S-Matrix

of ’t Hooft is a ‘classical’ one. With any toy model, it may be hard to establish the validity

of its applicability to black hole physics. However, in our construction, all the observables

(S-Matrix elements) are exactly identical to those of ’t Hooft’s S-Matrix; thereby avoiding

any ambiguity of its validity. Furthermore, we observe that in-states must contain an

approximately constant number density over a wide range of frequencies in order for the

scattered out-states to appear (approximately) thermal; this condition was also noted in

the 2d string theory literature. Finally, and perhaps most significantly, we show that our

model captures an exponentially growing degeneracy of states.

It may be added that aside from the approaches mentioned earlier, there have been

many attempts to construct toy-models to study black hole physics [32–37]. The hope

being that ‘good’ toy models teach us certain universal features of the dynamics of black

hole horizons.

This article is organized as follows. In the section 2, we briefly review gravitational

back-reaction and ’t Hooft’s S-Matrix construction along with its partial wave expansion.

Our derivation is slightly different to the one of ’t Hooft [19] in that our derivation relies only

on the algebra associated to the scattering problem. Therefore, the ‘boundary conditions’

of the effective bounce, as was imposed in ’t Hooft’s construction is built in from the start

via the back-reaction algebra (2.14). In section 3, we present our model and compute the

corresponding scattering matrix to show that it explicitly matches the one of ’t Hooft. In

section 4, we make an estimate of the high energy behaviour of the total density of states

to argue that the model indeed describes the existence of an intermediate black-hole state.

We conclude with a discussion and some future perspectives in 5.

A brief summary of results. There are two main results of this work: one is a re-

writing the degrees of freedom associated to ’t Hooft’s black hole S-Matrix in terms of

inverted harmonic oscillators; this allows us to write down the corresponding Hamiltonian

of evolution explicitly. The second, related result is an identification of a connection to 2d

string theory which in turn allows us to show that there is an exponential degeneracy of

how a given total initial energy may be distributed among many partial waves of the 4d

black hole; much as is expected from the growth of states associated to black hole entropy.

At various points in sections 3 and 4, we review some aspects of matrix models and 2d

string theory in detail. While we expect some consequences for these theories based on our

current work, we do not have any new results within the framework of 2d black holes or

matrix models in this paper.

2 Back-reaction and the black hole S-Matrix

Consider a vacuum solution to Einstein’s equations of the form:

ds2 = 2A
(
u+, u−

)
du+ du− + g

(
u+, u−

)
h (Ω) dΩ2 , (2.1)

where u+, u− are light-cone coordinates, A (u+, u−) and g (u+, u−) are generic smooth

functions of those coordinates and h (Ω) is the metric tensor depending on only the (d− 2)
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transverse coordinates Ω. It was shown in [23] that an in-going massless particle with

momentum p− induces a shock-wave at its position specified by Ω and u− = 0. The shock-

wave was shown to change geodesics such that out-going massless particles feel a kick — of

the form u− → u−+8πGp−inf̂ (Ω,Ω′) — in their trajectories at u− = 0, where f̂ depends on

the spacetime in question. If we were to associate a putative S-Matrix to the dynamics of

the black hole, the said back-reaction may be attributed to this S-Matrix in the following

manner. Consider a generic in-state |in0〉 that collapsed into a black hole and call the

corresponding out-state after the complete evaporation of the black hole |out0〉. The S-

Matrix maps one into the other via: S |in1〉 = |out1〉. Now the back-reaction effect may

be treated as a tiny modification of the in-state as |in0〉 →
∣∣in0 + δp−in (Ω)

〉
, where δp−in (Ω)

is the momentum of an in-going particle at position Ω on the horizon. Consequently, the

action of the S-Matrix on the modified in-state results in a different out-state which is

acted upon by an operator that yields the back-reacted displacement:

S
∣∣in0 + δp−in (Ω)

〉
= e−iδp

+
out(Ω

′)δu−out |out0〉 , (2.2)

where the operator acting on the out-state above is the ‘displacement’ operator written in

Fourier modes. Now, we may repeat this modification arbitrarily many times. This results

in a cumulative effect arising from all the radially in-going particles with a distribution of

momenta on the horizon. Therefore, writing the new in- and out-states — with all the

modifications included — as |in〉 and |out〉 respectively, we have

〈out|S |in〉 = 〈out0|S |in0〉 exp

[
−i8πG

∫
dd−2Ω′ p+

out

(
Ω′
)
f̂
(
Ω,Ω′

)
p−in (Ω)

]
. (2.3)

Should we now assume that the Hilbert space of states associated to the black-hole is

completely spanned by the in-going momenta and that the Hawking radiation is entirely

spanned by the out-state momenta, we are naturally led to a unitary S-Matrix given by

〈
p+

out

∣∣S ∣∣p−in〉 = exp

[
−i8πG

∫
dd−2Ω′ p+

out

(
Ω′
)
f̂
(
Ω,Ω′

)
p−in (Ω)

]
. (2.4)

There is an overall normalization factor (vacuum to vacuum amplitude) that is undeter-

mined in this construction. The assumption that the black hole Hilbert space of states

is spanned entirely by the in-state momenta p−in is equivalent to postulating that the said

collection of radially in-going, gravitationally back-reacting particles collapse into a black

hole. While this may seem a reasonable assumption, it is worth emphasizing that there is

no evidence for this at the level of the discussion so far. We have not modeled a collapsing

problem. We will see in section 4 that our proposed model in section 3 provides for a

natural way to study this further. And significantly, we give non-trivial evidence that the

derived S-Matrix possibly models a collapsing black-hole.

2.1 Derivation of the S-Matrix

We now return to the back-reaction effect at a semi-classical level in order to derive an

explicit S-Matrix using a partial wave expansion in a spherically symmetric problem. For
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the back-reacted metric — after incorporating the shift u− → u− + f (Ω,Ω′) into (2.1)

— to still satisfy Einstein’s equations of motion, the following conditions need to hold at

u− = 0 [23]:

A(u+,−)

g(u+,−)
4Ω f

(
Ω,Ω′

)
−
(
d− 2

2

)
∂u+∂u−g(u+,−)

g(u+,−)
f
(
Ω,Ω′

)
= 8πp−inA

(
u+,−)2δ(d−2)

(
Ω,Ω′

)
∂u−A

(
u+,−) = 0 = ∂u−g

(
u+,−), (2.5)

where 4Ω is the Laplacian on the (d− 2)-dimensional metric h (Ω). We concern ourselves

with the Schwarzschild black-hole, written in Kruskal-Szekeres coordinates as

ds2 = − 32G3m3

r
e−r/2Gmdu+ du− + r2dΩ2 . (2.6)

For the above metric (2.6), at the horizon r = R = 2Gm, the conditions (2.5) were

shown [23] to reduce to

4S (Ω) f
(
Ω,Ω′

)
:= (4Ω − 1) f

(
Ω,Ω′

)
= − κ δ(d−2)

(
Ω,Ω′

)
, (2.7)

with the implicit dependence of r on u+ and u− given by

u+ u− =
(

1− r

2Gm

)
e−r/2Gm , (2.8)

and κ = 24 π e−1GR2 p−in. These seemingly ugly coefficients may easily be absorbed into

the stress-tensor on the right hand side of the Einstein’s equations. Now, the cumulative

shift experienced by an out-going particle, say u−out, is given by a distribution of in-going

momenta on the horizon

u−out (Ω) = 8πGR2

∫
dd−2Ω′ f̃

(
Ω,Ω′

)
p−in
(
Ω′
)
, (2.9)

where κ f̃ (Ω,Ω′) = f (Ω,Ω′). Similarly, we have the complementary relation for the mo-

mentum of the out-going particle, say p+
out given in terms of the position u+

in of the in-going

particle:

u+
in (Ω) = − 8πGR2

∫
dd−2Ω′ f̃

(
Ω,Ω′

)
p+

out

(
Ω′
)
. (2.10)

