
The Block-based Trace Cache

Bryan Black, Bohuslav Rychlik, and John Paul Shen
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

{black,bohuslav,shen}@ece.cmu.edu

Abstract

The trace cache is a recently proposed solution to
achieving high instruction fetch bandwidth by buffering and
reusing dynamic instruction traces. This work presents a
new block-based trace cache implementation that can
achieve higher IPC performance with more efficient stor-
age of traces. Instead of explicitly storing instructions of a
trace, pointers to blocks constituting a trace are stored in a
much smaller trace table. The block-based trace cache re-
names fetch addresses at the basic block level and stores
aligned blocks in a block cache. Traces are constructed by
accessing the replicated block cache using block pointers
from the trace table. Performance potential of the block-
based trace cache is quantified and compared with perfect
branch prediction and perfect fetch schemes. Comparing to
the conventional trace cache, the block-based design can
achieve higher IPC, with less impact on cycle time.

Results: Using the SPECint95 benchmarks, a 16-wide
realistic design of a block-based trace cache can improve
performance 75% over a baseline design and to within 7%
of a baseline design with perfect branch prediction. With
idealized trace prediction, it is shown the block-based trace
cache with an 1K-entry block cache achieves the same per-
formance of the conventional trace cache with 32K entries.

1 Introduction

Most technologists anticipate the continuation of
Moore’s law of increasing chip density and complexity for
another 10 years. However, existing superscalar techniques
for harvesting instruction-level parallelism (ILP) are en-
countering strong diminishing returns. In order to justify
building wider superscalar processors, new microarchitec-
ture techniques capable of achieving significantly higher
IPC (average instructions executed per cycle) for ordinary
programs are essential.

1.1 High Bandwidth Instruction Fetching

A critical challenge to achieving high IPC is supplying
enough useful instructions for execution. High-bandwidth
instruction fetching must address several problems: First,
the machine must perform multiple branch predictions in
every cycle. Second, the fetch engine must be able to fetch
from multiple non-contiguous addresses in every cycle,
reaching beyond the taken branch. Third, misaligned in-
structions, from the multiple fetch groups, must be col-
lapsed into the fetch buffer.

1.2 Previous Related Work

The three challenges in high-bandwidth instruction
fetching: multiple-branch prediction, multiple fetch groups,
and instruction alignment and collapsing, have been ad-
dressed in previous studies. These previous works fall into
two general categories, those that use an enhanced instruc-
tion cache [3][16][18][19] and those that use a trace cache
[5][8][14][15]. The fundamental difference between them
is where in the pipeline instructions are aligned and col-
lapsed. Both perform multiple-branch prediction the cycle
before instruction fetch, and update the predictor at comple-
tion. Techniques that use an enhanced instruction cache
support fetch of non-contiguous blocks with a multi-ported,
multi-banked, or multiple copies of the instruction cache.
This leads to multiple fetch groups that must be aligned and
collapsed at fetch time, which can increase the fetch laten-
cy. The conventional trace cache performs all instruction
alignment and collapsing at completion time. At completion
time a fill unit constructs traces of instructions to be stored
in the trace cache. The conventional trace cache optimizes
the fetch latency by shifting the complexity of multiple-
branch prediction, multiple fetch groups, and instruction
alignment and collapsing to the completion time.

This work proposes a block-based trace cache that is able
to achieve higher IPC performance while requiring less

1063-6897/99/$10.00 (c) 1999 IEEE

196

trace storage capacity. It also facilitates more flexible trace
prediction schemes; for example, partial matching [5] can
be easily and naturally implemented. Furthermore, it has the
potential of enabling clean implementation of other dynam-
ic optimizations, such as multi-path execution, dynamic
predication and dynamic multithreading.

The block-based trace cache employs a number of novel
features. Instead of explicitly storing instructions of a trace,
pointers to blocks constituting a trace are stored in a much
smaller trace table. The block-based trace cache renames
fetch addresses at the basic block level and stores aligned
blocks in a block cache. Traces are constructed by accessing
the replicated block cache using block pointers from the
trace table.

Figure 1 and Figure 2 illustrate the basic difference be-
tween the conventional and the block-based trace caches.
Both designs perform next trace prediction in the cycle pri-
or to the fetch cycle. The conventional design employs a so-
phisticated path-based next trace predictor [8] to produce
the next trace identifier which is used in the fetch cycle to
access the trace cache. Similarly, the block-based trace
cache makes the next trace prediction by accessing the trace
table which outputs the identifiers of the blocks in the pre-
dicted trace. These block identifiers are used in the fetch cy-
cle to access the replicated block cache. Section 3.1.3 will
show the accessing of the replicated block cache does not
increase the fetch latency of the block-based design.

This paper starts with a discussion about fetch address
renaming in Section 2, then uses Section 3 to detail the im-
plementation and design trade-offs of the block-based trace
cache. Section 4 discusses the simulation methodology for
this work, and Section 5 explores the design space quantita-
tively. Performance potential of the block-based trace cache
is quantified and compared with that of perfect branch pre-
diction and perfect fetch schemes in Section 6. It is shown
that the block-based trace cache achieves IPC higher than

Figure 1 - The conventional trace cache.

Fetch Buffer

Completion

br.

Trace Cache

trace_id

I-
C

ac
he

Execution
Core

History
Hash hist.

Fill Unit

Next
Trace
Pred.

that of perfect branch prediction and approaching that of
perfect fetch if an idealized trace predictor is used.
Section 7 compares the block-based trace cache to the con-
ventional trace cache implementation, and demonstrates a
much higher IPC when trace storage capacity is limited.

