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Abstract. We give a new proof of the theorem of Suslin-Voevodsky which
shows that the Bloch-Kato conjecture implies a portion of the Beilinson-
Lichtenbaum conjectures. Our proof does not rely on resolution of singularities,
and thereby extends the Suslin-Voevodsky theorem to positive characteristic.

1. Introduction

The purpose of this paper is to give an alternate proof of the main result of
[25] along the lines of [13]. Our proof does not rely on resolution of singularities,
hence extends the results of [25] to varieties over fields of arbitrary characteristic.
The new ingredient which enables us to apply the techniques of [13] to motivic
cohomology is the surjectivity result of [8, Corollary 4.4].

Let F be a field, q ≥ 0 an integer, and m > 1 an integer prime to the character-
istic of F . We have the Milnor K-group KM

n (F ), and the Galois symbol

ϑq,F : KM
q (F )/m→ Hq

ét(F, µ
⊗q
m ).(1.1)

The Bloch-Kato conjecture [3] asserts that the map ϑq,F is an isomorphism for all
F , q and m. For q = 1, this follows from the definition of ϑ1,F via the Kummer
sequence, and is the theorem of Merkurjev-Suslin [18] for q = 2. For m a power of
2, the Bloch-Kato conjecture for arbitrary q and F has been proven by Voevodsky
[28]

Let X be a localization of a smooth scheme of finite type over k; we call such
a scheme essentially smooth over k. We use Bloch’s higher Chow groups as our
definition of motivic cohomology Hp(X,Z(q)) for essentially smooth k-schemes X.
We sheafify Bloch’s cycle complexes to define the weight q motivic complex ΓX(q),
as a complex of Zariski sheaves on X.

Let m be prime to the characteristic of k, let X be essentially smooth over k,
and let ε : Xét → XZar be the change of topology map. We construct a natural
cycle class map (in the derived category of Zariski sheaves)

cla : ΓX(a)⊗L
Z/m→ τ≤aRε∗(µ⊗am ).(1.2)

Our main result is

Theorem 1.1. Let k be a field, and let m be an integer prime to the characteristic
of k. Suppose that the maps ϑq,F : KM

q (F )/m → Hq
ét(F, µ

⊗q
m ) are surjective for
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all finitely generated field extensions F of k. Then the cycle class map (1.2) is an
isomorphism for all essentially smooth X over k and all a with 0 ≤ a ≤ q.

As one consequence, we have

Corollary 1.2. Let k be a field, and let m be an integer prime to the characteristic
of k. Suppose that the maps ϑq,F : KM

q (F )/m→ Hq
ét(F, µ

⊗q
m ) are surjective for all

finitely generated field extensions F of k. Let X be essentially smooth over k. Then
the cycle class map (1.2) induces an isomorphism

clq : Hp(X,Z/m(q))→ Hp
ét(X,µ⊗qm )

for all p ≤ q, and an injection for p = q + 1.

The conclusion of Theorem 1.1 is a part of the Beilinson-Lichtenbaum conjectures
(see e.g. [16]).

Using Voevodsky’s verification of the Bloch-Kato conjecture for m a power of
2 (loc. cit.), we may apply Theorem 1.1 to extend the consequences of [28] to
characteristic p > 0:

Corollary 1.3. For m = 2ν , the cycle class map (1.2) is an isomorphism for all
X essentially smooth over k.

Similarly, the Merkurjev-Suslin theorem (loc. cit.) gives as in [25]:

Corollary 1.4. Let k be a field, and let m be prime to char k. Then the cycle class
map (1.2) is an isomorphism for all a, 0 ≤ a ≤ 2, and all X essentially smooth
over k.

We also consider the étale sheafification ΓX(q)ét of ΓX(q). The results of Suslin-
Voevodsky [24] on the Suslin homology of varieties over an algebraically closed field
give us the following unconditional result:

Theorem 1.5. Let k be a field, and let m be an integer prime to char k. Let X be
essentially smooth over k. Then the étale cycle class map

clqét : ΓX(q)ét ⊗L
Z/m→ µ⊗qm

is an isomorphism in D−(Sh(Xét)) for all q ≥ 0.

With the aid of this result, one can reformulate Theorem 1.1 entirely in terms
of ΓX(q) and ΓX(q)ét, giving the equivalent result which avoid the use of the cycle
class map.

Theorem 1.6. Let k be a field, and let m be an integer prime to char k. Sup-
pose that the maps ϑq,F : KM

q (F )/m → Hq
ét(F, µ

⊗q
m ) are surjective for all finitely

generated field extensions F of k. Then the natural map

ιX : ΓX(a)⊗L
Z/m→ τ≤aRε∗ΓX(a)ét

is an isomorphism for 0 ≤ a ≤ q and for all X essentially smooth over k.

An outline of the paper is as follows: In §2 we recall the definition of the primary
object of study, Bloch’s cycle complex, and describe its fundamental properties.
We also extend the definition of the cycle complex to the relative situation, and to
normal crossing schemes. In §3, we give a definition of the cycle class map from
motivic cohomology to étale cohomology, and we show in §4 that this defines a
natural transformation of cohomology theories, compatible with Gysin sequences
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and products. These two sections are fairly technical, and could be skipped on
the first reading. The main argument for the proof of Theorem 1.1 occurs in §5-
§7. In §5, we introduce the semi-local n-cube, the relative motivic cohomology of
which provides the dimension shifting which enables us to move from Hq(Z/m(q))
to Hp(Z/m(q)) for p ≤ q. The heart of this dimension shifting argument is given in
§6 and §7. We prove Theorem 1.5 and show that Theorem 1.1 and Theorem 1.6 are
equivalent at the end of §4. We have included an appendix on products for Bloch’s
cycle complexes, which fills a gap in the construction of products given in [1].

We are indebted to B. Kahn for pointing out how to use Lemma 7.3 to remove
some unnecessary hypotheses from an earlier version of Theorem 1.1. We would
also like to thank the referee and the editor for making a number of useful comments
and suggestions.

2. Prelimiaries

We set up some notations and conventions, and recall some of the notations and
results from [8] for the reader’s convenience. We fix a field k.

2.1. Conventions. We will have occasion to work with both complexes for which
the differential has degree −1 (homological complexes) and those for which the
differential has degree +1 (cohomological complexes). Rather than work with two
equivalent derived categories, we will always work in the derived category formed
from cohomological complexes. If A∗ is a homological complex, the associated
cohomological object will be the cohomological complex A∗ with An := A−n, and
with dn := d−n. Similarly, we will give the category of homological complexes the
translation structure which is compatible with that of the derived category, i.e., if
(A∗, dA∗ ) is a homological complex, then (A[1], dA[1]) is the complex with

A[1]n := An−1, dA[1]
n := −dAn−1.

We will sometimes abuse notation by saying that a sequence of complexes

S := [A i−→ B
j−→ C]

gives a distinguished triangle if the image of S in the derived category has an
extension to a distinguished triangle in some standard way. For instance, if S is
degree-wise exact, with i degree-wise injective and j degree-wise surjective, then
the canonical map cone(i)→ C is a quasi-isomorphism, hence S defines a canonical
distinguished triangle.

We let [n] denote the ordered set {0, . . . , n}, with the standard order, and let ∆
denote the category with objects the sets [n], n = 0, 1, . . . , and with morphisms the
order-preserving maps. For a simplicial abelian group A : ∆op → Ab, we view the
associated chain complex as a cohomological complex A∗ in negative degrees, i.e.,
An = A([−n]), with differential the usual alternating sum. Similarly, for a simplicial
object A : ∆op → C(Ab), we have the double complex A∗∗, with Aa,b = Aa([−b]).
2.2. Cycle complexes. Let ∆n be the affine space

∆n := Spec k[t0, . . . , tn]/
n∑
i=0

ti − 1.

A subscheme of ∆m defined by equations of the form ti1 = . . . = tir = 0 is called
a face of ∆n (we consider ∆n a face of ∆n as well). The vertices vni of ∆n are the
faces tj = 0, j 	= i. For a map g : [n] → [m] in ∆, we have the map of schemes
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g : ∆n → ∆m defined by taking the affine-linear extension of the map of vertices
vni 
→ vmg(i); via these maps, sending n to ∆n extends to form a cosimplicial scheme
∆∗.

Let X be a finite type k-scheme, locally equi-dimensional over k. We let zq(X)
denote the group of codimension q algebraic cycles on X. Bloch [1] has defined
the cycle complex zq(X, ∗), with zq(X, p) the subgroup of the group zq(X × ∆n)
generated by codimension q subvarieties W of X ×∆p such that, for each face F
of ∆p, W ∩X × F has codimension ≥ q on X × F . For each order-preserving map
g : [n]→ [m], and each W ∈ zq(X,m), the pull-back (id× g)∗(W ) via the induced
map id × g : X × ∆n → X × ∆m is defined and is in zq(X,n). Thus, sending
m to zq(X,m) gives rise to a simplicial abelian group, and zq(X, ∗) is defined as
the associated chain complex. The higher Chow groups of X, CHq(X, p), are then
defined as the homology

CHq(X, p) := Hp(zq(X, ∗)).

In fact, the definition given in [1] requires X to be quasi-projective, but this is
not necessary. More generally, if X is the localization of a locally equi-dimensional
finite type k-scheme Y , then define

zq(X, ∗) = lim→
X⊂U⊂Y

zq(U, ∗),

where the limit is over open subschemes U of Y . It is easy to see that zq(X, ∗)
is independent of the choice of Y . We set as above CHq(X, p) := Hp(zq(X, ∗)).
In particular, all the notions described above make sense for a k-scheme X ′ of the
form Spec(OX,v), where OX,v is the local ring of a smooth quasi-projective variety
X at a finite set v of closed subvarieties.

2.3. Pull-back. As we will see below, the higher Chow groups have the formal
properties of Borel-Moore homology for schemes essentially of finite type over k,
and, for essentially smooth k-schemes, the formal properties of cohomology, in-
cluding contravariant functoriality. The complexes zq(X, ∗) are not, however, con-
travariantly functorial for arbitrary maps f : Y → X, even if X and Y are smooth,
due to the fact that the pull-back of an arbitrary cycle on X ×∆m is not in gen-
eral defined. As a first step in the construction of a pull-back map f∗, we need to
consider subcomplexes of zq(X, ∗) constructed by using cycles having good inter-
sections with a given finite collection of closed subsets of X.

Let X be a k-scheme, essentially of finite type and locally equi-dimensional over
k, and let S be a finite set of closed subsets of X, including X as an element. We
have the subcomplex zq(X, ∗)S of zq(X, ∗) with zq(X, p)S being the subgroup of
zq(X, p) generated by subvarieties W which intersect S × F properly on X ×∆p,
for all S in S, and all faces F of ∆p.

Let f : Y → X be a morphism of locally equi-dimensional k-schemes, essentially
of finite type, and let

Si(f) = {x ∈ X|dimk(x) f
−1(x) ≥ i},(2.1)

S(f) = {Si(f)|i = −1, 0, 1, . . . }.

Then each Si(f) is a closed subset of Y . Suppose that X is regular and that
S(f) ⊂ S. Then (f×id)∗(W ) is well-defined and in zq(Y, p) for each W ∈ zq(X, p)S ,
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giving the map of complexes

f∗S : zq(X, ∗)S → zq(Y, ∗).(2.2)

If X is smooth over k and affine, then the proof of [14, Chap. II, Theorem 3.5.14],
shows that the inclusion

iS : zq(X, ∗)S → zq(X, ∗)(2.3)

is a quasi-isomorphism. Setting f∗ = f∗S ◦ i−1
S defines a pull-back map in D(Ab),

f∗ : zq(X, ∗)→ zq(Y, ∗),(2.4)

and the resulting map in cohomology f∗ : CHq(X, ∗)→ CHq(Y, ∗).
If, for example, f is an inclusion iY : Y → X and Y is in S, the map (2.2) is

defined. Let S(Y ) be the subset of S consisting of those S contained in Y , and
write zq(Y, ∗)S for zq(Y, ∗)S(Y ). One sees directly that i∗Y (zq(X, p)S) ⊂ zq(Y, p)S ,
giving the map of complexes i∗Y : zq(X, ∗)S → zq(Y, ∗)S .

2.4. External products. We refer the reader to the Appendix for a description
of natural external products

zq(X, ∗)⊗L zq
′
(Y, ∗)→ zq+q

′
(X ×k Y, ∗)

in D−(Ab). We will show in §2.10 how the external products give rise to natural
cup products for X essentially smooth over k.

2.5. Motivic cohomology. The higher Chow groups have been incorporated into
a general theory of motivic cohomology via the categorical constructions of Voevod-
sky [27] and the second author [14]. In case resolution of singularities holds for
finite type k-schemes (e.g., k has characteristic zero), the motivic cohomology of
[27] and [14] are canonically isomorphic (see [14, Chap. IV, Theorem 2.5.5]); for
smooth X which is the localization of a quasi-projective k-scheme both theories
agree with the higher Chow groups via a canonical isomorphism

CHq(X, p) ∼= H2q−p(X,Z(q)).(2.5)

Even without assuming resolution of singularities, the isomorphism (2.5) holds for
the motivic cohomology of [14] (see [14, Chap. II, Theorem 3.6.6]).

We reindex Bloch’s cycle complex to reflect the isomorphism (2.5), defining the
cohomological cycle complex Zq(X, ∗), for X essentially smooth over k, by

Zq(X, p) := zq(X, 2q − p),

and take the cohomology Hp(Zq(X, ∗)) as the definition of the motivic cohomol-
ogy Hp(X,Z(q)). We define the subcomplex Zq(X, ∗)S of Zq(X, ∗) by the similar
reindexing of zq(X, ∗)S .

Let m be an integer, and X essentially smooth over k. The mod m motivic
cohomology, Hp(X,Z/m(q)), is defined by

Hp(X,Z/m(q)) := Hp(Zq(X, ∗)⊗ Z/m).

The mod m motivic cohomology has a natural definition via the motivic categories
of [27] and [14] as well, which agrees with the definition given here, subject to the
restrictions described above.
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2.6. Localization. Let X be a locally equi-dimensional k-scheme, essentially of
finite type over k, and let W be a closed subset of X, with inclusion i : W → X,
and open complement j : U → X. We set

zqW (X, ∗)S := cone(j∗ : zq(X, ∗)S → zq(U, ∗)S)[−1].

In case X is smooth over k, we set

Zq
W (X, ∗) := cone(j∗ : Zq(X, ∗)S → Zq(U, ∗)S)[−1],(2.6)

and define the motivic cohomology with support as

Hp
W (X,Z(q)) := Hp(Zq

W (X, ∗)).
Suppose now that W has pure codimension d on X, giving us the push-forward

i∗ : zq−d(W, ∗)→ zq(X, ∗). Since j∗ ◦ i∗ = 0, we have the canonical map

iW∗ : zq−d(W, ∗)→ zqW (X, ∗).(2.7)

For X quasi-projective, it is shown in [2] that iW∗ is a quasi-isomorphism. In fact,
the argument of [2] never uses the fact that X is quasi-projective, and shows that
iW∗ is a quasi-isomorphism for X of finite type over k; a limit argument shows that
iW∗ is a quasi-isomorphism for X essentially of finite type over k as well. For details
on this extension of the results of [2], we refer the reader to [15].

Combining iW∗ with the standard cone sequence gives us the distinguished tri-
angle

zq−d(W, ∗) i∗−→ zq(X, ∗) j∗−→ zq(U, ∗)→ zq−d(W, ∗)[1].

