
The Blockchain as a Software Connector

Xiwei Xu

NICTA, Sydney, Australia

CSE, UNSW, Sydney, Australia

Xiwei.Xu@nicta.com.au

Cesare Pautasso

Faculty of Informatics

University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland

c.pautasso@ieee.org

Liming Zhu

NICTA, Sydney, Australia

CSE, UNSW, Sydney, Australia

Liming.Zhu@nicta.com.au

Vincent Gramoli

NICTA, Sydney, Australia

University of Sydney, Australia

Vincent.Gramoli@sydney.edu.au

Alexander Ponomarev

and An Binh Tran

NICTA, Sydney, Australia

Alexander.Ponomarev@nicta.com.au

AnBinh.Tran@nicta.com.au

Shiping Chen

CSIRO, Sydney, Australia

Shiping.Chen@csiro.au

Abstract—Blockchain is an emerging technology for decent-
ralized and transactional data sharing across a large network
of untrusted participants. It enables new forms of distributed
software architectures, where components can find agreements on
their shared states without trusting a central integration point or
any particular participating components. Considering the block-
chain as a software connector helps make explicitly important
architectural considerations on the resulting performance and
quality attributes (for example, security, privacy, scalability and
sustainability) of the system. Based on our experience in several
projects using blockchain, in this paper we provide rationales
to support the architectural decision on whether to employ a
decentralized blockchain as opposed to other software solutions,
like traditional shared data storage. Additionally, we explore spe-
cific implications of using the blockchain as a software connector
including design trade-offs regarding quality attributes.

Index Terms—Blockchain; Architecture connector; Design;
Trade-off

I. INTRODUCTION

Blockchain is an emerging technology that enables new

forms of distributed software architectures, where components

can find agreements on their shared states for decentralized and

transactional data sharing across a large network of untrusted

participants without relying on a central integration point that

should be trusted by every component within the system .

The blockchain data structure is a timestamped list of

blocks, which records and aggregates data about transactions

that have ever occurred within the blockchain network. Thus,

the blockchain provides an immutable data storage, which only

allows inserting transactions without updating or deleting any

existing transaction on the blockchain to prevent tampering

and revision. The whole network reaches a consensus before

a transaction is included into the immutable data storage. The

next writer of new records on the immutable data storage is

decided via different mechanisms, for example, Proof-of-work

or Proof-of-stake [24].

The first generation of blockchain is a public ledger for

monetary transactions with very limited capability to support

programmable transactions. A typical type of applications is

cryptocurrency [24]. Cryptocurrency is a digital currency that

is based on peer-to-peer network and cryptographic tools.

Cryptocurrencies are low-cost and inherently independent of

any centralized authority to transfer virtual money or issue new

units of money. New units of money are issued by the users of

the cryptocurrency through mining. The virtual money can be

transferred among peer-to-peer users without going through a

trusted authority to purchase goods and services in real world.

Bitcoin is the first and most widely used cryptocurrency.

The second generation of blockchain became a generally

programmable infrastructure with a public ledger that records

computational results. Smart contracts [20] were introduced as

autonomous programs running across the blockchain network

and can express triggers, conditions and business logic to

enable complicatedly programmable transactions. Smart con-

tracts are more versatile than simple currency transactions.

The design of a blockchain-based system has not yet been

systematically explored, and there is little understanding about

the impact of introducing the blockchain in a software archi-

tecture. In this paper, we discuss our experience obtained from

applying the blockchain into a number of projects, which res-

ulted in operational prototypes we built using readily available

blockchain techniques. The prototypes included in this paper

are 1) a decentralized trading market for data sharing, and 2)

a platform for participating organisations to securely negotiate

and store sensitive data values, which represents a scenario of

secure data exchange and negotiation.

