
The blind breeding the blind:
Adaptive behavior without looking

Peter M. Todd, Stewart W. Wilson Anil B. Somayaji Holly A. Yanco
The Rowland Institute for Science Department of Mathematics MIT AI Lab
100 Edwin H. Land Boulevard MIT 545 Technology Square
Cambridge, MA 02142 USA Cambridge, MA 02139 USA Cambridge, MA 02139
ptodd@spo.rowland.org somayaji@mit.edu holly@ai.mit.edu
wilson@smith.rowland.org

Abstract
Sensors and internal states are often considered nec-

essary components of any adaptively behaving organ-
ism, providing the information needed to adapt a crea-
ture’s behavior in response to conditions in its exter-
nal or internal environment. But adaptive, survival-
enhancing behavior is possible even in simple simu-
lated creatures lacking all direct contact with their en-
vironment — evolutionarily shaped blind action may
suffice to keep a population of creatures alive and re-
producing. In this paper, we consider the evolution of
the behavioral repertoires of such sensor-less creatures
in response to environments of various types. Differ-
ent spatial and temporal distributions of food result in
the evolution of very different behavioral strategies, in-
cluding the use of looping movements as time-keepers
in these otherwise cognitively-challenged creatures.
Exploring the level of adaptiveness available in even
such simple creatures as these serves to establish a
baseline to which the adaptive behavior of animats
with sensors and internal states can be compared.

1 Introduction

Adaptive behavior is usually thought of as behavior that can
change in response to conditions in an organism’s external
or internal environment, with the result that the organism’s
survival is enhanced. As Meyer and Guillot (1991, p. 2)
have put this, “In a changing, unpredictable, and more or
less threatening environment, the behavior of an animal is
adaptive as long as the behavior allows the animal to survive.”
Almost universally, sensory systems are assumed to be the
organism’s link with conditions in its external environment,
allowing it to respond adaptively to the situation in which
it finds itself. Adaptive behavior can also be generated as a
consequence of internal conditions,as Meyer and Guillot point
out; homeostatic mechanisms that sense an organism’s internal
state with reference to some desired fixed point can cause
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behavior that will lead to a return to that fixed point. These
sorts of adaptive responses to environmental conditions, the
kinds of things that nervous systems and computer circuits do,
form the basis of research on adaptive behavior. Without some
way of knowing what’s out (or in) there, without knowledge
of the prevailing conditions to which behavior should adapt,
how can there be any adaptive behavior?

In this paper, we construct a series of “changing, unpre-
dictable, and more or less threatening environments” pop-
ulated by simple simulated creatures that have no sensors
nor internal states, and yet still manage to survive and pros-
per in their worlds. Through our simulation system, SPO
(Simulation of Primitive Organisms), we demonstrate that,
at least according to the definition given in the previous para-
graph, adaptive behavior is possible without any knowledge of
the environment. True, the behavior of any individual creature
is fixed throughout its lifetime and does not change in response
to any internal or external stimuli, so that in the strictest sense
the use of the term “adaptive” is arguable. But the creatures
still behave in a way particularly suited to the environment
they inhabit, so that we may say that their behavior is at least
“adapted,” if not adaptive.

In actuality, the behaviors of the creatures in the SPO sys-
tem do change over time in response to the environment —
but only between individual lifetimes, rather than within them.
Instead of shaping behavior through the adaptive processes of
development, learning, or sensor-guided action, all of which
bring about changes in the behavioral responses of an individ-
ual, we employ only the adaptive process of evolution, which
brings about changes in the aggregate behavioral responses
of a population of individuals. The individuals in our system
each act blindly in their world (surrounded by a population of
other simultaneously-acting individuals), choosing randomly
according to some unchanging weighted probability distribu-
tion among a small set of actions, including eating, moving,
and reproducing. Individuals who find and eat the food-energy
in their world can survive and produce slightly modified off-
spring, while those that run out of energy will die. Over
the course of time, the evolutionary process of descent with
modification and selection through competition will result in



a gradual tuning of the behavioral repertoires of individuals
in the population. After this adaptive process has run long
enough, the behaviors of individual creatures will be adapted
to their particular environment.

One of the simplest ways to show that the behavior of these
creatures is indeed adapted to their particular environment is to
evolve several populations under different environmental con-
ditions, and look for evidence that the final adapted behaviors
differ as well. This is the approach we take here, construct-
ing a variety of very simple environments, each of which is
composed solely of some pattern of food placed at various
locations in a square grid. The spatiotemporal structure of
these environments is determined by a small set of parameters
that control food growth and distribution. We then investigate
how different environmental structures lead to the evolution of
different adapted behavioral strategies in individual creatures.
We are also interested in discovering what environmental dif-
ferences do not lead to differences in evolved behaviors — that
is, the structural invariances that the adaptive process of evo-
lution ignores. Separating aspects of environmental structure
into those that matter for the creatures (e.g., the distribution of
food in the world) and those that do not (e.g., the color of the
food) is of central importance both in applying the results of
this work to understanding natural systems, and in designing
adaptively behaving artificial systems in light of the critical
features of their operating environments.

This work thus fits into the general research program of
characterizing the important features of environment struc-
ture in terms of the adaptive behavior they elicit, as outlined
in Todd and Wilson (1993). By beginning with the simplest
possible form of adaptive (or adapted) behavior, that of blind
stateless creatures, we can establish a baseline against which
the adaptiveness of sensors and internal state or memory sys-
tems will be much clearer in comparison. In the rest of this
paper, we cover the results of this first foray in this research
direction, beginning in the next section with a discussion of
similar work on environment/creature simulations. In section
3, we present the way the world works, and the various param-
eters that control environment structure in this system. Section
4 covers the types of actions that creatures can perform, and
the way they are chosen amongst at each time-step. In section
5, we present the results of many runs of this system, first dis-
cussing the process of adaptation of the behavioral repertoires
over time (in section 5.1), and then going into more detail on
the nature of the final adapted behavior patterns themselves
(in section 5.2). Finally, in section 6, we draw conclusions
and indicate the next steps to be taken with this work.