If X and W are smooth, we have the distinguished triangle

Zq−d(W, ∗)[−2d] i∗−→ Zq(X, ∗) j∗−→ Zq(U, ∗)→ Zq−d(W, ∗)[−2d + 1],

giving the localization sequence for motivic cohomology

(2.8) → Hp−2d(W,Z(q − d)) i∗−→ Hp(X,Z(q))
j∗−→ Hp(U,Z(q))

∂−→ Hp−2d+1(W,Z(q − d))→
The isomorphism iW∗ : Hp−2d(W,Z(q−d))→ Hp

W (X,Z(q)) resulting from the quasi-
isomorphism (2.7) is the so-called Gysin isomorphism for motivic cohomology.

2.7. Relative motivic cohomology. We describe a relative version of motivic
cohomology; for simplicity, we restrict ourselves to the affine case.

Let X be a smooth affine k-scheme, essentially of finite type over k, and let
Z1, . . . , Zn be closed subschemes. For an index I ⊂ {1, . . . , n}, let ZI := ∩i∈IZi;
we allow the case I = ∅: Z∅ = X. We suppose that all the ZI are smooth over k.

Let S be a finite set of closed subsets of X, containing all the ZI . Form the
complex Zq(X;Z1, . . . , Zn, ∗)S as the total complex of the double complex

Zq(X, ∗)S →
n⊕
i=1

Zq(Zi, ∗)S → . . .→
⊕

I⊂{1,... ,n}
|I|=j

Zq(ZI , ∗)S → . . .(2.9)

with the total degree of Zq(ZI , p)S being p + |I|. Here the differential⊕
I⊂{1,... ,n}
|I|=j

Zq(ZI , ∗)S →
⊕

I⊂{1,... ,n}
|I|=j+1

Zq(ZI , ∗)S
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is a signed sum of the pull-back maps

Zq(ZI , ∗)S → Zq(ZI∪{i}, ∗)S ; i 	∈ I,

induced by the inclusions ZI∪{i} ⊂ ZI ; the sign is (−1)l, where l is the number of
j ∈ I with j > i.

The complexes Zq(X;Z1, . . . , Zn, ∗)S for varying S are all quasi-isomorphic,
since the inclusion (2.3) is a quasi-isomorphism. We will often drop the S from the
notation.

The relative motivic cohomology Hp(X;Z1, . . . , Zn,Z(q)) is defined as

Hp(X;Z1, . . . , Zn,Z(q)) := Hp(Zq(X;Z1, . . . , Zn, ∗));
the mod m version is defined similarly by

Hp(X;Z1, . . . , Zn,Z/m(q)) := Hp(Zq(X;Z1, . . . , Zn, ∗)⊗ Z/m).

The pull-back maps Zq(ZI , ∗)S → Zq(ZI∪{n}, ∗)S induce the map of complexes

i∗n : Zq(X;Z1, . . . , Zn−1, ∗)S → Zq(Zn;Z1,n, . . . , Zn−1,n, ∗)S
and we have the evident isomorphism

Zq(X;Z1, . . . , Zn, ∗)S ∼= cone(i∗n)[−1].(2.10)

This gives us the long exact relativization sequence

(2.11) → Hp−1(Zn;Z1,n, . . . , Zn−1,n,Z(q))→ Hp(X;Z1, . . . , Zn,Z(q))

→ Hp(X;Z1, . . . , Zn−1,Z(q))
i∗n−→ Hp(Zn;Z1,n, . . . , Zn−1,n,Z(q))→

and similarly for the mod m version.

2.8. Normal crossing schemes. We describe an extension of the cycle complexes
Zq(X, ∗) to the simplest type of singular schemes, the normal crossing k-schemes.
Taking the component in degree 2q gives an extension to normal crossing schemes
of the notion of a codimension q cycle on a smooth variety.

Let Y be a scheme, essentially of finite type over k, with irreducible components
Y1, . . . , Yn. For ∅ 	= I ⊂ {1, . . . , n}, set YI := ∩i∈IYi. If Y happens to be a closed
subscheme of an essentially smooth k-scheme X, we may consider Y1, . . . , Yn as
closed subschemes of X, and the notation YI agrees with that given in §2.7.

Definition 2.9. (1) Let Y be essentially of finite type and locally equi-dimensional
over k, with irreducible components Y1, . . . , Yn. For a point x of Y , let Nx be
the dimension of Y over k at x. We call Y a normal crossing k-scheme if each
intersection YI , I 	= ∅, is smooth over k, and if, for each point x of Y , a neighborhood
of x in Y is locally isomorphic, in the étale topology, to a union of some coordinate
hyperplanes in ANx+1

k .
(2) Let Y be a normal crossing k-scheme, and Z ⊂ Y a closed subscheme. We call
Z a normal crossing subscheme of Y if Z is a normal crossing k-scheme, and Z ∩YI
is a normal crossing k-scheme for each I 	= ∅.

For example, a reduced normal crossing divisor D in a smooth k-scheme X is a
normal crossing scheme if each irreducible component of D is smooth over k.

Let Y be a normal crossing k-scheme with irreducible components Y1, . . . , Yn.
Let S be a finite set of closed subsets of Y , containing all the YI , and let SI ⊂ S
be the set of those closed subsets contained in YI . We assume that for S ∈ S, each
irreducible component of S ∩ YI is also in S; we write Zq(YI , ∗)S for Zq(YI , ∗)SI

.
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Let Zq(Y, ∗)S be the complex defined by the term-wise exactness of

0→ Zq(Y, ∗)S ι−→
⊕

1≤i≤n
Zq(Yi, ∗)S α−→

⊕
1≤i<j≤n

Zq(Yi,j , ∗)S ,(2.12)

where α is the sum of the maps

Zq(Yi, ∗)S → Zq(Yi,j , ∗)S ,
these in turn being the restriction map for i < j, and the negative of the restriction
map for i > j. If we take S to be the set of irreducible components of all the YI ,
we write Zq(Y, ∗) for Zq(Y, ∗)S . We write zq(Y )S for Zq(Y, 2q)S .

Let Y and Y ′ be normal crossing k-schemes, let f : Y → Y ′ be a morphism of k-
schemes, and take S and S ′ to be the minimal choices, i.e., S is the set of irreducible
components of all the YI , and similarly for S ′. Assume that the restriction of f to
each YI factors as

YI
g−→ Y ′J

iJ−→ Y ′

for some index J (depending on I), with g flat, and iJ the inclusion. For each i,
choose an index j(i) such that f(Yi) ⊂ Y ′j(i). Then each of the pull-back maps
f∗|Yi,j(i)

: Zq(Y ′j(i), ∗)S′ → Zq(Yi, ∗)S is defined. Composing f∗|Yi,j(i)
with the pro-

jection

πj(i) :
⊕
j

Zq(Y ′j , ∗)S′ → Zq(Y ′j(i), ∗)S′

gives the map

f∗i :
⊕
j

Zq(Y ′j , ∗)S′ → Zq(Yi, ∗)S′ .

The sum of fi composed with the inclusion ι gives the well-defined pull-back map

f∗ :=
∑
i

f∗i : Zq(Y ′, ∗)→ Zq(Y, ∗).

We note that the map f∗ is independent of the choice of the j(i). Indeed, if
f(Yi) ⊂ Y ′j and f(Yi) ⊂ Y ′j′ , then f(Yi) ⊂ Y ′j,j′ . Letting ρ : Y ′j,j′ → Y ′j , ρ

′ : Y ′j,j′ →
Y ′j′ be the inclusions, and f̄ : Yi → Y ′j,j′ the map induced by f , we have

f∗|Yi,j
◦ πj ◦ ι = f̄∗ ◦ ρ∗ ◦ πj ◦ ι = f̄∗ ◦ ρ′∗ ◦ πj′ ◦ ι = f∗|Yi,j′ ◦ πj′ ◦ ι.

Thus, we have extended the assignment Y 
→ Zq(Y, ∗) to a functor on the cat-
egory of normal crossing k-schemes, where the morphisms are those morphisms of
k-schemes which admit a factorization as above.

If we enlarge the subset S, we get a pull-back defined for more general maps
than the ones considered above, but it is not clear that the inclusion Zq(Y, ∗)S →
Zq(Y, ∗) is a quasi-isomorphism. The complexes Zq(Y, ∗)S for normal crossing
schemes Y will play only a technical and auxiliary role in our argument, and we will
never require that the cohomology H∗(Zq(Y, ∗)S) is independent of the choice of S.
If, however, Y is essentially smooth and affine, we may use the quasi-isomorphism
(2.3) to give a well-defined pull-back in D(Ab),

f∗ : Zq(Y, ∗)→ Zq(Y ′, ∗),(2.13)

as in (2.4).
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Let Z1, . . . , Zn be closed subschemes of Y . Suppose that all the ZI are normal
crossing subschemes of Y . If S is chosen appropriately, we will have the relative
cycle complex Zq(Y ;Z1, . . . , Zn)S defined as in §2.7, (2.9), for the smooth case.

2.10. Motivic complexes. The complexes Zq(−, ∗) are functorial for flat maps;
in particular, for an essentially smooth k-scheme X, we may form the complex
of sheaves of abelian groups U 
→ Zq(U, ∗), which we denote by ΓX(q). More
generally, let S be a finite set of closed subsets of X. For U ⊂ X open in X, let
S(U) = {S∩U |S ∈ S}. Let ΓX(q)S ⊂ ΓX(q) be the Zariski sheaf U 
→ Zq(U, ∗)S(U).
If W is a closed subset of X with complement j : V → X, we set

ΓWX (q)S := cone(j∗ : ΓX(q)S → j∗ΓV (q)S(V ))[−1].

Since the inclusion Zq(U, ∗)S(U) → Zq(U, ∗) is a quasi-isomorphism for U affine
and essentially smooth over k, [14, Chap. II, Theorem 3.5.14], the inclusion

ΓWX (q)S → ΓWX (q)(2.14)

is a quasi-isomorphism for all X essentially smooth over k and all S. Let f : Y → X
be a morphism of essentially smooth k-schemes, and let W ′ ⊂ Y be a closed subset
containing f−1(W ). We have the stratification S(f) (2.1), and f∗ : ΓWX (q)S →
ΓW

′

Y (q) is a well-defined map of complexes of sheaves over the map f . Thus we
have the map f∗ : ΓWX (q)→ Rf∗ΓW

′

Y (q) in D−(Sh(XZar)) defined by the diagram

ΓWX (q)← ΓWX (q)S
f∗
−→ Rf∗ΓW

′

Y (q).

Let Sm/k denote the category of essentially smooth k-schemes. The pull-back
maps f∗ extend the assignment X 
→ RpX∗ΓX(q) (pX : X → Spec k the structure
morphism) to a functor

Rp−∗Γ−(q) : Sm/kop → D−(Ab).(2.15)

Similarly, let PSm/k denote the category of pairs (X,W ), with X in Sm/k and W a
closed subset of X, where a morphism f : (X ′,W ′)→ (X,W ) is a map f : X ′ → X
with f−1(W ) ⊂ W ′. Then the assignment (X,W ) 
→ RpX∗ΓWX (q) extends to a
functor

Rp−∗Γ−−(q) : PSm/kop → D−(Ab).(2.16)

Let p : X → Spec k be essentially of finite type and locally equi-dimensional over
k. The localization property for the Zariski presheaf of complexes U 
→ Zq(U, ∗)
described in §2.6 implies that the natural map in D−(Ab)

Zq
W (X, ∗)→ Rp∗ΓWX (q)(2.17)

is an isomorphism. Combining the isomorphism (2.17) and the functor (2.16), we
have the functor

Zq
(−)(−, ∗) : PSm/kop → D−(Ab).(2.18)

(X,W ) 
→ Zq
W (W, ∗).

We may sheafify the diagram (8.1) on X × Y , giving the map in D−(Sh(X ×k

YZar))

p∗1ΓX(q)⊗ p∗2ΓY (q′)
∪X,Y−−−→ ΓX×kY (q + q′).(2.19)
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Via the isomorphism (2.17), this product agrees with the product (8.2). Thus,
by either taking the map on hypercohomology induced by (2.19), or the map on
cohomology induced by (8.2), we have the external product

∪X,Y : Hp(X,Z(q))⊗Hp′(Y,Z(q′))→ Hp+p′(X ×k Y,Z(q + q′)).

Reducing all the relevant complexes mod m gives the external cup product

∪X,Y : Hp(X,Z/m(q))⊗Hp′(Y,Z/m(q′))→ Hp+p′(X ×k Y,Z/m(q + q′)).

For X essentially smooth, composing ∪X,X with ∆∗ defines the natural cup prod-
ucts

∪X : Hp(X,Z(q))⊗Hp′(X,Z(q′))→ Hp+p′(X,Z(q + q′))(2.20)

∪X : Hp(X,Z/m(q))⊗Hp′(X,Z/m(q′))→ Hp+p′(X,Z/m(q + q′)),

making ⊕p,qH
p(X,Z(q)) and ⊕p,qH

p(X,Z/m(q)) into bi-graded rings, natural in
X.

3. The construction of cycle maps

We describe the cycle class map from motivic cohomology to étale cohomology,
as well as a relative version. The idea is to apply the cycle class map with values
in étale cohomology with supports (as defined in [5, Cycle]) to the cosimplicial
scheme X ×∆∗, with support in “codimension q”. The use of “functor complexes”
as described in the next section, is a technical device required for the construction.

3.1. Functor complexes. Let Schk denote the category of k-schemes, essentially
of finite type over k, and let C be a subcategory of Schk.

Suppose we have a functor F : Cop → C(Ab). For a cosimplicial scheme in C,
X∗ : ∆ → C, we have the simplicial object n 
→ F (Xn) of C(Ab); we let F (X∗)
denote the total complex of the associated double complex:

F (X∗)n :=
⊕

p+q=n

F p(X−q).(3.1)

Sending X∗ to F (X∗) defines a contravariant functor from the category of cosimpli-
cial objects of C to C(Ab), natural in F . We have the weakly convergent spectral
sequence

Ep,q
1 = Hq(F (X−p)) =⇒ Hp+q(F (X∗)).(3.2)

In particular, if φ : F → G is a natural transformation with φ(i) a quasi-isomorph-
ism for each i ∈ C (for short, a quasi-isomorphism), then φ induces an isomorphism
Hn(F (X∗)) → Hn(G(X∗)). Also, if X∗ is a constant cosimplicial scheme with
value X, then the augmentation induces a quasi-isomorphism F (X)→ F (X∗).

Let j : U∗ → X∗ be an open cosimplicial subscheme in C, and let W ∗ denote
the collection of closed complements Wn = Xn \Un; we call W ∗ a closed subset of
X∗. Suppose in addition we have closed cosimplicial subschemes Y ∗1 , . . . , Y ∗n of X∗

(all relevant morphisms being in C). Let F (X∗;Y ∗1 , . . . , Y ∗n ) be the total complex
of the double complex

F (X∗)→
n⊕
i=1

F (Y ∗i )→ . . .→
⊕
|I|=j

F (Y ∗I )→ . . .
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with Y ∗I the cosimplicial closed subscheme n 
→ Y n
I , and the maps in the above

complex defined as in §2.7. We set

(3.3) FW∗(X∗;Y ∗1 , . . . , Y ∗n ) :=

cone(j∗ : F (X∗;Y ∗1 , . . . , Y ∗n )→ F (U∗;U∗ ∩ Y ∗1 , . . . , U∗ ∩ Y ∗n ))[−1].

As above, a quasi-isomorphism F → G induces an isomorphism

H∗(FW∗(X∗;Y ∗1 , . . . , Y ∗n ))→ H∗(GW∗(X∗;Y ∗1 , . . . , Y ∗n )).

Remark 3.2. A functor F : Schop
k → C(Ab) is called homotopy invariant if the

map

F (X)→ F (X × A1)

induced by the projection is a quasi-isomorphism for all X. If F is homotopy
invariant, then, for X∗ = X × ∆∗, the spectral sequence (3.2) has Ep,q

2 = 0 for
p 	= 0 and E0,q

2 = Hq(F (X)). One sees thereby that the augmentation F (X) →
F (X ×∆∗) is a quasi-isomorphism.

