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PART ONE

The Blackboard Model

of Problem Solving and the Evolution of

Blackboard Architectures
H. Penny Nii

Knowledge Systems Laboratory, .Computer Science Department, Stanford University,
701 Welch Road, Building C, Palo Alto, California 94304

Blackboard Model of Problem Solving

Historically, the blackboard model arose from abstracting
features of the HEARSAY-II speech-understanding system
developed between 1971 and 1976.) = HEARSAY-II un-
derstood a spoken speech query about computer science
abstracts stored in a data base. It “understood” in the
sense that it was able to respond to spoken commands
and queries about the database. From an informal sum-
mary description of the HEARSAY-II program, the HASP
system was designed and implemented between 1973 and
1975. The domain? of HASP was ocean surveillance, and
its task® was the interpretation of continuous passive sonar
data. HASP, as the second example of a blackboard sys-
tem, not only added credibility to the claim that a black-
board approach to problem solving was general, but it also
demonstrated that it could be abstracted into a robust
model of problem solving. Subsequently, many application
programs have been implemented whose solutions were for-
mulated using the blackboard model. Because of the differ-
ent characteristics of the application problems and because
the interpretation of the blackboard model varied, the de-
sign of these programs differed considerably. However, the
blackboard model of problem solving has not undergone
any substantial changes in the last ten years. \
A problem-solving model is a scheme for organizing\

reasoning steps and domain knowledge to construct a so-

1This document is a part of a retrospective monograph on the AGE
project currently in preparation.

This work was supported by the Defense Advanced Research Projects
Agency (N0039-83-C-0136), the National Institutes of Health (5P41
PR-00785), and Boeing Computer Services (W266875).

2Domain refers to a particular area of discourse, for example,
chemistry.

3Task refers to a goal-oriented activity within the domain, for exam-
ple, to analyze the molecular composition of a compound.
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lution to a problem. For example, in a backward-reasoning
model, problem solving begins by reasoning backward
from a goal to be achieved toward an initial state (data).
More specifically, in a rule-based backward reasoning model
knowledge is organized as “if-then” rules, and modus po-
nens inference steps are applied to the rules from a goal
rule back to an initial-state rule (a rule that looks at the in-
put data). An excellent example of this approach to prob-
lem solving is the MYCIN program (Shortliffe, 1976). In a
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the blackboard model are detailed. Part 2 of this article which
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teristics of application problems suitable for the blackboard
method of problem solving.




forward-reasoning model, however, the inference steps are
applied from an initial state toward a goal. The OPS sys-
tem exemplifies such a model (Forgy & McDermott, 1977).
In an opportunistic reasoning model, pieces of knowledge
are applied either backward or forward at the most “op-
portune” time. Put another way, the central issue of
problem solving deals with the question, “What pieces of
knowledge should be applied when and how?” A problem-
solving model provides a conceptual framework for orga-
nizing knowledge and a strategy for applying that knowl-
edge. ' :

The blackboard model of problem solving is a highly
structured special case of opportunistic problem solving.
In addition to opportunistic reasoning as a knowledge-
application strategy, the blackboard model prescribes the
organization of the domain knowledge and all the input
and intermediate and partial solutions needed to solve the
problem. We refer to all possible partial and full solutions
to a problem as its solution space.\

In the blackboard model, the solution space is orga-
nized into one or more application-dependent hierarchies.*
Information at each level in the hierarchy represents par-
tial solutions and is associated with a unique vocabulary
that describes the information. The domain knowledge is
partitioned into independent modules of knowledge that
transform information on one level, possibly using infor-
mation at other levels, of the hierarchy into information
on the same or other levels. The knowledge modules per-
form the transformation using algorithmic procedures or
heuristic rules that generate actual or hypothetical trans-
formations. Opportunistic reasoning is applied within this
overall organization of the solution space and task-specific
knowledge; that is, which module of knowledge to. apply
is determined dynamically, one step at a time, resulting in
the incremental generation of partial solutions. The choice
of a knowledge module is based on the solution state (par-
ticularly, the latest additions and modifications to the data
structure containing pieces of the solution) and on the ex-
istence of knowledge modules capable of improving the
current state of the solution. At each step of knowledge
application, either forward- or backward-reasoning meth-
ods can be applied.®

The blackboard model is a relatively complex
problem-solving model prescribing the organization of
knowledge and data and the problem-solving behavior
within the overall organization. This section contains a
description of the basic blackboard model. Variations and
extensions are discussed in subsequent sections.

4The hierarchy can be an abstraction hierarchy, a part-of hierarchy,
or any other type of hierarchy appropriate for solving the problem.

5There are various other ways of categorizing reasoning methods, for
example, event driven, goal driven, model driven, expectation driven,
and so forth. Without getting into the subtle differences between
these methods, it is safe to say that any one of these methods can
be applied at each step in the reasoning process.
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There is a global database called the blackboard, and there
are logically independent sources of knowledge called the knowledge
sources. The knowledge sources respond to changes on the black-
board. Note that there is no control flow; the knowledge sources are
self-activating.

The Blackboard Model
Figure 1

The Blackboard Model

The blackboard model is usually described as consisting of
three major components (see Figure 1):

The knowledge sources. The knowledge needed to
solve the problem is partitioned into knowledge sources,
which are kept separate and independent.

The blackboard data structure. The problem-
solving state data are kept in a global database, the black-
board. Knowledge sources produce changes to the black-
board that lead incrementally to a solution to the prob-
lem. Communication and interaction among the knowl-
edge sources take place solely through the blackboard.

Control. The knowledge sources respond opportunis-
tically to changes in the blackboard.®

The difficulty with this description of the blackboard
model is that it only outlines the organizational princi-
ples. For those who want to build a blackboard system,
the model does not specify how it is to be realized as a com-
putational entity: that is, the blackboard model is a con-
ceptual entity, not a computational specification. Given
a problem to be solved, the blackboard model provides
enough guidelines for sketching a solution, but a sketch is
a long way from a working system. To design and build

6There is no control component specified in the blackboard model.
The model merely specifies a general problem-solving behavior. The
actual locus of control can be in the knowledge sources, on the black-
board, in a separate module; or in some combination of the three.
(The need for a control component in blackboard systems is discussed
later.)
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Solving Jigsaw Puzzles

Figure 2

a system, a detailed model is needed. Before moving on
to adding details to the blackboard model, we explore the
implied behavior of this abstract model.

Let us consider a hypothetical problem of a group of
people trying to put together a jigsaw puzzle. Imagine
a room with a large blackboard and around it a group
of people each holding over-size jigsaw pieces. We start
with volunteers who put their most “promising” pieces on
the blackboard (assume it’s sticky). Each member of the
group looks at his pieces and sees if any of them fit into
the pieces already on the blackboard. Those with the ap-
propriate pieces go up to the blackboard and update the
evolving solution. The new updates cause other pieces to
fall into place, and other people go to the blackboard to
add their pieces. It does not matter whether one person
holds more pieces than another. The whole puzzle can
be solved in complete silence; that is, there need be no
direct communication among the group. Each person is
self-activating, knowing when his pieces will contribute to
the solution. No a priori established order exists for peo-
ple to go up to the blackboard. The apparent cooperative
behavior is mediated by the state of the solution on the
blackboard. If one watches the task being performed, the
solution is built incrementally (one piece at a time) and
opportunistically (as an opportunity for adding a piece
arises), as opposed to starting, say, systematically from
the left top corner and trying each piece.