2 Past Work

Before going into the details of our system, it is important
first to review the design and goals of recent related work on
the simulation of creatures behaving in more or less natural-
istic environments. Most of the systems surveyed here use
“gridworld” environments composed of a square grid of loca-
tions (rather than continuous-space models) that can contain

various objects in addition to the creatures. This overview
should make apparent how our system differs in motivation
and emphasis from past work.

Among systems that use gridworlds to model animats (arti-
ficial creatures) interacting with an environment, a significant
number place only one creature in an environment at a time.
The environment defines a fitness function that is used for
some sort of genetic search over the space of possible be-
haviors of individual creatures. Systems of this type include
Wilson’s original animat (1985), the Genesys/Tracker system
(Jefferson et al., 1992), Floreano’s (1993a) work on nest-based
foraging strategies, the work of Parisi, Nolfi, and Cecconi
(1992) and Todd and Miller (1991a,b) on neural network-
controlled creatures that evolve learning abilities, and Cec-
coni and Parisi’s (1993) neural networks with motivational
units. In AntFarm (Collins & Jefferson, 1992a), and Koza’s
(1992) ant colony simulations, ants within a given colony in-
teract; however, the ants in each colony have a single common
genome, and selection occurs between these single genomes
based on the fitness of each colony determined in isolation.
All of these systems differ from ours in that multiple creatures
with different behaviors never interact in a common world,
and as a result much of the richness of both social behavior
and the effects of whole populations on a shared environment
is left out.

The RAM system (Taylor et al., 1989) is notable in having
the potential to model arbitrary interactions between multiple
animals in a gridworld by representing each part of the system
as a distinct computer program. The modeler chooses what
features are relevant and hand-codes programs that embody
them, as the model itself has almost no predetermined “bio-
logical smarts.” For instance, reproduction must be explicitly
written into each program. In contrast, all of the behavior of
creatures in our SPO system is determined solely by evolu-
tion; if a creature never specifically chooses to reproduce in
our system (in this case by having too low an evolved prob-
ability of randomly selecting the reproduction action), it will
die (or live) childless.

Many gridworlds that allow multiple creatures to interact
have been constructed with the goal of illustrating certain
kinds of interactions between creatures or certain kinds of
system dynamics. Ackley and Littman (1992) focus on the
relation between learning and evolution. Bedau and Packard
(1992) create a simple system with which they study measures
of evolutionary activity. Werner and Dyer (1992, 1993) ex-
plore systems that illustrate specific kinds of communication
and herding activity. Floreano’s (1993b) shared environment
research examines the differences in behavior that occur when
creatures can or cannot sense each other. This work in par-
ticular bears on our current interest in the effects of multiple
creatures in a commonly grazed environment, but his methods
are quite distinct and his system starts at a higher level of
behavioral (and sensory) complexity. Each of these systems
comes much closer to the work we describe here, but all differ
in being set up to explicate some particular form of behavior.
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Our approach instead is to build in the possibility of evolving
a wide set of different types of behaviors, and then manipulate
general features of environment structure to see what types of
behaviors actually do evolve as adaptive.

Packard’s (1989) work on intrinsic evolution shares simi-
lar motivations with ours, striving for simplicity in order to
bring a variety of basic evolutionary questions to the forefront.
Some of the main differences are that his creatures are born
a lot smarter (they know how to find food) and have signifi-
cant sensory input, and only a few types of food distribution
and growth are examined. Littman (1992) has approached the
problem of characterizing environments in terms of behav-
ioral capabilities by expanding on Wilson’s (1991) scheme
for classifying environmental indeterminacy, and he has re-
cently explored half of the problem we pose here, analyzing
the goal-seeking abilities of agents with no memory or internal
state, only current sensation (Littman, in press). Mason (1993;
Erdmann and Mason, 1988) has discussed the other half of the
equation, designing state-guided robots that have no sensors.
Other more recent projects by Yeager (1994) and Grant (1993)
and the LEE system of Menczer and Belew (in press) intro-
duce rich creature simulation environments in which a variety
of behaviors can evolve. But each come with predetermined
decisions about the cognitive,sensory, and memory abilities of
the creatures involved and the structures of the environments
in which they live. The SPO system, of course, also makes
such choices about the evolvable capabilities of the simulated
creatures, but at what we hope is a lower level of complication
(if not also sophistication), more appropriate for the kind of
study we are undertaking here into the simplest forms of blind
adaptive behavior evolved across a range of environments.

3 The World

We begin the exploration of the evolution of sensor-less, state-
less behavior in response to environmental structure with the
creation of the environments themselves. The world our crea-
tures inhabit is at present a very simple (and commonly used)
one, a two-dimensional 64x64 grid of distinct square loca-
tions, toroidally connected at opposite edges so that move-
ment wraps around and nobody will fall off. Any number of
creatures can occupy any of the 4096 locations in the world.
The only other type of object found in the world is food, which
can also be present in different locations in varying amounts.
(“Food” is equivalent to energy, the common currency in the
world, which creatures absorb through eating, use up in all
their activities, and die without.) The only direct control we
have over their environment is the spatial and temporal distri-
bution of the food they encounter.

There are an endless number of ways to parameterize the
possible patterns of food distribution over space and time in
our simple world. We have started with just a few parameters
that are particularly salient and more or less clearly connected
to patterns of plant growth in natural environments (see e.g.
Barbour, Burk, & Pitts, 1987; Bell, 1991). First of all, we
specify the maximum overall density of food in the world –

that is, the percentage of locations in the world in which food
can be present simultaneously. If food is distributed purely
randomly in the world with a given density (as it is in many of
the experiments described in this paper), then the density also
determines how far on average a creature will have to travel
from one food-bearing location before encountering another.