Examples 3.3. (1) Let m be an integer with 1/m ∈ k. For a k-scheme X, we
let G∗(X,µ⊗qm ) denote the complex of abelian groups gotten by taking the global
sections of the Godement resolution of the étale sheaf µ⊗qm on X; for example,
G0(X,µ⊗qm ) is the product over all geometric points x of X of H0

ét(k(x), µ⊗qm ). Then
sending X to G∗(X,µ⊗qm ) defines the functor

G∗(−, µ⊗qm ) : Schop
k → C+(Ab).

Since the Godement resolution of µ⊗qm is a resolution by flasque sheaves, the natural
map G∗(X,µ⊗qm ) → RΓ(Xét, µ

⊗q
m ) is an isomorphism in D(Ab); in particular, the

cohomology Hp(G∗(X,µ⊗qm )) is canonically isomorphic to the étale cohomology
Hp

ét(X,µ⊗qm ). The above discussion thus defines étale cohomology, with coefficients
µ⊗qm , for a cosimplicial scheme X∗, as well as the relative version, with support in
a closed subset.

(2) Let X be an essentially smooth k-scheme, W ⊂ X a closed subscheme with
complement j : U → X. Let C be the subcategory of SchX with objects the
schemes X ×∆m, U ×∆m, m ≥ 0. The morphisms in C are compositions of maps
of the form j × id and id× g, with g the map induced by a map [m]→ [l] in ∆.

Let S be a finite set of closed subsets of X, giving the set S(U) = {U ∩S|S ∈ S}.
We have the functor zq(q)(−)S : Cop → Ab defined by

zq(q)(X ×∆m)S := zq(X,m)S ; zq(q)(U ×∆m)S := zq(U,m)S(U),

with zq(q)(f)S = f∗ for each morphism f in C. The cycle complex with support in
W , Zq

W (X, ∗)S , of (2.6) is by definition the complex zq(q),W (X ×∆∗)S [−2q].

(3) Let X be an essentially smooth k-scheme, Z1, . . . , Zn closed subschemes with
ZI smooth for all I, and S a set of closed subsets of X, containing all the ZI . Let
C be the subcategory of SchX with objects the schemes ZI × ∆m, m ≥ 0. The
morphisms ZI × ∆m → ZJ × ∆l are those of the form i × g, with i an inclusion,
and g the map induced by a map [m]→ [l] in ∆.

Via the pull-back maps described in §2.3, we have the functor zq(q)(−)S : Cop →
Ab defined by

zq(q)(ZI ×∆m)S := zq(ZI ,m)S ;
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the relative cycle complex, Zq(X;Z1, . . . , Zn, ∗)S , of (2.9) is by definition the com-
plex zq(q)(X ×∆∗;Z1 ×∆∗, . . . , Zn ×∆∗)S [−2q].

(4) For a normal crossing k-scheme Y , with irreducible components Y1, . . . , Yn, let
S be a set of closed subsets containing all the YI . If we take C to be the subcategory
of SchY formed by the cosimplicial scheme Y ×∆∗, we form as in (2) the functor
zq(q)(−)S : Cop → Ab, giving the identity

zq(q)(Y ×∆∗)S [−2q] = Zq(Y, ∗)S ,

where Zq(Y, ∗)S is the cycle complex of (2.12). Similarly, if Z1, . . . , Zn are closed
subschemes of Y such that each ZI is a normal crossing subscheme of Y , let C be
the category with the objects and morphisms defined as in (3) for the smooth case,
and assume that S contains all the intersections YJ ∩ ZI . We have the functor
zqS : Cop → Ab as in (3), and the identity

zqS(Y ×∆∗;Z1 ×∆∗, . . . , Zn ×∆∗)[−2q] = Zq(Y ;Z1, . . . , Zn, ∗)S ,
where Zq(Y ;Z1, . . . , Zn, ∗)S is the relative version of (2.12) defined at the end of
§2.8.

3.4. Cohomology with support. Let k be a field, let X be an essentially smooth
k-scheme, and W a closed subset of X of codimension ≥ q. We denote the group
of codimension q cycles on X with support in W by zqW (X). Let m be an integer
prime to the characteristic of k. We recall from [5, Cycle] the construction of the
natural isomorphism

cycqW : zqW (X)⊗ Z/m→ H2q
W (X,µ⊗qm ),

where Hp
W (X,µ⊗qm ) is the étale cohomology with support in W .

Suppose at first that X is of finite type over k and W is smooth of codimension
q. By the purity theorem for étale cohomology [19, Chap. VI, Theorem 5.1],

Hp
W (X,µ⊗qm ) ∼= H2q−p(W,Z/m);

in particular, Hp
W (X,µ⊗qm ) = 0 for p < 2q. The group H0(W,Z/m) is just the free

Z/m-module on the irreducible components of W , which in turn is isomorphic to
the Z/m-module zqW (X)⊗Z/m. The construction of [5, Cycles, Chapter 2] gives a
canonical choice cycqW of the isomorphism zqW (X)⊗ Z/m ∼= H2q

W (X,µ⊗qm ).
Now suppose that k is perfect and W is an arbitrary closed subset of codimension

≥ q, with singular locus Wsing. By noetherian induction, the localization sequence
for étale cohomology with support [4] gives the isomorphism

H2q
W (X,µ⊗qm ) ∼= H2q

W\Wsing
(X \Wsing, µ

⊗q
m ),

which gives the isomorphism cycqW for general W in X. Similarly, Hp
W (X,µ⊗qm ) = 0

for p < 2q.
The isomorphisms cycqW are compatible with flat pull-back (see e.g. Lemma 3.5

below), hence extend to X essentially smooth over k. We now extend the isomor-
phisms cycqW to the case of a not necessarily perfect base field k.

Let k0 be the prime field in k; k0 is thus a perfect field. Let X be an essen-
tially smooth k-scheme, and W a codimension ≥ q closed subset. Then the pair
(X,W ) is a filtered projective limit of pairs (Xα,Wα), where each Xα is a smooth
kα-scheme for some subfield kα of k which is finitely generated over k0, Wα is a
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closed codimension ≥ q closed subset of Xα, and the transition maps in the pro-
jective system are flat and affine. Since motivic cohomology and étale cohomology
with supports transform filtered projective limits with flat affine transition maps
to inductive limits, and since we have compatibility of cycqW with respect to flat
pull-back when defined, it suffices to extend the isomorphisms cycqW to the case in
which k is finitely generated over k0. In this case, each essentially smooth X over
k is the localization of a smooth k0-scheme, so the isomorphisms cycqW are defined.
This completes the construction of the isomorphisms cycqW for general base fields;
the same argument shows that Hp

W (X,µ⊗qm ) = 0 for p < 2q.

Lemma 3.5. (1) The maps cycqW are natural with respect to pull-back: Let f : Y →
X be a morphism of essentially smooth k-schemes, let W ⊂ X be a codimension
≥ q closed subset of X, and let T be a closed subset of Y such that f−1(W ) ⊂ T
and T has codimension ≥ q on Y . Then

f∗ ◦ cycqW = cycqT ◦f∗.

(2) The maps cycqW are natural with respect to proper push-forward, with the appro-
priate shift in the codimension: Let f : Y → X be a proper morphism of essentially
smooth k-schemes, of relative dimension d, let W ⊂ X and T ⊂ Y be closed sub-
sets with f(T ) ⊂ W . Suppose that T has codimension ≥ q + d on Y and W has
codimension ≥ q on X. Then

cycqW ◦f∗ = f∗ ◦ cycq+dT .

(3) The maps cycqW are compatible with external products: Let X and Y be essen-
tially smooth k-schemes, W ⊂ X and W ′ ⊂ Y closed subsets of codimension ≥ q

and ≥ q′, respectively, and Z ∈ zqW (X), Z ′ ∈ zq
′

W ′(Y ). Then

p∗1 cycqW (Z) ∪X,Y p∗2 cycq
′

W ′(Z ′) = cycq+q
′

W×kW ′(Z × Z ′).

Proof. These properties all follow from [5, Cycles, Chapter 2].

We now extend the definition of the cycle map to normal crossing schemes. Let
Y be a normal crossing scheme with irreducible components Y1, . . . , Yn. Let W
be a closed subset of Y with complement j : U → Y . For each index J , set
WJ := YJ ∩W .

Lemma 3.6. Suppose that codimYJ
(WJ) ≥ q for all indices J . Then

(1) Hp
W (Y, µ⊗qm ) = 0 for p < 2q.

(2) The sequence

0→ H2q
W (Y, µ⊗qm )→

⊕
1≤j≤r

H2q
Wj

(Yj , µ⊗qm ) α−→
⊕

1≤j<l≤r
H2q
Wj,l

(Yj,l, µ⊗qm )

is exact, where α is defined as in §2.7

Proof. For each i = 0, . . . , n, let Y (i) be the disjoint union of the YI with |I| = i,
and let p(i) : Y (i) → Y be the evident morphism. This gives us the standard
resolution of the sheaf µ⊗qm on Y :

0→ µ⊗qm → p
(1)
∗ µ⊗qm → . . .→ p

(i)
∗ µ⊗qm → . . .
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(to see that this is indeed a resolution, reduce to the case of the union of n hyper-
planes in AN+1, and use induction on n and N). The corresponding hypercoho-
mology spectral sequence gives the Mayer-Vietoris spectral sequence

Ea,b
1 =

⊕
|J|=a+1

Hb
WJ

(YJ , µ⊗qm ) =⇒ Ha+b
W (Y, µ⊗qm ).

By purity, we have Ea,b
1 = 0 for b < 2q; since Ea,b

1 = 0 for a < 0, Ea,b
1 = 0 for

a+ b < 2q, whence (1). Similarly, the only non-zero terms with a+ b ≤ 2q + 1 and
b ≤ 2q are E0,2q

1 , E1,2q
1 . Thus

E0,2q
2 = E0,2q

∞ = H2q
W (Y, µ⊗qm ).

The map α is d0,2q
1 , proving (2).

Recall from §2.8 the cycle complex Zq(Y, ∗)S , and the group of cycles on Y ,
zq(Y )S := Zq(Y, 2q)S . Explicitly, zq(Y )S is the kernel of the map⊕

1≤i≤n
zq(Yi)S

α−→
⊕

1≤i<j≤n
zq(Yi,j)S

with α as in §2.8. If W is a closed subset of Y , we let zqW (Y )S be the subgroup of
zq(Y )S consisting of cycles with support in W . We omit the S from the notation
if S is the minimal choice, i.e., the set of all the YI .

We have the exact sequence

0→ zqW (Y )S →
⊕

1≤i≤n
zqWi

(Yi)S →
⊕

1≤i<j≤n
zqWi,j

(Yi,j)S ,(3.4)

with the maps defined as above. If we suppose that W satisfies the conditions of
Lemma 3.6, there therefore is a unique homomorphism

cycqW : zqW (Y )→ H2q
W (Y, µ⊗qm )

which makes the diagram

zqW (Y ) //

��

cycq
W

⊕
1≤i≤n

zqWi
(Yi)

��

⊕ cycq
Wi

H2q
W (Y, µ⊗qm ) //

⊕
1≤i≤n

H2q
Wi

(Yi, µ⊗qm )

commute. Using Lemma 3.5(1) we see that the cycqW are functorial for maps of nor-
mal crossing schemes f : (Y ′,W ′)→ (Y,W ) (satisfying the factorization conditions
of §2.8) in case W ′ ⊃ f−1(W ) and W ′ satisfies the conditions of Lemma 3.6.

3.7. The cycle class map. We first construct the cycle class map as a map

clq : Z(X, ∗)S ⊗L
Z/m→ G∗(X,µ⊗qm )

in D(Ab), where X is an essentially smooth k-scheme, S is a finite set of closed
subsets of X, and G∗(X,µ⊗qm ) is the Godement resolution of Example 3.3(1). We
then extend this to a version for the relative cycle complexes for a normal crossing
k-scheme. In the next section, we give a sheafified version of clq, which, among
other things, enables us to show that clq is natural.
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For a category C, we let Func(C,Ab) denote the abelian category of functors
C → Ab. We may also form the category of complexes C∗(Func(C,Ab)) (∗ a
boundedness condition), and the derived category D∗(Func(C,Ab)).

Let X be a reduced k-scheme, and S a finite set of closed subsets of X, with
X ∈ S. Let S0 be a subset of S consisting of (reduced) schemes locally equi-
dimensional over k. Let C(S0) be the subcategory of SchX with objects the schemes
of the form S×∆m, with S ∈ S0, where a morphism S×∆m → T ×∆l is a map of
the form i× g, with i : S → T an inclusion, and with g : ∆m → ∆l the affine-linear
map induced from some ḡ : [m]→ [l] in ∆.

For example, when we use C(S0) to define the cycle class map for the relative
complex Zq(X;Z1, . . . , Zn, ∗)S , we take S0 to be the set of irreducible components
of the ZI . The set S is needed to show the naturality of the cycle class map.

For S ∈ S0, let (S×∆m)(q)S be the set of closed subsets W of S×∆m such that,
for each T ∈ S, T ⊂ S, and each face F of ∆m, the intersection W ∩ (T × F ) has
codimension ≥ q on T × F . We set

G∗(q)(S ×∆m, µ⊗qm )S := lim→
W∈(S×∆m)

(q)
S

G∗W (S ×∆m, µ⊗qm ).

Sending S ×∆m to G∗(q)(S ×∆m, µ⊗qm )S defines the functor

G∗(q)(−, µ⊗qm )S : C(S0)op → C(Ab).

Assume that each S ∈ S0 is a normal crossing scheme. Let zq(q)(−)S : C(S0)op →
Ab be the functor

zq(q)(S ×∆m)S = lim→
W∈(S×∆m)

(q)
S

zqW (S ×∆m),

zq(q)(f)S = f∗;

the conditions on S and W imply that the relevant cycle intersection products
are all defined, so that zq(q)(−)S is well-defined. In addition, for each S ∈ S0,
the restriction of zq(q)(−)S to the subcategory C({S})op of C(S0)op agrees with the
functor zq(q)(−)S defined in Example 3.3(4), i.e.,

zq(q)(S ×∆m)S = zq(S,m)S .(3.5)

As noted in the Examples 3.3(2)-(4), we have

zq(q)(S ×∆∗)S [−2q] = Zq(S, ∗)S(3.6)

for each S ∈ S0.

Lemma 3.8. Suppose that

1. Each S ∈ S0 is a normal crossing scheme.
2. If S ∈ S0 has irreducible components S1, . . . , Sm, then each SJ is in S0.

Then there is a unique isomorphism in Func(C(S0)op,Ab),

cycq(q) : zq(q)(−)S ⊗ Z/m→ H2q(G∗(q)(−, µ⊗qm )S),
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such that, for S ∈ S0 smooth, and W ∈ (S ×∆m)(q)S , the diagram

zqW (S ×∆m)S ⊗ Z/m //

cycq
W

��

H2q(G∗W (S ×∆m, µ⊗qm )S)

��

zq(q)(S ×∆m)S ⊗ Z/m //

cycq
(q)

H2q(G∗(q)(S ×∆m, µ⊗qm )S)

commutes. In addition, we have

Hp(G∗(q)(−, µ⊗qm )S) = 0

for p < 2q.

Proof. Since zq(q)(S ×∆m)S is the direct limit of the zqW (S ×∆m), the uniqueness
of cycq(q) is clear. The existence follows directly from Lemma 3.5, Lemma 3.6 and
the comments following Lemma 3.6; the cohomology vanishing for p < 2q follows
from Lemma 3.6.

