The Block-based Trace Cache

Bryan Black, Bohuslav Rychlik, and John Paul Shen
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
{black,bohuslav,shen}@ece.cmu.edu

Abstract 1.1 High Bandwidth Instruction Fetching

The trace cache is a recently proposed solution f A critical challen
S o . ; : ge to achieving high IPC is supplying
achieving high instruction fetch bandwidth by buffering ar]enough useful instructions for execution. High-bandwidth

reusing dynamic instruction tracc_as. This wor_k pre‘gemsinstruction fetching must address several problems: First,
new block-based trace cache implementation that c

hi higher IPC perf ith fficient st ‘the machine must perform multiple branch predictions in
achieve higner periormance with more efficient s 0‘every cycle. Second, the fetch engine must be able to fetch
age of traces. Instead of explicitly storing instructions of from multiple non-contiguous addresses in every cycle,

traceh, pomltlerstto blothle coan?tltltJ)Innglj(abtracg ?re Store<:]mreaching beyond the taken branch. Third, misaligned in-
much smaller trace table. 1he block-based lrace cache lstructions, from the multiple fetch groups, must be col-

names fetch a(_jdresses at the basic block level and Stclapsed into the fetch buffer.
aligned blocks in a block cache. Traces are constructed
accessing the replicated block cache using block pointe
from the trace table. Performance potential of the blocl
based trace cache is quantified and compared with perfe
branch prediction and perfect fetch schemes. Comparing
the conventional trace cache, the block-based design ¢
achieve higher IPC, with less impact on cycle time.

1.2 Previous Related Work

The three challenges in high-bandwidth instruction
fetching: multiple-branch prediction, multiple fetch groups,
and instruction alignment and collapsing, have been ad-
dressed in previous studies. These previous works fall into

Results: Using the SPECIint95 benchmarks, a 16-widtwo general categories, those that use an enhanced instruc-
realistic design of a block-based trace cache can improtion cache [3][16][18][19] and those that use a trace cache
performance 75% over a baseline design and to within 7[5][8][14][15]. The fundamental difference between them
of a baseline design with perfect branch prediction. Witis where in the pipeline instructions are aligned and col-
idealized trace prediction, it is shown the block-based tradapsed. Both perform multiple-branch prediction the cycle
cache with an 1K-entry block cache achieves the same pbefore instruction fetch, and update the predictor at comple-
formance of the conventional trace cache with 32K entrietion. Techniques that use an enhanced instruction cache

support fetch of non-contiguous blocks with a multi-ported,

1 Introduction multi-banked, or multiple copies of the instruction cache.
This leads to multiple fetch groups that must be aligned and
Most technologists anticipate the continuation Ocollapsed at fetc_h time, which can increase the fetch Ia'_[en-
cy. The conventional trace cache performs all instruction

Moore’s law of increasing chip density and complexity fo f t and collapsi t letion ti At leti
another 10 years. However, existing superscalar techniqla_‘ 'ghment and coflapsing at competion ime. At compietion
time a fill unit constructs traces of instructions to be stored

for harvesting instruction-level parallelism (ILP) are en. the t he Th tional t h timi
countering strong diminishing returns. In order to jus’[if"In € lrace cache. The conventional trace cache optimizes

building wider superscalar processors, new microarchitéthe fetch Iat_en_cy by Sh_'ftmg the complexity of_multlpl_e-
branch prediction, multiple fetch groups, and instruction

ture techniques capable of achieving significantly highe i t and collapsing to th letion ti
IPC (average instructions executed per cycle) for ording?'gNMent and cotiapsing to the compietion time. .
; This work proposes a block-based trace cache that is able
programs are essential. _)) L
to achieve higher IPC performance while requiring less
196
1063-6897/99/$10.00 (c) 1999 IEEE

trace storage capacity. It also facilitates more flexible trathat of perfect branch prediction and approaching that of
prediction schemes; for example, partial matching [5] ceperfect fetch if an idealized trace predictor is used.
be easily and naturally implemented. Furthermore, it has tSection 7 compares the block-based trace cache to the con-
potential of enabling clean implementation of other dynanventional trace cache implementation, and demonstrates a
ic optimizations, such as multi-path execution, dynammuch higher IPC when trace storage capacity is limited.
predication and dynamic multithreading.

The block-based trace cache employs a number of nop Fetch Address Renaming
features. Instead of explicitly storing instructions of a trac
pointers to blocks constituting a trace are stored in a mu
smaller trace table. The block-based trace cache renar
fetch addresses at the basic block level and stores aligi
blocks in a block cache. Traces are constructed by access
the replicated block cache using block pointers from tt
trace table.

Figure 1 and Figure 2 illustrate the basic difference b
tween the conventional and the block-based trace cacl
Both designs perform next trace prediction in the cycle pi
or to the fetch cycle. The conventional design employs a ¢

phisticated path-based next trace predictor [8] to produ Traditi.onally the effective address of an instructiqn is
the next trace identifier which is used in the fetch cycle Used for its fetching. Such addresses contain many bits. An

access the trace cache. Similarly, the block-based trdnstruction cache big enough to support the full decoding of
cache makes the next trace prediction by accessing the tthese bits is impractical and not necessary. Typically a sub-
table which outputs the identifiers of the blocks in the préet of the fetch address bits are used to index into the in-
dicted trace. These block identifiers are used in the fetch Struction cache which results in potential aliasing. The
cle to access the replicated block cache. Section 3.1.3 valiasing problem is solved by storing a tag in each cache line
show the accessing of the replicated block cache does @nd using tag compare to ensure the correct group of in-

increase the fetch latency of the block-based design. Structions is being fetched.
Fetch addresses can be renamed or translated to use few-

er bits. If a unique renamed pointer can be assigned to each

The implementation of the block-based trace cache is
based on the concept feftch address renaminghis sec-
tion presents the motivation for renaming fetch addresses,
suggests possible options for the renamed entity, and argues
that the basic block is a convenient and effective entity for
renaming.