The pattern over time with which food regrows determines
its temporal distribution. We control this aspect of the envi-
ronment with two parameters. First, there is a food regrowth
delay, that specifies how long a just-grazed location will re-
main empty (food-less) before food can regrow there. Where
the maximum food density specifies how far a creature must
go to find food, the regrowth delay specifies how long a crea-
ture must wait at a given location before food reappears there.
Once food can sprout again in a given empty location, the sec-
ond parameter — the food regrowth rate — says how much
food energy will be added to this location at each time-step,
that is, how fast the food-plants (re)grow.

Food does not go on growing indefinitely in a given lo-
cation in this world – we also specify a maximum amount
of energy per location (that is, maximum food-plant “size”).
This maximum food amount can be specified directly, but we
usually use a more indirect computation of this parameter, in-
stead specifying the desired energy “flux” in the world — that
is, the average amount of energy appearing over all locations
in the world and across all time-steps. Say for instance that
we have two environments in which food regrows instantly
(zero regrowth delay) to a level of 2.0 units of energy. In one
case, we specify a maximum food density of 100%, so that
there are 2.0 units of energy everywhere in the world. In the
second case, we specify a maximum food density of 50%, so
that half of the locations have 2.0 units of energy, and half
have 0.0 units. Thus, in the second environment, we have the
same maximum food amount per location, but only half as
much energy is ever available for the population of creatures,
and this can seriously affect their livelihood. We would like
to have two environments with different densities (and other
parameters) that can support the same numbers of creatures,
by having the same average amount of energy per location
per time-step. If we want 2.0 units of energy per location per
time-step in the 50% density environment, we can achieve this
by doubling the maximum food amount that can grow at each
location.

The same thing applies if we have a food regrowth de-
lay. For instance, in an environment with 100% food density
and 1 time-step regrowth delay, food appears only half as of-
ten (every second time-step), so to give this environment an
equal energy flux, we again have to double the maximum food
amount used in the zero delay case. The energy flux can thus
be computed as

energy flux � food max amount�
food max density

1� regrowth delay

Since the energy flux is what is critical for maintaining crea-
ture populations in the world, rather than the maximum food
amount per location, we can set the energy flux and then

3



switch around the above equation to compute the maximum
food amount from the flux and the density and delay param-
eters. Again we set the food regrowth rate to be equal to the
maximum food amount per location, so that food regrows to
its full level as soon as it can.

4 The Creatures

As we described in our original statement of this research
program (Todd & Wilson, 1993), we are interested in the evo-
lution of three components of behavior in response to different
environment structures, namely action, sensation, and mem-
ory. Only the first, action, is actually necessary for behavior,
and indeed adaptive behavior. That is, creatures need not be
able to sense nor remember anything about their world (or
themselves) in order to behave adaptively in it, provided the
world is generous and benign enough. Simply performing
different actions with certain probabilities can suffice for sur-
vival and reproduction. There are probably no creatures alive
today that adhere to this strategy – the competitive real world
is probably no longer kind enough to allow such blind-faith
behavior, if it ever was — but it is possible that such mindless
action could play a part in earlier periods of the evolution of
life, terrestrial or otherwise. (In any case, the simple creatures
we simulate here could be likened to nothing more compli-
cated than a primitive unicellular organism; even plants have
more sensory abilities and behavioral options than the indi-
viduals in the SPO system!) And since such unguided action
is the logically simplest case we can construct, it is sensible
to begin here in our exploration of the evolution of adaptive
behavior. Once we have established this base-level state, it
will also be much easier to show clearly the adaptiveness of
evolved sensors and memory systems in comparison.

4.1 Action types

There are only four kinds of actions that we allow these first
simple creatures to perform. To absorb the food-energy in
their environment upon which they subsist, the creatures can
eat; to travel from location to location in search of new food,
the creatures can move; to populate the world with more of
their own kind, the creatures can split; and to pass time until
conditions have changed (or maybe not changed), the creatures
can sit and do nothing. We will discuss each of these in greater
detail.

The only way that creatures can get the energy they need to
live is to absorb it from the environment through eating,and the
only option available to them for eating at present is the food-
plants growing in the world. Plants can only be consumed
whole in these worlds; thus, if there are multiple creatures all
trying to eat at one particular food-bearing location, only one
of the creatures actually succeeds in eating, and it alone will
get all the food-energy in that location, while all the others
get no new energy. The winning creature — the one that gets
to eat — is chosen randomly from among all the contenders
attempting to eat in a location. The winning creature’s own

internal energy is incremented by the amount of food-energy
in the location, and the location’s food-energy is set to zero,
ready to sprout again after the specified regrowth delay.

Creatures might not need to move about in their environ-
ment in order to survive — if they are lucky enough to be born
on a food-growing location, they might be able to get by with
just sitting and eating their whole lives — but since movement
is the basis of all outwardly observable behavior, without it we
would end up with very dull creatures. The creatures in SPO
can move one location at a time in one of the four orthogo-
nal directions in the square grid. Movement is relative to the
current heading of the creature, so that an individual does not
choose to move north, south, east, or west, but rather forward,
backward, left, or right. Every move-action resets the current
heading to make the creature face the direction it is going to
move (e.g. if the creature chooses to move backward, it first
turns around and then moves one step forward in that new
heading). This heading-relative movement has implications
for the creatures’ behavior, as we will see in section 5.2.