The expressions (2.9) and (2.10) may be seen as ‘boundary conditions’ of an effective bounce

off the horizon. However, this intuition is rather misleading and we will refrain from this

line of thought. Nevertheless, what is striking to note is that the momentum of the in-

state is encoded in the out-going position of the Hawking radiation while the position of

the in-state is encoded in the momentum of the out-going Hawking state! However, so far,

the quantities u±in/out are dimensionless while p∓in/out are densities of momenta with mass

dimensions four. Therefore, to appropriately interpret these as positions and momenta,

we rescale them as u±in/out → Ru±in/out and p∓in/out → R−3p∓in/out [20]. Notwithstanding this

rescaling, we continue to use the same labels for the said quantities in order to avoid clutter
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of notation. Now, using the canonical commutation relations, respectively, for the out and

in particles1 [
û− (Ω) , p̂+

(
Ω′
)]

=
[
û+ (Ω) , p̂−

(
Ω′
)]

= i δ(d−2)
(
Ω− Ω′

)
, (2.11)

we may derive the algebra associated to the black hole scattering. We do this in a partial

wave expansion — in four dimensions — as

û± (Ω) =
∑
lm

û±lm Ylm (Ω) and p̂± (Ω) =
∑
lm

p̂±lm Ylm (Ω) . (2.12)

Working with these eigenfunctions of the two-sphere Laplacian and using 2.7 we can write

the back-reaction equations (2.9) and (2.10) as

û±lm = ∓ 8πG

R2 (l2 + l + 1)
p̂±lm =: ∓ λ p̂±lm . (2.13)

In terms of these partial waves, we may now write the scattering algebra as[
û±lm, p̂

∓
l′m′
]

= iδll′δmm′ (2.14)[
û+
lm, û

−
l′m′
]

= i λ δll′δmm′ (2.15)[
p̂+
lm, p̂

−
l′m′
]

= − i

λ
δll′δmm′ . (2.16)

A few comments are now in order. Since the different spherical harmonics do not couple

in the algebra, we will drop the subscripts of l and m from here on. Furthermore, we see

that the shift-parameter λ ‘morally’ plays the role of Planck’s constant ~, but one that is

now l dependent. Moreover, we see that wave-functions described in terms of four phase-

space variables are now pair-wise related owing to the back-reaction (2.13). Finally, it is

important to note that each partial wave does not describe a single particle but a specific

profile of a density of particles. For instance, the s-wave with l = 0 describes a spherically

symmetric density of particles.

Since the operators û± and p̂± obey commutation relations associated to position and

momentum operators, we see that the algebra may be realized with û− = −iλ∂u+ in the u+

basis and û+ = iλ∂u− in the u− basis. A similar realization is evident for the momentum

operators. Moreover, we may now define the following inner-products on the associated

Hilbert space of states that respect the above algebra:〈
u±
∣∣ p∓〉 =

1√
2π

exp
(
iu±p∓

)
(2.17)

〈
u+
∣∣u−〉 =

1√
2πλ

exp

(
i
u+u−

λ

)
(2.18)

〈
p+
∣∣ p−〉 =

√
λ

2π
exp

(
iλp+p−

)
. (2.19)

1To avoid clutter in notation, we drop the in/out labels on positions and momenta of particles. u+ and

u− always refer to ingoing/outgoing positions, respectively. Consequently, p− and p+ are always associated

with ingoing/outgoing momenta, respectively.
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Using (2.18), for instance, we may write the out-going wave-function — travelling along

the coordinate u− after scattering — in terms of the in-going one travelling along u+ as

〈
u−
∣∣ψ〉 =: ψout

(
u−
)

=

∫ ∞
−∞

du+

√
2πλ

exp

(
−iu

+u−

λ

)
ψin
(
u+
)
. (2.20)

One can immediately see that this mapping is Unitary just being a fourier transform. To

derive another useful form of the S-Matrix associated to the scattering, we first move to

Eddington-Finkelstein coordinates:

u+ = α+ eρ
+
, u− = α− eρ

−
, p+ = β+ eω

+
and p− = β− eω

−
(2.21)

where α± = ±1 and β± = ±1 to account for both positive and negative values of the phase

space coordinates u+, u−, p+ and p−. The normalization of the wave-function as

1 =

∫ ∞
−∞

∣∣ψ (u+
)∣∣2 du+

=

∫ 0

−∞

∣∣ψ (u+
)∣∣2 du+ +

∫ ∞
0

∣∣ψ (u+
)∣∣2 du+

= −
∫ −∞
∞

∣∣∣ψ+
(
−eρ+

)∣∣∣2 eρ+ dρ+ +

∫ ∞
−∞

∣∣∣ψ+
(

+eρ
+
)∣∣∣2 eρ+ dρ+

=
∑
α=±

∫ ∞
−∞

∣∣∣ψ+
(
αeρ

+
)∣∣∣2 eρ+ dρ+ (2.22)

suggests the following redefinitions for the wave-function in position and momentum spaces

ψ±
(
α±eρ

±
)

= e−ρ
±/2 φ±

(
α±, ρ±

)
& ψ̃±

(
β±eω

±
)

= e−ω
±/2 φ̃±

(
β±, ω±

)
.

(2.23)

Therefore, using (2.20), we may write φout (α−, ρ−) as:

φout
(
α−, ρ−

)
=

1√
2πλ

∫ ∞
−∞

du+ e
ρ++ρ−

2 exp

(
−iu

+u−

λ

)
φin
(
α+, ρ+

)
=

∑
α+=±

∫ ∞
−∞

du+

√
2π
e
ρ++ρ−−log λ

2 exp
(
−iα+α−eρ

++ρ−−log λ
)
φin
(
α+, ρ+

)
=
∑
α+=±

∫ ∞
−∞

dx√
2π

exp
(x

2
− iα+α−ex

)
φin
(
α+, x+ log λ− ρ−

)
, (2.24)

where in the last line, we introduced x := ρ+ + ρ− − log λ. This equation may be written

in matrix form as(
φout (+, ρ−)

φout (−, ρ−)

)
=

∫ ∞
−∞

dx

(
A (+,+, x) A (+,−, x)

A (−,+, x) A (−,−, x)

)(
φin (+, x+ log λ− ρ−)

φin (−, x+ log λ− ρ−)

)
(2.25)
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where we have defined the quantity

A (γ, δ, x) :=
1√
2π

exp
(x

2
− i γ δ ex

)
, (2.26)

with γ = ± and δ = ±. This integral equation may further be simplified by moving to

Rindler plane waves:

φout
(
±, ρ−

)
=

1√
2π

∫ ∞
−∞

dk− φ
out (±, k−) eik−ρ

−
(2.27)

φin
(
±, x+ log λ− ρ−

)
=

1√
2π

∫ ∞
−∞

dkx̃ φ
in (±, kx̃) e−ikx̃(x+log λ−ρ−) (2.28)

A (γ, δ, x) =
1√
2π

∫ ∞
−∞

dkxA (γ, δ, kx) eikx x . (2.29)

This allows us to write the above matrix equation (2.25) as(
φout (+, k)

φout (−, k)

)
= e−ik log λ

(
A (+,+, k) A (+,−, k)

A (−,+, k) A (−,−, k)

)(
φin (+, k)

φin (−, k)

)
(2.30)

where A (γ, δ, k) can be computed from the inverse Fourier transform of (2.26) using a

coordinate change y = ex and the identity∫ ∞
0

dy eiσyy−ik−
1
2 = Γ

(
1

2
− ik

)
eiσ

π
4 ekσ

π
2 , where σ = ± . (2.31)