Based on this experience, from an architectural perspect-

ive, according to the taxonomy of software connectors [16],

we propose to consider the blockchain as a novel kind of

software connector, which should be considered as a pos-

sible decentralized alternative to existing centralized shared

date storage. Such view helps us make explicitly important

architectural considerations on the resulting quality attributes

of the applications. We found that using the blockchain as

a software connector could improve information transparency

and traceability. However, the mining mechanism increases

the communication latency, which might cause poor user

experience. Likewise, the amount of data that can be stored

on the blockchain is very limited, thus making it important to

decide which data (or meta-data) should be stored on-chain

vs. off-chain.

The paper proceeds by introducing background information

about the blockchain in Section II, followed by discussing

blockchain from an architecture perspective in Section III.

Section IV compares the blockchain with existing software

connectors. Section V discusses the detailed architecture of our

prototypes using blockchain as a software connector. Section

VI enumerates the lessons learned from our experience, before

Section VII concludes the paper.

II. BLOCKCHAIN

A. Background

Initially, the blockchain was the key technique behind

Bitcoin [19]. The blockchain is a public ledger maintained

by all the nodes within the cryptocurrency network. The

blockchain stores all the transactions that have ever occurred

in the cryptocurrency system. Later, the concept was gener-

alized to a distributed ledger that exploits the blockchain to

verify and store transactions without needing cryptocurrency

or tokens [27].

The blockchain network does not rely on any central trus-

ted authority, which has the power to control the system,

like traditionally centralized banking and payment systems.

Instead, trust is achieved as an emergent property from the

interactions between nodes within the network. In this paper,

we use blockchain to refer to the data structure replicated on

the nodes and blockchain network to refer to the infrastructure

composed of a decentralized peer-to-peer network of nodes.

Blocks and transactions are the two essential elements mak-

ing up the blockchain. Seen as a data structure, the blockchain

is an ordered list of blocks. Blocks are the containers aggreg-

ating transactions. Every block is identifiable, and linked back

to its previous block in the chain.

Transactions represent state transitions with ownership in-

formation, which could include new data records and transfer

of control among participants. The transactions in cryptocur-

rencies are the data structures that encode the monetary value

being transferred between accounts. More generally, such as

in Ethereum, the transactions are a set of identifiable data

packages that store monetary value, code, and/or parameters

and results of function calls. The integrity of the transactions

is ensured by cryptographic techniques.

Once created, the transaction is signed with the signature

of the transaction’s initiator, which indicates the authorization

to spend the money, create the contract, or pass the data

parameters associated with the transactions. If the signed

transaction is properly formed, it is valid and contains all the

information needed to be executed.

The transaction is sent to a node connected to the blockchain

network, which knows how to validate the transaction. The

invalid transactions are discarded, while the valid transactions

are propagated to another three to four other connected nodes,

which will further validate the transactions and send them to

Cryptocurrencies

Bitcoin [19] https://bitcoin.org/
Peercoin http://peercoin.net/
Colouredcoins http://coloredcoins.org/
Omni http://www.omnilayer.org/
Nxt http://nxt.org/

Smart contract platforms

Etheruem https://www.ethereum.org/
Counterparty http://counterparty.io/

Ledger platforms

Factom http://factom.org/
Ripple https://ripple.com/
Eris https://erisindustries.com/
MultiChain http://www.multichain.com/
Enigma http://enigma.media.mit.edu/

Table I: Examples of blockchain applications and platforms

their peers untill the transaction reaches every node in the

network.

This flooding approach guarantees that a valid transaction

will reach the whole network within few seconds. The senders

do not need to trust the nodes they use to broadcast the

transactions, as long as they use more than one to ensure

that the transaction propagates. The recipients do not need

to trust the senders either because the transactions are signed

and contain no confidential information or credentials such as

private keys.

When a transaction reaches a mining node, it is verified

and included in a block, which is propagated to the network.

The block is chained into the blockchain once the whole

network reaches a consensus. Once recorded on the blockchain

and confirmed by sufficient subsequent blocks, the transaction

becomes a permanent part of the public ledger and is accepted

as valid in principle by all nodes within the blockchain

network.