2 Fetch Address Renaming

The implementation of the block-based trace cache is
based on the concept of fetch address renaming. This sec-
tion presents the motivation for renaming fetch addresses,
suggests possible options for the renamed entity, and argues
that the basic block is a convenient and effective entity for
renaming.

2.1 Motivation for Renaming

Traditionally the effective address of an instruction is
used for its fetching. Such addresses contain many bits. An
instruction cache big enough to support the full decoding of
these bits is impractical and not necessary. Typically a sub-
set of the fetch address bits are used to index into the in-
struction cache which results in potential aliasing. The
aliasing problem is solved by storing a tag in each cache line
and using tag compare to ensure the correct group of in-
structions is being fetched.

Fetch addresses can be renamed or translated to use few-
er bits. If a unique renamed pointer can be assigned to each
fetch address then aliasing can’t occur and tag compare is
not necessary. This can reduce the latency of instruction
fetch. Fetch address renaming requires a table to translate
instruction fetch addresses to their renamed pointers. Such
a rename table, maintained at completion time, effectively
moves the complexity and latency of associative search and
tag compare from instruction fetch time to completion time.
Since the rename table is of finite size, there can be capacity
misses in the rename table. A replacement policy is needed
for the rename table, and an efficient mapping of fetch ad-
dresses to the renamed pointers is crucial.

2.2 Possible Renamed Entities

Some form of fetch address renaming is always useful,
because it removes the tag compare of cache access during
instruction fetching. The key question is what should be the
entity for renaming. There are at least three possibilities.

Fetch address renaming can be done at the level of in-
struction cache lines, as explored by [2][18]. Instead of us-
ing the fetch address, the instruction cache line index is used
for fetching. This reduces the latency of instruction cache
access, with no fragmentation since the entire cache line is
renamed as an entity. This renaming scheme assumes the

1063-6897/99/$10.00 (c) 1999 IEEE

197

traditional instruction cache, which may contain non-
aligned basic blocks. This will necessitate trace construc-
tion at fetch time and a collapsing buffer [3] when multiple
non-contiguous blocks are fetched.

It is also possible to perform renaming at the level of
traces as suggested by a recent paper on next trace predic-
tion [8]. Such renaming can reduce the latency of the trace
cache fetch. The conventional trace cache does not require
trace construction at fetch time [5][8][14][15]. However,
the trace is not a fundamental unit of operation in terms of
program semantics. The definition of a trace can vary and
can be somewhat arbitrary depending on the trace construc-
tion heuristics used in the fill unit. This makes it more dif-
ficult to implement some of the advanced dynamic
optimizations and necessitates very good trace selection
heuristics.

This work proposes renaming at the basic block level,
because the basic block is a logical unit of program execu-
tion [6][11]. Similar to other forms of fetch address renam-
ing, basic block renaming reduces the latency of accessing
the cache during instruction fetch. Renaming at the level of
basic blocks can facilitate dynamic optimizations such as
partial match of traces, dynamic predication, multi-path ex-
ecution and dynamic multithreading. It can also ease the im-
plementation complexity of register renaming and the
reorder buffer. However, renaming at the basic block level
can potentially introduce more fragmentation and replica-
tion. It also requires trace construction and instruction col-
lapsing at fetch time. These problems are addressed in
Section 5.

3 Block-based Trace Cache

The machine organization of the block-based trace cache
is similar to that of the conventional trace cache
[5][8][14][15]. Both support the same superscalar execu-
tion core, shown in Figure 1 and Figure 2. The key differ-

Fetch Buffer

trace_id

Completion

Final Collapse

br.

Block Cache

block_ids

Figure 2 - The block-based trace cache.

I-
C

ac
he

Execution
Core

Trace
Table

History
Hash

pre-collapse

hist.

Rename
Table

Fill
Unit

ence is the storage of traces. The conventional design shifts
most of the complexity and latency of instruction fetching
to completion time using a fill unit. The block-based design
brings back a portion of that complexity to improve the ef-
ficiency of trace storage and the flexibility of trace con-
struction. The block-based trace cache has four major
components: the trace table, the block cache, the rename
table and the fill unit. Instead of storing the instructions
from multiple basic blocks in a contiguous trace, the block-
based design stores aligned basic blocks separately in the
block cache. The trace table stores the renamed pointers
(called block_ids) to these basic blocks for trace construc-
tion. The block-based trace cache shifts the potential static-
to-dynamic explosion of the number of traces to the much
smaller trace table. One disadvantage of the block-based
trace cache is the addition of the final collapse MUX in the
fetch stage. It is shown later that the final collapse MUX if
implemented carefully will add little fetch latency.

The next three subsections present details of the trace ta-
ble, the block cache, and the rename table. Since the fill unit
controls the update of each of these three components, the
interaction between the fill unit and each of the components
is discussed in each subsection.

3.1 Trace Table

The trace table can be viewed as storing a short-hand
representation of traces since each of its entries contains the
block-ids of a trace. The trace table can also be viewed as
part of the next trace predictor. The next trace predictor uses
block-id execution history and branch history bits to gener-
ate the predicted trace_id, which is used to access the trace
table. The entry of the trace table indexed by the predicted
trace_id stores the block_ids or pointers to the blocks con-
stituting the predicted trace; see Figure 3. A trace table line
consists of a valid bit, a tag, and the w block_ids of the pre-

tag index

tag

branch history

block_ids

1 2 ... wv

=

Hit
Figure 3 - Logical diagram of the next
trace predictor and the trace table.