We apply the lemma to construct the cycle class map from motivic cohomology
to étale cohomology. We first illustrate the most basic case, that of an essentially
smooth k-scheme X. Take S0 = {X}. We have the diagram

zq(q)(−)S [−2q]⊗ Z/m //

cycq
(q)[−2q]

H2q(G∗(q)(−, µ⊗qm )S)[−2q]

G∗(−, µ⊗qm ) τ≤2qG
∗
(q)(−, µ⊗qm )S ,oo

β

OO

α

(3.7)

in C(Func(C({X})op,Ab)), where α is the canonical map, and β is the composition
of the canonical inclusion τ≤2qG

∗
(q)(−, µ⊗qm )S → G∗(q)(−, µ⊗qm )S , followed by the

“forget the support” map G∗(q)(−, µ⊗qm )S → G∗(−, µ⊗qm ). By Lemma 3.8, the map
α is a quasi-isomorphism. Thus, the diagram (3.7) defines a map

zq(q)(−)S [−2q]⊗ Z/m→ G∗(−, µ⊗qm )(3.8)

in D(Func(C({X})op,Ab)).
We now apply the map (3.8) to the cosimplicial scheme X ×∆∗, in the sense of

§3.1. As noted in (3.6), we have

zq(q)(X ×∆∗)S [−2q] = Zq(X, ∗)S .
By Remark 3.2, and the homotopy property for étale cohomology, the augmentation
to X induces a quasi-isomorphism G∗(X,µ⊗qm )→ G∗(X ×∆∗, µ⊗qm ). Thus, we have
constructed the map in D(Ab)

clq : Zq(X, ∗)S ⊗ Z/m→ G∗(X,µ⊗qm ).(3.9)

From the construction of clq, it is obvious that, for S ′ ⊂ S, the diagram

Zq(X, ∗)S ⊗ Z/m //
i

))
clq

S
S
S
S
S
S
S
S
S
S
S
S
S
S

Zq(X, ∗)S′ ⊗ Z/m

��

clq

G∗(X,µ⊗qm )

(3.10)
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commutes, where i is the evident inclusion of complexes. Taking S = {X} and
taking cohomology, we have the mod m cycle class map

clq : H∗(X,Z/m(q))→ H∗ét(X,µ⊗qm ).(3.11)

Remark 3.9. Assuming X affine, we may enlarge the set S without changing the
cohomology of Zq(X, ∗)S , since the map (2.3) is a quasi-isomorphism. From this,
one easily sees that clq is natural for affine X. We will discuss the naturality in
general in the next section.

We may modify the construction by restricting the support throughout to a fixed
closed subset W of X. This gives the version with support in W ,

clq : Zq
W (X, ∗)S ⊗ Z/m→ G∗W (X,µ⊗qm ),(3.12)

and on taking cohomology

clq : H∗W (X,Z/m(q))→ H∗W (X,µ⊗qm ).(3.13)

A similar construction gives an extension of the cycle class map to the setting
of relative cohomology of normal crossing schemes (including the case of relative
cohomology for smooth schemes). Indeed, let Y be a normal crossing scheme with
irreducible components Y1, . . . , Ym, and let Z1, . . . , Zn closed normal crossing sub-
schemes of Y such that each ZI is a closed normal crossing subscheme of Y . Let S0

be the set of irreducible components of all the ZI∩YJ , and let S ⊃ S0 be a finite set
of closed subsets of Y . One easily sees that S0 satisfies the conditions of Lemma 3.8.
We have the diagram (3.7) in C(Func(C(S0)op,Ab)), with α a quasi-isomorphism.
We thus get a similar diagram in C(Ab) upon evaluation (in the sense of §3.1) at
(Y × ∆∗;Z1 × ∆∗, . . . , Zn × ∆∗). The homotopy property for étale cohomology
gives, as above, the quasi-isomorphism

G∗(Y ;Z1, . . . , Zn, µ
⊗q
m )→ G∗(Y ×∆∗;Z1 ×∆∗, . . . , Zn ×∆∗, µ⊗qm ).

Using the identity (3.6), we have

zq(q)(Y ×∆∗;Z1 ×∆∗, . . . , Zn ×∆∗)S [−2q] = Zq(Y ;Z1, . . . , Zn, ∗)S ,

giving the map clq : Zq(Y ;Z1, . . . , Zn)S → G∗(Y ;Z1, . . . , Zn, µ
⊗q
m ) in D(Ab). If

we take S to be the minimal choice, or if we assume that Y and all the ZI are
smooth and affine, taking cohomology gives us the cycle class map

clq : H∗(Y ;Z1, . . . , Zn,Z/m(q))→ H∗ét(Y ;Z1, . . . , Zn, µ
⊗q
m ).(3.14)

3.10. Cycle classes for motivic complexes. We give a refinement of the coho-
mological cycle class map described above to a natural map in the derived category
D−(Sh(XZar)) of Zariski sheaves on an essentially smooth k-scheme X, as well as
a variant for complexes with support. As a tool, we construct a category C/k out
of pairs consisting of an essentially smooth k-scheme X and a finite set of closed
subsets of X, so that the operation of taking the codimension q cycles on (X,S)
becomes functorial for pull-back.

As in §3.7, let X be an essentially smooth k-scheme, and let S be a finite set of
closed subsets of X, with X ∈ S. For S ∈ S, we let S∗ be the union of the S′ ∈ S
which contain no generic point of S, and let S0 denote the open subset S \S∗ of S.

Let C/k be the following category: Objects are pairs (T,S(T )) consisting of an
essentially smooth k-scheme T , and a finite set of closed subsets of T , S(T ). A
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morphism (T,S(T ))→ (T ′,S(T ′)) in C/k is a morphism of k-schemes, g : T ′ → T ,
such that such that the following condition holds:

For each S′ ∈ S(T ′), there is an S ∈ S(T ) such that S′0 ⊂ f−1(S0) and f :
S′0 → S0 is equi-dimensional.

(3.15)

Recall the category C(S0) defined in §3.7; in particular, for an essentially smooth
k-scheme T , we have the category C({T}). Let C({∗}) be the category with

Obj C({∗}) :=
∐

(T,S(T ))∈C/k
Obj C({T}).

For T ′×∆m in the component (T ′,S(T ′)) and T ×∆l in the component (T,S(T )),
a morphism T ′×∆m → T ×∆l is a map of k-schemes of the form f×g : T ′×∆m →
T×∆l, with f : (T,S(T ))→ (T ′,S(T ′)) a morphism in C/k, and idT×g a morphism
in C({T}). Sending T ×∆m to (T,S(T )) and f × g to f makes C({∗}) a category
over C/k, with fiber C({T}) over (T,S(T )).

For each (T,S(T )) ∈ C/k, we have the functors defined in §3.7

zq(q)(−)S(T ), G
∗
(q)(−, µ⊗qm )S(T ) : C({T})op → C(Ab).

For each f : (T ′,S(T ′)) → (T,S(T )) in C/k and for each W ∈ (T × ∆n)(q)S(T ),
the condition (3.15) implies that the cycle (f × id)∗(W ) is defined and is in (T ′ ×
∆n)(q)S(T ′). Thus the assignments

T ×∆n 
→ zq(q)(T ×∆n)S(T )

T ×∆n 
→ G∗(q)(T ×∆n, µ⊗qm )S(T )

extend to functors

zq(q)(−)S , G∗(q)(−, µ⊗qm )S : C({∗})op → C(Ab).

The construction of §3.7 yields the diagram (3.7) in C(Func(C({∗})op,Ab)), and
the natural map

zq(q)(−)S [−2q]⊗ Z/m→ G∗(−, µ⊗qm )(3.16)

in D(Func(C({∗})op,Ab)). Applying (3.16) to T×∆∗ for (T,S(T )) in C/k and com-
posing with the inverse of the quasi-isomorphism G∗(T, µ⊗qm ) → G∗(T × ∆∗, µ⊗qm )
gives us the natural map in D(Func(C/kop,Ab)),

clq : Z(q)(−, ∗)S ⊗ Z/m→ G∗(−, µ⊗qm ),(3.17)

where Z(q)(−, ∗)S is the functor (T,S(T )) 
→ Z(q)(T, ∗)S(T ).
Call a map f : (T ′,S(T ′)) → (T,S(T )) étale if the underlying map of schemes

f : T ′ → T is étale, and if S(T ′) = f−1(S(T )). We make C/k into a site C/két by
defining a covering family of (T,S(T )) to be a collection of étale maps such that
the underlying family of maps of schemes is an étale cover. The Zariski site C/kZar

is defined analogously. Clearly, for each (T,S(T )), the restriction of C/két (resp.
C/kZar) to (T,S(T )) is isomorphic to the small étale site Tét (resp. small Zariski
site TZar).

Let ε̂ : C/két → C/kZar be the change of topology map. For each essen-
tially smooth k-scheme T , G∗(T, µ⊗qm ) is a functorial representative in C+(Ab)
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of RΓ(Tét, µ
⊗q
m ). Letting G(µ⊗qm )T denote the complex of Zariski sheaves associated

to the presheaf

(U ⊂ T ) 
→ G∗(U, µ⊗qm ),

it follows that T 
→ G(µ⊗qm )T is a functorial complex of sheaves representing Rε̂∗µ⊗qm .
The map (3.17), together with the quasi-isomorphism (2.14), thus gives us the

map in D(Sh(C/kZar))

clq : Γ(−)(q)⊗L
Z/m→ Rε̂∗(µ⊗qm ),(3.18)

The natural map τ≤qΓX(q) → ΓX(q) is a quasi-isomorphism, since Hp(R,Z(q)) =
0 if p > q, for a regular local k-algebra R. Thus (3.18) defines the map in
D−(Sh(C/kZar))

clq : Γ(−)(q)⊗L
Z/m→ τ≤qRε̂∗(µ⊗qm ).(3.19)

If we evaluate (3.19) at (X, {X}), we obtain the map in D−(Sh(XZar))

clq : ΓX(q)⊗L
Z/m→ τ≤qRεX∗(µ⊗qm ),(3.20)

giving us the sheafified version of (3.9).
Similarly, if W is a closed subset of X with complement j : U → X, we may

apply (3.19) to the map j (i.e., take cone(j∗)[−1]), giving the map for the complexes
with support

clq : ΓWX (q)⊗L
Z/m→ RεX∗Ri!W (µ⊗qm ).(3.21)

4. Properties of the cycle class map

4.1. Naturality of the cycle class map. We proceed to show that the cycle
class maps defined in the previous section are natural. For this, we show that the
sheaf-theoretic cycle class map (3.21) is natural, and that it gives rise to the “naive”
cycle class maps defined in §3.7 by passing to hypercohomology.

Recall the category of pairs PSm/k defined in §2.10. Let (X,W ) be in PSm/k.
The natural isomorphism RΓ(XZar,−)◦Rε∗ ∼= RΓ(Xét,−) gives us the natural iso-
morphism η : RΓ(XZar, RεX∗Ri!Wµ⊗qm ) → RΓ(Xét, Ri!Wµ⊗qm ). We have the natural
isomorphisms

φ : Zq
W (X, ∗)→ RΓ(XZar,ΓWX (q)),

φét : G∗W (X,µ⊗qm )→ RΓ(Xét, Ri!Wµ⊗qm )

in D(Ab), the first one being the isomorphism (2.17), and the second coming from
the fact that the functor Y 
→ G∗(Y, µ⊗qm ) of Example 3.3(1) represents the functor
Y 
→ RΓ(Yét, µ

⊗q
m ) from Schop

k to D(Ab).
Thus, the construction of clq gives us the commutative diagram in D(Ab)

Zq
W (X, ∗)⊗L

Z/m //
φ

∼

��

clq

RΓ(XZar,ΓWX (q)⊗L
Z/m)

��

η◦RΓ(clqX)

G∗W (X,µ⊗qm ) //

φét

∼
RΓ(Xét, Ri!Wµ⊗qm ).

(4.1)

The cycle class map (3.13) for X with supports in W is thus the map on H∗(XZar,−)
induced by the sheafified version (3.21).

This discussion gives the naturality of the cycle class maps defined in the previous
section.
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Proposition 4.2. (1) The cycle class maps (3.9), (3.11) and (3.20) are natural
on Sm/k.

(2) The cycle class maps with support (3.12), (3.13) and (3.21) are natural on
PSm/k.

(3) The cycle class map for relative cohomology (3.14) is natural on the category
of tuples (X,Z1, . . . , Zn) of essentially smooth affine k-schemes X, with closed
subschemes Zj such that each ZI is essentially smooth over k, where a morphism

f : (X ′, Z ′1, . . . , Z
′
n)→ (X,Z1, . . . , Zn)

is a morphism f : X ′ → X such that f(Z ′i) ⊂ Zi for all i.

(4) The cycle class map for relative cohomology (3.14) is natural on the category
of tuples (Y,Z1, . . . , Zn) of normal crossing k-schemes Y , with closed subschemes
Zj such that each ZI is a normal crossing subscheme of Y , where the morphisms
are as described in §2.8.
(5) The cycle class map (3.14) (for n = 0) is natural for arbitrary maps f : Y → X,
where X is affine and essentially smooth over k, Y is a normal crossing k-scheme,
and f∗ : Zq(X, ∗)→ Zq(Y, ∗) is the map (2.13).

Proof. (1) is clearly a special case of (2). For (2), let f : (X ′,W ′) → (X,W ) be a
morphism in PSm/k. We have the set S(f) (2.1) of closed subsets of X, giving us
the lifting of the commutative diagram in Sm/k

X ′ \W ′ //
j′

��

f

X ′

��

f

X \W //

j
X

to the commutative diagram in C/k

(X ′ \W ′, {X ′ \W ′}) //
j′

��

f

(X ′, {X ′})

��

f

(X \W,S(f|X′\W ′)) //

j
(X,S(f)).

Applying the morphism (3.19) to this diagram, dropping the truncation, and taking
the cones with respect to the horizontal maps gives the commutative diagram in
D(Sh(XZar))

ΓWX //
f∗

��

clq

Rf∗ΓW
′

X′

��

Rf∗ clq

RεX∗Ri!Wµ⊗qm
//

f∗

Rf∗RεX′∗Ri!W ′µ⊗qm .

Applying RΓ(XZar,−) to this diagram and using the commutativity of the diagram
(4.1) proves (2).
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For (3), the naturality of the diagram (3.7) gives the commutativity of the dia-
gram

Zq(X;Z1, . . . , Zn, ∗)

**

clq

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

Zq(X;Z1, . . . , Zn, ∗)S(f)
//

clq

��

f∗

OO

id∗

G∗(X;Z1, . . . , Zn, µ
⊗q
m )

��

f∗

Zq(X ′;Z ′1, . . . , Z
′
n, ∗) //

clq
G∗(X ′;Z ′1, . . . , Z

′
n, µ
⊗q
m )

in D(Ab), which gives the desired naturality on taking cohomology. The proof of
(4) and (5) are similar, and are left to the reader.

4.3. Compatibility with Gysin maps. We prove that the maps clq are compat-
ible with the localization/Gysin sequences for motivic cohomology/étale cohomol-
ogy. For a scheme X, we let Sm/X denote the category of schemes smooth and
essentially of finite type over X.

Let i : Y → X be a smooth codimension d closed subscheme of an essentially
smooth k-scheme X. Let T → X be a smooth X-scheme, and let TY → Y denote
the fiber product T ×X Y , with inclusion iT : TY → T . The canonical Gysin
isomorphisms µ⊗qm ∼= Ri!TY

µ⊗q+dm [2d] in D(Sh(TY ét)) (see [19, VI, Theorem 6.1])
give rise to the isomorphism in D(Func(Sm/Xop,Ab))

ι : [T 
→ G∗(TY , µ⊗qm )]→
[
T 
→ G∗TY

(T, µ⊗q+dm )[2d]
]
.