2.1 Moativation for Renaming

Next | ace id |_|—|_|_|—|_1+_|_|—[TTT ° fetch address then_ aliasing can't occur and tag compare is
Trace = 5 not necessary. This can reduce the latency of instruction
Pred. Trace Cache 5 fetch. Fetch address renaming requires a table to translate
. : instruction fetch addresses to their renamed pointers. Such
a rename table, maintained at completion time, effectively
‘%{ Fetch Buffer | moves the complexity and latency of associative search and
Execution tag compare from instruction fetch time to completion time.
Since the rename table is of finite size, there can be capacity
Fill Unit misses in the rename table. A replacement policy is needed
for the rename table, and an efficient mapping of fetch ad-
3 dresses to the renamed pointers is crucial.

Completion

‘ 2.2 Possible Renamed Entities
Figure 1 - The conventional trace cache.

.])) Some form of fetch address renaming is always useful,

This paper starts with a discussion about fetch addréyecayse it removes the tag compare of cache access during
renaming in Section 2, then uses Section 3 to detail the ijnstryction fetching. The key question is what should be the
plementation and design trade-offs of the block-based trégngjty for renaming. There are at least three possibilities.
cqche. Section 4 di_scusses the simulatio'n methodology Fetch address renaming can be done at the level of in-
this work, and Section 5 explores the design space quantgiyyction cache lines, as explored by [2][18]. Instead of us-
tively. Performance potential of the block-based trace cacing the fetch address, the instruction cache line index is used
is quantified and compared with that of perfect branch preoy fetching. This reduces the latency of instruction cache
diction and perfect fetch schemes in Section 6. It is shov,ccess, with no fragmentation since the entire cache line is
that the block-based trace cache achieves IPC higher tl.anamed as an entity. This renaming scheme assumes the

197
1063-6897/99/$10.00 (c) 1999 IEEE

traditional instruction cache, which may contain non |b id0| b id1| b id2| b ids‘

aligned basic blocks. This will necessitate trace constr. —— < — —

tion at fetch time and a collapsing buffer [3] when multipl

non-contiguous blocks are fetched. @
It is also possible to perform renaming at the level ¢

traces as suggested by a recent paper on next trace pre Next

tion [8]. Such renaming can reduce the latency of the tra trace_id |

cache fetch. The conventional trace cache does not reqt

trace construction at fetch time [5][8][14][15]. However. } L

the trace is not a fundamental unit of operation in terms
program semantics. The definition of a trace can vary a I

| branch history

tag | index | block_ids

¢ Trace Table

[T 1
can be somewhat arbitrary depending on the trace constr v v v
tion heuristics used in the fill unit. This makes it more dif w pred. block_ids
ficult to implement some of the advanced dynami it '0 the block cache
ﬁptlmlz_atlons and necessitates very good trace select Figure 3 - Logical diagram of the next
euristics. trace predictor and the trace table.
blockids v v v ence is the storage of traces. The conventional design shifts
Trace Block Cache 2 most of the complexity and latency of instruction fetching
Table | pre-collapse 5}
8 to completion time using a fill unit. The block-based design
trace_id - = brings back a portion of that complexity to improve the ef-
- Final Collapse - 2o
b v ¥ ficiency of trace storage and the flexibility of trace con-
hig't. Fetch Buffer | struction. The block-based trace cache has four major
= " components: thérace table the block cachetherename
table and thefill unit. Instead of storing the instructions
Rename Fill from multiple basic blocks in a contiguous trace, the block-

Table Unit based design stores aligned basic blocks separately in the
block cache. The trace table stores the renamed pointers
(called block_ids) to these basic blocks for trace construc-
‘ tion. The block-based trace cache shifts the potential static-
Figure 2 - The block-based trace cache. to-dynamic explosion of the_ number of traces to the much
smaller trace table. One disadvantage of the block-based
This work proposes renaming at the basic block levetrace cache is the addition of the final collapse MUX in the
because the basic block is a logical unit of program execfetch stage. It is shown later that the final collapse MUX if
tion [6][11]. Similar to other forms of fetch address renamimplemented carefully will add little fetch latency.
ing, basic block renaming reduces the latency of access The next three subsections present details of the trace ta-
the cache during instruction fetch. Renaming at the level ple, the block cache, and the rename table. Since the fill unit
basic blocks can facilitate dynamic optimizations such icontrols the update of each of these three components, the
partial match of traces, dynamic predication, multi-path einteraction between the fill unit and each of the components
ecution and dynamic multithreading. It can also ease the ijs discussed in each subsection.
plementation complexity of register renaming and th
reorder buffer. However, renaming at the basic block lev3 1 Trace Table
can potentially introduce more fragmentation and replici
tion. It also requires trace construction and instruction cc
lapsing at fetch time. These problems are addressed
Section 5.