Next

...

b_id0 b_id1 b_id2 b_id3

w pred. block_ids

Hash
Function

trace_id

Trace Table

to the block cache

1063-6897/99/$10.00 (c) 1999 IEEE

198

dicted trace. These block_ids are used to access the replicat-
ed block cache during the fetch cycle. The trace table also
provides pre-generated steering bits for the final collapse
MUX (Section 3.1.3).

3.1.1 Next trace prediction
The next trace_id is generated using a hashing function

to reduce branch history bits and previously executed
block_ids to the predicted trace_id. The input to the hashing
function can be based solely on the last block_id and h bits
of global branch history (gshare [10]), or a combination of
previous block_ids and branch history bits (next trace pre-
dictor of [8]). Since the fetch unit can track block_id history
and branch history, potentially speculative previous
block_ids and branch history bits can be used by the hash-
ing function. As shown in [9], speculative branch history
can be corrupted due to mispredictions; a simple recovery
and cleanup mechanism is necessary. The associativity and
size of the trace table are explored in Section 5. However,
detailed exploration of the huge design space for the next
trace predictor is left for future work.

3.1.2 Trace table read.
In the cycle prior to the fetch cycle, block_id history and

branch history are hashed to produce the predicted next
trace_id which is used to index into the trace table. The se-
quence of block_ids retrieved from the trace table repre-
sents the predicted trace. The predicted sequence of
block_ids are then used, in the fetch cycle, to access the
block cache to produce the predicted trace of instructions.
The trace table and the block cache are accessed in two sep-
arate cycles in a pipelined fashion. A miss in the trace table
access invokes access from the instruction cache.

3.1.3 Trace table fill
The trace table is filled at completion time as blocks of

instructions are completed. As the fill unit constructs a trace
of executed blocks it writes back the block_ids to the trace
table. Only one writeback to the trace table is supported per
cycle. The fill unit also performs pre-collapsing by generat-
ing a set of steering bits based on the actual number of in-
structions in each block of the trace. These steering bits are
stored in the trace table along with the block_ids and are
used at fetch time to control the final collapse MUX. This
reduces the collapsing latency incurred at fetch time to the
data propagation delay of a MUX or a shallow MUX tree.

3.2 Block Cache

The block cache stores aligned instruction blocks. To
support multiple simultaneous accesses, the block cache is
replicated. In the current implementation all copies are writ-
ten with the same content. (Through more complex block

renaming, future implementations can make more efficient
use of the replicated block cache.) Figure 4 illustrates the
replicated block cache and shows the details of one of the
block cache copies. Real basic blocks from a program have
varying sizes. This work assumes that the block cache has
fixed-size entries. A logical basic block that exceeds this
size is partitioned into multiple physical blocks. The block
cache stores the N most recently used blocks. Each line of
the block cache stores up to b instructions, along with the
fetch address of the first instruction. The block cache is a di-
rect mapped cache with no tag compare needed at fetch
time. Replacement is controlled by the fill unit and the re-
name table (Section 3.3). The most appropriate block size
(b) and replication count (w) of the block cache are exam-
ined in Section 5.

3.2.1 Block cache read
The block cache is read at fetch time. The trace table

(Section 3.1) provides w block_ids to index the w copies of
the block cache. The block cache copies are accessed in par-
allel each providing up to b instructions. Due to renaming
of the fetch address of each block, a block_id uniquely iden-
tifies a particular block. Consequently, no aliasing can oc-
cur and no tag compare is needed even though the block
cache is direct mapped. A final collapse MUX, controlled
by steering bits retrieved from the trace table, is used to con-
struct the predicted trace of instructions. After the instruc-
tions are loaded into the fetch buffer, instruction execution
is identical to the standard out-of-order machine.

The fetch address (FA) of each block that is stored in a
block cache line is used during branch execution for trace
prediction validation and misprediction recovery. Since the
fetch address of each block is stored in the block cache,
misprediction can be determined at the block level. If the
predicted trace is only partly correct, partial matching [5] is

...

Instructions from

block_id

de
co

de
r

N=2n

direct mapped cache

FA i1 i2 ib

Figure 4 - Logical diagram of the replicated
block cache, with final collapse MUX.

word lines
the block fill unit

(n-bit)

Final Collapse

Fetch Buffer
co

py
-2

co
py

-3

co
py

-4b inst

16

co
py

-1

1063-6897/99/$10.00 (c) 1999 IEEE

199

easily implemented. Once a misprediction is detected, cor-
rect fetching from the instruction cache can be performed in
the next cycle.

3.2.2 Block cache fill
The block cache is filled at completion time by the fill

unit. The fill unit constructs physical blocks from logical
basic blocks and inserts them into the block cache. Block
construction is accomplished by a fill buffer. The fill buffer
captures instructions in order as they complete. The end of
a block occurs when a branch or other control flow instruc-
tion is encountered or when the physical block size (b) is
reached. Constructing physical blocks from logical basic
blocks produces fragmentation when the logical basic block
size is not an integral multiple of the physical block size.
This internal fragmentation can cause a performance loss,
and is studied in Section 5.1.

Once a block boundary is detected, the fill unit renames
the block with a block_id and writes it to the block cache in
the entry indexed by that block_id. To prevent wasteful in-
sertion and replacement in the block cache, the fill unit de-
tects already cached blocks and does not attempt to insert
them into the block cache a second time. It is possible that
during block construction a completing block may contain
instructions that belong to an already renamed block; the fill
unit will only rename the portion of the completing block
that has not been seen before.