This analogy illustrates quite well the blackboard

problem-solving behavior implied in the model and is fine
for a starter. Now, let’s change the layout of the room in
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such a way that there is only one center aisle wide enough
for one person to get through to the blackboard. Now, no
more than one person can go up to the blackboard at one
time, and a monitor is needed, someone who can see the
group and can choose the order in which a person is to go
up to the blackboard. The monitor can ask all people who
have pieces to add to raise their hands. The monitor can
then choose one person from those with their hands raised.
To select one person, some criteria for making the choice
is needed, for example, a person who raises a hand first, a
person with a piece that bridges two solution islands (that
is, two clusters of completed pieces), and so forth. The
monitor needs a strategy or a set of strategies for solving
the puzzle. The monitor can choose a strategy before the
puzzle solving begins or can develop strategies as the so-
lution begins to unfold. In any case, it should be noted
that the monitor has broad executive power. The monitor
could, for example, force the puzzle to be solved system-
atically from left to right; that is, the monitor has the
power to violate one essential characteristic of the original
blackboard model, that of opportunistic problem solving.

The last analogy, though slightly removed from the
original model, is a useful one for computer programmers
interested in building blackboard systems. Given the serial
nature of most current computers, the conceptual distance
between the model and a running blackboard system is
a bit far, and the mapping from the model to a system
is prone to misinterpretation. By adding the constraint
that solution building physically occur one step at a time
in some order determined by the monitor (when multiple
steps are possible and desirable), the blackboard model is
brought closer to the realities inherent in serial-computing
environments,”

Although the elaborate analogy to jigsaw puzzle solv-
ing gives us additional clues to the nature of the behav-

. ior of blackboard systems, it is not a very good example

for illustrating the organization of the blackboard or for
the partitioning of appropriate knowledge into knowledge
sources. To illustrate these aspects of the model, we need
another example. This time let us consider another hy-
pothetical problem, that of finding koalas in a eucalyptus
forest (see Figure 3).

Imagine yourself in Australia. One of the musts if you
are a tourist is to go and look for koalas in their natural
habitat. So, you go to a koala preserve and start looking
for them among the branches of the eucalyptus trees. You
find none. You know that they are rather small, gray-
ish creatures which look like bears.® The forest is dense,

"The serialization of the blackboard model is useful only because
we tend to work on uniprocessor computers. We are currently con-
ducting research on concurrent problem-solving methods. A starting
point for the work is the pure blackboard model. One can see, at least
conceptually, much parallelism inherent in the model. The problem
is how to convert the model into an operational system that can take
advantage of many (100s to 1000s) processor-memory pairs.

8More details at this descriptive level would be considered factual
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Finding Koalas

Figure 3

however, and the combination of rustling leaves and the
sunlight reflecting on the leaves adds to the difficulty of
finding these creatures, whose coloring is similar to their
environment.® You finally give up and ask a ranger how
you can find them. He gives you the following story about
koalas: “Koalas usually live in groups and seasonally mij-
grate to different parts of the forest, but they should be
around the northwest area of the preserve now. They usu-
ally sit on the crook of branches and move up and down
the tree during the day to get just the right amount of
sun.® If you are not sure whether you have spotted one
or not, watch it for a while; it will move around, though
slowly.”'! Armed with the new knowledge, you go back to
the forest with a visual image of exactly where and what
to look for. You focus your eyes at about 30 feet with no
luck, but you try again, and this time focus your eyes at
50 feet, and suddenly you do find one. Not only one, but

knowledge and can be used as a part of a prototypical model of
koalas.

9The signal-to-noise ratio is low.

10This is knowledge about the prototypical behavior pattern of
koalas. The ranger suggests a highly model-driven approach to find-
ing them.

1 This is a method of detection as well as confirmation.

a whole colony of them.!?

Let’s consider one way of formulating this problem
along the lines of the blackboard model. Many kinds of
knowledge can be brought to bear on the problem: the
color and shape of koalas, the general color and texture of
the environment (the noise characteristics), the behavior
of the koalas, effects of season and time of the day, and so
on. Some of the knowledge can be found in books, such
as Handbook of Koala Sizes and Color or Geography of
the Forest. Some knowledge is informal-—the most likely
places to find koalas at any given time or the koalas’ fa-
vorite resting places. How can these diverse sources of
knowledge be used effectively? First, we need to decide
what constitutes a solution to the problem. Then, we can
consider what kinds of information are in the data, what
can be inferred from them, and what knowledge might be
brought to bear to achieve the goal of finding the koalas.

127Phis koala problem has a long history. It was invented by Ed
Feigenbaum (after his trip to Australia) and myself in 1974, during
the time when we were not allowed to write about the HASP project.
The primary objective of this example was to illustrate the power
of model-directed reasoning in interpreting noisy data. A paper was
written about it but has been collecting dust, a victim of our distaste
for writing about hypothetical problems. I resurrect it here because
it’s hard to come up with a good example that does not require
specialized domain knowledge.
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Think of the solution to this problem as a set of mark-
ings on a series of snapshots of the forest. The markings
might say, “This is certainly a koala because it has a head,
body, and limbs and because it has changed its position
since the last snapshot”; “This might be a koala, because it
has a blob that looks like a head”; “These might be koalas
because they are close to the one we know is a koala and
the blobs could be heads, legs, or torsos.” The important
characteristics of the solution are that the solution con-
sists of bits and pieces of information, and it is a reasoned
solution with supporting evidence and supporting lines of
reasoning,. ‘

Having decided that the solution would consist of par-
tial and hypothetical identifications, as well as complete
identifications constructed from partial ones, we need a
solution-space organization that can hold descriptions of
bits and pieces of the koalas. One such descriptive frame-
work is a part-of hierarchy. For each koala, the highest
level of description is the koala itself, which is described
on the next level by head and body; the head is described
on the next level by ears, nose, and eyes; the body is de-
scribed by torso, legs, and arms; and so on. At each level,
there are descriptors appropriate for that level: size, gen-
der, and height on the koala level, for example. Each prim-
itive body part is described on the lower levels in terms
of geometric features, such as shapes and line segments.
Each shape has color and texture associated with it as
well as its geometric descriptions (see Figure 4). In order
to identify a part of the snapshot as a koala, we need to
‘mark the picture with line segments and regions. The re-
gions and pieces of lines must eventually be combined, or
synthesized, in such a way that the description of the con-
structed object can be construed as some of the parts of a
koala or a koala itself. For example, a small, black circular
blob could be an eye, but it must be surrounded by a big-
ger, lighter blob that might be a head. The more pieces of
information one can find that fit the koala description, the
more confident we can be. In addition to the body parts
that support the existence of a koala, if the hypothesized
koala is at about 30 to 50 feet above ground, we would be
more confident than if we found the same object at 5 feet.