Completion

The trace table can be viewed as storing a short-hand
representation of traces since each of its entries contains the
block-ids of a trace. The trace table can also be viewed as
part of the next trace predictor. The next trace predictor uses
3 Block-based Trace Cache block-id execution history and branch history bits to gener-

ate the predicted trace_id, which is used to access the trace

The machine organization of the block-based trace cactable. The entry of the trace table indexed by the predicted
is similar to that of the conventional trace cachtrace_id stores the block ids or pointers to the blocks con-
[5][8][14][15]. Both support the same superscalar execistituting the predicted trace; see Figure 3. A trace table line
tion core, shown in Figure 1 and Figure 2. The key diffeconsists of a valid bit, a tag, and thélock_ids of the pre-

198
1063-6897/99/$10.00 (c) 1999 IEEE

dicted trace. These block_ids are used to access the replirenaming, future implementations can make more efficient
ed block cache during the fetch cycle. The trace table aluse of the replicated block cache.) Figure 4 illustrates the
provides pre-generated steering bits for the final collapreplicated block cache and shows the details of one of the
MUX (Section 3.1.3). block cache copies. Real basic blocks from a program have
varying sizes. This work assumes that the block cache has
3.1.1 Nexttrace prediction fixed-size entries. A logical basic block that exceeds this
The next trace_id is generated using a hashing functisize is partitioned into multiple physical blocks. The block
to reduce branch history bits and previously executccache stores thd most recently used blocks. Each line of
block_ids to the predicted trace_id. The input to the hashithe block cache stores up lidnstructions, along with the
function can be based solely on the last block_idhabis fetch address of the first instruction. The block cache is a di-
of global branch history (gshare [10]), or a combination ect mapped cache with no tag compare needed at fetch
previous block_ids and branch history bits (next trace prtime. Replacement is controlled by the fill unit and the re-
dictor of [8]). Since the fetch unit can track block_id historname table (Section 3.3). The most appropriate block size
and branch history, potentially speculative previou(b) and replication county) of the block cache are exam-
block_ids and branch history bits can be used by the hained in Section 5.
ing function. As shown in [9], speculative branch histor
can be corrupted due to mispredictions; a simple recove
and cleanup mechanism is necessary. The associativity .
size of the trace table are explored in Section 5. Howev \
detailed exploration of the huge design space for the ne block_id MeEalir Ti2 ib

trace predictor is left for future work. (n-bit)
—>

Instructions from

N=2"" the block fill unit
word lines l

copy-1

[TT11

’ decoder

direct mapped cache
1 1 L |

3.1.2 Trace table read.

In the cycle prior to the fetch cycle, block_id history ani
branch history are hashed to produce the predicted n
trace_id which is used to index into the trace table. The ¢
quence of block_ids retrieved from the trace table repr v
sents the predicted trace. The predicted sequence Final Collapse
block_ids are then used, in the fetch cycle, to access - 16{
block cache to produce the predicted trace of instructior | Fetch Buffer |

The trace table and the block cache are accessed in two ¢

™

b inst

[+ copy-2

>
[oX
o
(&S]
v

[+ copy-4

arate cycles in a pipelined fashion. A miss in the trace tat
access invokes access from the instruction cache.

3.1.3 Trace table fill
The trace table is filled at completion time as blocks ¢

Figure 4 - Logical diagram of the replicated
block cache, with final collapse MUX.

3.2.1 Block cache read

The block cache is read at fetch time. The trace table

instructions are completed. As the fill unit constructs a tra(Section 3.1) providew block_ids to index ther copies of
of executed blocks it writes back the block_ids to the trathe block cache. The block cache copies are accessed in par-
table. Only one writeback to the trace table is supported fallel each providing up tb instructions. Due to renaming
cycle. The fill unit also performs pre-collapsing by generaof the fetch address of each block, a block_id uniquely iden-
ing a set of steering bits based on the actual number of tifies a particular block. Consequently, no aliasing can oc-
structions in each block of the trace. These steering bits icur and no tag compare is needed even though the block
stored in the trace table along with the block_ids and ecache is direct mapped. A final collapse MUX, controlled
used at fetch time to control the final collapse MUX. Thiby steering bits retrieved from the trace table, is used to con-
reduces the collapsing latency incurred at fetch time to tistruct the predicted trace of instructions. After the instruc-
data propagation delay of a MUX or a shallow MUX tree.tions are loaded into the fetch buffer, instruction execution
is identical to the standard out-of-order machine.

The fetch address (FA) of each block that is stored in a
block cache line is used during branch execution for trace

The block cache stores aligned instruction blocks. TPrediction validation and misprediction recovery. Since the
support multiple simultaneous accesses, the block cachd€tch address of each block is stored in the block cache,
replicated. In the current implementation all copies are wriMisprediction can be determined at the block level. If the
ten with the same content. (Through more complex blo®Predicted trace is only partly correct, partial matching [5] is

3.2 Block Cache

199
1063-6897/99/$10.00 (c) 1999 IEEE

easily implemented. Once a misprediction is detected, cis recorded in the fetch history and used in the next cycle to
rect fetching from the instruction cache can be performedaccess the block cache. The fetch unit maintains a specula-

the next cycle. tive history of block_ids fetched and the associated branch
history bits, which are hashed to perform next trace predic-
3.2.2 Block cache fill tion.

The block cache is filled at completion time by the fil To reduce rename table bandwidth requirements we lim-
unit. The fill unit constructs physical blocks from logicalit the rename table to one read access per cycle. Hence, dur-
basic blocks and inserts them into the block cache. Bloing an instruction cache access, the fetch unit is only
construction is accomplished by a fill buffer. The fill buffelallowed to fetch at most one basic block. To facilitate this a
captures instructions in order as they complete. The endsingle predecode bit in the instruction cache can be used to
a block occurs when a branch or other control flow instrumark each instruction as branch or non-branch.
tion is encountered or when the physical block smadq
reached. Constructing physical blocks from logical bas
blocks produces fragmentation when the logical basic blo
size is not an integral multiple of the physical block siz¢
This internal fragmentation can cause a performance lo v tag block_id
and is studied in Section 5.1.