3.3 Rename Table

The rename table implements the fetch address renaming
of basic blocks (Section 2.2). The rename table is a set-as-
sociative mapping of instruction fetch addresses to
block_ids. Figure 5 illustrates an eight entry 2-way set asso-
ciative rename table. Each entry corresponds to a particular
block_id number. The index portion of the fetch address
and the LRU replacement policy determine which entry a
newly renamed fetch address will be mapped to. The
block_id of the newly allocated entry is returned as the re-
named value.

The rename table may use any associativity scheme.
However the number of entries (N) is equal to the number
of entries of the block cache because each entry of the set-
associative rename table renames one entry of the block
cache.

3.3.1 Rename table read
The rename table is used at fetch time to detect if the re-

quested fetch address corresponds to a block already stored
in the block cache. Concurrent with the instruction cache
access, the fetch unit accesses the rename table using the
fetch address. If the rename table access returns that the cur-
rent fetch group is already renamed, the returned block_id

is recorded in the fetch history and used in the next cycle to
access the block cache. The fetch unit maintains a specula-
tive history of block_ids fetched and the associated branch
history bits, which are hashed to perform next trace predic-
tion.

To reduce rename table bandwidth requirements we lim-
it the rename table to one read access per cycle. Hence, dur-
ing an instruction cache access, the fetch unit is only
allowed to fetch at most one basic block. To facilitate this a
single predecode bit in the instruction cache can be used to
mark each instruction as branch or non-branch.

3.3.2 Rename table fill
At completion time the fill unit updates the rename table.

When a new block of instructions is constructed, the rename
table is written with the fetch address of the first instruction
in the block. The renamed block_id is returned and used to
update the block cache entry. To limit the number of ports
required in the rename table, only one block of instructions
can be renamed in a single cycle. This does not limit com-
pletion bandwidth to one block, because blocks that are al-
ready renamed are not written to the rename table again, and
therefore do not require rename table access at completion
time. When an existing block_id is renamed, traces already
stored in the trace table that include this block_id become
incorrect. Since it is difficult to search the trace table to in-
validate these traces, stale block_ids are detected during ex-
ecution and treated as mispredictions; see Section 3.2.1.

tag block_idv

=

=

0

1

2

3

4

5

6

7

Figure 5 - Example implementation of the rename
table (8 entries, 2-way set associative).

N=8 entries

Block fetch
address
renamed to
a block_id

Tag Index

Block fetch address

1063-6897/99/$10.00 (c) 1999 IEEE

200

4 Experimental Methodology

All the experimental data reported in this paper are gen-
erated by a full-functional performance simulator that is
built based on a validated PowerPC 604 simulation model
[1], which is based on published reports [4][7][17] and ac-
curately models all key features of the microarchitecture.

4.1 Machine Model

To focus the current study on instruction fetching and to
highlight the impact of instruction availability on machine
performance, the PowerPC 604 microarchitecture is ex-
tended to remove resource constraints, and widened to uti-
lize more instruction bandwidth.

A centralized reservation station with 512 entries and
unlimited out-of-order issue bandwidth is assumed. This ef-
fectively limits the instruction window to 512 instructions.
An unlimited number of functional units is also assumed.
The instruction fetch, dispatch, and completion bandwidth
is increased to 16 instructions per cycle. The memory hier-
archy is fully modeled with a perfect main memory, a 32KB
Level-1 I-cache, a 32KB Level-1 D-cache, and a 256KB
unified Level-2 cache. Access latencies are 1, 3, and 100 cy-
cles for the L1, L2 caches and the main memory, respective-
ly. On-chip implementation of the L2 is assumed. An
unlimited load miss queue and an unlimited store queue
handle all load and store execution. The store queue per-
forms data forwarding, and load/store instructions execute
out-of-order if no address aliasing is detected.1

All register and memory data dependencies are enforced.
Instruction execution latencies can be found in [7], and ac-
curately reflect the PowerPC 604. The potential bottlenecks
of this machine are the data flow limit due to true data de-
pendencies and instruction availability.

4.2 Benchmarks

The benchmark set used is the SPECint95 suite, com-
piled by gcc 2.7.2. To reduce simulation time, we use small
input files and limit run length to 200 million instructions
for each benchmark, totaling 1.6 billion instructions. All
user library calls are modeled, though system calls are not.

1 The authors are not proposing this as a realistic machine design, but a ma-
chine model that focuses the performance bottleneck on instruction fetch
while enforcing register and memory data dependencies and using realistic
trace prediction.

5 Design Space Exploration

This section explores the design space of the block-
based trace cache. The block size (b), block cache replica-
tion (w), block cache entry count or size (N), rename table
associativity, and trace table size and associativity are ex-
plored. We attempt to systematically narrow the design
space search via a series of experiments and analyses.

5.1 Block Cache Fragmentation (b)

Fragmentation of the instruction fetch group is an issue
for all trace cache implementations. Since the block-based
trace cache can incur fragmentation at the block level, there
is potential for greater trace-level fragmentation as com-
pared to a conventional trace cache. The optimal block size
(b) for the block cache should minimize the total fragmen-
tation. To study the fragmentation for different block sizes,
the block-based trace cache is simulated with realistic
branch prediction and a fixed number of block cache en-
tries, while varying the block size (b) and block cache rep-
lication (w). The maximum potential fetch bandwidth is
equal to b x w and is fixed at 16 instructions (except for b=6
and w=3). Fragmentation is measured in terms of the utili-
zation of the fetch buffer which is related to the actual fetch
bandwidth achieved. Figure 6 shows the effects of varying
the block size (b) on the fetch buffer utilization.