Let iW : W → TY be a closed subset of TY , with complement jY : VY → TY in
TY and j : V → T in T . Evaluating ι at T and V gives the canonical map of cones

cone[G∗(TY , µ⊗qm )
j∗Y−→ G∗(VY , µ⊗qm )][−1]

ιW (T )−−−−→ cone[G∗TY
(T, µ⊗q+dm )

j∗−→ G∗VY
(V, µ⊗q+dm )][2d− 1].

Since W = TY \ VY = T \ V , it follows that

cone[G∗(TY , µ⊗qm )
j∗Y−→ G∗(VY , µ⊗qm )][−1] = G∗W (TY , µ⊗qm ),

and that the evident map

cone[G∗TY
(T, µ⊗q+dm )

j∗−→ G∗VY
(V, µ⊗q+dm )][−1]→ G∗W (T, µ⊗q+rm )

is a homotopy equivalence. In addition, G∗W (TY , µ⊗qm ) and G∗W (T, µ⊗q+rm ) are com-
plexes representing RΓ(TY , Ri!W (µ⊗qm )) and RΓ(T,R(iT ◦iW )!(µ⊗q+dm )), respectively.
Thus the map

ιW (T ) : G∗W (TY , µ⊗qm )→ G∗W (T, µ⊗q+rm )[2d](4.2)

represents the natural isomorphism in D(Ab)

ιW : RΓ(TY , Ri!W (µ⊗qm ))→ RΓ(T,R(iT ◦ iW )!(µ⊗q+dm )[2d]),(4.3)

which in turn induces the Gysin isomorphism Hp
W (TY , µ⊗qm ) ∼= Hp+2d

W (T, µ⊗q+dm ) on
taking cohomology.
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Lemma 4.4. Let i : Y → X be a closed codimension d embedding of essentially
smooth k-schemes. Then the diagram in D−(Sh(XZar))

ΓY (q) //

clqY

��

α

RεY ∗µ⊗qm

��

β

ΓYX(q + d)[2d] //

clq+d
X

RεX∗Ri!Y (µ⊗q+dm )[2d]

commutes, where α and β are the respective Gysin isomorphisms.

Proof. Let U be an open subscheme of X, UY = Y ∩ U . Applying the Gysin
isomorphism (4.3) for T = U × ∆m, and for W in (UY × ∆m)(q), we have the
following diagram in D(Ab):

zqW (UY ×∆m)⊗ Z/m[−2q]

��

cycq [−2q]

zq+dW (U ×∆m)⊗ Z/m[−2q]

��

cycq+d[−2q]

H2q
W (UY ×∆m, µ⊗qm )[−2q] //

ι1
H

2(q+d)
W (U ×∆m, µ⊗q+dm )[−2q]

τ≤2qG
∗
W (UY ×∆m, µ⊗qm )

OO

p

//
ι2

��

q

τ≤2q

[
G∗W (U ×∆m, µ⊗q+dm )[2d]

]
OO

p′

��

q′

G∗(UY ×∆m, µ⊗qm ) //
ι3

G∗UY ×∆m(U ×∆m, µ⊗q+dm )[2d]

G∗(UY , µ⊗qm ) //
ι4

OO

p∗1

G∗UY
(U, µ⊗q+dm )[2d]

OO

p∗1

(4.4)

Here the left-hand column is the diagram used in defining clq in §3.7, the right-hand
column is the diagram used in defining the version of clq for U with supports in UY ,
and the maps ιi are induced by the appropriate Gysin map (4.2). In particular, all
the vertical maps, except for q and q′, are quasi-isomorphisms, and all the horizontal
maps are isomorphisms in D(Ab). It follows from Lemma 3.5 that the top square
commutes; the next two squares commute in D(Ab) since ι2 = τ≤2qι3 by definition,
and ι1 is the map on cohomology induced by ι2. The bottom square commutes in
D(Ab) by the naturality of the Gysin isomorphism.

Since the ιi come from isomorphisms in D(Func(Sm/Xop,Ab)), (4.4) defines a
commutative diagram in D(Func(Sm/Xop,Ab)). Taking the limit over W , this
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gives us the commutative diagram in the derived category of presheaves on X:

U 
→




zq(UY , ∗)⊗ Z/m[−2q] //
ι′′

��

cycq

zq+dUY
(U, ∗)⊗ Z/m[−2q]

��

cycq+d

G∗(UY ×∆∗, µ⊗qm ) //
ι′

G∗UY ×∆∗(U ×∆∗, µ⊗q+dm )[2d]

G∗(UY , µ⊗qm ) //
ι

OO

p∗1

G∗UY
(U, µ⊗q+dm )[2d]

OO

p∗1




(4.5)

As clq = (p∗1)
−1◦cycq and clq+d = (p∗1)

−1◦cycq+d, sheafifying (4.5) gives the desired
commutative diagram in D−(Sh(XZar)).

Proposition 4.5. (1) The cycle class map for relative cohomology is compatible
with the maps in the long exact relativization sequences for motivic cohomology and
étale cohomology.
(2) Let i : Y → X be a closed codimension d embedding of essentially smooth
k-schemes with complement j : U → X. Then the diagram

Hp−1(U,Z/m(q)) //
∂

��

clq

Hp−2d(Y,Z/m(q − d)) //
i∗

��

clq−d

Hp(X,Z/m(q))

��

clq

Hp−1
ét (U, µ⊗qm ) //

∂
Hp−2d

ét (Y, µ⊗q−dm ) //

i∗
Hp

ét(X,µ⊗qm )

commutes.

Proof. (1) follows immediately from the naturality of the map (3.8) and the defi-
nition of relative motivic cohomology (resp. relative étale cohomology) via cones.

For (2), the same reasoning as in (1) gives us the map of distinguished triangles
in D(Ab):

Zq
Y (X, ∗) //

��

clq

Zq(X, ∗) //
j∗

��

clq

Zq(U, ∗)

��

clq

G∗Y (X,µqm) // G∗(X,µqm) //

j∗
G∗(U, µqm)

which in turn gives the commutative diagram

Hp−1(U,Z/m(q)) //
∂

��

clq

Hp
Y (X,Z/m(q)) //

i∗

��

clq

Hp(X,Z/m(q))

��

clq

Hp−1
ét (U, µ⊗qm ) //

∂
Hp
Y (X,µ⊗qm ) //

i∗
Hp

ét(X,µ⊗qm )

(4.6)

Since the diagram in (2) is derived from (4.6) by replacing Hp
Y (X,Z/m(q)) and

Hp
Y (X,µ⊗qm ) with Hp−2d(Y,Z/m(q − d)) and Hp−2d

ét (Y, µ⊗q−dm ) via the respective
Gysin isomorphisms, Lemma 4.4 together with the commutativity of (4.6) proves
(2).
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4.6. Products. We proceed to check that the cycle class map is compatible with
products.

Proposition 4.7. Let X and Y be k-schemes, of finite type and locally equi-
dimensional over k. The diagram

Hp(X,Z/m(q))⊗Hp′(Y,Z/m(q′)) //
∪

��

clq ⊗ clq
′

Hp+p′(X ×k Y,Z/m(q + q′))

��

clq+q′

Hp
ét(X,µ⊗qm )⊗Hp′

ét (Y, µ
⊗q′
m ) //

∪ Hp+p′

ét (X ×k Y, µ⊗q+q
′

m )

is commutative. In particular, for X essentially smooth over k, the map

cl∗ : ⊕p,qH
p(X,Z/m(q))→ ⊕p,qH

p
ét(X,µ⊗qm )

is a ring homomorphism.

Proof. Following [9, Chapter 6], a map of sheaves µ : F ⊗ G → H on a topological
space X induces a functorial map (over µ) on the Godement resolutions

G(µ) : G∗(X,F)⊗G∗(X,G)→ G∗(X,H).

We apply the methods of §3.7, which, together with Lemma 3.5(3), gives us the
commutative diagram in D−(ModZ/m)

Zq(X, ∗)/m⊗L
Z/m Zq′(Y, ∗)/m //

∪

��

clq ⊗ clq
′

Zq+q′(X × Y, ∗)/m

��

clq+q′

G∗(X,µ⊗qm )⊗L
Z/m G∗(Y, µ⊗q

′
m ) //

∪′ G∗(X × Y, µ⊗q+q
′

m )

Here, the map ∪′ is defined by the diagram analogous to (8.1):

G∗(X,µ⊗qm )⊗L G∗(Y, µ⊗q
′

m )
p∗1⊗p∗1−−−−→ G∗(X ×∆∗, µ⊗qm )⊗L G∗(Y ×∆∗, µ⊗q

′

m )
G(�)−−−→ G∗(X × Y ×∆∗ ×∆∗, µ⊗q+q

′

m )
T−→ G∗(X × Y ×∆∗, µ⊗q+q

′

m )←− G∗(X × Y, µ⊗q+q
′

m ).

It thus suffices to see that ∪′ agrees with the product

∪ : G∗(X,µ⊗qm )⊗L
Z/m G∗(Y, µ⊗q

′

m )→ G∗(X × Y, µ⊗q+q
′

m )

induced by the product of sheaves µ⊗qm ⊗ µ⊗q
′

m → µ⊗q+q
′

m . Since the augmentations

G∗(X,µ⊗qm )→ G∗(X ×∆∗, µ⊗qm )

G∗(Y, µ⊗q
′

m )→ G∗(Y ×∆∗, µ⊗q
′

m )

G∗(X × Y, µ⊗q+q
′

m )→ G∗(X × Y ×∆∗, µ⊗q+q
′

m )

are quasi-isomorphisms, this follows from the fact that the map

G∗(X × Y ×∆∗ ×∆∗, µ⊗q+q
′

m ) T−→ G∗(X × Y ×∆∗, µ⊗q+q
′

m )

is a map over the identity on G∗(X × Y, µ⊗q+q
′

m ).
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4.8. The case of fields. We discuss some additional properties of the cycle class
map for X = SpecF , F a field.

From [1, Theorem 6.1], the map sending u ∈ F \ {0, 1} to the cycle [u] :=
1 · ( 1

1−u ,
u

u−1 ) of ∆1
F gives rise to an isomorphism F ∗ → H1(F,Z(1)). Addition-

ally, Hp(F,Z(1)) = 0 for p 	= 1, hence we have the isomorphism F ∗/F ∗m ∼=
H1(F,Z/m(1)). The Kummer sequence gives H1

ét(F, µm) ∼= F ∗/F ∗m for all m
prime to charF .

Proposition 4.9. Let u be in F \ {0, 1}. The cycle class map

cl1 : H1(F,Z/m(1))→ H1
ét(F, µm) ∼= F ∗/F ∗m

sends the class of [u] to the class of u mod F ∗m, hence is an isomorphism.

.

Proof. Let U = ∆1
F \ {[u]}. We have the Gysin sequence

H1
ét(U, µm) ∂−→ H2

[u](∆
1
F , µm)→ H2

ét(∆
1
F , µm).

By definition of the étale cycle class of a divisor [5, Cycle, Définition 2.1.2], it follows
that the cycle class of [u] in H2

[u](∆
1
F , µm) is given by cyc1

[u]([u]) = ∂([f ]), where
f is a regular function on ∆1

F with div f = [u], and [f ] is the class in H1
ét(U, µm)

corresponding to f ∈ H0
ét(U,Gm) via the Kummer sequence.

We claim that

cl1([u]) = i∗(1,0)([f ])− i∗(0,1)([f ]) ∈ H1
ét(F, µm).(4.7)

To see this, let {[f ]} be a cocycle in G1(U, µm) representing [f ]. Let G̃p
[u](∆

1
F , µm)

be the kernel of the surjection Gp(∆1
F , µm)

j∗−→ Gp(U, µm), giving the term-wise
exact sequence of complexes

0→ G̃∗[u](∆
1
F , µm) i∗−→ G∗(∆1

F , µm)
j∗−→ G∗(U, µm)→ 0.(4.8)

The canonical map G̃∗[u](∆
1
F , µm)→ G∗[u](∆

1
F , µm) is a homotopy equivalence, and

the Gysin sequence for the inclusion of [u] in ∆1
F is the long exact cohomology

sequence resulting from (4.8). Thus, if φ ∈ G1(∆1
F , µm) is a cochain lifting {[f ]},

then dφ = i∗η, η ∈ G̃2
[u](∆

1
F , µm), and η is a cocycle representing cyc1

[u]([u]). On
the other hand, it follows from the construction of the map cl1 that the element
cl1([u]) ∈ H1

ét(F, µm) is given as follows: Since i∗(1,0) ◦ i∗ = i∗(0,1) ◦ i∗ = 0, the map
i∗ extends to the map of complexes

ĩ∗ : G̃∗[u](∆
1
F , µm)→ G∗(∆∗F , µm),

and cl1([u]) is the element of H1
ét(F, µm) corresponding to ĩ∗(cyc1

[u]([u])) via the
quasi-isomorphism G∗ét(F, µm) ∼= G∗(∆∗F , µm) induced by the augmentation ∆∗F →
F . Tracing through this quasi-isomorphism, we see that cl1([u]) is the class of
i∗(1,0)(ψ) − i∗(0,1)(ψ), where ψ is any element of G1(∆1

F , µm) with dψ = i∗η. Since
we may take ψ = φ, and since i∗p(φ) = i∗p({[f ]}) for all p ∈ U , it follows that cl1([u])
is the class of i∗(1,0)({[f ]})− i∗(0,1)({[f ]}), which verifies (4.7).

Since we may take f to be the function f(t0, t1) = t0 − 1
1−u , we have

cl1([u]) =
1− 1

1−u
− 1

1−u
mod F ∗m = u mod F ∗m.
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This result has the following consequence for the relation of the Bloch-Kato
conjecture and the cycle class map:

Lemma 4.10. Let F be a field, m an integer prime to the characteristic of F .
If ϑq,F : KM

q (F )/m → Hq
ét(F, µ

⊗q
m ) is surjective, then the cycle class map clq :

Hq(F,Z/m(q))→ Hq
ét(F, µ

⊗q
m ) is surjective as well.

Proof. The Galois symbol for q = 1 is by definition the Kummer isomorphism
F ∗/F ∗m ∼= H1

ét(F, µm), and the map ϑq,F is the multiplicative extension of ϑ1,F .
Thus, ϑq,F is surjective if and only if the cup product map

H1
ét(F, µm)⊗q → Hq

ét(F, µ
⊗q
m )

is surjective. From Proposition 4.9 and Proposition 4.7, this implies the surjectivity
of clq.

Remark 4.11. One could also prove Lemma 4.10 by showing that the isomorphisms
KM
n (F ) → Hn(F,Z(n)) described in [20] or [26] are multiplicative. The map de-

scribed in [26] uses a cubical version of the higher Chow groups, and the issue
of multiplicativity is not addressed in [20]; we have used the somewhat indirect
argument above to avoid checking this detail.

Using Proposition 4.9, one can show that cl1 : H0(F,Z/m(1)) → H0
ét(F, µm) is

an isomorphism as well. We are indebted to the referee for the argument.

Proposition 4.12. Let F be a field, and m an integer prime to charF . Then
the cycle class map cl1 : Z1(F, ∗) ⊗ Z/m → G∗(F, µm) is an isomorphism. In
particular, the map cl1 : H0(F,Z/m(1))→ H0

ét(F, µm) is an isomorphism.

Proof. We may assume that m is a prime power lν . As the map

cl1 : Z1(X, ∗)⊗ Z/m→ G∗(X,µm)

is defined by a finite zigzag diagram of natural maps of complexes, cl1 is compatible
with inverse systems of schemes with flat affine transition maps, and induces a map
on the corresponding direct limit of complexes. Since both Z1(X, ∗) and G∗(X,µm)
are compatible with such inverse systems, it suffices to prove the result for F finitely
generated over the prime field.