Once a block boundary is detected, the fill unit renam >
the block with a block_id and writes it to the block cache i

Block fetch address
Tag | Index |

O|A[N|O

the entry indexed by that block_id. To prevent wasteful i)

sertion and replacement in the block cache, the fill unit d N=8 entries

tects already cached blocks and does not attempt to ins N

them into the block cache a second time. It is possible tt

during block construction a completing block may contai

instructions that belong to an already renamed block; the Block fetch

unit will only rename the portion of the completing block address

that has not been seen before. renamed to
5 a block_id

~N|o| W=

3.3 Rename Table

The rename table implements the fetch address renam Figure 5 - Example implementation of the rename
of basic blocks (Section 2.2). The rename table is a set- [@Ple (8 entries, 2-way set associative).
sociative mapping of instruction fetch addresses - i

3.3.2 Rename table fill

block_ids. Figure 5 illustrates an eight entry 2-way set ass L . .
- ¢ d y y At completion time the fill unit updates the rename table.

ciative rename table. Each entry corresponds to a partict) X :

block_id number. The index portion of the fetch addresWhen a new block of instructions is constructed, the rename
and the LRU replacement policy determine which entrytable is written with the fetch address of the first instruction
newly renamed fetch address will be mapped to Tin the block. The renamed block_id is returned and used to

block_id of the newly allocated entry is returned as the rupdate the block cache entry. To limit the number of ports
named value required in the rename table, only one block of instructions

The rename table may use any associativity schent@n be renamed in a single cycle. This does not limit com-
However the number of entrieNYis equal to the number pletion bandwidth to one block, because blocks that are al-
of entries of the block cache because each entry of the Jready renamed are not written to the rename table again, and

associative rename table renames one entry of the bl(therefore do not require rename.table access at completion
cache. time. When an existing block_id is renamed, traces already

stored in the trace table that include this block_id become
incorrect. Since it is difficult to search the trace table to in-
validate these traces, stale block_ids are detected during ex-
ecution and treated as mispredictions; see Section 3.2.1.

3.3.1 Rename table read

The rename table is used at fetch time to detect if the
quested fetch address corresponds to a block already stc
in the block cache. Concurrent with the instruction cact
access, the fetch unit accesses the rename table using
fetch address. If the rename table access returns that the
rent fetch group is already renamed, the returned block

200
1063-6897/99/$10.00 (c) 1999 IEEE

4 Experimental Methodology 5 Design Space Exploration

All the experimental data reported in this paper are ge This section explores the design space of the block-
erated by a full-functional performance simulator that ibased trace cache. The block sizg block cache replica-
built based on a validated PowerPC 604 simulation moction (w), block cache entry count or siZ¢)(rename table
[1], which is based on published reports [4][7][17] and a@ssociativity, and trace table size and associativity are ex-
curately models all key features of the microarchitecture.plored. We attempt to systematically narrow the design

space search via a series of experiments and analyses.
4.1 Machine Model
5.1 Block Cache Fragmentationlf)

To focus the current study on instruction fetching and 1
highlight the impact of instruction availability on machine Fragmentation of the instruction fetch group is an issue
performance, the PowerPC 604 microarchitecture is efor all trace cache implementations. Since the block-based
tended to remove resource constraints, and widened to trace cache can incur fragmentation at the block level, there
lize more instruction bandwidth. is potential for greater trace-level fragmentation as com-

A centralized reservation station with 512 entries arpared to a conventional trace cache. The optimal block size
unlimited out-of-order issue bandwidth is assumed. This ¢(b) for the block cache should minimize the total fragmen-
fectively limits the instruction window to 512 instructionstation. To study the fragmentation for different block sizes,
An unlimited number of functional units is also assumethe block-based trace cache is simulated with realistic
The instruction fetch, dispatch, and completion bandwidbranch prediction and a fixed number of block cache en-
is increased to 16 instructions per cycle. The memory hietries, while varying the block sizé)(and block cache rep-
archy is fully modeled with a perfect main memory, a 32Kllication). The maximum potential fetch bandwidth is
Level-1 I-cache, a 32KB Level-1 D-cache, and a 256Kequal tob x w and is fixed at 16 instructions (except b6
unified Level-2 cache. Access latencies are 1, 3, and 100 andw=3). Fragmentation is measured in terms of the utili-
cles for the L1, L2 caches and the main memory, respectization of the fetch buffer which is related to the actual fetch
ly. On-chip implementation of the L2 is assumed. Abandwidth achieved. Figure 6 shows the effects of varying
unlimited load miss queue and an unlimited store quethe block sizelf) on the fetch buffer utilization.
handle all load and store execution. The store queue p For bothb=16 andb=8 there is significant drop-off of
forms data forwarding, and load/store instructions exectfetch buffer utilization for some benchmarks indicating sig-
out-of-order if no address aliasing is detected. nificant fragmentation. For two of the benchmabks is

All register and memory data dependencies are enforcithe best choiceh=4 is best for one benchmark aloeb is
Instruction execution latencies can be found in [7], and abest for two. The key observation is that the fetch buffer uti-
curately reflect the PowerPC 604. The potential bottleneclizations forb=2, 4, and 6 are all quite close for most of the
of this machine are the data flow limit due to true data dbenchmarksb=2 is not desirable due to high replication

pendencies and instruction availability. (i.e.w=8). Based on harmonic medms6 is the best choice
with b=4 a close second. Both remain as potential candi-
4.2 Benchmarks dates for optimal.

10

The benchmark set used is the SPECInt95 suite, co
piled by gcc 2.7.2. To reduce simulation time, we use smi
input files and limit run length to 200 million instructions
for each benchmark, totaling 1.6 billion instructions. Al
user library calls are modeled, though system calls are n

02,8 W4,4 06,3 8,2 MWM16,1

Avg. # of inst. in fetch buffer
o = N w S (5] o ~ o« ©

comp gcc go ijpeg li m88k perl vort h-m

Block size (b), Block fetch width (w)

1The authors are not proposing this as a realistic machine design, but a Fi 6 - Block he tati lvsi
chine model that focuses the performance bottleneck on instruction fetc Igure © - Block cache iragmentation analysis.

while enforcing register and memory data dependencies and using realic BlOCK size vs. block cache replication trade-
trace prediction. off. (N=4096)

201
1063-6897/99/$10.00 (c) 1999 IEEE

5.2 Block Cache Replicationw)

cache replication ofi=4, and a block cache size d£256
entries are used. The number of block cache entries is inten-

By increasing the number of blocks fetched in a Cyc|.tionally reduced to emphasize the effects of associativity in

the size of the total fetch window can be greater than tsmaller block cache sizes. To remove the effects of branch
prediction a perfect predictor is used. Figure 8 shows the hit
rates for the rename table with associativity of 1, 2, 4, 8, and
full. For most of the benchmarks, the hit rate seems to level
off at an associativity of 4 or 8. For our study a rename table
associativity of 4 is used.