For both b=16 and b=8 there is significant drop-off of
fetch buffer utilization for some benchmarks indicating sig-
nificant fragmentation. For two of the benchmarks b=2 is
the best choice. b=4 is best for one benchmark and b=6 is
best for two. The key observation is that the fetch buffer uti-
lizations for b=2, 4, and 6 are all quite close for most of the
benchmarks. b=2 is not desirable due to high replication
(i.e. w=8). Based on harmonic means b=6 is the best choice
with b=4 a close second. Both remain as potential candi-
dates for optimal b.

0

1

2

3

4

5

6

7

8

9

10

com p gcc go ijpeg li m 88k perl vort h-m

Block size (b), B lock fetch w id th (w)

A
vg

.

of
 in

st
. i

n
fe

tc
h

bu
ffe

r

2,8 4,4 6,3 8,2 16 ,1

Figure 6 - Block cache fragmentation analysis.
Block size vs. block cache replication trade-
off. (N=4096)

1063-6897/99/$10.00 (c) 1999 IEEE

201

5.2 Block Cache Replication (w)

By increasing the number of blocks fetched in a cycle,
the size of the total fetch window can be greater than the
size of the fetch buffer to compensate for the fragmentation
in each block. Figure 4 illustrates the use of w copies of the
block cache to increase the total available instructions,
where w can be greater than 16/b. The final collapsing
MUX removes empty entries within the individual blocks,
and yields a total fetch group that fits into the fetch buffer.

Realistic branch prediction is used in these simulations
to factor in the effect of decreasing trace prediction accura-
cy as w increases. A block cache size of N=4096 entries is
used for each copy of the block cache. In Figure 7 w, the
number of block cache copies, is varied. Notice that the
fetch buffer utilization does not necessarily increase for a
larger number of block cache copies. This is due to the in-
creasing misprediction rate for predicting longer sequences
of blocks; see Section 5.4. For some benchmarks w=16 is
suffering significant misprediction penalty. Figure 7 shows
that for most benchmarks, w=5 and w=6 are the best choices
when b=4. For b=6, the best choices are w=4 and w=5. In
both cases, the two choices are very close. In an effort to
minimize replication (w), for the remainder of our study we
select a block size of b=6 and w=4 copies of the block cache
as our optimal replicated block cache organization.

5.3 Rename Table Associativity

The number of entries in the rename table (N) is equal to
the number of entries in the block cache, which is explored
in Section 6. For this analysis a block size of b=6, a block

(b = 6 , N = 4 0 9 6)

0

2

4

6

8

1 0

1 2

c o m p g c c g o ijp e g li m 8 8 k p e r l v o r t

b e n c h m a r k

A
vg

. #
 o

f i
ns

t.
in

 fe
tc

h

bu
ffe

r

w = 2 w = 3 w = 4 w = 5 w = 1 6

Figure 7 - Block cache replication analysis;
exploration of (w).

(b = 4 , N = 4 0 9 6)

0

2

4

6

8

1 0

1 2

c o m p g c c g o i jp e g l i m 8 8 k p e r l v o r t

b e n c h m a r k

A
vg

. #
 o

f i
ns

t.
in

 fe
tc

h

bu
ffe

r

w = 3 w = 4 w = 5 w = 6 w = 1 6

cache replication of w=4, and a block cache size of N=256
entries are used. The number of block cache entries is inten-
tionally reduced to emphasize the effects of associativity in
smaller block cache sizes. To remove the effects of branch
prediction a perfect predictor is used. Figure 8 shows the hit
rates for the rename table with associativity of 1, 2, 4, 8, and
full. For most of the benchmarks, the hit rate seems to level
off at an associativity of 4 or 8. For our study a rename table
associativity of 4 is used.

5.4 Trace Table

The first design feature associated with the trace table is
the hashing function used in the next trace predictor. As dis-
cussed earlier, exploring the large design space for the best
hashing function is outside the scope of this work. For this
study only one hashing function is considered. The hashing
function is chosen after a brief preliminary analysis. The
next (predicted) trace_id is the concatenation of the last
block_id, the last 3 branch directions, and the block_id
fetched 3 blocks earlier. This hashing function is capturing
a combination of path and branch history. The two remain-
ing design parameters of the trace table are size and associa-
tivity. Figure 9 and Figure 10 measure the hit rate of the

trace table, with block cache parameters: b=6, w=4, and
N=4096. Based on the results in these figures a trace table

Figure 8 - Rename table associativity
analysis. (b=6, w=4, N=256)

0

10

20

30

40

50

60

70

80

90

10 0

com p gcc go ijpeg li m 88 k pe rl vo rt

b e nc h m a rk
H

it
ra

te
 (

%
)

d ir 2 4 8 fu ll

Figure 9 - Associativity analysis of
the trace table. (b=6, w=4, N=4096)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

c o m p g c c g o ijp e g li m 8 8 k p e r l v o rt

b e n c h m a r k

H
it

ra
te

 (
%

)

d ir 2 4 8 fu ll

1063-6897/99/$10.00 (c) 1999 IEEE

202

with 4-way set associativity and a total of 8192 entries is a
good choice.