Carrying out this computation, we find the following S-Matrix:

S (kl, λl) = e−ikl log λl

(
A (+,+, kl) A (+,−, kl)
A (−,+, kl) A (−,−, kl)

)

=
1√
2π

Γ

(
1

2
− ikl

)
e−ikl log λl

(
e−i

π
4 e−kl

π
2 ei

π
4 ekl

π
2

ei
π
4 ekl

π
2 e−i

π
4 e−kl

π
2

)
. (2.32)

In this expression, we have reinstated a subscript on k and λ to signify that they depend

on the specific partial wave in question. One may additionally diagonalize this matrix by

noting that

A (+,+, k) = A (−,−, k) and A (+,−, k) = A (−,+, k) . (2.33)

With this observation, we see that the diagonalization of the S-Matrix is achieved via the

redefinitions

φ+
1 (k) = φ+ (+, k) + φ+

(
−, ρ+

)
, φ+

2 (k) = φ+ (+, k)− φ+ (−, k)

A1 (k) = A (+,+, k) +A (+,−, k) , A2 (k) = A (+,+, k)−A (+,−, k) . (2.34)

It may be additionally checked that this matrix is unitary. As already mentioned, while

it may not be clear whether this matrix is applicable to the formation and evaporation
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of a physical black hole, a conservative statement that can be made with certainty is the

following: all information that is thrown into a large black hole is certainly recovered in its

entirety, at least when the degrees of freedom in question are positions and momenta. It

would be interesting to generalize this to degrees of freedom carrying additional conserved

quantities like electric charge, etc. On the other hand, there is a certain property of the

S-Matrix that may be puzzling at first sight. Positive Rindler energies k imply that the

off-diagonal elements in the S-Matrix are dominant with exponentially suppressed diagonal

elements. While negative Rindler energies reverse roles. One way to interpret this feature

is to think of an eternal black hole where dominant off-diagonal elements suggest that

information about in-going matter from the right exterior is carried mostly by out-going

matter from the left exterior. However, in a physical collapse, there is only one exterior.

It has been suggested by ’t Hooft that one must make an antipodal mapping between the

two exteriors to make contact with the one-sided physical black hole; we discuss this issue

in section 5.

3 The model

Asking two simple questions allows us to almost entirely determine a quantum mechanical

model that corresponds to the black hole scattering matrix of the previous section. The

first question is ‘what kind of a quantum mechanical potential allows for scattering states?’

The answer is quite simply that it must be an unstable potential. The second question

is ‘what quantum mechanical model allows for energy eigenstates that resemble those of

Rindler space?’ The answer, as we will show in this section, is a model of waves scattering

off an inverted harmonic oscillator potential. Using this intuition, we will now construct

the model and show that it explicitly reproduces the desired S-Matrix. Having constructed

the model, we will then proceed to compare it to 2d string theory models. The construction

of our model and intuition gained from a comparison to 2d string theory/matrix quantum

mechanics models [25, 28, 31] allows us to study time delays and degeneracy of states in

the next section.

Inverted quadratic potentials, at a classical level, fill up phase space with hyperbolas as

opposed to ellipses as in the case of standard harmonic oscillator potentials. Since we have

a tower of 4d partial waves in the black hole picture, each of them results in a phase space

of position and momentum and consequently a collection of inverted harmonic oscillators,

one for each partial wave. Since the black hole scattering of ’t Hooft mixes positions and

momenta, we are naturally led to consider the description of scattering in phase space.

3.1 Construction of the model

We first start with a phase space parametrized by variables xlm and plm. To implement

the appropriate scattering off the horizon, we start with the same black hole scattering

algebra: [x̂lm, p̂l′m′ ] = iλδmm′δll′ , with λ = c/
(
l2 + l + 1

)
with c = 8πG/R2. We will

return to how this parameter might naturally arise in a microscopic setting in section 5.

Standard bases of orthonormal states are |x; l,m〉 and |p; l,m〉; these are coordinate and

– 9 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
1

momentum eigenstates respectively, with

〈l,m;x|p; l,m〉 =
1√
2πλ

eipx/λ δmm′δll′ . (3.1)

Since our interest is in the scattering of massless particles, it will turn out to be conve-

nient to use light-cone bases |u±; l,m〉 which are orthonormal eigenstates of the light-cone

operators:

û±lm =
p̂lm ± x̂lm√

2
and

[
û+
lm, û

−
l′m′
]

= iλδll′δmm′ . (3.2)

While they look similar to creation and annihilation operators of the ordinary harmonic

oscillator, û± are in truth hermitian operators themselves; and are not hermitian conjugate

to each other. Therefore, the states |u±; l,m〉 are reminiscent of coherent states. These plus

and minus bases will be useful in describing the in and outgoing states of the upside down

harmonic oscillator. For definiteness, we will choose for the ingoing states to be described

in terms of the u+
l,m basis while for the outgoing ones to be in terms of the u−l,m basis.

As in the previous section, we will work in the simplification where different oscillators

(partial waves) do not interact and will therefore omit the partial wave labels in all places

where they do not teach us anything new. Furthermore, as before, from the commutation

relations we may define the following inner product on the Hilbert space of states

〈u+|u−〉 =
1√
2πλ

exp

(
iu+u−

λ

)
, (3.3)

that expresses the Fourier transform kernel between the two bases. We may again realize

the algebra if û− acts on 〈u+|u−〉 and 〈u+|x〉 as −iλ∂u+ while û+ acts on 〈u−|u+〉 and

〈u−|x〉 as iλ∂u− . To endow the model with dynamics, we now turn to the Hamiltonian for

each oscillator/partial wave

Hlm =
1

2

(
p2
lm − x2

lm

)
=

1

2
(u+
lmu
−
lm + u−lmu

+
lm) , (3.4)

which may also be written as

H = ∓ i λ

(
u±∂u± +

1

2

)
(3.5)

in the u± bases where we drop the l,m indices. Physically the wave-function can be taken to

correspond to a wave coming from the right which after scattering splits into a transmitted

piece that moves on to the left and a reflected piece that returns to the right. The other

wave function can be obtained from this one by a reflection x → −x. The light-cone

coordinates describe these left/right movers and simplify the description of scattering since

the Schrödinger equation becomes a first order partial differential equation. Moreover, the

energy eigenfunctions are simply monomials of u± while in the x representation the energy

eigenfunctions are more complicated parabolic cylinder functions. In particular, for each

partial wave the Schrödinger equation in light-cone coordinates is:

i λ ∂tψ±
(
u±, t

)
= ∓ i λ

(
u±∂u± + 1/2

)
ψ±
(
u±, t

)
(3.6)
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Figure 1. The scattering diagram.

with solutions

ψ±
(
u±, t

)
= e∓t/2 ψ0

±
(
e∓tu±

)
. (3.7)

This can also be written in bra/ket notation as:

〈u±|ψ±(t)〉 = 〈u±|e
i
λ
Ĥt|Ψ±0 〉 = e∓

t
2 〈e∓tu±|Ψ±0 〉 . (3.8)

The time evolution for the basis states is given by

e
i
λ
Ht|u±〉 = e±

t
2 |e±tu±〉

〈u±|e
i
λ
Ht = e∓

t
2 〈e∓tu±|

〈u+|e
i
λ
Ht|u−〉 =

1√
2πλ

e−
t
2 exp

(
i

λ
u+u−e−t

)
. (3.9)

In the conventions of figure 1, it is easy to see that ingoing states can be labelled by the

u+ axis while the outgoing ones by the u− axis. Since the potential is unbounded, the

Hamiltonian has a continuous spectrum. In the u+ representation the energy eigenstates

with eigenvalue ε are
1√
2πλ

(u+)i
ε
λ
− 1

2 .