The knowledge needed to fill in the koala descriptions
falls into place with the decision to organize the solution
space as a part-of abstraction hierarchy. We would need a
color specialist, a shape specialist, a body-part specialist,
a habitat specialist, and so forth. No one source of knowl-
edge can solve the problem; the solution to the problem
depends on the combined contributions of many special-
ists. The knowledge held by these specialists is logically
independent. Thus, a color specialist can determine the
color of a region without knowing how the shape specialist
determined the shape of the region. However, the solu-
tion of the problem is dependent on both of them. The
torso specialist does not have to know whether the arm
specialist checked if an arm had paws or not (the torso
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specialist probably doesn’t even know about paws), but
each specialist must rely on the other specialists to supply
the information each one needs. Cooperation is achieved
by assuming that whatever information is needed is sup-
plied by someone else.

The jigsaw puzzle and the koala problems illus-
trate the organization of information on the blackboard
database, the partitioning of domain knowledge into spe-
cialized sources of knowledge, and some of the character-
istic problem-solving behavior associated with the black-
board model.!® Neither of these, however, answers the
questions of how the knowledge is to be represented, or of
what the mechanisms are for determining and activating
appropriate knowledge. As mentioned earlier, problem-
solving models are conceptual frameworks for formulating
solutions to problems. The models do not address the de-
tails of designing and building operational systems. How
a piece of knowledge is represented, as rules, objects, or
procedures, is an engineering decision. It involves such
pragmatic considerations as “naturalness,” availability of
a knowledge representation language, and the skill of the
implementers, to name but a few.!* What control mecha-
nisms are needed depends on the complexity and the na-

13Asin the Jigsaw problem, the problem-solving behavior in the koala
problem would be opportunistic. As new pieces of evidence are found
and new hypotheses generated, appropriate knowledge sources ana-
lyze them and create new hypotheses.

14The blackboard model does not preclude the use of human knowl-
edge sources. Interesting interactive and symbiotic expert systems
can be built by integrating human expertise during run time.



ture.of the application task. We can, however, attempt to
narrow the gap between the model and operational sys-
tems:” Now, the blackboard model is extended by adding
more details to the three primary components in terms of
their structures, functions, and behaviors.

The Blackboard Framework

Applications are implemented with different combinations
of knowledge representations, reasoning schemes, and con-
trol mechanisms. The variability in the design of black-
board systems is due to many factors, the most influential
one being the nature of the application problem itself. It
can be seen, however, that blackboard architectures which
underlay application programs have many similar features
and constructs. (Some of the better known applications
are discussed in Part 2.) The blackboard framework is
created by abstracting these constructs.!® The blackboard
framework, therefore, contains descriptions of the black-
board system components that are grounded in actual
computational constructs. The purpose of the framework
is to provide design guidelines appropriate for blackboard
systems in a serial-computing environment.'® Figure 5
shows some modifications to Figure 1 to reflect the addi-
tion of system-oriented details.

The Knowledge Sources.  The domain knowledge
needed to solve a problem is partitioned into knowledge
sources that are kept separate and independent.

The objective of each knowledge source is to contribute in-
formation that will lead to a solution to the problem. A
knowledge source takes a set of current information on the
blackboard and updates it as encoded in its specialized
knowledge.

The knowledge sources. are represented as procedures, sets
of rules, or logic assertions. To date most of the knowledge
sources have been represented as either procedures or as
sets of rules. However, systems that deal with signal pro-
cessing either make liberal use of procedures in their rules
or use both rule sets and procedurally encoded knowledge
sources.

The knowledge sources modify only the blackboard or con-
trol data structures (that also might be on the blackboard),
and only the knowledge sources modify the blackboard. All
modifications to the solution state are explicit and visible.

15There is an implicit assumption that systems can be described at
various levels of abstraction. Thus, the description of the framework
is more detailed than the model and less detailed than a specification
(a description from which a system can be built). Here, they are
called the model, framework, and specification levels.

16Qne can view the blackboard framework as a prescriptive model;
that is, it prescribes what must be in a blackboard system. However,
it must be kept in mind that application problems often demand
extensions to the framework, as can be seen in the examples in Part 2.

Each knowledge source is responsible for knowing the con-
ditions under which it can contribute to a solution. Each
knowledge source has preconditions that indicate the con-
dition on the blackboard which must exist before the body
of the knowledge source is activated.'”

The Blackboard Data Structure. The problem-
solving state data are kept in a global database, the black-
board. Knowledge sources produce changes to the black-
board that lead incrementally to a solution, or a set of
acceptable solutions, to the problem. Interaction among
the knowledge sources takes place solely through changes
on the blackboard.

The purpose of the blackboard is to hold computational and
solution-state data needed by and produced by the knowl-
edge sources. The knowledge sources use the blackboard
data to interact with each other indirectly.

The blackboard consists of objects from the solution space.
These objects can be input data, partial solutions, alter-
natives, and final solutions (and, possibly, control data).

The objects on the blackboard are hierarchically organized
into levels of analysis. Information associated with ob-
jects (that is, their properties) on one level serves as input
to a set of knowledge sources, which, in turn, place new
information on the same or other levels.

The objects and their properties define the vocabulary of
the solution space. The properties are represented as
attribute-value pairs. Each level uses a distinct subset of
the vocabulary.'® :

The relationships between the objects are denoted by named
links.'® The relationship can be between objects on differ-
ent levels, such as “part-of” or “in-support-of,” or between
objects on the same level, such as “next-to” or “follows.”

The blackboard can have multiple blackboard panels. That
is, a solution space can be partitioned into multiple
hierarchies.2?

The data on the blackboard are hierarchically orga-
nized. The knowledge sources are logically independent,
self-selecting modules. Only the knowledge sources are
allowed to make changes to the blackboard. Based on
the latest changes to the information on the blackboard,

170ne can view a knowledge source as a large rule. The major dif-
ference between a rule and a knowledge source is the grain size of the
knowledge each holds. The condition part of this large rule is called
the knowledge source precondition, and the action part is called the
knowledge source body.

18Many times, the names of the attributes on different levels are the
same, for example, “type.” Often these are shorthand notations for
“type-of-x-object” or “type-of-y-object.” Sometimes they are dupli-
cations of the same attribute used for convenience sake.

19A relationship is a special kind of property.

20This feature was first used in the CRYSALIS system. The rationale
for introducing multiple panels is discussed in Part 2.
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Figure 5

a control module selects and executes the next knowledge
source.

Control. The knowledge sources respond opportunisti-
cally to changes in the blackboard.

There is a set of control modules that monitor the changes
“on the blackboard and decide what actions to take next.

Various kinds of information are made globally available
to the control modules. The information can be on the
blackboard or kept separately. The control information
is used by the control modules to determine the focus of
attention.

)

The focus of attention indicates the next thing to be pro-
cessed. The focus of attention can be either the knowledge
sources (that is, which knowledge sources to activate next)
or the blackboard objects (that is, which solution islands
to pursue next) or a combination of both (that is, which
knowledge sources to apply to which objects).?!

The solution is built one step at a time. Any type of rea-
soning step (data driven, goal driven, model driven, and
so on) can be applied at each stage of solution formation.
As a result, the sequence of knowledge source invocation
is dynamic and opportunistic rather than fixed and pre-
programmed.