Figure 11 shows the effectiveness of the resultant next
trace predictor described above. The bars show the percent-
age of cycles at least 1, 2, 3, or 4 blocks are correctly pre-
dicted. The prediction rate starts quite high for the first
block and quickly drops off as more blocks are predicted.
The no prediction part of the stacked bars includes the num-
ber of cycles no prediction is made because there is no space
in the fetch buffer for the predicted block. This fast dimin-
ishing return in accuracy for predicting multiple blocks of a
trace, is due to the compounding effects of incorrect predic-
tions, and shows the importance of keeping the replication
of the block cache low.

6 Block-based Trace Cache Performance

We evaluate the performance of the block-based trace
cache by comparing its IPC to: 1) the 16-wide baseline
PowerPC 604 design (base), 2) the baseline machine with
perfect branch prediction (perfect_branch), and 3) the base-
line machine with perfect fetch (perfect_fetch).
Perfect_branch predicts all conditional branch directions
with 100% accuracy but can only fetch up to the first taken
branch instruction or I-cache line boundary. Perfect_fetch

Figure 10 - Size analysis of the trace
table. (b=6, 4=4, N=4096, assoc=4)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

c o m p g c c g o ijp e g li m 8 8 k p e r l v o rt

b e n c h m a r k

H
it

ra
te

 (
%

)

6 4 2 5 6 1 k 2 k 8 k

Figure 11 - Rate blocks are fetched from the block
cache. (b=6, w=4, N=4096)

0%

20 %

40 %

60 %

80 %

10 0%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N u m b e r o f b lo c k s fe tc h e d

h it m is s no p red

comp gcc ijpeggo m88k perl vortli

can perfectly predict and fetch beyond any number of
branches and cross I-cache line boundaries. It is limited by
the number of free entries in the fetch buffer. Figure 12
compares perfect_fetch (top straight line), perfect_branch
(middle straight line), and base (bottom straight line) to a
block-based trace cache with perfect trace prediction
(perfect_block), and to a block-based trace cache with real-
istic trace prediction (real_block). The block cache size (N)
is varied from 16 to 16384 with a 4-way set-associative re-
name table. The block size is b=6 and the block cache rep-
lication is w=4. Perfect_block predicts the next block
successfully if it resides in the block cache. Real_block uses
the hashing function and the next trace predictor described
in Section 3.1.1, with a trace table size of 8192 at 4-way set-
associative.

Looking at the results in Figure 12, for each benchmark
the IPC curve of perfect_block (higher curve) always ex-
ceeds that of perfect_branch given enough entries in the
block cache (256-512 entries for most benchmarks) and ap-
proaches the performance of perfect_fetch when the num-
ber of entries reaches 16K. This suggests the block cache is
adequately capturing the working set of these benchmarks.
For four of the eight benchmarks, real_block IPC (lower
curve) actually exceeds that of perfect_branch with only a
2K-entry block cache. This suggests that perfectly predict-
ing just the first taken branch is not enough. Being able to
make multiple-branch predictions and fetch from multiple
predicted targets is very beneficial. Go is the most challeng-
ing benchmark. Its perfect_fetch IPC (~12) is quite high,
which suggests shorter data dependency chains than one
with lower IPC. However, the IPC achieved by real_block
is relatively low (~2.6) even with a block cache of 16K en-
tries. This is an indication of the unpredictable branching
behavior of go and the lack of a small number of dominant
traces. On the other hand gcc, with perfect_fetch IPC of ~8,
contains longer data dependency chains, while demonstrat-
ing a more repetitive trace behavior with a real_block IPC
of ~4.0.

The final graph of Figure 12 presents the harmonic mean
of the eight benchmarks. The results indicate that the block-
based trace cache can attain an average IPC of 3.95 for the
benchmark suite with a block cache of only N=4096 entries
and a realistic next trace predictor (real_block). This repre-
sents a 68% improvement over the baseline design and is
within 12% of perfect branch prediction performance. In-
creasing N to 16384 the block-based trace cache outper-
forms the baseline by 75% and comes within 7% of
perfect_branch, achieving 4.11 IPC. This can be increased
to 7.6 IPC if a perfect next trace predictor (perfect_block) is
employed. This suggests there is significant headroom for
better next trace predictor designs.

Figure 12 also explains how the IPC is being lost for the
different regions of the plot. On average this benchmark

1063-6897/99/$10.00 (c) 1999 IEEE

203

h a r m o n i c m e a n

0
2
4
6
8

1 0
1 2
1 4
1 6

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B l o c k c a c h e e n t r i e s (N)

IP
C

p f e t c h p b l o c k r b l o c k p b r a n c h b a s e

h a r m o n i c m e a n

0

2

4

6

8

1 0

1 2

1 4

1 6

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B l o c k c a c h e e n t r i e s (N)

IP
C

data dependencies/instruction window limit

block cache capacity misses

block

taken branch

branch misprediction

& fragmentation

boundary

mispredictions

Figure 12 - IPC as a function of block cache size (N=entries), with harmonic mean for all benchmarks.

c o m p r e s s

0

2

4

6

8

1 0

1 2

1 4

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

g c c

0
1
2
3
4
5
6
7
8
9

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

g o

0

2

4

6

8

1 0

1 2

1 4

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

i j p e g

0

2

4

6

8

1 0

1 2

1 4

1 6

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)
IP

C

l i

0

1

2

3

4

5

6

7

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

m 8 8 k s im

0

2

4

6

8

1 0

1 2

1 4

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

p e r l

0

2

4

6

8

1 0

1 2

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

v o r t e x

0
1
2
3
4
5
6
7
8
9

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 k 2 k 4 k 8 k 1 6 k

B lo c k c a c h e e n t r ie s (N)

IP
C

1063-6897/99/$10.00 (c) 1999 IEEE

204

suite loses 6.4 IPC out of a potential 16 to data dependen-
cies and the limited instruction window. Furthermore,
crossing the taken branch boundary demonstrates signifi-
cant performance improvement over normal branch predic-
tion. At N=16384 perfect next trace prediction (7.6 IPC)
approaches the perfect fetch limit for these benchmarks (9.5
IPC). This implies that with better next trace prediction, the
block-based trace cache can achieve very high IPC perfor-
mance.