We now consider the inverse system of maps cl1 for m = ln, n = 1, 2, . . . . Since
the Godement resolution transforms surjective maps of sheaves to term-wise surjec-
tive maps of complexes, the complexes in the system of zigzag diagrams defining cl1

for m = ln, n = 1, 2, . . . , satisfy the Mittag-Leffler conditions term-wise. Therefore,
cl1 induces a map on the derived inverse limit

cl1 : R lim←
n

Z1(F, ∗)⊗ Z/ln → R lim←
n

G∗(F, µln),(4.9)
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and we have the commutative diagram for each N

R lim←
n

Z1(F, ∗)⊗ Z/ln //

��

cl1

Z1(F, ∗)⊗ Z/lN

��

cl1

R lim←
n

G∗(F, µln) // G∗(F, µlN )

(4.10)

where the horizontal arrows are the canonical maps.
Both Z1(F, ∗)⊗Z/ln and G∗(F, µln) have the same cohomology, namely, F ∗/(F ∗)l

n

in degree one, and µln(F ) in degree zero. Since F is finitely generated, both
R lim
←-
Z1(F, ∗) ⊗ Z/ln and R lim

←-
G∗(F, µln) have cohomology only in degree one,

with that cohomology being lim
←-

F ∗/(F ∗)l
n

. By Proposition 4.9 and the commuta-

tive diagram (4.10), the map (4.9) is an isomorphism.
The commutativity of the diagram (4.10) identifies cl1 : Z1(F, ∗) ⊗ Z/lN →

G∗(F, µlN ) with the map on the derived tensor product

cl1⊗id : [R lim←
n

Z1(F, ∗)⊗ Z/ln]⊗L
Z/lN → [R lim←

n

G∗(F, µln)]⊗L
Z/lN .

As this latter map is an isomorphism, the proposition is proved.

4.13. The étale sheafification of ΓX(q). In this section, we prove Theorem 1.5,
and show that Theorem 1.1 and Theorem 1.6 are equivalent.

Let ΓX(q)ét denote the sheafification of ΓX(q) for the étale topology on X.
Sheafifying the cycle class map (3.20) for the étale topology on X as in §3.10 gives
the étale cycle class map

clqét : ΓX(q)ét ⊗L
Z/m→ µ⊗qm

in D−(Sh(Xét)), natural in X. We have the natural map ΓX(q) → Rε∗ΓX(q)ét;
truncating gives us the natural map

ιX : ΓX(q)→ τ≤qRε∗ΓX(q)ét.

Proof of Theorem 1.5. Let π : X → Spec k be the structure morphism. By the
rigidity result of [1, Lemma 11.1], the natural map

π∗Γk(q)ét ⊗L
Z/m→ ΓX(q)ét ⊗L

Z/m

is a quasi-isomorphism, reducing us to the case of X = Spec k, with k separably
closed.

Suppose that char k = 0. By the Suslin-Voeovodsky theorem relating Suslin
homology and étale homology [24, Corollary 7.8] and Suslin’s comparison of Suslin
homology and motivic cohomology [23], we have

Hp(k,Z/m(q)) =

{
0 for p 	= 0
µ⊗qm (k) for p = 0.

In case char k > 0, the same result follows by using de Jong’s resolution of singu-
larities [11] to extend the results of [24] to positive characteristic (see e.g. [12] or
[7] for further details).
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By Proposition 4.12, the map cl1 : H0(k,Z/m(1)) → H0
ét(k, µm) is an isomor-

phism. By Proposition 4.7, we have the commutative diagram

H0(k,Z/m(1))⊗q //
∪

��

(cl1)⊗q

H0(k,Z/m(q))

��

clq

H0
ét(k, µm)⊗q //

∪ H0
ét(k, µ

⊗q
m )

from which we see that the cup product H0(k,Z/m(1))⊗q → H0(k,Z/m(q)) is
injective. From the computation of H0(k,Z/m(q)) given above, this shows that
the product map H0(k,Z/m(1))⊗q → H0(k,Z/m(q)) is an isomorphism. Thus the
cycle class map induces a quasi-isomorphism

clq : Γk(q)⊗L
Z/m→ µ⊗qm (k),

for k separably closed, completing the proof.

We now show that Theorem 1.1 and Theorem 1.6 are equivalent.

Proof. By Theorem 1.5, we have the isomorphism

claét : ΓX(a)ét ⊗L
Z/m→ µ⊗am

in D−(Sh(Xét)) for all a ≥ 0. Applying Rε∗ and truncating gives the isomorphism
in D−(Sh(XZar))

τ≤aRε∗ claét : τ≤aRε∗ΓX(a)ét ⊗L
Z/m→ τ≤aRε∗µ

⊗a
m .

By the adjunction property of Rε∗, the cycle class map factors through τ≤aRε∗ claét,
giving the commutative diagram

ΓX(a)⊗L
Z/m //

ιX

))
cla

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

τ≤aRε∗ΓX(a)ét ⊗L
Z/m

��

τ≤aRε∗ claét

τ≤aRε∗µ⊗am

with τ≤aRε∗ claét an isomorphism. Thus cla is an isomorphism if and only if ιX is
an isomorphism, showing that Theorem 1.1 and Theorem 1.6 are equivalent.

5. The semi-local n-cube

We relate the Bloch-Kato conjecture to the Beilinson-Lichtenbaum conjectures
by taking motivic cohomology and étale cohomology of the semi-local n-cube, rel-
ative to its faces.

5.1. The semi-local n-cube. We write �n for the affine space Spec k[t1, . . . , tn].
Let v be the set of points (ε1, . . . , εn), εj ∈ {0, 1}, of �n, Rn the semi-local ring
O�n,v and �̂n the semi-local scheme SpecRn.

Let �̂i;ε
n be the subscheme of �̂n defined by the ideal (ti − ε), ε ∈ {0, 1}. We

define the set of subschemes Tn of �̂n by

Tn := {�̂i;ε
n | i = 1, . . . , n; ε ∈ {0, 1}}.

We order the elements of Tn by setting

�̂n,s :=

{
�̂
s;1
n for s ≤ n

�̂
s−n;0
n for s > n,
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and let T s
n be the subset of Tn consisting of the first s subschemes. Let

Sn := T 2n−1
n = Tn − {�̂n;0

n }.

For r < s, we let T r
n,s denote the set of subschemes of �̂n,s of the form �̂n,i ∩ �̂n,s,

i = 1, . . . , r.
As in §2.7, we write �̂n,I for the intersection ∩s∈I�̂n,s; we call �̂n,I a face of �̂n.

Using the coordinates tj , j 	∈ I, in the standard order identifies �̂n,I with �̂n−|I|.
Identifying the face �̂n,s of �̂n with �̂n−1 in this way, we have the identification

T r
n,s =

{
T r
n−1 for r < s ≤ n or r + n < s,

T r−1
n−1 for 1 ≤ s− n ≤ r < s.

5.2. Relativization sequences. For 1 ≤ s ≤ 2n we have the fundamental rela-
tivization sequence

→ Hp−1(�̂n,s;T s−1
n,s ,Z/m(q))→ Hp(�̂n;T s

n,Z/m(q))→
Hp(�̂n;T s−1

n ,Z/m(q))→ Hp(�̂n,s;T s−1
n,s ,Z/m(q))→ .

We have similar sequences for étale cohomology. Taking s = 2n and identifying
�̂n,2n with �̂n−1 as described above gives the most important case

→ Hp−1(�̂n−1;Tn−1,Z/m(q))→ Hp(�̂n;Tn,Z/m(q))→
Hp(�̂n;Sn,Z/m(q))→ Hp(�̂n−1;Tn−1,Z/m(q))→ .

We will rely on the fundamental surjectivity property, proved in [8, Corollary
4.4]:

Lemma 5.3. For all n ≥ 1 and all q ≥ 0, the restriction map

Hq(�̂n;Sn,Z/m(q))→ Hq(�̂n−1;Tn−1,Z/m(q))

is surjective.

Remark 5.4. We have not been able to prove the analog of Lemma 5.3 for the semi-
local scheme of the vertices in ∆n, which is why we need to introduce the n-cube
�̂n. Lemma 5.3 is similar to the result [25, Corollary 9.7](revised version), and
plays the same crucial role in the argument.

The combinatorics of �̂n and its faces are similar to that of ∆n and its faces. In
the next few sections, we discuss these combinatorics, leading to the splitting result
Proposition 5.7.

5.5. Relative complexes. Let C be a subcategory of Schk, and F : Cop → C(Ab)
a functor. As in §3.1, if we have a k-scheme X with closed subschemes Y1, . . . , Ym
such that all the inclusions YI → YJ , J ⊂ I ⊂ {1, . . . , n}, are in C, we form the
relative complex F (X;Y1, . . . , Yn), which is defined as the total complex of the
double complex

F (X)→
n⊕
i=1

F (Yi)→ . . .→
⊕
|I|=j

F (YI)→ . . .
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with F i(YI) in total degree i + |I|. The relative complexes F (X;Y1, . . . , Yn) are
natural in F , and have the functorialities described in §2.8. We have as well the
subcomplex

F (X;Y1, . . . , Yn)ker := ker
(
F (X)→

n⊕
i=1

F (Yi)
)

of F (X;Y1, . . . , Yn).

5.6. The category C(n). For 1 ≤ s ≤ n let

is : (t1, . . . , tn−1) 
→ (t1, . . . , ts−1, 0, ts, . . . , tn−1)

js : (t1, . . . , tn−1) 
→ (t1, . . . , ts−1, 1, ts, . . . , tn−1)

be the inclusion of the faces ts = 0 and ts = 1 into �̂n. We have the identities

itis =

{
is+1it s ≥ t

isit−1 s < t;
jtis =

{
is+1jt s ≥ t

isjt−1 s < t;
jtjs =

{
js+1jt s ≥ t

jsjt−1 s < t.

(5.1)

Similarly, we define projection maps for 1 ≤ s ≤ n and 1 ≤ s < n, respectively,

ps : (t1, . . . , tn) 
→ (t1, . . . , ts−1, ts+1, . . . , tn)

qs : (t1, . . . , tn) 
→ (t1, . . . , ts−1, 1− (ts − 1)(ts+1 − 1), ts+2, . . . , tn).

The following identities hold

psjt =



jt−1ps t > s

id t = s

jtps−1 t < s;
psit =



it−1ps t > s

id t = s

itps−1 t < s,

(5.2)

qsjt =



jt−1qs t > s + 1
jsps t = s, s + 1
jtqs−1 t < s;

qsit =



it−1qs t > s + 1
id t = s, s + 1
itqs−1 t < s.

(5.3)

Let I be a subset of {1, . . . , n} (possibly empty), and s1, . . . , sr elements of the
complement of I. We write ∂s1,... ,sr

I �̂n for the subscheme ∪ri=1�̂n,I∪{si} of �̂n,I .
We write ∂s1,... ,sr �̂n for ∂s1,... ,sr

∅ �̂n; we also write ∂�̂n for ∂1,... ,2r
�̂n. We allow

the case r = 0, i.e., ∂I�̂n = �̂n,I . We note that the ∂s1,... ,sr

I �̂n are all normal
crossing subschemes of �̂n.

A face of ∂s1,... ,sr

I �̂n is a face �̂n,J of �̂n which is contained in ∂s1,... ,sr

I �̂n. We
let C(n) be the subcategory of Schk with objects the subschemes of �̂n of the form

∂s1,... ,sr

I �̂n. A morphism f : ∂s1,... ,sr

I �̂n → ∂
s′1,... ,s

′
r′

I′ �̂n is a map of k-schemes such

that, for each face �̂n,J of ∂s1,... ,sr

I �̂n, there is a face �̂n,J ′ of ∂
s′1,... ,s

′
r′

I′ �̂n such
that the restriction of f to �̂n,J factors as

�̂n,J
fJ−→ �̂n,J ′

iJ′−−→ ∂
s′1,... ,s

′
r′

I′ �̂n,

with fJ flat, and iJ′ the inclusion.

Proposition 5.7. Let F : C(n)op → C(Ab) be a functor. Then for all s < 2n:
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1. The canonical maps

F (�̂n, T
s
n)ker → F (�̂n, T

s
n); F (∂�̂n, T

s
n)ker → F (∂�̂n, T

s
n)

are quasi-isomorphisms.
2. The inclusions

F (�̂n, T
s
n)ker ⊆ F (�̂n, T

s−1
n )ker; F (∂�̂n, T

s
n)ker ⊆ F (∂�̂n, T

s−1
n )ker

are split; the splittings are natural in F .

Proof. We can assume that the proposition holds for functors C(n−1)op → C(Ab)
and proceed by induction on s. We will prove the proposition for ∂�̂n; the proof
for �̂n is exactly the same, replacing ∂�̂n with �̂n, and is left to the reader.

By contravariant functoriality, there are maps

i∗s, j
∗
s : F (∂�̂n)→ F (�̂n−1,s)

p∗s, q
∗
s : F (�̂n−1,s)→ F (∂�̂n).

For s < 2n, consider the following commutative diagram of complexes:

F (∂�̂n, T
s
n)ker //

incl

��

α

F (∂�̂n, T
s−1
n )ker //

φ

��

β

F (�̂n,s, T
s−1
n,s )ker

��

γ

F (∂�̂n, T
s
n) // F (∂�̂n, T

s−1
n ) // F (�̂n,s, T

s−1
n,s ),

(5.4)

where the vertical arrows are the natural inclusions, and φ is the restriction map.
By definition, F (∂�̂n, T

s
n)ker = ker(φ).

The bottom row of (5.4) defines a distinguished triangle via the isomorphism
(2.10). If we can show that the map φ is naturally split surjective, then (2) follows,
and the top row of (5.4) defines a distinguished triangle as well. Since β and γ
are quasi-isomophisms by induction, α will be a quasi-isomorphism as well, proving
(1).

We consider the following diagram, where ιs = j∗s for s ≤ n and ιs = i∗s−n for
s > n, and where β̃ and γ̃ are the evident inclusions:

0 // F (∂�̂n, T
s−1
n )ker

��

φ

//
β̃

F (∂�̂n)

��

ιs

//

Q
t≤s−1 ιt ⊕

t≤s−1 F (�̂n,t)

��

⊕ιs

0 // F (�̂n,s, T
s−1
n,s )ker //

γ̃
F (�̂n,s) //Q

t≤s−1 ιt

⊕
t≤s−1 F (�̂n,t,s).

The rows are the degree-wise exact sequences defining the complexes F (∂�̂n, T
s−1
n )ker

and F (∂�̂n, T
s−1
n )ker, respectively.

Let ρs : F (�̂n,s) → F (∂�̂n) be the map p∗s in case s ≤ n, or q∗n−s in case
n < s < 2n. Let x be an element of F (�̂n,s, T

s−1
n,s )ker. Then x can be viewed as an

element of F (�̂n,s) mapping to zero under ιt for t < s. Map x to x̄ in F (∂�̂n) by
taking x̄ = ρs(x).

We note that ιs ◦ ρs = id, by (5.2) for s ≤ n or (5.3) for n < s < 2n. Thus,
to show that ρs defines our desired splitting, we need only show that x̄ lies in the
kernel of ιt for t < s. But this follows from (5.2) for t < s ≤ n:

ιtx̄ = j∗t p
∗
sx = p∗s−1j

∗
t x = 0.
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For s > t > n this follows from (5.3):

ιtx̄ = i∗t−nq
∗
s−nx = q∗s−n−1i

∗
t−nx = 0,

and for t ≤ n < s,

ιtx̄ = j∗t q
∗
s−nx =



q∗s−nj

∗
t−1x = 0 t > s− n + 1

p∗s−nj
∗
t x = 0 t = s− n, s− n + 1

q∗s−n−1j
∗
t x = 0 t < s− n.