Pieces of problem-solving activities occur in the following
iterative sequence: :

21 Any given system usually employs one of the three approaches, not
all. -
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1. A knowledge source makes change(s) to blackboard
object(s). As these changes are made, a record is kept
in a global data structure that holds the control infor-
mation.

2. Each knowledge source indicates the contribution it
can make to the new solution state. (This can be
‘defined a priori for an application or dynamically de-
termined.)

3. Using the information from points 1 and 2, a control
module selects a focus of attention. ’

4. Depending on the information contained in the focus
of attention, an appropriate control module prepares
it for execution as follows:

a. If the focus of attention is a knowledge source,
then a blackboard object (or sometimes, a set of
blackboard objects) is chosen to serve as the con-
text of its invocation (knowledge-scheduling ap-
proach).

b. If the focus of attention is a blackboard object,
then a knowledge source is chosen which will pro-
cess that object (event-scheduling approach).

c. If the focus of attention is a knowledge source and
an object, then that knowledge source is ready
for execution. The knowledge source is executed
together with the context, thus described.

Criteria are provided to determine when to terminate the
process. Usually, one of the knowledge sources indicates
when the problem-solving process is terminated, either be-
cause an acceptable solution has been found or because
the system cannot continue further for lack of knowledge
or data.

Problem-Solving Behavior and Knowledge Applica-
tion. The problem-solving behavior of a system is deter-
mined by the knowledge-application strategy encoded in
the control modules. The choice of the most appropriate
knowledge-application strategy is dependent on the char-
acteristics of the application task and on the quality and
quantity of domain knowledge relevant to the task.2? Ba-
sically, the acts of choosing a particular blackboard region
and choosing a particular knowledge source to operate on
that region determine the problem-solving behavior. Gen-
erally, a knowledge source uses information on one level
as its input and produces output information on another
level. Thus, if the input level of a particular knowledge
source is on the level lower (closer to data) than its output

221t might be said that this is a hedge, that there should be a
knowledge-application strategy or a set of strategies built into the
framework to reflect different problem-solving behaviors. It is pre-
cisely this lack of doctrine, however, that makes the blackboard
framework powerful and useful. If an application task calls for two
forward-reasoning steps followed by three backward-reasoning steps
at some particular point, the framework allows for this. This is not
to say that a system with built-in strategies cannot be designed and
built. If there is a knowledge-application strategy “generic” to a
class of applications, then it might be worthwhile to build a skeletal
system with that particular strategy.



level, then the application of this knowledge source is an
application of bottom-up, forward reasoning.

Conversely, a commitment to a particular type of rea-
soning step is a commitment to a particular knowledge-
application method. For example, if we are interested in
applying a data-directed, forward-reasoning step, then we
would select a knowledge source whose input level is lower
than its output level. If we are interested in goal-directed
reasoning, we would select a knowledge source that put in-
formation needed to satisfy a goal on a lower level. Using
the constructs in the control component, one can make any
type of reasoning step happen at each step of knowledge
application.??

How a piece of knowledge is stated often presupposes
how it is to be used. Given a piece of knowledge about a re-
lationship between information on two levels, that knowl-
edge can be expressed in top-down or bottom-up applica-
tion forms. These can further be refined. The top-down
form can be written as a goal, an expectation, or as an ab-
stract model of the lower-level information. For example,
a piece of knowledge can be expressed as a conjunction of
information on a lower level needed to generate a hypoth-
esis at a higher level (a goal), or it can be expressed as
information on a lower level needed to confirm a hypoth-
esis at a higher level (an expectation), and so on. The
framework does not presuppose nor does it prescribe the
knowledge-application, or reasoning, methods. It merely
provides constructs within which any reasoning methods
can be used. Many interesting problem-solving behaviors
have been implemented using these constructs (some of
them are discussed in Part 2).

Perspectives

The organizational underpinnings of blackboard systems
have been the primary focus. The blackboard framework is
a system-oriented interpretation of the blackboard model.
It is a mechanistic formulation intended to serve as a foun-
dation for system specifications. In problem-solving pro-
grams, we are usually interested in their performance and
problem-solving behavior, not their organization. We have
found, however, that some classes of complex problems be-
come manageable when they are formulated along the lines
of the blackboard model. Also, interesting problem-solving
behavior can be programmed using the blackboard frame-
work as a foundation. Even though the blackboard frame-
work still falls short of being a computational specification,
given an application task and the necessary knowledge, it
provides enough information so that a suitable blackboard

23The control component of the framework is extensible in many di-

rections. In the BB-1 system (Hayes-Roth, 1983), the control prob-
lem is viewed as a planning problem. Knowledge sources are ap-
plied according to a problem-solving plan in effect. The creation of
a problem-solving plan is treated as another problem to be solved
using the blackboard approach.

system can be designed, specified, and built. (Some exam-
ples of complex problems with interesting problem-solving
behavior are discussed in Part 2. The examples show that
new constructs can be added to the blackboard framework
as the application problems demand, without violating the
guidelines contained in it.)?*

There are other perspectives on the blackboard model.
The blackboard model is sometimes viewed as a model
of general problem solving (Hayes-Roth, 1983). It has
been used to structure cognitive models (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982; and
Hayes-Roth et al., 1979); the OPM system, (described in
Part 2) simulates thie human planning process. Sometimes
the blackboard model is used as an organizing principle
for large, complex systems built by many programmers.
The ALVan project (Stentz & Shafer, 1985) takes this ap-
proach.

Summary

The basic approach to problem solving in the blackboard
framework is to divide the problem into loosely coupled
subtasks. These subtasks roughly correspond to areas of
specialization within the task (for example, there are hu-
man specialists for the subtasks). For a particular applica-
tion, the designer defines a solution space and knowledge
needed to find the solution. The solution space is divided
into analysis levels of partial or intermediate solutions, .
and the knowledge is divided into specialized knowledge
sources that perform the subtasks. The information on
the analysis levels is globally accessible on the blackboard,
making it a medium of interaction between the knowledge
sources. Generally, a knowledge source uses information
on one level of analysis as its input and produces out-
put information on another level. The decision to employ
a particular knowledge source is made dynamically using
the latest information contained in the blackboard data
structure (the current solution state). This particular ap-
proach to problem decomposition and knowledge applica-
tion is very flexible and works well in diverse application
domains. One caveat, however: How the problem is parti-
tioned into subproblems makes a great deal of difference to

24What about statements such as “Fortran Common is a black-
board” or “Object-oriented systems are blackboard systems?” All1
can say is the potential for a thing is not that thing itself. With some
effort, one can design and build a blackboard system in Fortran, and
the common area is a good candidate for storing blackboard data.
However, one also needs to design knowledge sources that are self-
selecting and self-contained and control modules that determine the
focus of attention and manage knowledge source application. The
blackboard framework is a problem-solving framework. It is not a
programming language, although an instance of the framework can
have a blackboard language associated with it. It is also not a knowl-
edge representation language, although one can use any knowledge
representation language for the knowledge sources and the black-
board. Why can’t I get away with placing a hunk of ground beef, a
can of tomato sauce, a box of spaghetti, and bottles of seasoning in
a pile, and call the pile a spaghetti dinner or, better yet, linguine a
la pesta rosa? It would certainly simplify my life.
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the clarity of the approach, the speed with which solutions
are found, the resources required, and even the ability to
solve the problem at all.