7 Comparison to Conventional Trace Cache

This section compares the block-based trace cache to the
conventional trace cache. For this comparison study a con-
ventional trace cache is implemented using the same meth-
odology and simulation model discussed in Section 4. We
attempt to implement the conventional trace cache as de-
scribed in [5][14]. Wherever possible we keep the parame-
ters for the two trace caches identical. The conventional
design uses a direct-mapped trace cache with a trace size of
16 instructions. The trace fetch address is renamed to a
trace_id; the rename table for this conventional trace cache
is 4-way set-associative. Here perfect next trace prediction
is assumed. Perfect partial matching is also implemented.
The fill unit minimizes the replication of instructions in the
trace cache. It also terminates traces on branch instructions
if the branch is near the end of a trace.

The block-based trace cache used in this comparison
study, is the design described in Section 3. The block size
b=6, the block cache replication w=4, and a 4-way set asso-
ciative rename table are used. Perfect trace prediction and
partial matching are also assumed. Hence the results in
Figure 13 represent a limit study of the performance poten-
tial of the two trace cache implementations.

Figure 13 compares the IPC of the block-based trace
cache with the conventional trace cache as a function of the
total number of bytes available for trace storage. The repli-
cation of the block cache is accounted for in the total num-
ber of bytes. Each entry of the conventional trace cache
contains: 16 instructions, the fetch address of the first in-
struction (needed due to trace renaming), and 8 bits of
branch history, totaling 69 bytes. For the block-based de-
sign, each block cache line contains 6 instructions and the
fetch address, yielding 28 bytes per line. With four replicat-
ed copies, the block cache yields 112 bytes per line. The
conventional trace cache is simulated with {256, 512, 1024,
2048, 4096, 8192, 16384, 32768} entries. The block-based
design is simulated with four copies of the block cache each
with {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384} entries.

The results show the block-based trace cache is more ef-
fective at achieving higher IPC with limited trace storage

capacity. As expected, extremely large conventional trace
caches can exceed the performance of the block-based trace
cache. This is due to the greater internal fragmentation of
the blocks in the block-based design. Based on Figure 13, in
the storage capacity range of 1KB to 1000KB, the conven-
tional trace cache can require over an order of magnitude
more storage capacity in order to achieve the same level of
IPC.

As the storage capacity increases, the block-based de-
sign gains IPC at a faster rate than the conventional design.
This is possibly because the block cache warms up faster
than the conventional trace cache. Furthermore, since traces
are constructed out of blocks, the block-based trace cache
can make more efficient use of limited trace cache storage
capacity to achieve higher IPC.

The above comparison does not take into account the
next trace predictor size for the two designs. Our view is
that the domain of next trace prediction is still a wide-open
issue and requires a great deal more research. For this paper
we simply assume that the next trace predictor table of the
conventional design is comparable to the trace table (its
counterpart) in the block-based design.

The issue of cycle time impact should also be raised rel-
ative to the two designs. Both designs perform next trace
prediction in the cycle prior to the fetch cycle. During the
fetch cycle, the conventional design accesses the trace
cache while the block-based design accesses the replicated
block cache and performs final collapse. Since the block
cache is a direct mapped structure of most likely 1K-4K en-
tries and does not require tag match, its latency should not
be problematic. Given the availability of the steering bits
from the trace table (accessed during the trace predict cycle)
the latency of the final collapse is simply the propagation of
data through the MUX (or a shallow MUX tree). Looking at
the data points for the harmonic mean of all the benchmarks
in Figure 13, in order to achieve the same IPC (~6.0) level
of a block-based design with a block cache of 1K entries,
the conventional design will require a trace cache of 32K
entries. Granted, the 1K-entry block cache must be replicat-
ed four times; however all four copies are accessed in par-
allel. The much larger trace cache will incur greater latency
than the block cache. This difference is likely more than the
latency of the final collapse MUX.

It appears that the block-based trace cache is much more
efficient than the conventional design in terms of trace stor-
age capacity and hence is able to achieve higher IPC perfor-
mance for the same storage capacity. Furthermore, to
achieve the same IPC level, the number of entries required
in the block cache is significantly fewer than that of the con-
ventional design. This will allow the block-based design to
scale much better in terms of increasing IPC while minimiz-
ing impact on machine cycle time.

1063-6897/99/$10.00 (c) 1999 IEEE

205

p e r l

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

v o r t e x

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

m 8 8 k s im

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

l i

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

i j p e g

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s
IP

C

b lo c k b a s e d

c o n v e n t io n a l

g o

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

g c c

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

c o m p r e s s

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y te s

IP
C

b lo c k b a s e d

c o n v e n t io n a l

h a r m o n i c m e a n

0

2

4

6

8

1 0

1 2

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

b y t e s

IP
C

b l o c k b a s e d

c o n v e n t i o n a l

Figure 13 - Achievable IPC per trace storage capacity, with harmonic mean for all benchmarks.