100 —
90
80
70
60
50
40
30
20
10

0

size of the fetch buffer to compensate for the fragmentati
in each block. Figure 4 illustrates the usevafopies of the
block cache to increase the total available instructior
wherew can be greater than b6/The final collapsing
MUX removes empty entries within the individual blocks
and yields a total fetch group that fits into the fetch buffer

Realistic branch prediction is used in these simulatiol
to factor in the effect of decreasing trace prediction accut
cy asw increases. A block cache sizeNof4096 entries is
used for each copy of the block cache. In Figure, the
number of block cache copies, is varied. Notice that tt
fetch buffer utilization does not necessarily increase for
larger number of block cache copies. This is due to the i
creasing misprediction rate for predicting longer sequenc
of blocks; see Section 5.4. For some benchmarks is
suffering significant misprediction penalty. Figure 7 show
that for most benchmarks=5 andwv=6 are the best choices
whenb=4. Forb=6, the best choices ave=4 andw=5. In
both cases, the two choices are very close. In an effort
minimize replication\), for the remainder of our study we
select a block size &6 andw=4 copies of the block cache
as our optimal replicated block cache organization.

(b=4,N=4096)
12

=
L 10
9]
2
£ 8
;O
s
25 o
— o
kS 4
H*
g’ 2 Dw=3 Mw=4 Ow=5 COw=6 Bw=16
< 0
comp gcc go ijpeg li m88k perl vort
benchmark
(b=6, N=4096)
12

=
2 10
[4)
2
£ 8
;@
i
7]
g5 °

o
kS 4
#
&5 2
>
< 0

comp ijpeg li m88k perl vort

benchmark

go

Figure 7 - Block cache replication analysis;
exploration of (w).

5.3 Rename Table Associativity

The number of entries in the rename tgblgis equal to

Hit rate (%)

Odir W2 O4 CO8 mfull

comp gcc ijpeg li m88k perl vort

benchmark

go

Figure 8 - Rename table associativity
analysis. (b=6, w=4, N=256)

5.4 Trace Table

The first design feature associated with the trace table is
the hashing function used in the next trace predictor. As dis-
cussed earlier, exploring the large design space for the best
hashing function is outside the scope of this work. For this
study only one hashing function is considered. The hashing
function is chosen after a brief preliminary analysis. The
next (predicted) trace_id is the concatenation of the last
block_id, the last 3 branch directions, and the block_id
fetched 3 blocks earlier. This hashing function is capturing
a combination of path and branch history. The two remain-
ing design parameters of the trace table are size and associa-
tivity. Figure 9 and Figure 10 measure the hit rate of the

100
90
80
70
60
50
40
30
20
10

0

Hit rate (%)

m88k perl vort

ijpeg
benchmark

Figure 9 - Associativity analysis of
the trace table. (b=6, w=4, N=4096)

trace table, with block cache parametdrs6, w=4, and

the number of entries in the block cache, which is explorN=4096. Based on the results in these figures a trace table

in Section 6. For this analysis a block sizebe6, a block

202
1063-6897/99/$10.00 (c) 1999 IEEE

with 4-way set associativity and a total of 8192 entries iscan perfectly predict and fetch beyond any number of
good choice. branches and cross I-cache line boundaries. It is limited by
the number of free entries in the fetch buffer. Figure 12
compares perfect_fetch (top straight line), perfect_branch
— (middle straight line), and base (bottom straight line) to a
| block-based trace cache with perfect trace prediction
l- (perfect_block), and to a block-based trace cache with real-
|

|

l

100
90
80

%o]
5 [
50 .

]
40

| |
30
20 | | | |
. i
| |

Hit rate (%)

istic trace prediction (real_block). The block cache dWe (

is varied from 16 to 16384 with a 4-way set-associative re-

° W TN Rl | name table. The block sizelis6 and the block cache rep-
comp gece go ijpeg i m88k perl vort lication is w=4. Perfect_block predicts the next block

benchmark successfully if it resides in the block cache. Real_block uses

the hashing function and the next trace predictor described

in Section 3.1.1, with a trace table size of 8192 at 4-way set-

associative.

Looking at the results in Figure 12, for each benchmark
the IPC curve of perfect_block (higher curve) always ex-
ceeds that of perfect_branch given enough entries in the
block cache (256-512 entries for most benchmarks) and ap-
proaches the performance of perfect_fetch when the num-
ber of entries reaches 16K. This suggests the block cache is
ber of cycles no prediction is made because there is no spadeguately capturing the working set of these benchmarks.
in the fetch buffer for the predicted block. This fast dimin™©" four of the eight benchmarks, real_block IPC (lower
ishing return in accuracy for predicting multiple blocks of CUTVe) actually exceeds that of perfect_branch with only a
trace, is due to the compounding effects of incorrect pred2K entry block cache. This suggests that perfectly predict-

tions, and shows the importance of keeping the replicatl'”g just the first taken branch is not enough. Being able to
of the block cache low. make multiple-branch predictions and fetch from multiple

predicted targets is very benefici@lois the most challeng-

Figure 10 - Size analysis of the trace
table. (b=6, 4=4, N=4096, assoc=4)