The singularity at u+ = 0 leads to a two fold doubling of the number of states. This

is understood to be arising from the existence of the two regions (I–II) in the scattering

diagram. From now on we use |ε, α+〉in and |ε, α−〉out for the in and outgoing energy

eigenstates with the labels α+ = ± , α− = ± to denote the regions I and II. While we have

four labels, we are still only describing waves in the two quadrants (I–II) with two of them

for ingoing waves and two for outgoing ones. The in-states may be written as

〈u+|ε,+〉in =

 1√
2πλ

(u+)
i ε
λ
− 1

2 u+ > 0

0 u+ < 0
〈u+|ε,−〉in =

0 u+ > 0
1√
2πλ

(−u+)i
ε
λ
− 1

2 u+ < 0
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describing left and right moving ingoing waves for the regions I and II respectively. Simi-

larly, the natural out basis is written as

〈u−|ε,+〉out =

 1√
2πλ

(u−)
−i ε

λ
− 1

2 u− > 0

0 u− < 0
〈u−|ε,−〉out =

0 u− > 0
1√
2πλ

(−u−)−i
ε
λ
− 1

2 u− < 0

to describe the right and left moving outgoing waves for the regions I and II respectively.

Therefore, time evolution of the energy eigenstates

〈u+|ε,+〉in(t) =
1√
2πλ

e−i
ε
λ
t(u+)i

ε
λ
− 1

2 =
1√
2πλ

e−
ρ+

2 e−i
ε
λ
tei

ε
λ
ρ+ (3.10)

implies that they correspond to the Rindler relativistic plane-waves2 moving with the speed

of light in the tortoise-coordinates if we identify the quantum mechanical time with Rindler

time t = τ and the inverted harmonic oscillator energy with the Rindler momentum via

κλ = ε. This means that the energy of the eigenstates of the non-relativistic inverted

oscillator, when multiplied by λ, can also be interpreted as the energy/momentum of the

Rindler relativistic plane waves of the previous section. This allows us to write down any

ingoing state in terms of these Rindler plane waves. As we have seen, the unitary operator

relating the u± representations is given by the fourier kernel (3.3) on the whole line that

acts on a state as

ψout(u
−) =

[
Ŝψin

]
(u−) =

∫ ∞
−∞

du+

√
2πλ

e
−iu+u−

λ ψin(u+). (3.11)

It is now clear that repeating the calculations of the previous section results in the same

S-Matrix, rather trivially. However, to make the connection to the eigenstates of the

inverted harmonic oscillator transparent, we will derive it in a more conventional manner.

To represent the action of the kernel on energy eigenstates, we split it into a 2 × 2 matrix

that relates them as follows: (
|ε,+〉out

|ε,−〉out

)
= Ŝ

(
|ε,+〉in
|ε,−〉in

)
. (3.12)

The fastest method to find each entry is to compute the in-going energy eigenstates in the

out-going position basis and vice versa using the insertion of a complete set of states of

the form

〈u−|ε〉in =

∫ ∞
−∞

du+〈u−|u+〉〈u+|ε〉in . (3.13)

The results are

〈u−|ε,±〉in = λ
iε
λ e
∓iπ
4 e±

πε
2λΓ

(
1

2
+ i

ε

λ

)
(α−|u−|)−i

ε
λ
− 1

2

√
2πλ

(3.14)

〈u+|ε,±〉out = λ
−iε
λ e

±iπ
4 e±

πε
2λΓ

(
1

2
− i ε

λ

)
(α+|u+|)i

ε
λ
− 1

2

√
2πλ

. (3.15)

2Normalised in the u± basis.
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Each of these equations gives two results for each sign3 to yield:

S =
1√
2π

exp
(
−i ε

λ
log λ

)
Γ

(
1

2
− i ε

λ

)(
e−i

π
4 e−

πε
2λ ei

π
4 e

πε
2λ

ei
π
4 e

πε
2λ e−i

π
4 e−

πε
2λ

)

= eiΦ(ε) exp
(
−i ε

λ
log λ

) e−iπ/4√
1+e2πε/λ

eiπ/4√
1+e−2πε/λ

eiπ/4√
1+e−2πε/λ

e−iπ/4√
1+e2πε/λ

 , (3.16)

with the scattering phase Φ(ε) being defined as

Φ(ε) =

√
Γ
(

1
2 − i

ε
λ

)
Γ
(

1
2 + i ελ

) . (3.17)

Identifying parameters as kl λl = εl, we see that this precisely reproduces the S-Matrix

derived in the previous section for every partial wave. In this model, it is clear that the

competition between reflection and transmission coefficients is owed to the energy of the

waves being scattered being larger than the tip of the inverted potential.

3.2 A projective light-cone construction

Although we had good reason to expect such an inverse harmonic oscillator realization

of the black hole S-Matrix, there is, in fact, another way to derive it — using what is

called a projective light-cone construction. This construction was first studied by Dirac

and [40, 41] provide a good modern introduction to the topic. The essential idea is to

embed a null hyper-surface inside Minkowski space to study how linear Lorentz symmetries

induce non-linearly realized conformal symmetries on a (Euclidean) section of the embedded

surface. This allows us to relate the Rindler Hamiltonian -which can then be related directly

to the Hamiltonian of the quantum mechanics model that describes the scattering- with

the Dilatation operator on the horizon. In a black hole background this construction

is of course expected to hold only locally in the near horizon region. We first introduce

X = (xµ, xd−1, xd) with µ = 1, . . . , d−2 (note that µ is a Euclidean index), where the light-

cone coordinates are defined as x± = xd ± xd−1. Here, xd serves as the time coordinate.4

The Minkowski metric ηMN in these coordinates is given as

ds2 = − dx+dx− + dxµdx
µ , (3.18)

which has an SO(d − 1, 1) Lorentz symmetry. There is an isomorphism between the cor-

responding Lorentz algebra and the Euclidean conformal algebra in d− 2 dimensions. To

state this isomorphism, we first label the d − 2-dimensional Euclidean conformal group

generators as:

Pµ = i∂µ corresponding to translations,

Mµν = i (xµ∂ν − xν∂µ) to rotations,

D = ixµ∂µ to dilatations, and

Kµ = i
(
2xµ (xν∂ν)− x2∂µ

)
to special conformal transformations . (3.19)

3For negative signs, one makes use of (−1)iε/λ−1/2 = e−iπ/2e−πε/λ.
4The null cone is described by the equation X2 = 0 and a Euclidean section can be given as x+ = f(xµ).
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The identification is now given as follows:

Jµν = Mµν , Jµ+ = Pµ , Jµ− = Kµ , J+− = D , (3.20)

where the SO(3, 1) Lorentz generators JMN are given by

JMN = xMpN − xNpM . (3.21)

These satisfy the SO(3, 1) w SL(2,C) algebra. In particular the Dilatation operator on the

two dimensional horizon is

D = J+− = x+p− − x−p+ =
1

λ

(
u+u− + u−u+

)
=

1

λ
H , (3.22)

where in the second equality we used u± = x± to connect to the light-cone coordinates

of the previous sub-section and in the third equality, we made use of the back-reaction

relations (2.13). Interestingly enough, we see that an appropriately scaled Dilatation op-

erator together with the back-reaction relations gives us exactly the Hamiltonian of the

inverted oscillator. The scaling is also neatly realized in the relation between the quantum

mechanical energy ε and the Rindler energy κ to relate the two S-Matrices.