The ultimate arbiter of what behavior patterns have been
adaptive in a given environment is those creatures that are
still around populating the environment after a suitable length
of time. This could be accomplished simply by filling the
world with randomly generated creatures and seeing who re-
mains after the selective filtering process of death weeds out
the maladaptive ones. But to enable powerful evolutionary
search through behavior-space by means of small adjustments
to existing behavior patterns, we need replication with mod-
ification. In SPO, we allow the creatures to reproduce by
asexual splitting, which creates a modified copy of the “par-
ent” individual and divides that individual’s current energy
equally between it and its new “offspring.” The newborn is
placed in the same location as the original splitting creature,
and they go on to lead separate lives from that instant. The
modifications in the newborn consist of rare changes in the
probabilities of choosing the various actions in the creature’s
behavioral repertoire, as will be described in the next sec-
tion on action selection. (The mutation rate — the chance
that any given action probability will be replaced with a com-
pletely new probability value — is 0.05 throughout the runs
described here.) This results in an individual who will behave
slightly differently from the parent it split off from, allowing
evolution to search behavior-space appropriately.

Finally, we allow creatures to do nothing in a particular
time-step, just sit and wait for the moment to pass. In this
way, creatures can “travel” through time in the same way they
can traverse space, and the two are separable (at least insofar as
sitting merely covers time, not space — movement at present
crosses both time and space simultaneously, since it takes time
to move a given distance). We hope that including this ability
will allow interesting aspects of the duality of space and time
in these environments to manifest themselves in the behaviors
of the creatures.

Every action a creature performs has energetic side-effects
determined by the bioenergetic characteristics of the world
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(see Todd & Wilson, 1993; Menczer and Belew, in press,
present another approach). Each type of action uses up a cer-
tain amount of energy; varying these action-costs across dif-
ferent worlds can yield very different behavioral repertoires,
as we will discuss in section 5.2. Beyond these action-costs,
some actions can further increase or decrease an individual’s
energy. Successful eating attempts increase the individual’s
energy by the amount of food-energy absorbed from the cur-
rent location, while splitting cuts the individual’s energy in
half. Thus energy flows into the simulated world through food
growth, continues into creatures when they eat, and flows back
out of the creatures by being burned up through the actions
they perform. Since creatures currently die only when they
run out of energy, no energy-filled carcasses ever end up in
the world — dead creatures just disappear.

4.2 Action selection

Since our very simple creatures have neither sensors nor mem-
ories or internal states to distinguish any location from any
other or any time-step from the rest of eternity, there is not
much they can use to decide what actions to perform at a given
instant. In fact, all they can use is the roll of a die — they se-
lect among all the possible actions randomly. But the die can
be weighted, with different probabilities (all summing to 1.0)
assigned to each of the seven possible actions (move forward,
backward, left, or right, eat, split, or sit). It is these prob-
abilities, distinct in each individual creature, that determine
the makeup of their behavioral repertoire, and allow them to
behave more or less adaptively in response to the different
environments they live in.

Each creature therefore has an internal list of seven proba-
bilities for selecting among the seven possible actions. These
probabilities remain constant during the creature’s lifetime.
When a creature splits, it is these probabilities that are mod-
ified slightly in the newborn offspring. At every time-step,
each creature chooses one action at random according to its
own internal probability distribution, and then performs that
action. These probability distributions are thus all we can look
at to assess the behavioral repertoire of the creatures in our
evolving populations, but this situation has the advantage of
allowing us a very easy and straightforward way of analyzing
what is happening in the world. In contrast, trying to make
sense of the behaviors of a population of sensing, remember-
ing, and acting neural network-based simulated creatures is a
far more daunting proposition. And as we will see in the next
section, even so simple a behavioral repertoire as this set of
seven actions weighted relative to each other can still lead to
some interesting evolved results.

5 Results

We have currently implemented the SPO system on a 4096-
processor 7 MHz Connection Machine 2 (CM2), using the
*Lisp data-parallel language. Each processor maintains one
location in the world (hence the current 64x64 size), as well

as one or more creatures (which may be located anywhere in
the world). The simulation churns along at a rate of about
five time-steps per second for a population of up to 16,000
creatures. We have watched the evolution of these simple
creatures in a wide variety of environments (in the hundreds
of different settings to date) created with the parameters de-
scribed in section 3. In this section, we first describe a typical
run embodying general features, and then discuss some of
the trends in the evolved behavior patterns that appear with
changing parameter settings and a few of the more peculiar
behaviors we have encountered.

Each run is begun the same: first, the world is populated
with food as described in section 3. Then, to create the ini-
tial population, we generate 500 creatures with random action
probability distributions and place them randomly across the
world. Each creature is started off with an arbitrary 20.0 units
of energy, to give everybody an equal foot in the door for sur-
vival. This initial population gives the evolutionary process
a variety of starting points to begin working from in parallel,
and allows multiple possible behavioral strategies to appear
simultaneously and compete with each other for domination.
In this way, the final population may come represent the most
successful — the most adaptive — of several contending pat-
terns of behavior. Once we first populate the world, the only
way new creatures can be introduced after this is through the
splitting actions of the creatures themselves.

5.1 Adapting over a typical run

The evolutionary course through which a population’s be-
haviors adapt to the environment contains several common
features across different environmental structures.

Figure 1 shows aspects of a typical run of a population of
creatures evolving in a simple environment over 20,000 time-
steps. In this environment, we have specified a maximum food
density of 40%, and a food regrowth delay of 4 time-steps,
giving abundant food that takes a bit of time to reappear. The
energy flux for the world is 0.6 units per location per time-step.
These three parameters combine to give a maximum amount
of food per location of 7.5 units of energy (which regrows all
at once after the regrowth delay).