6. The Beilinson-Lichtenbaum conjectures and cycle maps for �̂n

In the main result of this section, Proposition 6.5, we show how the surjectivity
of certain relative cycle class maps for semi-local n-cubes implies a part of the
Beilinson-Lichtenbaum conjectures for fields.

We have the following version of a part of the Beilinson-Lichtenbaum conjectures
[16]:

Conjecture 6.1 (BLa). Let m be an integer prime to the characteristic of k. The
cycle class map

cla : Hp(F,Z/m(a))→ Hp
ét(F, µ

⊗a
m )

is an isomorphism for all p ≤ a, and for all finitely generated field extensions F of
k.

Write A for Ank , and let A(b)′ denote the set of codimension b points of A which
are not in �̂n. The standard constructions of Bloch-Ogus [4] give the augmented
Gersten complex for motivic cohomology

(6.1) 0→ Hp(A,Z/m(q)) ε−→ Hp(�̂n,Z/m(q))→
⊕

x∈A(1)′

Hp−1(k(x),Z/m(q − 1))

→ . . .→
⊕

x∈A(r)′

Hp−r(k(x),Z/m(q − r))→ . . .

and for étale cohomology

(6.2) 0→ Hp
ét(A, µ

⊗q
m ) ε−→ Hp

ét(�̂n, µ
⊗q
m )→

⊕
x∈A(1)′

Hp−1
ét (k(x), µ⊗q−1

m )

→ . . .→
⊕

x∈A(r)′

Hp−r
ét (k(x), µ⊗q−rm )→ . . .

To fix the notation, we take Hp(A,Z/m(q)) and Hp
ét(A, µ

⊗q
m ) in degree −1.

Lemma 6.2. The complexes (6.1) and (6.2) are exact.

Proof. We discuss the case of motivic cohomology; the argument for étale cohomol-
ogy is exactly the same.



THE BLOCH-KATO CONJECTURE AND A THEOREM OF SUSLIN-VOEVODSKY 33

For a scheme X, we let X(r) denote the set of codimension r points of X. We
have the standard Gersten complex for A:

(6.3) 0→ Hp(A,Z/m(q))→ Hp(k(A),Z/m(q))→
⊕

x∈A(1)

Hp−1(k(x),Z/m(q − 1))

→ . . .→
⊕

x∈A(r)

Hp−r(k(x),Z/m(q − r))→ . . . ,

and for �̂n:

(6.4)

0→ Hp(�̂n,Z/m(q))→ Hp(k(�̂n),Z/m(q))→
⊕

x∈�̂(1)
n

Hp−1(k(x),Z/m(q − 1))

→ . . .→
⊕

x∈�̂(r)
n

Hp−r(k(x),Z/m(q − r))→ . . . .

Sherman [21] has considered the analog of (6.3), where one replaces motivic co-
homology with K-cohomology H∗(−,K∗), and shows that the resulting complex
is exact. The same argument works for any Bloch-Ogus twisted duality theory, in
particular, the complex (6.3) is exact. Similarly, the “classical” Gersten’s lemma
[4, Theorem 4.2] for a Bloch-Ogus cohomology theory shows that (6.4) is exact.

We define the map of complexes ψ : (6.3)→ (6.4) by the restriction map

ψ−1 : Hp(A,Z/m(q))→ Hp(�̂n,Z/m(q)),

in degree −1 and the evident projection

ψr :
⊕

x∈A(r)

Hp−r(k(x),Z/m(q − r))→
⊕

x∈�̂(r)

Hp−r(k(x),Z/m(q − r))

in degree r ≥ 0. It is easy to check that the complex (6.1) is homotopy equivalent
to cone(ψ)[−1], which shows that (6.1) is exact.

We write 1 for the point (1, . . . , 1) of �̂n.

Lemma 6.3. Suppose BLa is true for 0 ≤ a < q. Then the cycle class map

clq : Hp(�̂n; 1,Z/m(q))→ Hp
ét(�̂n; 1, µ⊗qm )

is an isomorphism for all p ≤ q and all n ≥ 1.

Proof. By Lemma 6.2, the Gersten complexes (6.1) and (6.2) are exact.
Let π : A→ Spec k be the structure morphism, and i : 1→ �̂n, j : �̂n → A the

inclusions. Since

Hp(k,Z/m(q)) π∗
−→ Hp

ét(A,Z/m(q)); Hp
ét(k, µ

⊗q
m ) π∗

−→ Hp
ét(A, µ

⊗q
m )

are isomorphisms, and π ◦ j ◦ i = id, we may split off the first term in both (6.1)
and (6.2), giving the exact Gersten complexes

(6.5) 0→ Hp(�̂n; 1,Z/m(q))→
⊕

x∈A(1)′

Hp−1(k(x),Z/m(q − 1))→ . . .

→
⊕

x∈A(r)′

Hp−r(k(x),Z/m(q − r))→ . . .
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and

(6.6) 0→ Hp
ét(�̂n; 1, µ⊗qm )→

⊕
x∈A(1)′

Hp−1
ét (k(x), µ⊗q−1

m )→ . . .

→
⊕

x∈A(r)′

Hp−r
ét (k(x), µ⊗q−rm )→ . . .

The compatibility of the cycle class maps with localization (Proposition 4.5(2))
implies that the various cycle class maps give a map of complexes cl∗ : (6.5)→ (6.6).
This together with our hypothesis proves the lemma.

Lemma 6.4. Suppose that BLa is true for 0 ≤ a < q. Then the cycle class map

clq : Hp(�̂n;Sn,Z/m(q))→ Hp
ét(�̂n;Sn, µ⊗qm )

is an isomorphism for all p ≤ q.

Proof. We prove more generally that the cycle class map

clq : Hp(�̂n;T s
n,Z/m(q))→ Hp

ét(�̂n;T s
n, µ

⊗q
m )

is an isomorphism for all p ≤ q and for 1 ≤ s < 2n. We proceed by induction on s
and n.

By Proposition 4.5(1), we have the commutative diagram

→ Hp(�̂n;T s
n,Z/m(q)) //

��

clq

Hp(�̂n;T s−1
n ,Z/m(q)) //

��

clq

Hp(�̂n,s;T s−1
n,s ,Z/m(q))→

��

clq

→ Hp
ét(�̂n;T s

n, µ
⊗q
m ) // Hp

ét(�̂n;T s−1
n , µ⊗qm ) // Hp

ét(�̂n,s;T s−1
n,s , µ⊗qm )→,

where the rows are the respective relativization sequences. Induction reduces us to
the case s = 1.

We have the relativization sequence

→ Hp(�̂n;T 1
n , 1,Z/m(q))→ Hp(�̂n;T 1

n ,Z/m(q))→ Hp(1; 1,Z/m(q))→;

since Zq(1; 1, ∗) is the cone on the identity map, we thus have the isomorphism

Hp(�̂n;T 1
n , 1,Z/m(q)) ∼= Hp(�̂n;T 1

n ,Z/m(q)),

and similarly for relative étale cohomology. Comparing the relativization sequences
for motivic cohomology and étale cohomology using Proposition 4.5(1) gives the
commutative diagram

→ Hp(�̂n;T 1
n , 1,Z/m(q)) //

��

clq

Hp(�̂n; 1,Z/m(q)) //

��

clq

Hp(�̂n−1; 1,Z/m(q))→

��

clq

→ Hp
ét(�̂n;T 1

n , 1, µ
⊗q
m ) // Hp

ét(�̂n; 1, µ⊗qm ) // Hp
ét(�̂n−1; 1, µ⊗qm )→ .

Using Lemma 6.3, this shows that the cycle class map

clq : Hp(�̂n;T 1
n , 1,Z/m(q))→ Hp

ét(�̂n;T 1
n , 1, µ

⊗q
m )

is an isomorphism in the desired range.
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Proposition 6.5. Suppose that BLa is true for 0 ≤ a < q. Suppose further that,
for all finitely generated field extensions F of k, the cycle class maps

clq : Hq(�̂n ×k F ;Tn ×k F,Z/m(q))→ Hq
ét(�̂n ×k F ;Tn ×k F, µ⊗qm )

are surjective for all n ≥ 0. Then BLq is true.

Proof. We first reduce BLq to showing

For all finitely generated field extensions F of k, the cycle class maps

clq : Hp(�̂n ×k F ;Tn ×k F,Z/m(q))→ Hp
ét(�̂n ×k F ;Tn ×k F, µ⊗qm )

are isomorphisms for all n ≥ 1 and all p ≤ q.

(6.7)

Indeed, suppose that (6.7) is true. If k′ is a finitely generated field extension of
k, (6.7) remains true with k′ replacing k. Thus, it suffices to prove that

clq : Hp(Spec k,Z/m(q))→ Hp
ét(Spec k, µ⊗qm )

is an isomorphism for p ≤ q.
We have the commutative diagram relating the motivic and étale relativization

sequences

// Hp(�̂1;T1,
Z

m (q)) //

��

clq

Hp(�̂1;S1,
Z

m (q)) //

��

clq

Hp(k, Zm (q)) //

��

clq

Hp+1(�̂1;T1,
Z

m (q))→

��

clq

// Hp
ét(�̂1;T1, µ

⊗q
m ) // Hp

ét(�̂1;S1, µ
⊗q
m ) // Hp

ét(k, µ
⊗q
m ) // Hp+1

ét (�̂1;T1, µ
⊗q
m )→

With this, (6.7) together with Lemma 6.4 and (for p = q) Lemma 5.3 implies that
clq is an isomorphism in the desired range.

To prove (6.7), we may replace F with k. We consider commutative diagram of
relativization sequences

→ Hq(�̂n+1;Tn+1,
Z

m (q)) //

��

clq

Hq(�̂n+1;Sn+1,
Z

m (q)) //

��

clq

Hq(�̂n;Tn, Zm (q)) //

��

clq

0

→ Hq
ét(�̂n+1;Tn+1, µ

⊗q
m ) // Hq

ét(�̂n+1;Sn+1, µ
⊗q
m ) // Hq

ét(�̂n;Tn, µ⊗qm ) //

where the surjectivity for motivic cohomology is given by Lemma 5.3. The map

clq : Hq(�̂n;Sn,Z/m(q))→ Hq
ét(�̂n;Sn, µ⊗qm )

is an isomorphism by Lemma 6.4, hence surjectivity of

clq : Hq(�̂n+1;Tn+1,Z/m(q))→ Hq
ét(�̂n+1;Tn+1, µ

⊗q
m )

implies injectivity of clq : Hq(�̂n;Tn,Z/m(q))→ Hq
ét(�̂n;Tn, µ⊗qm ).

We now proceed by descending induction on the cohomology degree. Fix an
integer p < q, and suppose that clq : Ha(�̂n;Tn,Z/m(q))→ Ha

ét(�̂n;Tn, µ⊗qm ) is an
isomorphism for all a with p + 1 ≤ a ≤ q and for all n. We have the commutative
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diagram whose columns are the respective relativization sequences

�� ��

Hp(�̂n+1;Tn+1,Z/m(q)) //
clq

��

Hp
ét(�̂n+1;Tn+1, µ

⊗q
m )

��

Hp(�̂n+1;Sn+1,Z/m(q)) //
clq

��

Hp
ét(�̂n+1;Sn+1, µ

⊗q
m )

��

Hp(�̂n;Tn,Z/m(q)) //
clq

��

Hp
ét(�̂n;Tn, µ⊗qm )

��

Hp+1(�̂n+1;Tn+1,Z/m(q)) //
clq

��

Hp+1
ét (�̂n+1;Tn+1, µ

⊗q
m )

��

Hp+1(�̂n+1;Sn+1,Z/m(q))

��

//
clq

Hp+1
ét (�̂n+1;Sn+1, µ

⊗q
m )

��

As we have the isomorphism (Lemma 6.4)

clq : Ha(�̂n+1;Sn+1,Z/m(q))→ Ha
ét(�̂n+1;Sn+1, µ

⊗q
m )

for all a ≤ q, the map clq : Hp(�̂n;Tn,Z/m(q)) → Hp
ét(�̂n;Tn, µ⊗qm ) is surjective;

as n is arbitrary, the map

clq : Hp(�̂n+1;Tn+1,Z/m(q))→ Hp
ét(�̂n+1;Tn+1, µ

⊗q
m )

is surjective as well, hence clq : Hp(�̂n;Tn,Z/m(q))→ Hp
ét(�̂n;Tn, µ⊗qm ) is injective.

7. The Bloch-Kato conjecture and surjectivity

We now complete the discussion, by showing how the Bloch-Kato conjecture for
fields implies the surjectivity condition of Proposition 6.5.

Proposition 7.1. Let X = SpecR be a semi-local k-scheme, where R is a local-
ization of a k-algebra of finite type. Then, for each element η of Hp

ét(X,µ⊗qm ), there
is a k-morphism i : X → Y , with Y a smooth finite-type semi-local k-scheme, and
an element τ of Hp

ét(Y, µ
⊗q
m ), such that η = i∗τ .

Proof. Take a closed embedding of X into the semi-localization A of an affine space
A
N
k , and let Xh be the henselization of A along X. Let ih : X → Xh be the inclusion

and let F be a torsion étale sheaf on Xh. It follows from [6, Theorem 1] (see also
[22]) that i∗h : Hp

ét(Xh,F) → Hp
ét(X, i∗hF) is an isomorphism. Since X and A are

affine, Xh is a filtered projective limit of smooth semi-local k-schemes of finite type,
with flat affine transition maps. Since Hp

ét(−, µ⊗qm ) maps filtered projective limits
of this type to filtered inductive limits, the result follows.

Proposition 7.2. Suppose that, for all fields F finitely generated over k, the cycle
class map clq : Hq(F,Z/m(q)) → Hq

ét(F, µ
⊗q
m ) is a surjection and the cycle class

map clq−1 : Hq−1(F,Z/m(q − 1)) → Hq−1
ét (F, µ⊗q−1

m ) is an injection. Then the
cycle class map

clq : Hq(�̂n ×k F ;Tn ×k F,Z/m(q))→ Hq
ét(�̂n ×k F ;Tn ×k F, µ⊗qm )

is surjective for all fields F finitely generated over k and for all n.
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Proof. As in the proof of Proposition 6.5, it suffices to prove the result for F = k.
By a limit argument, similar to the argument of §3.4, we may assume that k is
perfect.

Let R be the semi-local ring of finitely many smooth points on a algebraic variety
X over k. By Bloch-Ogus theory [4, Theorem 4.2], we have the exact Gersten
complex

(7.1) 0→ Hp(R,Z/m(q))→ Hp(k(X),Z/m(q))→ . . .

→
⊕

x∈(SpecR)(a)

Hp−a(k(x),Z/m(q − a))→ . . .

and a similar exact Gersten complex for étale cohomology

(7.2) 0→ Hp
ét(R,µ⊗qm )→ Hp

ét(k(X), µ⊗qm )→ . . .

→
⊕

x∈(SpecR)(a)

Hp−a
ét (k(x), µ⊗q−am )→ . . .

By the compatibility of the cycle class maps with localization (Proposition 4.5(2)),
the maps clq−a define the map of complexes cl∗ : (7.1)→ (7.2).