This construction via the light-cone projection could possibly shed more light on the

relation between the black hole S-Matrix and string theoretic amplitudes. In the early

papers on black hole scattering [3, 17, 18], a striking similarity between the S-Matrix and

stringy amplitudes was observed. The role of the string worldsheet was attributed to the

horizon itself. It was noted that the string tension was imaginary. In the construction

above, we found that the induced conformal symmetry on the horizon is Euclidean and

that the Dilatation operator is mapped to the time-evolution operator (Rindler Hamilto-

nian) of the 4d Lorentzian theory. This led us to the unstable potential of the inverse

harmonic oscillator. It may well be that the apparently misplaced factors of i in the string

tension is owed to the Euclidean nature of conformal algebra on the horizon. It would also

be interesting to understand the role of possible infinite-dimensional local symmetries on

the horizon/worldsheet [42, 43] from the point of view of the quantum mechanics model,

elaborating on the null cone construction. We leave this study to future work.

While the model is seemingly very simple, this is not the first time that such a model

has been considered to be relevant for black hole physics [30, 44]. However, previous

considerations have found that these models do not correspond to 2d black hole formation

owing to an insufficient density of states in the spectrum. Refining these considerations

with the intuition that each oscillator as considered in this section corresponds to a partial

wave of a 4d black hole, we find that our model may indeed be directly related to 4d black

holes formed by physically collapsing matter. We provide evidence for this in section 4. In

order to move on to which, however, it will be very useful for us to review the 2d string

theory considerations of the past; this is what we now turn to.

3.3 Relation to matrix models and 2-d string theory

Hermitian Matrix Quantum Mechanics (MQM, henceforth) in the inverted harmonic os-

cillator was studied in connection with c = 1 Matrix models and string theory in two
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dimensions. For more details, we refer the reader to [24, 45]. Here, we briefly review

these results in order to point out various similarities and differences with our work. The

Lagrangian of MQM is of the form

L =
1

2
Tr
[
(DtM)2 +M2

]
with Dt = ∂t − iAt , (3.23)

where At is a non-dynamical gauge field. The N ×N Hermitian Matrices transform under

U(N) as M → U †MU . The role of the non-dynamical gauge field is to project out the non-

singlet states in the path integral. Diagonalization of the matrices results in a Vandermonde

factor in the path integral measure:

DM = DU
∏
i

dxi
∏
i<j

(xi − xj)2 . (3.24)

This indicates a natural fermionic redefinition of the wave-functions into Slater determi-

nants (in a first quantised description). The Hamiltonian of the system is, therefore, in

terms of N free fermions:

Ĥ Ψ̃ = −

(
~2

2

N∑
i=1

∂2
xi +

1

2
x2
i

)
Ψ̃ with Ψ̃(xi) =

∏
i<j

(xi − xj)Ψ(xi) (3.25)

with Ψ̃(xi) being the redefined fermionic wave-functions. Filling up the ‘Fermi-sea’ up to

a level µ, allows for a definition of the vacuum. Clearly, all fermions are subject to the

same chemical potential µ that is typically considered to be below the tip of the inverted

oscillator. A smooth string world-sheet was argued to be produced out of these matrices in

a double-scaling limit µ→ 0, ~→ 0 with a fixed inverse string-coupling defined by the ratio

µ/~ ∼ 1/gs. In this double-scaling limit, this theory describes string theory on a 2d linear

dilaton background with coordinates described by time t and the Liouville field φ. The

matrix model/harmonic oscillator coordinate x is conjugate to the target space Liouville

field via a non-local integral transformation [46]. In contrast to this picture, owing to a

one-one correspondence between the 2d harmonic oscillators and 4d partial waves in our

model, this integral transform is unnecessary. However, it has been argued in string theory

that only the quadratic tip is relevant in this double-scaling limit, even in the presence of

a generic inverted potential, emphasizing the universality of the quadratic tip. Whilst we

do not have a similar stringy argument, we expect the ubiquitous presence of the quadratic

potential to persist in our construction owing to the ubiquitous presence of the Rindler

horizon in physical black holes formed from collapsing matter. A modern discourse with

emphasis on the target space interpretation of the matrix model as the effective action of N

D0 branes may be found in [47]. A natural second quantized string field theory description

of the system where the fermionic wave-functions are promoted to fermionic fields may

be found in [24, 48, 49] and references therein. A satisfactory picture of free fermionic

scattering in the matrix model was given in [25] via the following S-Matrix relation:

Ŝ = ib→f ◦ Ŝff ◦ if→b (3.26)
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where even though the asymptotic tachyonic states are bosonic, one is instructed to first

fermionize, then scatter the fermions in the inverted quadratic potential and then to

bosonize again. The total S-matrix is unitary if the fermionic scattering is unitary and

the bosonization spans all possible states. The logic of this expression resembles that of

’t Hooft’s S-matrix, where one first expands a generic asymptotic state into partial waves,

expresses them in terms of near horizon Rindler parameters, scatters them with the given

S-matrix that is similar to the one of 2d string theory before transforming back to the

original asymptotic coordinates. At the level of the discussion now, it may already be

noted that one important difference between the 2d string-theoretic interpretation of the

matrix model and our 4d partial wave one is the nature of the transformations that re-

late asymptotic states to the eigenstates of the inverted harmonic oscillator. Additionally,

and perhaps more importantly, in our construction, we have an entire collection of such

harmonic oscillators/matrix models parametrised by l,m that conspire to make up a 4d

black hole. We present concrete evidence for this by studying time-delays and degeneracy

of states in section 4. There are further differences between the 2d string theories and our

construction, in order to present which, we need to proceed to a study of the spectrum of

states in our model; this enables us to study growth of states in the two models. Finally,

we also comment on a possible second quantization and appropriate MQM interpretation

of our model in section 5.

4 Combining the oscillators (partial waves)

On the side of the macroscopic black hole in section 2, the calculation was done in an

approximation where there is a pre-existing black hole into which degrees of freedom are

thrown (as positions and momenta). It was then evident that the information that was sent

into the black hole is completely recovered since the S-Matrix was unitary. Furthermore,

the back-reaction computation told us exactly how this information is retrieved: in-going

positions as out-going momenta and in-going momenta as out-going positions. However, a

critical standpoint one may take with good reason would be to say that this is not good

enough to tell us if a physical collapse of a black hole and complete evaporation of it is a

unitary process. The calculation has not modeled a collapsing problem.

The picture to have in a realistic collapse is that of an initial state that evolves in

time to collapse into an intermediate black hole state which then subsequently evaporates

to result in a final state that is related to the initial one by a unitary transformation.

Naturally, the corresponding macroscopic picture is that of a strongly time-dependent

metric. Heuristically, one may think of the total S-Matrix of this process as being split as

Ŝ = ŜI−→hor− Ŝhor−→hor+ Ŝhor+→I + (4.1)

where ŜI−→hor− corresponds to evolution from asymptotic past to a (loosely defined)

point in time when gravitational interactions are strong enough for the collapse to begin,

Ŝhor−→hor+ to the piece that captures all the ‘action’ — insofar as collapse and evaporation

are concerned — take place and finally Ŝhor+→I + represents the evolution of the evaporated

states to future infinity. The horizon — being a teleological construction that can be
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defined only if one knows the global structure of spacetime — has a time dependent size

and location in a collapse/evaporation scenario but for us will nevertheless comprise the

locus of spacetime points where the backreaction effects are important. Therefore, we

use subscripts hor± to refer to it, at different points in time, in the above heuristic split.

Thought of the total evolution this way, it is clear that the most important contribution

arises from the part of the matrix that refers to the region in space-time where gravitational

back-reaction cannot be ignored. The other pieces are fairly well-approximated by quantum

field theory on an approximately fixed background. Nevertheless, in the intermediate stage,

the metric is strongly time-dependent.