The first thing that happens as the initial random creatures
begin to act in their environment can be seen in Figure 1a:
the population size shoots up from its starting point of 500
to a high of 1645 by time-step 7. This is because the initial
population contains a large number of creatures with very high
probabilities of splitting, so that’s what they do, resulting in
a miniature population explosion. But since reproducing is
basically all that these prolific creatures do, they soon run out
of energy and die, and the population crashes over the next
70 time-steps to a low of about 300 individuals. From that
point on, though, the successful creatures begin to make their
presence felt, as they responsibly move about their world, eat,
and only very occasionally have offspring. The population
grows steadily over the next 800 time-steps, reaching a high
of 2188 at time-step 1949 (Figure 1b), and then gradually
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Figure 1: Population features evolving over time in a single typical run. a. Population size from 0-1000 time-steps showing
initial population explosion, decline, and slow regrowth. b. Population size from 1000-20,000 time-steps showing eventual
stable plateau. c. Proportions of different actions at each time-step averaged across the entire population, from 0-1000 time-
steps. From top to bottom (at right edge), “e” represents average percentage of individuals eating, “m” represents combined
movement percentage (in all four directions), “s” represents splitting (reproduction), and “n” represents sitting/doing nothing.
d. Proportions of different actions, from 1000-20,000 time-steps.
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falling to a relatively stable plateau of about 1600 creatures.
(If we continue to run this world past 20,000 time-steps, little
changes.) This initial population explosion followed by a
rapid collapse and slower rebuilding is seen in the majority
of runs. The final population size reached, though, depends
greatly on the exact structure of the environment.

The reason for this population size growth pattern can be
seen in Figures 1c and 1d, showing the average action prob-
ability distributions over time. (In each figure, “e” represents
percentage of action devoted to eating, “m” is the combined
movement percentage, “s” is splitting percentage, and “n” is
sitting/do-nothing percentage.) In the initial population, all of
the actions are performed about equally, meaning that split-
ting will make up about 14% (1/7th) of all behavior. Now
every time a high-splitting-probability creature splits, it cre-
ates an additional new creature that also is likely to have a
high splitting probability, so that very rapidly, the probability
of splitting increases in the population. By the tenth time-step,
30% of all behavior is splitting. This rampant reproduction
cannot be maintained for long — even these simulated crea-
tures must stop to eat — and the splitting rate rapidly falls
off as the hyper-splitters fall dead from exhaustion (or at least
lack of energy).

The percentage of time spent splitting in fact continues to
drop steadily over the course of evolution, eventually reaching
a low of 0.17% by time-step 20,000. This is accounted for
largely by the fact that relatively few of the creatures in the
population ever bother to split at all — the majority of them
have a 0% chance of splitting. Indeed, only 175 out of the
total 1609 creatures at time-step 20,000 can split. This means
that most of the creatures spend their time just eating and
occasionally moving, building up greater and greater amounts
of energy, reaching an average energy per creature of over
7800 units by the end of this run. This effectively makes these
non-splitting creatures immortal, a situation that can lead to
such dire consequences as the eventual end of all evolution (as
described in Todd, 1993).

In place of the disappearing likelihood of splitting, though,
another action must increase in likelihood (since the creatures
always select something to do at each time-step, even if it is
just sitting still). Eating takes up the slack from the decreasing
splitting, growing constantly after its initial low probability. In
fact, the percentage of time creatures spend eating on average
rises at the expense of all of the other actions. Eating beats out
the combined movement percentage (the sum of movements
in each of the four directions) to become the most popular
action shortly after 100 time-steps. This all-important activity
continues to rise until it plateaus around 83% by time-step
16,000.

The combined movement probability begins very high
(since it subsumes four different actions, or 4/7th of the total
initial probability distribution), but it quickly falls off. It re-
mains a useful action in this environment, though, leveling at
around 14%. (In other environments, as we will see, move-
ment is a much less adaptive behavior, and ends up at much

lower levels.) The amount of time spent moving in each of
the four directions is not evenly distributed, however, as we
will see in the next section — interesting patterns emerge.
Finally, the sit (do nothing) action proves relatively pointless
in this environment, rapidly falling to about 2.5% usage. This
is still much higher than the final splitting percentage, though,
indicating that just sitting still is not as risky a proposition —
and thus not as strongly selected down — as is losing half of
one’s energy to a new (and competing!) offspring.

These patterns of evolution of the average behavioral reper-
toire are fairly representative of the range of runs we have
performed. (Since the action probability distribution seems to
have become more or less stable by 15,000 time-steps, we use
this as the length of the runs in the remainder of this paper.)
Using averages, though, can hide multiple strategies existing
within a single population, a concern to which we will return
in the next section; but often the populations that evolve are
fairly homogeneous, with one particular behavioral pattern
winning out over time.

Other things are afoot in the world besides behaviors chang-
ing, however. As the population of creatures adapts to the
environment and comes to contain more individuals with be-
havioral repertoires better tuned to the world they encounter,
the world itself changes as well, owing solely to the actions
of the creatures. This can be seen in Figure 2, which shows
the density of food in the world over time. Two lines are plot-
ted in both panes (Figures 2a and 2b); the bottom one (“*”s)
shows the percent of food-bearing locations after the popula-
tion has grazed, while the top one (“o”s) shows the percent
of food-bearing locations after food has regrown in the world.
Remember that the maximum food density in this particular
environment is 40% – but as can be seen, this value is never
actually reached, even following regrowth, after the initial
planting of food. The reason for this is the long regrowth
delay (4 time-steps), which keeps much of the world infer-
tile for much of the time, so that the maximum food density
never can actually regrow. As soon as some of the locations
regrow, the creatures graze them down again, keeping the en-
tire percentage low. This in turn has an impact on the future
evolution of the creatures themselves, limiting their numbers
and probably making movement in search of the sparser food
locations more adaptive.

This is a very different situation from simulation systems
that run single creatures in their own worlds to test out their
adaptiveness. In those cases, each creature experiences the
same type of environment over the entire course of evolution,
and they become better and better adapted (one hopes) to that
fixed environment over evolutionary time. In our situation,
though, the environment we initially specify is quite different
from the picked-over world the creatures end up making for
themselves – they must evolve to a moving target, because the
nnworld itself changes over evolutionary time as well. This
complicates our task in analyzing evolution in response to
environments, but it also makes the model more realistic.