Figure 11 shows the effectiveness of the resultant ne
trace predictor described above. The bars show the perce
age of cycles at least 1, 2, 3, or 4 blocks are correctly p
dicted. The prediction rate starts quite high for the fir
block and quickly drops off as more blocks are predicte
The no prediction part of the stacked bars includes the nu

100% i ing benchmark. Its perfect_fetch IPC (~12) is quite high,

. Wlii7”77”7”777”7[[7 N which suggests shorter data dependency chains than one
so I I with lower IPC. However, the IPC achieved by real_block
60% |I|| is relatively low (~2.6) even with a block cache of 16K en-

I tries. This is an indication of the unpredictable branching
40% |||| behavior ofgo and the lack of a small number of dominant
2o | B hit W iss Do pred] traces. On the other hagdc,with perfect_fetch IPC of ~8,
comp |gcel fgol ipeg [r'n"g'gu "erl] [vort contains longer data dependency chains, while demonstrat-
oo ULILILIL HALWO NWEN W00E NEHN SIS DL L, ing a more repetitive trace behavior with a real_block IPC

1234 1234 1234 1234 12314 12314 1234 1234
of ~4.0

Number of blocks fetched . . .
umber ot blocks fetehe The final graph of Figure 12 presents the harmonic mean

Figure 11 - Rate blocks are fetched from the block of the eight benchmarks. The results indicate that the block-
cache. (b=6, w=4, N=4096) based trace cache can attain an average IPC of 3.95 for the
benchmark suite with a block cache of oNky4096 entries

6 Block-based Trace Cache Performance and a realistic next trace predictor (real_block). This repre-
sents a 68% improvement over the baseline design and is
within 12% of perfect branch prediction performance. In-
creasingN to 16384 the block-based trace cache outper-
forms the baseline by 75% and comes within 7% of
perfect_branch, achieving 4.11 IPC. This can be increased
to 7.6 IPC if a perfect next trace predictor (perfect_block) is
employed. This suggests there is significant headroom for
better next trace predictor designs.

Figure 12 also explains how the IPC is being lost for the
different regions of the plot. On average this benchmark

We evaluate the performance of the block-based tra
cache by comparing its IPC to: 1) the 16-wide baselit
PowerPC 604 design (base), 2) the baseline machine w
perfect branch prediction (perfect_branch), and 3) the ba:
line machine with perfect fetch (perfect_fetch)
Perfect_branch predicts all conditional branch directior
with 100% accuracy but can only fetch up to the first take
branch instruction or I-cache line boundary. Perfect_fet

203
1063-6897/99/$10.00 (c) 1999 IEEE

compress gcc
14 9
L2 B 8 b
,,, 7+
10 + 6 |
o 8 r O 5 |
=5 6 b] a4
4 + 3
2
2 e . _ 1L
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
16 32 64 128 256 512 1k 2k 4k 8k 16k 16 32 64 128 256 512 1k 2k 4k 8k 16k
Block cache entries (N) Block cache entries (N)
14 go 16 ijpeg
12 . 14
10 - 12
10
@) 8 O
a a 8
= 6 I =
6
4t 4
2k > L
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ . . .
16 32 64 128 256 512 1k 2k 4k 8k 16k 16 32 64 128 256 512 1k 2k 4k 8k 16k
Block cache entries (N) Block cache entries (N)
li m 88ksim
7 14
6 T T T T T T T T T LT T T oo T oI T T] 12 - TS TT TS Tt T T ST TTTTTT Tt
5 | 10 F e
1 T e EE— (@) 8
& gp) £ 6|
2 r 4
1+ 2t
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
16 32 64 128 256 512 1k 2k 4k 8k 16k 16 32 64 128 256 512 1k 2k 4k 8k 16k
Block cache entries (N) Block cache entries (N)
perl vortex
12 9
| T ettt
10 2 L
8 6
o L (SIS
a ¢ z
7 3 [
Loz _ 2+
2 1L
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
16 32 64 128 256 512 1k 2k 4k 8k 16k 16 32 64 128 256 512 1k 2k 4k 8k 16k
Block cache entries (N) Block cache entries (N)
harmonic mean
16
14 S . , - block
12 L data dependencies/instruction window limi . .
mispredictions
10 e A
8 8 I block cache capacity misses /
6 I & fragmentation i
4 FTT = B
2 - taken branch
0 ‘ ‘ ‘ boundary
16 32 6 4 128 256 512 1k 2 k 4 k 8 k 16k
Block cache entries (N) branch misprediction
--—pfetch - pblock —rblock --—-pbranch ----base

Figure 12 - IPC as a function of block cache size (N=entries), with harmonic mean for all benchmarks.

204
1063-6897/99/$10.00 (c) 1999 IEEE

suite loses 6.4 IPC out of a potential 16 to data dependccapacity. As expected, extremely large conventional trace
cies and the limited instruction window. Furthermorecaches can exceed the performance of the block-based trace
crossing the taken branch boundary demonstrates signcache. This is due to the greater internal fragmentation of
cant performance improvement over normal branch predthe blocks in the block-based design. Based on Figure 13, in
tion. At N=16384 perfect next trace prediction (7.6 IPCthe storage capacity range of 1KB to 1000KB, the conven-
approaches the perfect fetch limit for these benchmarks (tional trace cache can require over an order of magnitude
IPC). This implies that with better next trace prediction, trmore storage capacity in order to achieve the same level of
block-based trace cache can achieve very high IPC perfIPC.
mance. As the storage capacity increases, the block-based de-
sign gains IPC at a faster rate than the conventional design.

7 Comparison to Conventional Trace Cache This is possibly because the block cache warms up faster
than the conventional trace cache. Furthermore, since traces
are constructed out of blocks, the block-based trace cache
can make more efficient use of limited trace cache storage
capacity to achieve higher IPC.