At the outset, let it be stated that we will not get as far as being able to derive this

metric from the quantum mechanics model. We may ask if there are generic features of the

black hole that we have come to learn from semi-classical analyses that can also be seen

in this model. We will focus on two important qualitative aspects of (semi-classical) black

holes:

Time-delay. A physical black hole is not expected to instantaneously radiate information

that has been thrown into it. There is a time-delay between the time at which

radiation begins to be received by a distant observer and the time at which one may

actually recover in-going information. In particular, given an in-state that collapses

into a black hole, we expect that the time-scale associated to the scattering process

is ‘long’. In previous studies of 2d non-critical string theory, it was found that with

a single inverted harmonic oscillator, the associated time-delay is not long enough

to have formed a black hole [26, 29, 30]. However, with the recognition that each

oscillator corresponds to a partial wave and that a collection of oscillators represents

a 4d black hole, we see that the black hole degeneracy of states arises from the entire

collection while the time-delay associated to each oscillator is the time spent by an

in-going mode in the scattering region; the latter being more reminiscent of what one

might call ‘scrambling time’.

Approximate thermality. As Hawking famously showed [2], the spectrum of radiation

looks largely thermal for a wide range of energies. One way to probe this feature is

via the number operator — which, for a finite temperature system, can be written as

〈N̂(ω)〉 = ρ(ω)f(ω) with ρ(ω) being the density of states and f(ω) the appropriate

thermal distribution for Fermi/Bose statistics. Given that the S-Matrix is unitary,

we know that this notion of temperature and thermality of the spectrum is only

approximate. Notwithstanding this, a detector at future infinity should register this

approximately thermal distribution for a large frequency range.

In what follows, we will study whether the S-Matrix corresponding to our collection of

oscillators in the model presented in section 3 displays both these properties.

4.1 Time delays and degeneracy of states

We have seen that the total scattering matrix associated to four-dimensional gravity can be

seen as arising via a collection of inverted harmonic oscillators, each with a different algebra
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differentiated by λl in, say, (2.14). One canonical way to study life-times in scattering

problems in quantum mechanics is via the time-delay matrix, which is defined as:

∆tab = <

(
i
∑
c

S†(kl, λl)ac

(
dS(kl, λl)

dk

)
cb

)
. (4.2)

Each matrix element above encodes the time spent by a wave of energy kl in the scattering

region in the corresponding channel. The trace of this matrix, called Wigner’s time delay

τl, captures the total characteristic time-scale associated to the entire scattering process.

Said another way, should we start with a generic in-state that undergoes scattering and is

then retrieved in the asymptotic future as some out-state, the trace of the above matrix

associates a life-time to the intermediate state [50, 51]. For large energies kl, using S (kl, λl)

in (2.32), the Wigner time-delay associated to the scattering of a single oscillator can be

calculated to scale as τ ∼ log (λl kl). This is the same result as was found in the 2d string

theory literature [26, 29, 30] and was argued to not be long-enough for black hole formation.

Based on these black hole non-formation results in the matrix quantum mechanics, it

was suggested that studying the non-singlet sectors would shed light on 2d black hole

formation [34, 52]. Despite some efforts in relating the adjoint representations with long-

string states [44], a satisfactory Lorentzian description is still missing. Anticipating our

result prematurely, our model does not suffer from these difficulties as it is to describe a 4d

black hole with a collection of oscillators. Merely the s-wave oscillator in our model would

mimic the singlet sector in matrix quantum mechanics.5

The above time delay τ may also be interpreted as a density of states associated to

the system. The inverted potential under consideration implies a continuous spectrum. In

order to discretize which, to derive the density of states, the system must be stabilized — by

putting it in a box of size Λ, for instance. Demanding that the wavefunctions vanish at the

wall and regulating the result by subtracting any cut-off dependent quantities, the density of

states may be computed from the scattering phase Φ defined via S (kl, λl) = exp [iΦ (kl, λl)]

as ρ(εl) = dΦ/dεl [53]. The result is exactly the same as what we get from computing the

time delay using the scattering matrix (2.32) and the time-delay equation (4.2) to find a

Di-Gamma function ψ(0)

ρ (εl) = τl =
2

λl
<
[
ψ(0)

(
1

2
− i εl

λl

)
+ log (λl)

]

= <

[ ∞∑
n=0

2

iεl − λl
(
n+ 1

2

) +
2

λl
log (λl)

]
. (4.3)

This density of states may be used to define a partition function for each partial wave (with

Hamiltonian Ĥlm), where the energy eigenstates contributing to the partition function will

have been picked out by the poles of the density ρ (εl). However, in our model, we see

that there are many oscillators in question. Should we start with an in-state made of a

collection of all oscillators instead of a single partial wave, we may first write down the

5It would be very interesting if higher l modes can be described as non-singlets of a matrix model.
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total S-Matrix as a product of the individual oscillators as

Stot =

∞∏
l=0

S (kl, λl) , (4.4)

assuming that different partial waves do not interact. One may correct for this by adding

interaction terms between different oscillators. To compute the time-delay associated to

a scattering of some in-state specified by a given total energy involves an appropriately

defined Wigner time-delay matrix as

τtot = Tr

[
<
(
−i
(
S†tot

)
ac

(
dStot

dEtot

)
cb

)]
(4.5)

where this equation makes sense only if we have defined a common time evolution and

unit of energy for the total system/collection of partial waves. We will elaborate on this

in a while. Now, even in the spherically symmetric approximation, to write the total S-

Matrix as a function of merely one coarse-grained energy Etot is not a uniquely defined

procedure. However, our intuition that each partial wave may be thought of as a single-

particle oscillator allows us to compute the density of states in a combinatorial fashion.

We will see that the degeneracy of states associated to an intermediate long-lived thermal

state arises from the various ways in which one might distribute a given total energy

among the many available oscillators. Given a total energy Etot, we now have the freedom

to describe many states, each with a different distribution of energies into the various

available oscillators. From the poles in the density defined in (4.3), we see that each

oscillator has energies quantized as6

εl = iλl

(
nl +

1

2

)
. (4.6)

This allows us to measure energies in units of c, where c is defined implicitly via λl(l
2+l+1)

= c. Therefore, in these units, the energies are ‘quantized’ as

εl
i c

=
1

l2 + l + 1

(
nl +

1

2

)
. (4.7)

Now, given some total energy Etot, we see that any oscillator may be populated with a

single particle state carrying energy such that nl = Etot

(
l2 + l + 1

)
, where we leave out the

half integer piece for simplicity. Importantly, we see that there exist ‘special’ states coming

from very large l-modes even for very small energies. For example, an energy of 1 could

arise from a very large l-mode with the excitation given by nl =
(
l2 + l + 1

)
. This is rather

unsatisfactory for one expects that it costs a lot of energy to create such states. Moreover,

there is an interplay between the log term in the growth of states and the behaviour of

the DiGamma function that we are unable to satisfactorily take into account. There is an

additional problem which is that the energy of each partial wave is measured in different

6The seemingly disconcerting factor of i is just owed to the fact that we have scattering states as opposed

to bound ones.
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units that are l dependent; this means that they also evolve with different times. We thus

conclude that this is not the correct way to combine the different oscillators.

There is a rather beautiful way to resolve all these three problems via a simple change

of variables that we turn to next. It will allow us to interpret the above cost of energy

as relative shifts of energies with respect to a common ground state. Additionally these

relative shifts also cure the above interplay; there will simply be no log term in the density

of states. Finally, this will also introduce a canonical time evolution for the entire system,

resulting in one common unit of energy.

4.2 Exponential degeneracy for the collection of oscillators

In order to combine the different oscillators and define a Hamiltonian for the total system

we need to get rid of the l dependence in the units of energy used for different oscillators.