But the creatures never eat all of the food at a given instant;
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Figure 2: Environmental changes occurring over time in a single typical run. a. Food density in percent of locations containing
food-plants at each time-step from 0-1000; the upper line (“o”s) shows density after food regrowth, while the lower line (“*”s)
shows density before regrowth. b. Food density from 1000-20,000 time-steps showing eventual leveling off and large difference
before and after regrowth.

as can be seen in Figure 2b, even after 20,000 time-steps
the grazing creatures leave behind food in about 14% of the
locations (out of about 20% of locations that regrow each time-
step). This is because there are too few creatures in the final
population to graze everywhere. The 1600 creatures in the
population at 20,000 time-steps in fact end up only occupying
29% of the locations in the world. The creatures are relatively
well dispersed, though, as there are only an average of 1.36
creatures per occupied location, compared to the stack of 2.3
per location that occurs at time-step 10 (right after the initial
population explosion,when many creatures and their offspring
are sitting on the same spot).

5.2 Adapted behavior patterns and trends

The typical run just discussed shows that the behavioral reper-
toires of creatures are changed over time through the simulated
evolutionary process – but are the creatures actually adapted
to their particular environment? Or are we just witnessing
the unwinding of some general dynamic process independent
of the pattern of food distribution in the world? The most
direct way to answer this question is to vary the structure of
the environment, and see whether or not the evolved behav-
iors also change as a result. We have varied the maximum
food density, the food regrowth delay, the average energy flux
per location per time-step, and the cost of movement relative
to the costs of the other actions, and have found that the be-

havioral strategies evolved do in fact change significantly in
response. This indicates that the challenges of different types
of environments are best (most adaptively) met by different
probability distributions of blind actions. In this section we
briefly discuss some of the major trends we see as we vary
the environmental parameters, and a few of the adaptational
oddities that pop up.

The most significant trends we find as the environments
change are in the big-ticket actions, the ones that creatures
spend most of their time doing: moving and eating. Holding
other parameters constant, the rate of movement in general
increases both as the density of food increases, and (inde-
pendently) as the food regrowth delay increases. The former
result is a bit counter-intuitive: why should creatures move
more when food is denser, that is, closer together? In such
environments, it should take less movement to find the next
fertile food spot. But this is probably just why more movement
is possible in such environments — there is far less risk to it,
because food is likely to be encountered soon. In low-density
environments, moving randomly in the way these creatures
are restricted to may take them a very long time to stumble
from a location where there is certain to be more food grow-
ing — if they just wait long enough — to another similarly
good oasis, and the possibility of starving on the way is great.
In high-density environments, this risk is much reduced, and
creatures can afford to allot more of their time to movement
from one food-bearing location to another nearby.
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As regrowth delay increases from 0 (instant regrowth on
the next time-step), again so does the percentage of time spent
moving. If food is certain to reappear immediately at your
current location, there is little incentive to move from there
in hopes of finding another place to eat; but if food won’t
grow back for some time, wandering away in search of more
might be reasonable. This seems to be what the creatures
do. But still, why should they give up a good thing if they
begin at a food-growing location? If we look carefully at
the distribution of individual movement types the creatures
are using, it appears that they do not simply abandon the
location where they begin – instead, the loop back to it after
some delay! Analyzing the possibilities, it is clear that only
movement solely in direction 0 — straight ahead — takes
creatures ever further away from their starting point. Repeated
movements in direction 1 — turn right and move forward —
bring a creature back to where it started in four moves, as does
movement in direction 3 (looping leftwards instead), while
movements in direction 2 — turn around and move forward
— bring it back in two moves. So if food regrows after a
short delay, moving in short two-step loops with direction 2,
interspersed with eating, may match the temporal distribution
of food most appropriately. If food takes quite a bit longer
to regrow, moving in longer four-step loops could be more
adaptive.

Remarkably, this pattern is indeed borne out in the data:
for instance, in the run described in the previous section, with
regrowth delay of 4 time-steps, at the end of 15,000 time-
steps of evolution we get 1% of the population only moving
in direction 0 (straight ahead), 29% of the population only
moving in direction 2 (two-step loops), and 21% of the popu-
lation either moving only in direction 1 or only in direction 3
(four-step loops) — the rest of the population (49%) has some
mixed movement strategy (or no movement). When we look
at regrowth delay of 2, the emphasis on two-step loops is even
greater, with 32% of the population moving only in direction
2, and just 14% moving in only direction 1 or 3. In contrast,
when we change the regrowth delay to 12, these values be-
come roughly inverted: we get 7% movement in direction 0
only, 17% in direction 2 only, and 40% in direction 1 or 3
only, showing that four-step loops have now become much
more prevalent, and are therefore probably more adaptive and
more often selected for. (Movement only in direction 0 in-
creases as we continue to raise the regrowth delay, showing
that the creatures eventually start to give up on the looping
strategy when the delays between food reappearances are too
large.) Thus, even these extraordinarily simple creatures are
able to invent a behaviorally-based clock to adaptively time
their behaviors in response to the structure of the environment,
something we were quite surprised to find. (Of course, these
timers are not that useful, in some sense, because the crea-
tures don’t really know when to start them, nor when to stop
them, nor even how to keep them running — everything is
done probabilistically, and a rogue “sit” action coming in the
middle of a four-step loop could throw off the timing of the

entire sequence, for instance. Only through the use of internal
states can such timers be made more accurate.)