In order to discuss the details of various blackboard
systems, it is helpful to trace the intellectual history of
the blackboard concepts. Aside from being interesting
in itself, it explains the origins of ideas and reasons for
some of the differences between blackboard system designs.
The reasons often have no rational basis but have roots in
the “cultural” differences between the research laborato-
ries that were involved in the early history of blackboard
systems.

Evolution of Blackboard Architectures

Metaphorically we can think of a set of workers,
all looking at the same blackboard: each is able to
read everything that is on it, and to judge when he
has something worthwhile to add to it. This con-
ception is just that of Selfridge’s Pandemonium
[19]: a set of demons, each independently looking
at the total situation and shrieking in proportion
to what they see that fits their natures. .. (Newell,
1962.)

Prehistory

The above quotation is the first reference to the term
blackboard in the AI literature. Newell was concerned
with the organizational problems of programs that ex-
isted at the time (for example, checker-playing programs,
chess-playing programs, theorem-proving programs), most
of which were organized along a generate-and-test search
model?® (Newell, 1969). The major difficulty in these pro-
grams was rigidity. He notes:

A program can operate only in terms of what it
knows. This knowledge can come from only two
sources. It can come from assumptions [or] it.can
come from executing processes . .. either by direct
modification of the data structure or by testing
... but executing processes take time and space
[whereas] assumed information does not have to be
stored or generated. Therefore the temptation in
creating efficient programs is always to minimize
the amount of generated information, and hence
to maximize the amount of stipulated information.
It is the latter that underlies most of the rigidities.

In one example, Newell discusses an organization to
synthesize complex processes by means of sequential flow
of control and hierarchically organized, closed subroutines.
Even though this organization had many advantages (iso-
lation of tasks, space saving by coding nearly identical

25“Generate” is a process that produces each element of the solution
space one at a time. The “test” process determines if the generated
element satisfied some conditions of predicates in the task domain.
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tasks once, and so on), it also had difficulties. First, con-
ventions required for communication among the subrou-
tines often forced the subroutines to work with impover-
ished information. Second, the ordered subroutine calls
fostered the need for doing things sequentially. Third, and
most importantly, it encouraged programmers to think of
the total program in terms of only one thing going on at
a time. However, in problem solving there are often many
possible things to be processed at any given time (for ex-
ample, exploring various branches of a search tree), and
relatively weak and scattered information is necessary to
guide the exploration for a solution (for example, observa-
tions noticed while going down one branch of a search tree
could be used when going down another branch). The pri-
mary difficulties with this organization, then, were inflex-
ible control and restricted data accessibility. It is within
this context that Newell notes the difficulties “might be
alleviated by maintaining the isolation of routines, but al-
lowing all the subroutines to make use of a common data
structure.” He uses the blackboard metaphor to describe
such a system.

The blackboard solution proposed by Newell even-
tually became the production system (Newell & Simon,
1972), which in turn led to the development of the OPS
system (Forgy & McDermott, 1977). In OPS the subrou-
tines are represented as condition-action rules?®, and the
data are globally available in the working memory. One
of the many “shrieking demons” (those rules whose “con-
dition sides” are satisfied) is selected through a conflict-
resolution process. The conflict-resolution process emu-
lates the selection of one of the loudest demons, for exam-
ple, one that addresses the most specific situation. OPS
does reflect the blackboard concept as stated by Newell
and provides for flexibility of control and global accessibil-
ity to data. However, the blackboard systems as we know
them today took a slightly more circuitous route before
coming into being. '

In a paper first published in 1966 (later published in
Simon, 1977), Simon mentions the term blackboard in a
slightly different context from Newell. The discussion is
within the framework of an information-processing theory
about discovery and incubation of ideas:

In the typical organization of a problem-solving
program, the solution efforts are guided and con-
trolled by a hierarchy or “tree” of goals and sub-
goals. Thus, the subject starts out with the goal
of solving the original problem. In trying to reach
this goal, he generates a subgoal . .. If the subgoal
is achieved, he may then turn to the now-modified
original goal. If difficulties arise in achieving the
subgoal, sub-subgoals may be created to deal with
them ... we would specify that the goal tree be
held in some kind of temporary memory, since it
is a dynamic structure, whose function is to guide

26See Davis & King, 1977, for an overview of production systems.



search, and it is not needed when the problem so-
lution has been found ... In addition, the problem
solver is noticing various features of the problem
environment and is storing some of these in mem-
ory ... What use is made of [a feature] at the time
it is noted depends on what subgoal is directing
attention at that moment ... over the longer run,
this information influences the growth of the sub-
goal tree ... I will call the information about the
task environment that is noticed in the course of
problem solution and fixated in permanent (or rel-
atively long-term) memory the “blackboard.”

Although Newell’s and Simon’s concerns appear
within different contexts, the problem-solving method they
were using was the goal-directed, generate-and-test search
method. They encountered two common difficulties: the
need for previously generated information during problem
solving and flexible control. ‘It was Simon who proposed
the blackboard ideas to Raj Reddy and Lee Erman for the
HEARSAY project.?”

Although the blackboard metaphor was suggested by
Simon to the HEARSAY designers, the final design of the
system, as might be expected, evolved out of the needs of
the speech-understanding task. Such system characteris-
tics as hierarchically organized analysis levels on the black-
board and opportunistic reasoning, which we now accept
as integral parts of blackboard systems, were derived from
needs and constraints that were different from Newell’s
and Simon’s. One of the key notions attributable to the
speech-understanding problem was the notion of the black-
board partitioned into analysis levels. This is a method
of using and integrating different “vocabularies,” as men-
tioned earlier, in problem solving. In most problem-solving
programs of the time, such as game-playing and theorem-
proving programs, the problem space had a homogeneous
vocabulary. In the speech-understanding problem, there
was a need to integrate concepts and vocabularies used in
describing grammars, words, phones, and so on.

There are two interesting observations to be made
from early history. First, the early allusions to a black-
board are closely tied to search methodologies, and, not
surprisingly, the use of generate-and-test search is evi-
dent in HEARSAY-II. Second, although the HEARSAY-

II blackboard system was designed independently from

the OPS' system, there are, as we might expect, some
conceptual similarities. - For example, the scheduler in
HEARSAY-II is philosophically and functionally very sim-
ilar to the conflict-resolution module in OPS, which, in
turn, is a way of selecting one of the shrieking demons.
The HASP system, which has its own intéllectual his-
tory, does not focus so much on search techniques as
on knowledge-application techniques. Put another way,
HASP was built in a culture that had a tradition of us-
ing problem-solving approaches that focused on apply-

27These historical notes are communications from Herbert Simon.

ing large amounts of situation-specific knowledge rather
than on applying a weak method (generate-and-test) us-
ing general knowledge about the task.2® The methodology
used to select and apply knowledge in HASP is, therefore,
quite different philosophically from the one reflected in the
HEARSAY-II scheduler. These and other differences are
elaborated on in the next section.?? Next is examined
another branch of a history that influenced the design of

HEARSAY-II, the speech-understanding task.