It turns out that this is possible by rewriting the black hole algebra. Moreover using these

new variables, the relation between ’t Hooft’s black hole S-Matrix for an individual partial

wave and the one of 2d string theory of type II [25] can be made manifest. To make this

connection transparent, we again start with a collection of inverse harmonic oscillators and

the following Hamiltonian for the total system

Htot =
∑
l,m

1

2

(
p̃2
lm − x̃2

lm

)
=
∑
l,m

1

2

(
ũ+
lmũ
−
lm + ũ−lmũ

+
lm

)
, (4.8)

but this time imposing the usual λ-independent commutation relations [ũ+
lmũ
−
l′m′ ]= iδll′δmm′ .

The λ dependence will come through via an assignment of a chemical potential µ(λ) for

each oscillator; this assignment is to be thought of as a different vacuum energy for each

partial wave. Following [25], one may then derive an S-Matrix for this theory. To match

this to the one of ’t Hooft for any given partial wave, one must identify the chemical po-

tential and energy parameters as µ = 1/λ and the Rindler energy k = ω + µ = ω + 1/λ.

It is worth noting that in the reference cited above, only energies below the tip of the in-

verted potential were considered, resulting in a dominant reflection coefficient. In contrast

’t Hooft’s partial waves carry energies higher than the one set by the tip of the potential.

Consequently, to make an appropriate identification of 2d string theory with the partial

wave S-Matrix, an interchanging of the reflection and transmission coefficients is necessary.

From a matrix quantum mechanics point of view, it may additionally be noted that the

partial wave parameter λ may be absorbed in either the Planck’s constant or the chemical

potential to leave the string coupling of each partial wave fixed as gs ∼ ~/µ ∼ c/(l2 + l+1).

This indicates that as we increase the size of the black hole or we consider higher l partial

waves the corresponding string coupling becomes perturbatively small.

Writing out the energies of the various partial waves with the above identification,

we have

kl = ωl +
l2 + l + 1

c
, and ERindler

tot =
∑
l

kl . (4.9)
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At this stage, the labels ωl are continuous energies. However, discretizing the spectrum as

before, by putting the system in a box, we arrive at discrete energies7

cEtot =
∑
l

[
i c

(
nl +

1

2

)
+ l2 + l + 1

]
, (4.10)

for every individual oscillator. Without a detour into this 2d string theory literature, we

may have alternatively arrived at this spectrum from the quantum mechanics model in 3

via the following identifications:

εl −→ 1 + λl ωl and λl −→
1

µl
. (4.11)

E=0

l=0,  n =0

l=1,  n =0

n  =1

1

0

0

n =11

Figure 2. Spectrum of the collection of oscilla-

tors. The red curve is indicative of the potential

with the horizontal solid lines indicating the var-

ious energy levels available.

While the model presented in section 3

makes the algebra manifest, the above iden-

tification of parameters to relate to the

model with a λ-independent algebra makes

the physical interpretation of the relative

shifts in energies between the partial waves

manifest and allows for a consistent defini-

tion of time and energy for the total system.

This allows us to rewrite our S-Matrix

S (εl/λl) as a function of two variables ωl
and µl as S (ωl, µl). With this change of

variables, we recover exactly the S-Matrix

of the 2d matrix models discussed in the

literature and therefore, now allows us to

interpret µ as a chemical potential of the

theory. However, since µl is now l depen-

dent in our collection of models, it gives us

a natural way to interpret how the com-

bined system of oscillators behave. To ex-

cite a very large l oscillator, one first has

to provide sufficient energy that is equal to

µl ∼
(
l2 + l + 1

)
. Therefore, we naturally see that exciting a large l-oscillator costs en-

ergy! The physical spectrum may be depicted as in figure 2, where we depict an arbitrarily

chosen ground-state energy with E = 0, each oscillator labelled by l and excitations above

them by nl. The various oscillators are shifted by a chemical potential. And the vacuum

is defined to be the one with all Rindler energies kl set to zero. Now, given an initial state

carrying a total energy of Etot, we are left with a degeneracy of states that may be formed

by distributing this energy among the many available oscillators. The larger this energy,

the more oscillators we may distribute it into and hence the larger the degeneracy. The

degeneracy associated to equation (4.10), without the chemical potential shift, is merely

7Note again the relative factor of i that indicates that the harmonic oscillator levels have to do with

decaying/scattering states while l’s are bound states.
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asking for the number of sets of all integers {nl} that add up to Etot. These are the

celebrated partitions into integers that — as Ramanujan showed — grow exponentially.

Clearly, for large total energy, our degeneracy grows similarly at leading order. However,

the chemical potential shift slows down the growth polynomially compared to the parti-

tioning into integers owing to the fact that for a given Etot, only approximately
√
Etot

number of oscillators are available. It is worthwhile to note that, in this simplistic analysis,

we have ignored the degeneracy arising from the m quantum number; accounting for which

clearly increases the growth of states. Therefore, we already see that the model allows for

collapse in that it supports an exponential growth of density of states! This shares striking

resemblance to the Hagedorn growth of density of states in black holes.

As a conservative estimate, we may start with some total energy Etot and a fixed

set of oscillators that are allowed to contribute to it. This allows us to sum over the

contribution arising from the
(
l2 + l + 1

)
c−1 piece in (4.10) to be left with some subtracted

total energy Ẽtot that is to be distributed among the nl excitations over each of the available

oscillators. Clearly, this grows exponentially much as the partitions into integers does, with

the subtracted energy Ẽtot. This is given by the famous Hardy-Ramanujan formula for the

growth of partitions of integers:

p (n) ∼ exp

(
π

√
2n

3

)
. (4.12)

Identifying n with the integer part of Ẽtot, we see the desired exponential growth. And

considering that the same total energy may be gained from choosing different sets of oscil-

lators to start with, increases this degeneracy further, in equal measure. While imposing

the antipodal identification of ’t Hooft — which we discuss in section 5 — reduces this de-

generacy, the exponential growth of states remains. How one may derive the Schwarzschild

entropy from this degeneracy requires a truly microscopic understanding of the parameter

λ. We suggest a way forward towards the end of this article but leave a careful study to

future work.

5 Discussion

In this article, we have constructed a quantum mechanics model that reproduces ’t Hooft’s

black hole S-Matrix for every partial wave using which, we provided non-trivial evidence

that it corresponds to a black hole S-Matrix; one that can be formed in a time-dependent

collapsing process owing to the appropriate density of states. Several questions, though,

remain unanswered. The only degrees of freedom in question were momenta and positions

of ingoing modes. One may add various standard model charges, spin, etc. to see how

information may be retrieved by the asymptotic observer.

Dynamically speaking, gravitational evolution is expected to be very complicated in

real-world scenarios. We have merely approximated it to one where different spherical

harmonics do not interact. While incorporating these interactions may be very difficult to

conceive in gravity, they are rather straightforward to implement in the quantum mechan-
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ical model; one merely introduces interaction terms coupling different oscillators. Exactly

what the nature of these interactions is, is still left open.

The complete dynamics of the black hole includes a change in mass of the black hole

during the scattering process. In this article, we chose to work in an approximation where

this is ignored. The corresponding approximation in the inverted oscillators is that the

potential is not affected by the scattering waves. In reality, of course, the quadratic poten-

tial changes due to the waves that scatter off it. The change in the form of the inverted

potential due to a scattering mode can be calculated [54]. We hope to work on this in

the future and we think that this gives us a natural way to incorporate the changes to

the mass of the black hole. Another possible avenue for future work is to realise a truly

microscopic description of the S-matrix, either in the form of a matrix model or a non-local

spin model having a finite-dimensional Hilbert space from the outset, where the inverse

harmonic potential or emergent SL(2,R) symmetries are expected to arise after an averag-

ing over the interactions between the microscopic degrees of freedom. Some models with

these properties can be found in [55–59].