1063-6897/99/$10.00 (c) 1999 IEEE

206

8 Conclusion

This paper presents a new block-based trace cache that
can achieve very high instruction fetch bandwidth while
yielding an efficient implementation. Comparing to the
conventional trace cache, the block-based trace cache is
able to achieve much higher IPC when the trace storage ca-
pacity is limited. It can also be an order of magnitude more
efficient than the conventional design in terms of trace stor-
age while achieving the same IPC. Admittedly, with clever
trace selection heuristics the efficiency of the conventional
design can be significantly improved. However, the block-
based trace cache may be better at increasing IPC while
minimizing impact on cycle time.

In this paper, the design space of the block-based trace
cache is explored. The achievable performance of the
block-based trace cache is compared to that of perfect
branch prediction and perfect instruction fetch. For the
SPECint95 benchmarks a 16-wide machine with a realistic
block-based trace cache design (i.e. a realistic next-trace
predictor and a block cache of only 4096 entries) can
achieve an average IPC of 3.95. This represents a 68% im-
provement over a 16-wide baseline design, that is within
12% of perfect branch prediction. With perfect trace predic-
tion, the block-based trace cache can reach an IPC of 7.6,
approaching the perfect fetch IPC limit of 9.5.

The results in Figure 12 indicate the need and motivation
for developing better trace predictor, and block renaming
schemes. Better trace predictors will further improve per-
formance, while better renaming will reduce the block
cache storage requirement for instruction blocks.

 Acknowledgment:
This work benefited from machines donated by Intel to

the Carnegie Mellon Microarchitecture Research Team
(CMµART). Bryan Black was funded by an Intel Ph.D. Fel-
lowship. This work was supported in part by ONR
(N00014-96-1-0347, N00014-96-1-0928).

9 References

[1] B. Black and J. Shen, “Calibration of Microprocessor Perfor-
mance Models.” In COMPUTER, pp. 59-65, May 1998

[2] B. Calder and D. Grunwald, “Next Cache Line and Set Predic-
tion.” In Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pp. 287-296, June 1995

[3] T. Conte, K. Menezes, P. Mills and B. Patel, “Optimization of
Instruction Fetch Mechanisms for High Issue Rates.” In Proceed-
ings of the 22nd International Symposium on Computer Architec-
ture, pp. 333-343, June 1995

[4] K. Diefendorf, and E. Silha, “The PowerPC User Instruction
Set Architecture.” In IEEE Micro, pp. 30-41, 1994

[5] D. Friendly, S. Patel and Y. Patt, “Alternative Fetch and Issue
Policies for the Trace Cache Fetch Mechanism.” In Proceedings of
the 30th International Symposium on Microarchitecture, Decem-
ber 1997

[6] E. Hao, P-Y. Chang, M. Evers and Y. Patt, “Increasing the
Instruction Fetch Rate via Block-structured Instruction Set Archi-
tectures.” In Proceedings of the 30th International Symposium on
Microarchitecture, December 1997

[7] IBM Microelectronics Division, PowerPC 604 RISC Micro-
processor User’s Manual, 1994

[8] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based Next
Trace Prediction.” In Proceedings of the 30th International Sym-
posium on Microarchitecture, December 1997

[9] S. Jourdan, T. Hsing, J. Stark, and Y. Patt, “The Effects of
Mispredicted-Path Execution on Branch Prediction Structures.” In
Proceedings of the International Conference on Parallel Architec-
tures and Compilation Techniques, October 1996

[10] S. McFarling, “Combining Branch Predictors.” Technical
Report TN-36, Digital Equipment Corp., June 1993

[11] S. Melvin, and Y. Patt, “Enhancing Instruction Scheduling
with a Block-Structured ISA.” International Journal on Parallel
Processing, 23(3):221-243, 1995

[12] R. Nair, “Dynamic Path-based Branch Correlation.” In Pro-
ceedings of the 28th International Symposium on Microarchitec-
ture, December 1995

[13] S-T. Pan, K. So, and J. Rahmeh, “Improving the Accuracy of
Dynamic Branch Prediction Using Branch Correlation.” In Pro-
ceedings of the 5th International Conference on Architecture Sup-
port for Programming Languages and Operating Systems, pp. 76-
84, October 1992

[14] E. Rotenberg, S. Bennett and J. E. Smith, “Trace Cache: A
Low Latency Approach to High Bandwidth Instruction Fetching,”
In Proceedings of the 29th International Symposium on Microar-
chitecture, pp. 24-34, December 1996

[15] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
Processors.” In Proceedings of the 30th International Symposium
on Microarchitecture, December 1997

[16] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, “Multiple-
Block Ahead Branch Predictors.” In Proceedings of the Seventh
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 116-127, October
1996

[17] S. Song, M. Denman, and J. Chang, “The PowerPC 604 RISC
Microprocessor.” In IEEE Micro, pp. 8-17, 1994

[18] S. Wallace and N. Bagherzadeh, “Multiple Branch and Block
Prediction.” In Proceedings of the Third International Symposium
on High Performance Computer Architecture, February 1997

[19] T-Y. Yeh, D. Marr, and Y. Patt, “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch Address
Cache.” In Proceedings of the 7th ACM International Conference
on Supercomputing, pp. 67-76, July 1993.

1063-6897/99/$10.00 (c) 1999 IEEE

207