The HEARSAY Project

Although a blackboard concept was documented in AT lit-
erature as early as 1962 by Newell, it was implemented as
a system a decade later by people working on a speech-
understanding project. The first article on the HEARSAY
system appeared in IEFE Transactions on Audio and
Electroacoustics in 1973 (Reddy et al., 1973).3° There,
the authors described the limitations of extant speech-
recognition systems and proposed a model that would
overcome the limitations. To summarize, the article stated
that although the importance of context, syntax, seman- .
tics, and phonological rules in the recognition of speech
was accepted, no system had been built that incorporated
these ill-defined sources of knowledge. At the same time,
the authors’ previous work indicated (1) that the limita-
tion of syntax-directed methods of parsing from left to
right had to be overcome; (2) that parsing should proceed
both forward and backward from anchor points; and (3)
that because of the lack of feedback in a simple part-of hi-
erarchical structure, the magnitude of errors on the lower
level propagated multiplicatively up the hierarchy; that is,
minor errors in the signal level, for example, became major
errors on a sentence level.

The system architecture described in the Reddy ar-
ticle, later to be known as the HEARSAY-I architecture,
was based on a model that addressed the following require-
ments: (1) the contribution of each source of knowledge
(syntax, semantics, context, and so on) to the recognition
of speech had to be measurable; (2) the absence of one or
more knowledge sources should not have a crippling effect
on the overall performance; (3) more knowledge sources
should improve the performance; (4) the system must per-
mit graceful error recovery; (5) changes in performance

28Most OPS expert systems use strong knowledge, but this came
about later (ca. 1979).

29There is no denying that there are cultural differences in the Al
laboratories; they foster different styles, methods, and lines of re-
search. Whatever the research topic, the intellectual effort tends to
follow the line of least resistance, and adopts the styles and meth-
ods at the researcher’s own laboratory. For example, the work of
Newell and Simon on general problem solving has a great deal of in-
fluence on much of the work at Carnegie-Mellon University. On the
other hand, the work of Feigenbaum and Buchanan on applications
of domain-specific knowledge influences the work at their Stanford
University laboratory.

30The manuscript was delivered to IEEE on April 30, 1972.
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requirements, such as increased vocabulary size or mod-
ifications to the syntax or semantics, should not require
major modifications to the model. The functional dia-
gram of the HEARSAY-I architecture is shown in Figure
6, and its behavior is summarized as follows:

The EAR module accepts speech input, extracts
parameters, and performs some preliminary seg-
mentation, feature extraction, and labeling, gen-
erating a “partial symbolic utterance description.”
The recognition overlord (ROVER) controls the
recognition process and coordinates the hypoth-

“esis generation and verification phases of various
cooperating parallel processes. The TASK pro-
vides the interface between the task being per-
formed and the speech recognition and generation
(SPEAK-EASY) parts of the system. The system
overlord (SOL) provides the overall control for the
system.

From Figure 7, which illustrates the recognition pro-
cess, one can glean the beginnings of an organization of a
blackboard system. Note how the overlord (ROVER) con-
trolled the invocation of activities. The beginnings of the
scheduler, as well as the knowledge sources, are apparent,
as they became incorporated in HEARSAY-II.

Since the different recognizers are independent,
the recognition overlord needs to synchronize the
hypothesis generation and verification phases of
various processes.... Several strategies are avail-
able for deciding which subset of the processes
generates the hypotheses and which verify. At
present this is done by polling the processes to de-
cide which process is most confident about gener-
ating the correct hypothesis. In voice chess, [The
task domain for HEARSAY-I was chess moves]
where the semantic source of knowledge is domi-
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nant, that module usually generates the hypothe-
ses. These are then verified by the syntactic
and acoustic recognizers. However, when robust
acoustic cues are present in the incoming utter-
ance, the roles are reversed with the acoustic rec-
ognizer generating the hypotheses.”

“Knowledge sources are activated in a lock-step se-
quence consisting of three phases: poll, hypothesize, and
test.” (Hayes-Roth et al., 1979.) During the polling phase,
the overlord queries the knowledge sources to determine
which ones have something to contribute to that region
of the sentence hypothesis which is “in focus” and with
what level of “confidence”.3! In the hypothesizing phase,
the most promising knowledge source is activated to make
its contribution. Finally, in the testing phase, knowledge
sources evaluate the new hypotheses.

Some of the difficulties encountered in HEARSAY-I
can be attributed to the way in which the solution to
the application task was formulated, and other difficul-
ties arose from the design of the system. The problem was
formulated to use the hypothesize-and-test paradigm only
on the word level, that is, the blackboard only contained
a description at the word level. This meant that all com-
munication among the knowledge sources was limited to
sharing information at the word level. This formulation
caused two major difficulties. First, it becomes difficult
to add nonword knowledge sources and to evaluate their
contributions. Second, the inability to share information
contributed by nonword knowledge sources caused the in-
formation to be recomputed by each knowledge source that
needed it. In other words, the difficulty lay in trying to
force the use of a single vocabulary when multiple vocab-
ularies were needed.

The architectural weaknesses of HEARSAY-I, as
stated by its designers, lay in (1) the lock-step control
sequence that limited “parallelism,”32 (2) the lack of pro-
vision to express relationships among alternative sentence
hypotheses, and (3) the built-in problem-solving strategy
that made modifications awkward and comparisons of dif-
ferent strategies impossible (Lesser et al., 1974). To over-
come these difficulties, information (in the multiple vocab-
ularies needed to understand utterances) used by all the
knowledge sources was uniformly represented and made
globally accessible on the blackboard in HEARSAY-II. In
addition, a scheduler dynamically selected and activated
the appropriate knowledge sources. (In Part 2 the design
of the HEARSAY-II system is described in detail.)

*From (Reddy et al., 1973a).

31The poll portion of the poll, hypothesize, and test is also very
characteristic of OPS and HEARSAY-II. This construct takes on a
totally different form in HASP and other subsequent systems.

32The term parallelism was used quite early in the project even
though at that time the system ran on uniprocessors. Later {ca.
1976), experiments with parallel executions were conducted on the
C.mmp system (Fennell & Lesser, 1977).



During the time that HEARSAY-II was being devel-
oped, the staff of the HASP project was looking for an ap-
proach to solve its application problem. The search for a
new methodology came about because the plan-generate-
and-test problem-solving method that was successful for
interpreting mass-spectrometry data in the DENDRAL
program (Lindsay et al., 1980) was found to be inappropri-
ate for the problem of interpreting passive sonar signals.
In the history of blackboard systems, HASP represents a
branching point in the philosophy underlying the design
of blackboard systems. Generally, later systems can be
thought of as modifications of, or extensions to, either the
HEARSAYlike or HASPlike designs.