Antipodal entanglement. Unitarity of the S-Matrix demands that both the left and

right exteriors in the two-sided Penrose diagram need to be accounted for; they capture

the transmitted and reflected pieces of the wave-function, respectively. In the quantum

mechanics model, there appears to be an ambiguity of how to associate the two regions I

and II of the scattering diagram in figure 1 to the two exteriors of the Penrose diagram.

We saw, in the previous section, that the quantum mechanical model appears to support

the creation of physical black holes by exciting appropriate oscillators. Therefore, in this

picture there is necessarily only one physical exterior. To resolve the issue of two exteriors,

it was proposed that one must make an antipodal identification on the Penrose diagram [20];

see figure 3. Unitarity is arguably a better physical consistency condition than a demand

of the maximal analytic extension. The precise identification is given by x→ Jx with8

J : (u+, u−, θ, φ) ←→
(
−u+,−u−, π − θ, π + φ

)
. (5.1)

Note that J has no fixed points and is also an involution, in that J2 = 1. Such an

identification implies that spheres on antipodal points in the Penrose diagram are identified

with each other. In particular, this means

u± (θ, φ) = − u± (π − θ, π + φ) and p± (θ, φ) = − p± (π − θ, π + φ) . (5.2)

Therefore, noting that the spherical harmonics then obey Yl,m(π−θ, π+φ)=(−1)lYl,m(θ, φ),

we see that only those modes with an l that is odd contribute. However, owing to the

validity of the S-Matrix only in the region of space-time that is near the horizon, this iden-

tification is presumably valid only in this region. Global identifications of the two exteriors

have been considered in the past [60–62]. The physics of the scattering, with this identifi-

cation is now clear. In-going wave-packets move towards the horizon where gravitational

8Note that the simpler mapping of identifying points in I, II via (u+, u−, θ, φ) ↔ (−u+,−u−, θ, φ) is

singular on the axis u+, u− = 0.
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Figure 3. The Penrose diagram. Each point in the conformal diagram originally corresponds to a

different sphere. After antipodal identification, the points (u+, u−) and (−u+,−u−) correspond to

antipodal points on a common sphere as given in (5.1). The red lines indicate the arrows of time.

back-reaction is strongest according to an asymptotic observer. Most of the information

then passes through the antipodal region and a small fraction is reflected back. Turning on

quantum mechanics implies that ingoing position is imprinted on outgoing momenta and

consequently, an highly localised ingoing wave-packet transforms into two outgoing pieces

— transmitted and reflected ones — but both having highly localised momenta. Their

positions, however, are highly de-localised. This is how large wavelength Hawking parti-

cles are produced out of short wavelength wave-packets and an IR-UV connection seems

to be at play. Interestingly, the maximal entanglement between the antipodal out-going

modes suggests a wormhole connecting each pair [63]; the geometric wormhole connects the

reflected and transmitted Hilbert spaces. Furthermore, as the study of the Wigner time-

delay showed, the reflected and transmitted pieces arrive with a time-delay that scales

logarithmically in the energy of the in-going wave. This behaviour appears to be very

closely related to scrambling time (not the lifetime of the black hole) and we leave a more

detailed investigation of this feature to the future. One may also wonder why transmitted

pieces dominate the reflected ones. It may be that the attractive nature of gravity is the

actor behind the scene.

Approximate thermality. We now turn to the issue of thermality of the radiated spec-

trum. Given a number density, say N in(k) as a function of the energy k, we know that

there is a unitary matrix that relates it to radiated spectrum. This unitary matrix is pre-

cisely the S-Matrix of the theory. The relation between the in and out spectra is given by

Nout(k) = S†N in(k)S. Using the explicit expression for the S-Matrix (2.32), we find

Nout
++(k) =

N in
++(k)

1 + e2πk
+

N in
−−(k)

1 + e−2πk
(5.3)

Nout
−−(k) =

N in
−−(k)

1 + e2πk
+

N in
++(k)

1 + e−2πk
, (5.4)

– 24 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
1

where N in
++ and N in

−− are the in-going number densities from either side of the potential.

We see that indeed the scattered pulse emerges with thermal factors 1+ e±2πk. For most of

the radiated spectrum to actually be thermal, we see that N in
++ and N in

−− must be constant

over a large range of energies. This was observed to be the case in the context of 2d string

theory, starting from a coherent pulse, seen as an excitation over an appropriate Fermi-sea

vacuum [26, 29, 30]. In our context, since we do not yet have a first principles construction

of the appropriate second quantised theory, this in-state may be chosen. For instance, a

simple pulse with a wide-rectangular shape would suffice. One may hope to create such a

pulse microscopically, by going to the second quantised description and creating a coherent

state. Alternatively, one may hope to realize a matrix quantum mechanics model that

realizes a field theory in the limit of large number of particles. After all, we know that

each oscillator in our model really corresponds to a partial wave and not a single particle

in the four dimensional black hole picture.

Second quantization v/s matrix quantum mechanics. Given the quantum mechan-

ical model we have studied in this article, we may naively promote the wave-functions ψlm
into fields to obtain a second quantized Lagrangian:

L =
∑
l,m

∫ ∞
−∞

du± ψ†lm
(
u±, t

) [
i∂t +

i

2

(
u±∂u± + ∂u±u

±)+ µl

]
ψlm(u±, t) . (5.5)

With a change of variables to go to Rindler coordinates,

ψ
(in/out)
lm (α±, ρ±, t) = eρ

±/2ψlm(u± = α±eρ
±
, t) , (5.6)

the Lagrangian becomes relativistic

L =
∑
l,m

∫ ∞
−∞

dρ±
∑

α±=1,2

Ψ
†(in/out)
lm

(
α±, ρ±, t

) (
i∂t − i∂ρ± + µl

)
Ψ

(in/out)
lm

(
α±, ρ, t

)
,

(5.7)

where the label ‘in’ (out) corresponds to the + (−) sign. The form of the Lagrangian

being first order in derivatives indicates that the Rindler fields are naturally fermionic.

In this description we have a collection of different species of fermionic fields labelled by

the {l,m} indices. And the interaction between different harmonics would correspond to

interacting fermions of the kind above. The conceptual trouble with this approach is that

each “particle” to be promoted to a field is in reality a partial wave as can be seen from the

four-dimensional picture. Therefore, second quantizing this model may not be straight-

forward [21]. It appears to be more appealing to think of each partial wave as actually

arising from an N -particle matrix quantum mechanics model which in the large-N limit

yields a second quantized description. Since N counts the number of degrees of freedom,

it is naturally related to c via

1

N2
∼ c =

8πG

R2
∼

l2P
R2

. (5.8)
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Therefore, N appears to count the truly microscopic Planckian degrees of freedom that

the black hole is composed of. The collection of partial waves describing the Schwarzschild

black hole would then be a collection of such N -particle matrix quantum mechanics models.

Another possibility is to describe the total system in terms of a single matrix model but

including higher representations/non-singlet states to describe the higher l modes. This

seems promising because if one fixes the ground state energy of the lowest l = 0 (or l = 1

after antipodal) oscillator, the higher l oscillators have missing poles in their density of

states compared to the l = 0, much similar to what was found for the adjoint and higher

representations in [64]. Finally we note that we can combine the chemical potential with

the oscillator Hamiltonian to get

Ĥtot =
∑
l,m

[
1

2

(
p̂2
lm − x̂2

lm

)
+

R2

8πG

(
L̂2 + 1

)]
, (5.9)

with L̂2 =
∑

i L̂
2
i giving the magnitude of angular momentum of each harmonic. One can

then perform a matrix regularisation of the spherical harmonics following [65, 66] which

replaces the spherical harmonics Ylm(θ, φ) with N × N matrices Ylm where l ≤ N − 1.

This naturally sets a cut-off on the spherical harmonics from the onset. To sharpen any

microscopic statements about the S-matrix, one might first need to derive an MQM model

that regulates Planckian effects.
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