The above comparison does not take into account the

This section compares the block-based trace cache to
conventional trace cache. For this comparison study a cc
ventional trace cache is implemented using the same me

odology and simulation model discussed in Section 4. \ : : . S
9y next trace predictor size for the two designs. Our view is

attempt to implement the conventional trace cache as (th t the domain of next ir rediction is still a wid n
scribed in [5][14]. Wherever possible we keep the param. atthe domain ot hext trace prediction 1s st a wide-ope

ters for the two trace caches identical. The conventior:zsuein‘r’:nld reqwr::]s f;lhgrte tar;[dﬁal(:nt?re resre?j:c?.rlztoahls fp;per
design uses a direct-mapped trace cache with a trace siz €s E’.y afsdu € thatthe ne b?CE; ptﬁ io at eblo .te
16 instructions. The trace fetch address is renamed COnventonal design 1s comparable 1o the trace tabie (its

trace_id; the rename table for this conventional trace Caccounterpart) in the block-based design.

is 4-way set-associative. Here perfect next trace predicti ti\j—hﬁ Iiiuet\(/)vf ngei tlr:ne é;mfr? (;t S?orl]“d alffo r?ne La')s(f?r rel-
is assumed. Perfect partial matching is also implementea € to Ihe two designs. bo €signs perio € ace

The fill unit minimizes the replication of instructions in the?re?]'cuonl n t?]e cycle prior tOI the fgtch cycle. Durltr:g the
trace cache. It also terminates traces on branch instructis ete cycie, the conventiona d§5|gn accesses the 'trace
if the branch is near the end of a trace. cache while the bIock-based. design accesses the replicated
The block-based trace cache used in this comparisbIOCk 9ache_ and performs final collapse. Smce the block
study, is the design described in Section 3. The block sic".:IChe Is a direct mappe.d structure of r_nost likely 1K-4K en-
b=6, the block cache replicatiow4, and a 4-way set a:sso—trles and doeg not_requwe tag r_natgh, its latency should.not
ciative rename table are used. Perfect trace prediction afbe prcr)]blematlc. bGllven the a\éaélab'“tyh()f the steeg_ng b|ts|
partial matching are also assumed. Hence the results rom the trace table (accessed during the trace predict cycle)

- . the latency of the final collapse is simply the propagation of
Figure 13 represent a limit study of the performance pote .
tial of the two trace cache implementations. data through the MUX (or a shallow MUX tree). Looking at

Figure 13 compares the IPC of the block-based traC[he data points for the harmonic mean of all the benchmarks

cache with the conventional trace cache as a function of fn Figure 13, in order to achieve the same IPC (~6.0) level

total number of bytes available for trace storage. The rep,?rf a block-tt)g seclj gesllgn W.'Itlh a bI.OCk ctache of 1hK e?tggslz
cation of the block cache is accounted for in the total nurt . _conventional cesigh will require a trace cache o

ber of bytes. Each entry of the conventional trace Cacentries. 'Grant.ed, the 1K-entry blOCk. cache must be re.plicat-
contains: 16 instructions, the fetch address of the first ied four times; however all four copies are accessed in par-
struction (needed due to trace renaming), and 8 bits allel. The much larger trqce _cache WI|! |n'curgreater latency
branch history, totaling 69 bytes. For the block-based gthan the block cache. This difference is likely more than the

sign, each block cache line contains 6 instructions and llatency of the final collapse MUX.

fetch address, yielding 28 bytes per line. With four replica .It_appears that the blogk-based Frage cache is much more
ed copies, the block cache yields 112 bytes per line. Teff|C|ent than the conventional design in terms of trace stor-

conventional trace cache is simulated with {256, 512, 10229¢ capacity and hence is able to achieve higher IPC perfor-

2048, 4096, 8192, 16384, 32768} entries. The block-bas 11 ft?]r the e |St°r|a%$ Capag'ty' f':“r:hermoret t‘;
design is simulated with four copies of the block cache gg2chieve the same cvel, the humber ot entries require

with {16, 32, 64, 128, 256, 512, 1024, 2048, 4096 g19" the block cache is significantly fewer than that of the con-
16384} e’ntriés ' ' ' ' ' ' ' ventional design. This will allow the block-based design to

The results show the block-based trace cache is more.scale much better in terms of increasing IPC while minimiz-

fective at achieving higher IPC with limited trace storagIng Impact on machine cycle time.

205
1063-6897/99/$10.00 (c) 1999 IEEE

compress gcc
12 12
-
-
10 * o o -JQ'Q - 10
L d
8 8
[®] O
g = g P
>
4 4 - -
[] R - "
2 *block - - > L > & - m m -
mconvent
0 ‘ ! ‘ ‘ o ‘ ‘
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000
bytes bytes
9o ijpeg
12 12
o * <
- > - -
10 10 - =
>
- 8
o 6 o 6 =
= - =
4 4
2 #block based 2 ®block based
conventional mconventional
0 . 0 . | .
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000
bytes bytes
li m88ksim
12 12
10 10 s
8 8 h -,
g 6 Q 6
o PUEC I I N S~ o o . -
4 . o &] = 4 . o o ¢
2 *block - = 2 eblock based - -
conventional mconventional
0 . | . . 0 . | .
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000
bytes bytes
perl vortex
12 12
10 10
-
8 = 8
O e o * * [©] .t
o 6 o 6 - -
=] = . * - ™
4 hd 4 o o o
-] m "
*block * o o o -
2 L 2
mconventional
0 - . 0 . .
1 10 100 1000 10000 100000 1000000 1 10 100 1000 10000 100000 1000000
bytes bytes
harmonic mean
12
10
8 - -
o I
= - - - -
|
4 - = = - -
2 @ block based ‘ -m -
-conventional‘
0 . . . | . .
1 10 100 1000 10000 100000 1000000
bytes

Figure 13 - Achievable IPC per trace storage capacity, with harmonic mean for all benchmarks.