The HASP Project

The task of HASP was to interpret continuous sonar sig-
nals passively collected by hydrophone arrays monitoring
an area of the ocean. Signals are received from multiple ar-
rays, with each array consisting of multiple hydrophones.
Each array has some directional resolution.. Imagine a
large room full of plotters, each recording digitized signals
from the hydrophones. Now, imagine an analyst going
from one plotter to the next trying to discern what each
one is hearing, and then integrating the information from
all the plots in order to discern the current activity in the
region under surveillance. This interpretation and analy-
sis activity goes on continuously day in and day out. The
primary objective of this activity is to detect enemy sub-
marines. The objective of the HASP project was to write

*From (Reddy et al., , 1973b).

a program that “emulated” the human analysts, that is to
incorporate, in a computer program, the expertise of the
analysts, especially their ability to detect submarines.3
The HASP problem was chosen to work on because it ap-
peared to be similar to the DENDRAL problem, a signal
interpretation problem for which there were experts who
could do the job. The system designers were confident that
the problem-solving approach taken in DENDRAL would
work for HASP. What was DENDRAL’s task, and what
was its approach? To quote from Feigenbaum (1977), the
task was

to enumerate plausible structures (atom-bond
graphs) for organic molecules, given two kinds
of information: analytic instrument data from a
mass spectrometer and a nuclear magnetic reso-
nance spectrometer; and user-supplied constraints
on the answers, derived from any other source of
knowledge (instrumental or contextual) available
to the user.

DENDRAL’s inference procedure is a heuristic
search that takes place in three stages, without
feedback: plan-generate-and-test.

Generate is a generation process for plausible
structures. Its foundation is a combinatorial algo-
rithm that can produce all the topologically legal
candidate structures. Constraints supplied by the
user or by the Plan process prune and steer the

33This was in 1973 before the term expert system was coined. The
only expert system in existence at the time was DENDRAL, and
MYCIN was on its way.
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generation to produce the plausible set and not
the enormous legal set.

Test refines the evaluation of plausibility, discard-
ing less worthy candidates and rank-ordering the
remainder for examination by the user. .. It evalu-
ates the worth of each candidate by comparing its
predicted data with the actual input data. .. Thus,
test selects the ‘best’ explanation of the data.

Plan produces direct (that is, not chained) infer-
ence about likely substructures in the molecule
from patterns in the data that are indicative of the
presence of the substructure. In other words, Plan
worked with combinatorially reduced abstracted
sets to guide the search in a generally fruitful di-
rection.

If some of the words in this description were replaced,

the plan-generate-and-test approach seemed appropriate
for the HASP tasks:

Generate plausible ship candidates and their sig-
nal characteristics. Test by comparing the pre-
dicted signals with the real signals. Plan by se-
lecting types of ships that could be in the region
of interest. The Plan phase would use intelligence
reports, shipping logs, and so on.

The system designers had already talked with the an-
alysts and had read their training manuals. They knew
the necessary knowledge could be represented as rules, a
form of domain knowledge representation that had proven
its utility and power in DENDRAL. Difficulties were en-
countered immediately; some of these were:

1. The input data arrived in a continuous stream,
as opposed to being batched like in DEN-
DRAL. The problem of a continuous data
stream was solved by processing data in time-
framed batches.

2. The analysis of the activities in the ocean had
to be tracked, and updated over time. Most
importantly, past activities played an impor-
tant role in the analysis of current activities.

3. There were numerous types of information that
seemed relevant but remote from the interpre-
tation process, for example, the average speeds
of ships.

To address the second problem, it was immediately‘

clear that a data structure was needed which was equiva-
lent to a “situation board” used by the analysts; the data
structure was called the Current Best Hypothesis (CBH).
CBH reflected the most recent hypothesis about the situ-
ation at any given point in time. This could serve as the
basis for generating a “plan”; that is, the CBH could be
used as a basis for predicting the situation to be encoun-
tered in the next time frame. The prediction process could
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also utilize and integrate the variety of information men-
tioned in item 3. The predicted CBH would then be used
(1) to verify that the interpretation from the previous time
frame was correct (2) to reduce the number of alternatives
generated during past time frames,3* and (3) to reduce the
number of new signals not accounted for in the predicted
CBH that needed to be analyzed in full. CBH was thought
of as a cognitive “flywheel” that maintained the continu-
ous activities in a region of ocean between time frames.
The initial design, a modified version of DENDRAL, was
sketched out in December of 1973 (see Figure 8).

Then there came the bad news. There was no plausible
generator of the solution space, and there was no simula-
tor to generate the signals of hypothesized platforms. The
bad news had a common root; given a platform, there
was a continuum of possible headings, speeds, and as-
pects relative to an array. Each parameter, in addition
to variations in the water temperature, depth, and so on,
uniquely affected the signals “heard” at an array. Con-
sequently, there was a continuum of possibilities in the
solution space as well as for the simulator to simulate.
The designers tried to limit the number of possibilities,
for example, by measuring the headings by unit degrees,
but this left an enormous search space. Moreover, there
was not enough knowledge to prune the space to make the
generate-and-test method practical. The DENDRAL ap-
proach was abandoned. Then the HEARSAY-II approach
was learned of. The description of the approach produced
enough of a mental shift in the way the HASP problem was
viewed that a new solution could be designed. It should
be noted in passing that HEARSAY-II in fact had gener-
ators and used them. It was the idea of fusing uncertain
and partial solutions to construct solutions, combined with
“island driving,”3® that intrigued the designers.

The sonar analysts solved the problem piecemeal.
They first identified a harmonic set in the signals. The
“accounted-for” signals were then “subtracted” from the
data set. Then another harmonic set would be formed with
the remaining data, and so on until all the signals were ac-
counted for.?® Each harmonic set implied a set of possible
sources of sound (for example, a propeller shaft), which in
turn implied a set of possible ship types from which the
sounds could be emanating. Certain signal characteristics
directly implied platform types, but this type of diversion
from the incremental analysis was very rare. What the hu-

34There was only one solution hypothesis. However, some attributes,
for example, platform type, could have alternative values.

3%Island driving is a problem solving strategy. A relatively reliable
partial hypothesis is designated as an “island of certainty,” and the
hypothesis building pushes out from this solution island in many
directions. This is sometimes called a “middle-out” strategy. There
can be many islands of certainty driving the problem-solving process.

36 As easy as it sounds, the task of harmonic set formation was a very
difficult one, given noisy and missing data, and could produce large
combinatorial possibilities. Addressing this problem became one of
the major concerns in HASP.
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man analysts were doing was what might be called logical
induction and synthesis.3” Hypotheses were synthesized
from pieces of data using a large amount of domain-specific
knowledge that translated information in one form to in-
formation in another form, that is, transformed a descrip-
tion in one vocabulary to one in another vocabulary. For
example, a set of frequencies was transformed into a set of
possible ship parts (for example, a shaft or a propeller) by
using knowledge of the form, “If the harmonic set consists
of ..., then it is likely due to ...” The partial solutions
thus formed were then combined using other knowledge to
construct acceptable solutions.

The analysts were also strongly model driven.: There
were common shipping lanes used by merchant ships trav-
eling from one port to another. These platforms usually
maintained a steady speed and heading. This and similar
knowledge served to constrain the number of possible par-
tial solutions. For example, if a hypothetical surface plat-
form traveled across a shipping lane, then the possibility
that it might be a merchant ship could be eliminated. In
this example, a model of ship movements was able to aid
in the platform classification process. Moreover, knowl-
edge about the characteristics of platforms was used to
combine lower-level, partial solutions. Suppose a platform
type was hypothesized from an acoustic source, for exam-
ple, a propeller shaft. Knowledge about the platform type
(a model) was then used to look for other acoustic sources
(for example, engine) belonging to that platform. This
type of top-down, model-driven analysis was used as often
as the bottom-up signal analysis.