Taking p = q and using our assumption, this shows that the cycle class map clq :
Hq(R,Z/m(q))→ Hq

ét(R,µ⊗qm ) is surjective. By Proposition 7.1, and the naturality
of the cycle class map (Proposition 4.2(5)), the map clq : Hq(∂�̂n+1,Z/m(q)) →
Hq

ét(∂�̂n+1, µ
⊗q
m ) is surjective for all n. We have the commutative diagram

Hq(∂�̂n+1,Z/m(q)) //
clq

��

s

Hq
ét(∂�̂n+1, µ

⊗q
m )

��

s

Hq(∂�̂n+1;Sn+1,Z/m(q)) //
clq

��

i∗

Hq
ét(∂�̂n+1;Sn+1, µ

⊗q
m )

��

i∗

Hq(�̂n;Tn,Z/m(q)) //
clq

Hq
ét(�̂n;Tn, µ⊗qm )

(7.3)

where s is the natural splitting given by Lemma 5.7, and i is the inclusion of the
face tn+1 = 0. Thus, the map

clq : Hq(∂�̂n+1;Sn+1,Z/m(q))→ Hq
ét(∂�̂n+1;Sn+1, µ

⊗q
m )(7.4)

is surjective.
We recall that étale cohomology satisfies excision for unions of closed subschemes.

Indeed, suppose Z = Z1 ∪ Z2, with Zi closed in Z. The Mayer-Vietoris property
(see e.g. the proof of Lemma 3.6) implies we have the distinguished triangle

G∗(Z, µ⊗qm )→ G∗(Z1, µ
⊗q
m )⊕G∗(Z2, µ

⊗q
m )→ G∗(Z1 ∩ Z2, µ

⊗q
m )→

from which it follows that the natural map

cone(G∗(Z, µ⊗qm )→ G∗(Z2, µ
⊗q
m ))→ cone(G∗(Z1, µ

⊗q
m )→ G∗(Z1 ∩ Z2, µ

⊗q
m ))

is a quasi-isomorphism. Thus, the restriction morphism

i∗Z1
: H∗ét(Z,Z2, µ

⊗q
m )→ H∗ét(Z1, Z1 ∩ Z2, µ

⊗q
m )

is an isomorphism.
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In particular, the map i∗ : Hq
ét(∂�̂n+1;Sn+1, µ

⊗q
m ) → Hq

ét(�̂n;Tn, µ⊗qm ) is an
isomorphism. The surjectivity of (7.4) and the commutativity of (7.3) thus prove
the proposition.

We conclude this sequence of results on surjectivity with the following elementary
but useful result:

Lemma 7.3. The surjectivity of clqF : Hq(F,Z/m(q)) → Hq
ét(F, µ

⊗q
m ) for all fields

F finitely generated over k implies the surjectivity of claF : Ha(F,Z/m(a)) →
Ha

ét(F, µ
⊗a
m ) for all fields F finitely generated over k and for all a with 0 ≤ a ≤ q.

Proof. We proceed by downward induction on a. Let R be the local ring F [X](X),
let η be in Ha

ét(F, µ
⊗a
m ), and assume that cla+1

F (X) is surjective. Let p∗ : Ha
ét(F, µ

⊗a
m )→

Ha
ét(F (X), µ⊗am ) be the map induced by the inclusion F → F (X), and let ω =

cl1(X) ∪ p∗η. By Proposition 4.5, we have the commutative diagram

Ha+1(F (X),Z/m(a + 1)) //
∂

��

cla+1
F (X)

Ha(F,Z/m(a))

��

claF

Ha+1
ét (F (X), µ⊗a+1

m ) //

∂
Ha

ét(F, µ
⊗a
m ),

where the maps ∂ are the boundary maps in the localization/Gysin sequence for
the open complement SpecF (X) of SpecF in SpecF [X](X). For a = 0, we have
canonical isomorphisms

H0(F,Z/m(0)) ∼= Z/m ∼= H0
ét(F,Z/m),

and cl0F is the identity. In addition, the map

∂ : H1(F (X),Z(1)) ∼= F (X)× → H0(F,Z)

is just the classical divisor map, hence

∂(cl1(X)) = cl0(∂(X)) = cl0(1) = 1.

Since the boundary map is a H∗ét(F, µ
⊗∗
m )-module homomorphism, this gives the

identity η = ∂(ω). By assumption, there is an element z ∈ Ha+1(F (X),Z/m(a+1))
with cla+1(z) = ω, giving claF (∂z) = ∂(cla+1

F (X)(z)) = ∂(ω) = η.

7.4. The main theorem. We can now give the proof of our main result Theo-
rem 1.1. By Lemma 4.10, it suffices to prove

Theorem 7.5. Suppose that the maps clq : Hq(F,Z/m(q)) → Hq
ét(F, µ

⊗q
m ) are

surjective for all fields F finitely generated over k. The the cycle class map (1.2)
is an isomorphism for all essentially smooth X over k and all a with 0 ≤ a ≤ q.

Let R be the local ring of a smooth point on a k-variety X of finite type. To
prove Theorem 7.5, it suffices to show that the map

cla : Hp(R,Z/m(a))→ Hp
ét(R,µ⊗am )

is an isomorphism for all p ≤ a ≤ q. We first reduce to the case of R a field which
is finitely generated over k.

As in the proof of Proposition 7.2, we have the exact (augmented) Gersten
complex for motivic cohomology (7.1), the exact (augmented) Gersten complex
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for étale cohomology (7.2), and the cycle class maps give the map of complexes
cl∗ : (7.1)→ (7.2). As this map in degree a ≥ 0 is

clq−a :
⊕

x∈SpecR(a)

Hp−a(k(x),Z/m(q − a))→ Hp−a
ét (k(x), µ⊗q−am ),

the result for fields which are finitely generated over k yields the general case.
We now handle the case of fields which are finitely generated over k. We proceed

by induction on q, the case q = 0 being trivially satisfied.
By Lemma 7.3, the hypothesis in Theorem 7.5 implies that

cla : Ha(F,Z/m(a))→ Ha
ét(F, µ

⊗a
m )

is surjective for all fields F finitely generated over k and for all a with 0 ≤ a ≤ q.
Using our induction hypothesis, this implies that

cla : Hp(F,Z/m(a))→ Hp
ét(F, µ

⊗a
m )(7.5)

is an isomorphism for all fields F finitely generated over k, and for p ≤ a < q.
Proposition 6.5 and Proposition 7.2 together with the isomorphisms (7.5) complete
the proof.

Remark 7.6. The idea of using Gabber’s rigidity theorem to pass from a version of
the Bloch-Kato conjecture for singular schemes to the usual version can be traced
back to R. Hoobler [10], who used an argument of this type to extend the Merkurjev-
Suslin theorem (which is the Bloch-Kato conjecture for weight two) to arbitrary
semi-local rings.

7.7. We conclude by proving Corollary 1.2. Let Hb(Z/m(q)) be the Zariski sheaf
of motivic cohomology on X, and Hb

ét(µ
⊗q
m ) the Zariski sheaf of étale cohomology

on X. We have the spectral sequences

Ea,b
2 = Ha(XZar,Hb(Z/m(q))) =⇒ Ha+b(X,Z/m(q))

Ea,b
2,ét = Ha(XZar,Hb

ét(µ
⊗q
m )) =⇒ Ha+b

ét (X,µ⊗qm ).

The cycle class map gives a map of spectral sequences clq : E∗∗ → E∗∗ét . If the
hypotheses of Corollary 1.2 are satisfied, then, by Theorem 1.1, clq : Hb(Z/m(q))→
Hb

ét(µ
⊗q
m ) is an isomorphism for b ≤ q, hence clq : Ea,b

2 → Ea,b
2,ét is an isomorphism

for b ≤ q. Since Ea,b
2 = Ea,b

2,ét = 0 for a < 0, this implies that clq : Ea,b
∞ → Ea,b

∞,ét is
an isomorphism for a + b ≤ q, and for a + b = q + 1, b ≤ q. Since Hb(Z/m(q)) = 0
for b > q, this shows that clq : Hn(X,Z/m(q)) → Hn

ét(X,µ⊗qm ) is an isomorphism
for n ≤ q and an injection for n = q + 1, completing the proof.

8. Appendix–Products

The cycle complexes have a natural external product which can be constructed
along the lines described in [1]. There is a gap in the construction given in loc. cit.,
in that a part of the construction (Lemma (5.0)) relies on the incorrect proof of the
“moving lemma” [1, Theorem (3.3)]. Although the results of [2] give a proof of [1,
Theorem (3.3)], it is not clear that the argument given in [2] can be used to prove
Lemma (5.0). Therefore, in this Appendix, we give a construction of the product
on the cycle complexes.

Let X be a scheme, essentially of finite type over k. Let zq(X, p, p′) be the free
abelian group on the irreducible codimension q closed subsets W of X ×∆p ×∆p′
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such that each irreducible component of W ∩ X × A × B has codimension q on
X×A×B for each face A of ∆p and B of ∆p′ . The zq(X, p, p′) form in the evident
way a bisimplicial abelian group; let zq(X, ∗, ∗) be the associated double complex,
and let Tot zq(X, ∗, ∗) be the total complex of zq(X, ∗, ∗).

We give the product set [p]× [q] the product partial order,

(a, b) ≤ (a′, b′)⇐⇒ a ≤ a′ and b ≤ b′,

and identify [p]× [q] with the vertices of ∆p×∆q in the evident way. For an order-
preserving map g : [n] → [p]× [q], the unique affine-linear extension of g gives the
map

∆(g) : ∆n → ∆p ×∆q.

A face of ∆p × ∆q is a subscheme of the form ∆(g)(∆n) for some injective g.
Let zq(X, p, p′)T be the subgroup of zq(X, p, p′) generated by the irreducible W ⊂
X ×∆p ×∆p′ such that, for each face A of ∆p ×∆p′ , each irreducible component
of W ∩X × A has codimension q on X × A. The zq(X, p, p′)T form a sub-double
complex zq(X, ∗, ∗)T of zq(X, ∗, ∗).

If g = (g1, g2) : [p+q]→ [p]×[q] is injective, g determines a p-q-shuffle by sending
i ∈ {1, . . . , p + q} to g1(i) if g1(i− 1) < g1(i), and to g2(i) + p if g2(i− 1) < g2(i).
Taking the sign of this permutation defines the sign sgn(g). Let

Tp,q : zr(X, p, q)T → zr(X, p + q)

be the map
∑

g sgn(g)∆(g)∗, where the sum is over g as above. The map

T :=
∑
p,q

Tp,q : Tot zr(X, ∗, ∗)T → zr(X, ∗),

is a well-defined map of complexes.

Lemma 8.1. The inclusion i : Tot zq(X, ∗, ∗)T → Tot zq(X, ∗, ∗) is a quasi-iso-
morphism.

Proof. We have the standard E1 spectral sequence (of homological type) for each
of the double complexes zq(X, ∗, ∗)T , zq(X, ∗, ∗),

E1
a,b = Hb(zq(X, a, ∗)) =⇒ Ha+b(Tot zq(X, ∗, ∗)),

T E
1
a,b = Hb(zq(X, a, ∗)T ) =⇒ Ha+b(Tot zq(X, ∗, ∗)T );

the inclusion i induces the map of spectral sequences T E → E. It thus suffices to
show that the inclusion ia : zq(X, a, ∗)T → zq(X, a, ∗) is a quasi-isomorphism for
each a. The rest of the argument is similar to the proof of [1, Theorem 2.1]; we
now proceed to give the necessary modifications.

The complex zq(X, a, ∗) is evidently a subcomplex of zq(X × ∆a, ∗). It thus
suffices to show that the two inclusions zq(X, a, ∗)→ zq(X×∆a, ∗), zq(X, a, ∗)T →
zq(X ×∆a, ∗), are quasi-isomorphisms.

The coordinates t1, . . . , ta on ∆a give an isomorphism of ∆a with Aa, and thereby
define an action of the group scheme (Aa,+, 0) on ∆a by translation. Let t be the
generic point of Aa, K the field k(t), and φt : ∆a

K → ∆a
K the translation by t.

Let Φ : ∆a
K × ∆1 → ∆a

K be the map Φ(x, (u0, u1)) = φu1t(x) = x + u1t. We let
π : X ×∆a

K → X ×∆a be the projection, and i0, i1 : X ×∆a
K → X ×∆a

K ×∆1 the
inclusions i0(y) = (y, (1, 0)), i1(y) = (y, (0, 1)). Note that Φ ◦ i0 = id, Φ ◦ i1 = φt.
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If F is a face of ∆a ×∆p, then the orbit Aa · F is of the form ∆a × F ′ for some
face F ′ of ∆p. The argument of [1, Lemma 2.2] shows that the composition

Φ∗ ◦ π∗ : zq(X ×∆a, ∗)→ zq(X ×∆a ×∆1
K , ∗)

has image in the subcomplex zq(X ×∆a
K , 1, ∗)T of zq(X ×∆a ×∆1

K , ∗), and that
the composition

zq(X ×∆a, ∗) Φ∗◦π∗
−−−−→ zq(X ×∆a

K , 1, ∗)T
i∗1−→ zq(X ×∆a

K , ∗),
which is just φ∗t ◦ π∗, has image in zq(XK , a, ∗)T .

We have the map T 1 : zq(X×∆a
K , 1, ∗)T → zq(X×∆a

K , ∗+1) induced by T . The
argument of [1, Lemma 2.2] shows in addition that T 1 ◦ Φ∗ ◦ π∗ gives a homotopy
between the compositions

π∗, φ∗t ◦ π∗ : zq(X ×∆a, ∗)→ zq(X ×∆a
K , ∗),

the compositions

π∗, φ∗t ◦ π∗ : zq(X, a, ∗)→ zq(XK , a, ∗),
and the compositions

π∗, φ∗t ◦ π∗ : zq(X, a, ∗)T → zq(XK , a, ∗)T .
This implies that the maps

π̄∗ : zq(X ×∆a, ∗)/zq(X, a, ∗)→ zq(XK ×∆a, ∗)/zq(XK , a, ∗)
π̄∗ : zq(X ×∆a, ∗)/zq(X, a, ∗)T → zq(XK ×∆a, ∗)/zq(XK , a, ∗)T

induce zero on homology. Since SpecK is a filtered inverse limit of finite type
k-schemes U with U(k) 	= ∅, and since the functors

U 
→ zq(X × U ×∆a, ∗),
U 
→ zq(X × U, a, ∗)
U 
→ zq(X × U, a, ∗)T

transform filtered inverse limits of schemes with flat transition maps to direct limits
of complexes, it follows that the maps π̄∗ are injective on homology: for each such U ,
the choice of a k-point of U gives a left inverse to the maps induced by the projection
X × U → X. Thus zq(X ×∆a, ∗)/zq(X, a, ∗) and zq(X ×∆a, ∗)/zq(X, a, ∗)T are
acyclic, as desired.

Now let X and Y be schemes, essentially of finite type over k. Sending W ∈
zq(X ×∆p) and W ′ ∈ zq

′
(Y ×∆p′) to the “product” cycle W ×W ′ ∈ zq(X ×k Y ×

∆p ×∆p′) defines the map of complexes

� : zq(X, ∗)⊗ zq
′
(Y, ∗)→ Tot zq+q

′
(X ×k Y, ∗, ∗).

We have the diagram

(8.1) zq(X, ∗)⊗ zq
′
(Y, ∗) �−→ Tot zq+q

′
(X ×k Y, ∗, ∗) i←− Tot zq+q

′
(X ×k Y, ∗, ∗)T

T−→ zq+q
′
(X ×k Y, ∗).

Via (8.1) and Lemma 8.1, the composition T ◦ i−1 ◦� defines the external product
map in D−(Ab)

∪X,Y : zq(X, ∗)⊗L zq
′
(Y, ∗)→ zq+q

′
(X ×k Y, ∗).(8.2)
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The associativity and commutativity of ∪∗,∗ in D−(Ab) follow easily from well-
known associativity and commutativity properties of the triangulation T (see e.g.
[17, Chap. 3]); we leave the details to the reader.
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