B. Blockchain Applications and Platforms

Table I gives some examples of blockchain platforms that

use the blockchain at the core of their architecture.

1) Cryptocurrency: Cryptocurrency uses cryptography to

control the monetary issuance and secures the transaction. The

first cryptocurrency, Bitcoin, created in 2009, is still the most

widely-used cryptocurrency [1]. Bitcoin allows developers to

add 40 bytes of arbitrary data to a transaction, which can be

permanently recorded on the blockchain. Thus, the blockchain

of Bitcoin has been used to register asset and ownership other

than monetary transactions, like in Ascribe1.

Some cryptocurrencies are overlay networks on Bitcoin, for

example, coloured coins, which taints a subset of Bitcoin

to represent and manage real-world assets. Other overlay

networks completely define new transaction syntax, such as

Omni and Counterparty. There are also cryptocurrencies that

have their own blockchains built from scratch, such as Nxt.

Please refer to [18], [3] and [27] for more comprehensive

surveys on the state-of-art of existing cryptocurrencies.

1Ascribe — https://www.ascribe.io/

https://bitcoin.org/
http://peercoin.net/
http://coloredcoins.org/
http://www.omnilayer.org/
http://nxt.org/
https://www.ethereum.org/
http://counterparty.io/
http://factom.org/
https://ripple.com/
https://erisindustries.com/
http://www.multichain.com/
http://enigma.media.mit.edu/
https://www.ascribe.io/

2) Smart contract: Smart contract is the most important

element in the second generation of blockchains, which en-

ables a generally programmable infrastructure. The smart con-

tract is deployed and executed on the blockchain network and

can be used by the components connected to the blockchain to

reach agreements and solve common problems with minimal

trust.

There are platforms that allow end users to build self-

executing contracts on the Bitcoin blockchain network, for

example, smartcontract2. The smart contract can still be up-

dated after being submitted and before being propagated to the

network. However, smart contracts on the Bitcoin blockchain

network are very simple due to the limited expressiveness of

the corresponding scripting language, which does not support

complex control flow.

Ethereum, as a blockchain-based platform, views smart

contract as their first-class element. Ethereum has built its own

blockchain from scratch with a built-in Turing-complete script

language for writing smart contracts. Counterparty has recre-

ated Ethereum smart contract platform on Bitcoin3. The smart

contract has been used to enable programmable transactions

and machine-to-machine communication in IoT (Internet-of-

Things), for example, ADEPT (Autonomous Decentralized

Peer-To-Peer Telemetry) project of IBM [10].

III. THE BLOCKCHAIN CONNECTOR

A. Software Connector

Software connectors are the fundamental building blocks

of software interactions [16]. A connector is an interaction

mechanism for the components. Connectors include pipes,

repositories, and sockets. For example, middleware can be

viewed as a connector between the components that use the

middleware [6]. Connectors in distributed systems are the

key elements to achieve system properties, such as perform-

ance, reliability, security, etc. Connectors provide interaction

services, which are largely independent of the functionality

of the interacting components [26]. The services provided

by a software connector could be classified into four cat-

egories: communication, coordination, conversion and facilita-

tion. Communication services transfer data among components

while coordination transfers control among components. Con-

version services adjust the interactions to allow components

that have not been exactly tailored for each other to establish

interactions. Facilitation services help to support and optimise

components’ interactions.