Once it was clear that interpretation in HASP, as in

37 An interesting article on this point is “ A More Rational View of
Logic.” by Alex P. Pentland and Martin A. Fischler; it appeared in
the Winter, 1983 issue of the AI Magazine.

HEARSAY, was a process of piecemeal generation of par-
tial solutions that were combined to form complete solu-
tions, the HEARSAY-II system organization could be ex-
ploited. The CBH was partitioned into levels of analysis
corresponding to the way analysts were used to thinking
(that is, signals, harmonic sets, sources, and ship types).
The rule-based knowledge gathered for the purposes of -
pruning and guiding the search process was organized into
sets of rules (knowledge sources) that transformed infor-
mation on one level to information on another level.38
Nothing is as easy as it appears. There were many
differences between the speech and the sonar signal under-
standing tasks that drove the HASP system architecture
in a different direction from HEARSAY-II. The use of the
blackboard as a situation board that evolves over time
has already been mentioned. This is somewhat equivalent
to asking a speaker to repeat his utterance over and over
again while moving around, and having the interpretation
improve with each repeated utterance as well as being able
to locate the speaker after each utterance. After each ut-
terance, the CBH would reflect the best that the system
could do up to that point. It was also mentioned that sets
of rules, as opposed to procedures in HEARSAY-II, were
used to represent knowledge sources. Rules were chosen
because they were used in DENDRAL and in MYCIN.3®

3814 is interesting to note that many of the pieces of knowledge in-
tended for pruning purposes could be converted into inductive knowl-
edge. For example, a pruning rule that read “If a signal is coming
from outside the normal traffic lane, then its source could not be
cargo or cruise ships” could be used directly for reducing alterna-
tives or could be converted to read “..., then its source is either
military ships or fishing boats.” One can hold the view that this is
not surprising, because knowledge is knowledge, and what counts is
how and when it’s used.

39This is a good example of the cultural influence. No other repre-
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This choice of knowledge representation had a great in-
fluence in simplifying the HASP scheduler. The following
characteristics influenced the final design of HASP.

Events: The concept of events is inherent in the
HASP problem. For example, a certain type of frequency
shift in the signal would be an event that implied the ship
was changing its speed. An appearance or disappearance
of a signal would be an event that implied a new ship
was on the scene or a known ship was getting out of the
range of the sensors, or it implied an expected behavior
of certain types of ships. This inherent task characteris-
tic made it natural for the HASP system to be an event-
based system; that is, an occurrence of a particular event
implied that new information was available for some a pri-
ort determined knowledge source to pursue. The goals of
the task dictated what events were significant and what
were not. This, in turn, meant that the programmer (the
knowledge engineer of today) could a priori decide what

" changes in the blackboard, that is, events, were significant

for solving the problem (as opposed to the system notic-
ing every change). Furthermore, the only time a knowl-
edge source needed to be activated was when some events
occurred that it knew about. These task characteristics,
together with the use of a rule-based knowledge representa-
tion, helped redefine and simplify the task of the scheduler
in the sense that each piece of knowledge was more or less
self-selecting for any given event.*0

Temporal events: In HEARSAY-II “time” meant
the sequence in which the words appeared in a spoken sen-
tence. Based on the sequence of words, one could predict
or verify the appearance of another set of words later or
earlier in the sequence. In HASP time had different conno-
tations. In one sense, time was similar to the separate ut-
terances in the hypothetical repetitive utterances problem
mentioned earlier. There was information redundancy, as
well as new and different information (no two utterances
sound exactly the same), as time went on. Redundancy
meant that the system was not pressed to account for ev-
ery piece of data at each time frame. It could wait to see
if a clearer signal appeared later, for example. Also, time
meant that the situation at any time frame was a “natural”
consequence of earlier situations, and such information as
trends and temporal patterns (both signal and symbolic)
that occur over time could be used. One of the most pow-
erful uses of time in this sense was the generation and use
of expectations of future events.

Multiple input streams: Aside from the digitized .

data from many hydrophones, HASP had another kind of
input—reports. Reports contained information gathered
from intelligence or normal shipping sources. These re-
ports tended to use descriptions similar to those used on

sentation was even considered.

40The relationship between events within the task and events in the
system are discussed in Part 2.

52 THE Al MAGAZINE Summer, 1986

the ship level on the blackboard (CBH). Whereas the ordi-
nary data came in at the bottom level for both HEARSAY
and HASP, HASP had another input “port” at the highest
level. Given the input at this level, the system generated
the kinds of acoustic sources and acoustic signatures it ex-
pected in the future based on information in its taxonomic
knowledge base. This type of model-based expectation was
one of the methods used to “fuse” report data with signal
data.

Explanation: The purpose of explanation is to un-
derstand what is going on in the system from the perspec-
tive of the user and the programmer. Because the needs
of the users are different from those of the programmers,
explanation can take on many forms. Explanation for the
user was especially important in HASP, because there was
no way to test the correctness of the answer. The only way
to test the performance of the system was to get human
analysts to agree that the system’s situation hypotheses
and reasoning were plausible. CBH, with its network of
evidential support, served to justify the elements of the
hypothesis and their hypothetical properties. It served to
“explain” the relationships between the signal data and
its various levels of interpretation. The explanation of the
reasoning, that is, “explaining” which pieces of knowledge
had been applied under what circumstances, was made
possible by “playing back” the executed rules.*!

There were many other differences, but these charac-
teristics had the most impact on the design of the eventual
system. The list serves to illustrate how strongly the task
characteristics influence blackboard architectures. (The
details of the organization of the HASP system are ex-
plained in Part 2.)

~ Since Hearsay-II and HASP, there have been a vari-
ety of other programs whose system designs are rooted in
the blackboard model. These programs include applica-
tions in the area of interpretation of electron density maps
of protein crystals (Terry, 1983), planning (Hayes-Roth
et al., 1979), scene analysis (Nagao & Matsuyama, 1980),
and signal understanding and situation assessment (Spain,
1983; & Williams, 1985). There are other applications
currently being built in the areas of process control, very
large-scale integration (VLSI) design, crisis management,
image understanding, and signal interpretation. Many
applications in the Defense Advanced Research Project
Agency’s (DARPA) Strategic Computing Program in the
areas of military battle management, a pilot’s associate,
and autonomous vehicles utilize the blackboard model. To
date, there is no commonly agreed upon architecture for

4lln MYCIN and other similar rule-based programs, explanation
consists of a playback of rule firings. In HASP the ordinary method
of playback turned out to be useful only to programmers for debug-
ging purposes. For the user, the rules were either too detailed or
were applied in a sequence (breadth first) that was hard for them to
understand. In HASP the explanation was generated from an execu-
tion history with the help of “explanation templates” that selected
the appropriate rule activities in some easy-to-understand order.



blackboard systems. Rather, there are more or less strict
interpretations of the model. The blackboard framework
that distills the common constructs and features of many
blackboard systems has been introduced. In Part 2, doc-
umented systems that follow the intent and spirit of the
blackboard model are described.
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