206

1063-6897/99/$10.00 (c) 1999 IEEE

8 Conclusion [5] D. Friendly, S. Patel and Y. Patt, “Alternative Fetch and Issue
Policies for the Trace Cache Fetch MechanismPrisceedings of

. the 30th International Symposium on Microarchitectibecem-
This paper presents a new block-based trace cache foer 1997 ymp '

can achieve very high instruction fetch bandwidth whil) .
yielding an efficient implementation. Comparing to thd®l E- Hao, P-v. Chang., M. Evers and Y. Patt, Increasing thg
. Instruction Fetch Rate via Block-structured Instruction Set Archi-
conventional trace cache, the block-based trace cache » . . .
. . tectures.” InProceedings of the 30th International Symposium on
ablg to. aghu_eve much higher IPC when the trace. storage Microarchitecture December 1997
pacity is limited. It can also be an order of magnitude mo)] o)
efficient than the conventional design in terms of trace st/ /BM Microelectronics Division, PowerPC 604 RISC Micro-
age while achieving the same IPC. Admittedly, with Cley0cessar User's Manyal994
trace selection heuristics the efficiency of the conventionl8] Q- Jacobson, E. Rotenberg, and J. E. Smith, “Path-based Next
design can be significantly improved. However, the b|OC|Trage Predlcpon.” Ir?roceedlngs of the 30th International Sym-
based trace cache may be better at increasing IPC wiPoSium on Microarchitecturdecember 1997
minimizing impact on cycle time. [9] S. Jourdan, T. Hsing, J. Stark, and Y. Patt, “The Effects of
In this paper, the design space of the block-based treMispredicted-Path Execution on Branch Prediction Structures.” In
cache is explored. The achievable performance of t|Proceedings of t.he.lnternatiorjal Conference on Parallel Architec-
block-based trace cache is compared to that of perfures and Compilation Techniqudsctober 1996
branch prediction and perfect instruction fetch. For th[10] S. McFarling, “Combining Branch Predictors.” Technical
SPECIint95 benchmarks a 16-wide machine with a realisReport TN-36, Digital Equipment Corp., June 1993
block-based trace cache design (i.e. a realistic next-trg11] S. Melvin, and Y. Patt, “Enhancing Instruction Scheduling
predictor and a block cache of only 4096 entries) cewith a Block-Structured ISA.International Journal on Parallel
achieve an average IPC of 3.95. This represents a 68% Processing23(3):221-243, 1995
provement over a 16-wide baseline design, that is with[12] R. Nair, “Dynamic Path-based Branch Correlation.Pho-
12% of perfect branch prediction. With perfect trace prediceedings of the 28th International Symposium on Microarchitec-
tion, the block-based trace cache can reach an IPC of iture, December 1995
approaching the perfect fetch IPC limit of 9.5. [13] S-T. Pan, K. So, and J. Rahmeh, “Improving the Accuracy of
The results in Figure 12 indicate the need and motivatiiDynamic Branch Prediction Using Branch Correlation.’Piro-
for developing better trace predictor, and block renamirceedings of the 5th International Conference on Architecture Sup-
schemes. Better trace predictors will further improve peport for Programming Languages and Operating Syst@ms76-
formance, while better renaming will reduce the bloc84, October 1992

cache storage requirement for instruction blocks. [14] E. Rotenberg, S. Bennett and J. E. Smith, “Trace Cache: A
Low Latency Approach to High Bandwidth Instruction Fetching,”
Acknowledgment: In Proceedings of the 29th International Symposium on Microar-

This work benefited from machines donated by Intel tchitecture pp. 24-34, December 1996
the Carnegie Mellon Microarchitecture Research Tea[15] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
(CMUART). Bryan Black was funded by an Intel Ph.D. FelProcessors.” IfProceedings of the 30th International Symposium
lowship. This work was supported in part by ONFon Microarchitecture December 1997

(NO0014-96-1-0347, NO0014-96-1-0928). [16] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, “Multiple-
Block Ahead Branch Predictors.” Proceedings of the Seventh

9 References International Conference on Architectural Support for Program-
ming Languages and Operating Systeps 116-127, October
1996

[1] B. Black ancla! J. Shen, “Calibration of Microprocessor Perf0|[17] S. Song, M. Denman, and J. Chang, “The PowerPC 604 RISC

mance Models.” In COMPUTER, pp. 59-65, May 1998 Microprocessor.” INEEE Micro, pp. 8-17, 1994

[2] B. Calder and D. Grunwald, “Next Cache Line and Set Predi[18] S. Wallace and N. Bagherzadeh
tion.” In Proceedings of the 22nd Annual International Symp(Prediction. '
sium on Computer Architectyrpp. 287-296, June 1995

“Multiple Branch and Block
" InProceedings of the Third International Symposium
on High Performance Computer Architectufebruary 1997

[BIT. Cpnte, K. Menezes,. P. Mills arld B. Patel, “Optimization O[19] T-Y. Yeh, D. Marr, and Y. Patt, “Increasing the Instruction
Instruction Fetch Mechanisms for High Issue RatesPrioceed- o1 Rate via Multiple Branch Prediction and a Branch Address
ings of the 22nd International Symposium on Computer Architec,che » InProceedings of the 7th ACM International Conference
ture, pp. 333-343, June 1995 on Supercomputingp. 67-76, July 1993.

[4] K. Diefendorf, and E. Silha, “The PowerPC User Instructiol

Set Architecture.” IHEEE Micro, pp. 30-41, 1994

207
1063-6897/99/$10.00 (c) 1999 IEEE