The percentage of time spent trying to eat basically follows
trends opposite to those for movement, falling with both in-
creasing food density (because it is less necessary) and increas-
ing regrowth delays (because it is useful less often). Splitting
and doing nothing both remain quite low-percentage actions in
most worlds, splitting because it is a very costly act, and sitting
because it does not offer much positive return (why sit when
one can try to eat instead, since both have the same energy cost
in this case?). All of these trends are modified somewhat by
the cost of movement relative to the costs of the other actions,
but basically they are just scaled up or down in magnitude, and
the direction of change remains the same. For instance, when
we run another world like the one described in the previous
section, but this time movement costs only 0.1 unit of energy
instead of 0.5 (i.e., it costs one-fifth of what all the other ac-
tions cost), after 15,000 time-steps creatures spend about 27%
of the time moving and 72% of the time eating (compared
to 14% and 83% respectively above). When movement costs
1.0 unit of energy (twice the other action costs), these values
change to 8% moving and 88% eating, reflecting the fact that
it’s cheaper to attempt to eat than to move. Finally, in an
extreme case, when movement costs nothing (0.0 unit of en-
ergy), creatures switch to spending 74% of their time skidding
joyfully around their frictionless air-hockey world, and only
pausing to try to grab a mouthful of food 25% of the time.

Despite these general trends, there are still occasions at
particular parameter settings when very curious behavioral
strategies appear and take over the population. For instance,
with movement cost of 1.0, food density of 10%, and regrowth
delay of 2 time-steps, we find great variation in the kinds of
strategies that different populations (on different runs of the
system) converge upon, indicating different “species” of crea-
tures. One particularly odd species spends 32% of its time
just sitting in place (with 18% movement and 50% eating),
far higher than any other population ever encountered. In
another case, with food density 5% and regrowth delay of 1
time-step, one species spends 38% of its time splitting, again
an unheard-of figure. The reasons for these strange strategies
are being investigated, as well as their prevalence at other
parameter settings. It is possible that they are very rare but
widespread, and only occasionally take over an entire popula-
tion (indeed, we find considerable variation in many evolved
populations — convergence is often not attained so long as
splitting continues). The extent of speciation in general, and
how much within-population variation is hidden by our use of
behavioral repertoire averaging, remains to be explored. But
the fact that multiple behavioral strategies can be found for
dealing with certain kinds of environments, and the peculiar-
ity of some of these solutions, further indicates the extent to
which the behaviors of individual creatures have been adapted
to the particular situations they evolve in.
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6 Conclusions and Further Directions

Despite the simplicity of our simulation model for the evolu-
tion of behavior in blind, amnesic creatures, we have found
a surprising amount of richness in the results. The behav-
iors of creatures are adapted by evolution over time to the
particular spatiotemporal structure of food growth in their en-
vironment. Even in creatures with nothing else to do but
sit, eat, move about, and reproduce in the dark, unexpectedly
sophisticated strategies emerged, like the use of movement-
based time-keeping to deal with temporal delays in the world.
Sensors, internal states, and memory systems are thus clearly
unnecessary for at least the grossest level of adapted behavior.

But such enhanced information-gathering abilities will ob-
viously help, and that is the direction we are heading in with
the SPO research program. The next step is to add food-
detecting sensors which can focus at any relative position in
the world, to investigate the particular deployment of sensors
that prove adaptive in different types of environments. Fur-
thermore, in keeping with the philosophy that every action
must be chosen by the creature (and not by some external sys-
tem bias), we want to let sensation itself be a selectable action,
so that creatures will “have their eyes shut” unless they spec-
ify otherwise, rather than always having a constant stream of
input data impinging on them from ever-active sensors. Mon-
itoring the pattern of “eye-opening” will also allow us to get a
better handle on just when creatures need to use sensory input,
in a way that is impossible with constantly-sensing creature
models.

After this, we will add internal state (memory) systems that
allow creatures to “look back in time” at the state of a particu-
lar world location in the past (e.g. whether or not it held food
four time-steps ago), in a manner analogous to the way their
sensors look “across” time to locations that will take several
time-steps into the future to reach. In this way, we hope to
explore both the temporal and spatial aspects of environmental
variation and behavioral responses to them more accurately.
But before these enhancements, we will continue to estab-
lish the baseline of adaptive behavior capable in sensor-less,
memory-less creatures of the kind described here, showing
that adaptive behavior is possible without looking.

References

Ackley, D., and Littman, M. (1992). Interactions between
learning and evolution. In C.G. Langton, C. Taylor,
J.D. Farmer, and S. Rasmussen (Eds.), Artificial life
II (pp. 487-509). Reading, MA: Addison-Wesley.

Barbour, M.G., Burk, J.H., and Pitts, W.D. (1987). Ter-
restrial plant ecology, 2nd ed. Menlo Park, CA:
Benjamin/Cummings.

Bedau, M.A., and Packard, N.H. (1992). Measurement of
evolutionary activity, teleology, and life. In C.G.
Langton, C. Taylor, J.D. Farmer, and S. Rasmussen
(Eds.), Artificial life II (pp. 431-461). Reading, MA:
Addison-Wesley.

Bell, W.J. (1991). Searching behaviour: The behavioural
ecology of finding resources. London: Chapman
and Hall.

Cecconi, F., and Parisi, D. (1993). Neural networks with
motivational units. In J.-A. Meyer, H.L. Roitblat,
and S.W. Wilson (Eds.), From animals to animats 2:
Proceedings of the Second International Conference
on Simulation of Adaptive Behavior (pp. 346-355).
Cambridge, MA: MIT Press/Bradford Books.

Collins, R.J., and Jefferson, D.R. (1992). AntFarm: Towards
simulated evolution. In C.G. Langton, C. Taylor,
J.D. Farmer, and S. Rasmussen (Eds.), Artificial life
II (pp. 579-601). Reading, MA: Addison-Wesley.

Floreano, D. (1993a). Emergence of nest-based foraging
strategies in ecosystems of neural networks. In J.-A.
Meyer, H.L. Roitblat, and S.W. Wilson (Eds.), From
animals to animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive
Behavior (pp. 410-416). Cambridge, MA: MIT
Press/Bradford Books.

Floreano, D. (1993b). Patterns of interactions in shared en-
vironments. In Pre-proceedings of the Second Eu-
ropean Conference on Artificial Life, Brussels, Bel-
gium, May 1993.

Grant, W. (1993). Artificial life worlds as discovery environ-
ments for learning. Talk presented at the Artificial
Life III Workshop, Santa Fe, NM.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M.,
Korf, R., Taylor, C., and Wang, A. (1992). Evolution
as a theme in artificial life: The Genesys/Tracker
system. In C.G. Langton, C. Taylor, J.D. Farmer,
and S. Rasmussen (Eds.), Artificial life II (pp. 549-
578). Reading, MA: Addison-Wesley.

Koza, J.R. (1992). Genetic evolution and co-evolution of
computer programs. In C.G. Langton, C. Taylor,
J.D. Farmer, and S. Rasmussen (Eds.), Artificial life
II (pp. 603-629). Reading, MA: Addison-Wesley.

Littman, M.L. (1992). An optimization-based categoriza-
tion of reinforcement learning environments. In J.-
A. Meyer, H.L. Roitblat, and S.W. Wilson (Eds.),
From animals to animats 2: Proceedings of the
Second International Conference on Simulation of
Adaptive Behavior (pp. ). Cambridge, MA: MIT
Press/Bradford Books.

Littman, M.L. (in press). Memoryless policies: Theoretical
limitations and practical results. In J.-A. Meyer, P.
Husbands, and S.W. Wilson (Eds.), From animals
to animats 3: Proceedings of the Third Interna-
tional Conference on Simulation of Adaptive Behav-
ior. Cambridge, MA: MIT Press/Bradford Books.

Mason, M.T. (1993). Kicking the sensing habit. AI Magazine,
1, 58-59.

Erdmann, M.E., and Mason, M.T. (1988). An exploration of
sensorless manipulation. IEEE Journal of Robotics
and Automation, 4, 369-379.

10



Menczer, F., and Belew, R.K. (in press). Latent energy en-
vironments. In R.K. Belew and M. Mitchell (Eds.),
Plastic individuals in evolving populations. Read-
ing, MA: Addison-Wesley.

Meyer, J.-A., and Guillot, A. (1991). Simulation of adaptive
behavior in animats: Review and prospect. In J.-
A. Meyer and S.W. Wilson (Eds.), From animals
to animats: Proceedings of the First International
Conference on Simulation of Adaptive Behavior (pp.
2-14). Cambridge, MA: MIT Press/Bradford Books.

Packard, N.H. (1989). Intrinsic adaptation in a simple model
for evolution. In C.G. Langton (Ed.), Artificial
life (pp. 141-155). Redwood City, CA: Addison-
Wesley.

Parisi, D., Nolfi, S., and Cecconi, F. (1992). Learning, be-
havior, and evolution. In F.J. Varela and P. Bourgine
(Eds.), Towards a practice of autonomous systems:
Proceedings of the First European Conference on
Artificial Life. (pp. 207-216). Cambridge, MA:
MIT Press/Bradford Books.

Taylor, C.E., Jefferson, D.R., Turner, S.R., and Goldman, S.R.
(1989). RAM: Artificial life for the exploration of
complex biological systems. In C.G. Langton (Ed.),
Artificial life (pp. 275-295). Redwood City, CA:
Addison-Wesley.

Todd, P.M. (1993). Artificial death. In Pre-proceedings of
the Second European Conference on Artificial Life,
Brussels, Belgium, May 1993.

Todd, P.M., and Miller, G.F. (1991a). Exploring adaptive
agency II: Simulating the evolution of associative
learning. In J.-A. Meyer and S.W. Wilson (Eds.),
From animals to animats: Proceedings of the First
International Conference on Simulation of Adaptive
Behavior (pp. 306-315). Cambridge, MA: MIT
Press/Bradford Books.

Todd, P.M., and Miller, G.F. (1991b). Exploring adaptive
agency III: Simulating the evolution of habituation
and sensitization. In H.-P. Schwefel and R. Maenner
(Eds.), Proceedings of the First International Con-
ference on Parallel Problem Solving from Nature (pp.
307-313). Berlin: Springer-Verlag.

Todd, P.M., and Wilson, S.W. (1993). Environment structure
and adaptive behavior from the ground up. In J.-A.
Meyer, H.L. Roitblat, and S.W. Wilson (Eds.), From
animals to animats 2: Proceedings of the Second
International Conference on Simulation of Adap-
tive Behavior (pp. 11-20). Cambridge, MA: MIT
Press/Bradford Books.

Werner, G.M., and Dyer, M.G. (1992). Evolution of commu-
nication in artificial organisms. In C.G. Langton, C.
Taylor, J.D. Farmer, and S. Rasmussen (Eds.), Arti-
ficial life II (pp. 659-687). Reading, MA: Addison-
Wesley.

Werner, G.M., and Dyer, M.G. (1993). Evolution of herd-
ing behavior in artificial animals. In J.-A. Meyer,
H.L. Roitblat, and S.W. Wilson (Eds.), From ani-
mals to animats 2: Proceedings of the Second In-
ternational Conference on Simulation of Adaptive
Behavior (pp. 393-399). Cambridge, MA: MIT
Press/Bradford Books.

Wilson, S.W. (1985). Knowledge growth in an artificial
animal. In J.J. Grefenstette (Ed.), Proceedings of
an International Conference on Genetic Algorithms
and their Applications (pp. 16-23). Pittsburgh, PA:
Carnegie-Mellon University.

Wilson, S.W. (1991). The animat path to AI. In J.-A. Meyer
and S.W. Wilson (Eds.), From animals to animats:
Proceedings of the First International Conference
on Simulation of Adaptive Behavior (pp. 15-21).
Cambridge, MA: MIT Press/Bradford Books.

Yeager, L. (1994). Computational genetics, physiology,
metabolism, neural systems, learning, vision, and
behavior or PolyWorld: Life in a new context. In
C.G. Langton (Ed.), Artificial life III (pp. 263-298).
Reading, MA: Addison-Wesley.

11