B. Overview

Fig. 1 gives an overview of the blockchain playing the

role of software connector. The blockchain is a complex,

network-based software connector, which provides communic-

ation, coordination (through transactions, smart contracts and

validation oracles) and facilitation services [16]. The validation

oracle facilitates component coordination within the network

2Smartcontract — http://www.smartcontract.com/
3http://counterparty.io/news/counterparty-recreates-ethereums-smart-

contract-platform-on-bitcoin/

Validation
oracle

Blockchain layer

Application layer

Blockchain network

Off- chain
control

Node

Blockchain

connector

Chain

Mining
Transaction
validation

Secure clearing
paymant

ChainChain

Permission
mangement

Incentive
mechanism

Off-chain
data

Off- chain
control

Off- chain
control

Blockchain layer

Figure 1: Overview of blockchain as connector

using external, independently managed state. Other facilitation

services include cryptography-based secure clearing payment,

mining, transaction validation, incentive mechanisms, and per-

mission management.

Every node in the blockchain network has two layers,

namely, application layer and blockchain layer. Part of the

application is implemented inside the blockchain connector in

terms of smart contracts. The part of application outside the

blockchain connector might host off-line data and application

logic, and interact with the blockchain through transactions.

Table II shows some design decisions developers need to con-

sider when using blockchain as a connector and summarizes

the corresponding impact on quality attributes.

One of the main architectural decisions for software con-

nector is that what functionality is implemented in the con-

nector and what is implemented in the component. In the

case of blockchain, this decision concerns which data and

computation should be placed on-chain or kept off-chain

(Application Design Decision 1 in Table II). While the block-

chain provides a trust-less network that can verify partial

computational results and provide agreements on the outcomes

of transactions, the amount of computational power and data

storage space available on the blockchain network remains

limited.

Another decision concerns the access scope of the block-

chain: public, private or consortium/community [4] (Applic-

ation Design Decision 2 in Table II). Most of the cryptocur-

rencies are built on top of public blockchains, which can be

accessed and mined by anyone with Internet access. Using a

public blockchain results in better information transparency

and audit-ability, but sacrifices information privacy. Consor-

tium blockchain is used across multiple organizations. The

consensus process of a consortium blockchain is controlled

by authorized nodes. The right to read the blockchain may

be public, or restricted to the participants of the blockchain

http://www.smartcontract.com/
http://counterparty.io/news/counterparty-recreates-ethereums-smart-contract-platform-on-bitcoin/
http://counterparty.io/news/counterparty-recreates-ethereums-smart-contract-platform-on-bitcoin/

Table II: Design decisions and quality attribute trade-offs

Blockchain Design Decision 1

Mechanisms of improving transaction processing rate

Larger block size; Off-chain transactions; Smaller transaction without
signature; Scalable protocol

Blockchain Design Decision 2

Mechanisms of selecting the next block included in the blockchain

Proof-of-work, Proof-of-stake, Proof-of-burn, Proof-of-retrievability

Application Design Decision 1

Scope: on-chain

Enable verification of computational result, limited computation power
and data storage
Examples: Metadata (V-A), Negotiable value (V-B).
Scope: off-chain

More computation power and data storage, less cost, additional trust
required
Examples: Raw personal data (V-A), Sensitive information (V-B)

Application Design Decision 2

Public chain

Information transparency, growth potential to larger scale, trustworthy,
existing user base
Examples: V-A
Private chain

Easier management, better privacy
Examples: Consortium blockchain (V-B)

Application Design Decision 3

Single chain

Easier chain management and permission management, harder data
management and isolation
Examples: V-A, V-B.
Multiple chains

Information isolation, harder chain management and permission man-
agement

Application Design Decision 4

External Validation oracle

Introduce a third party trusted by the whole network
Examples: Arbitrator (V-A)
Internal Validation oracle

Periodically injecting external state into the blockchain might intro-
duce latency issues. The source of external state also needs to be
trusted.

Application Design Decision 5

Permissionless vs. Permissioned blockchain

Trade-offs: Performance, cost, censorship, reversibility, finality, flex-
ibility in governance
Permissions: Read/Join network, submit transaction, mine, create
assets Example: Permissioned (V-A, V-B)

network. A private blockchain’s write permission is kept to

one organization. Using consortium and private blockchains

requires a permission management component to authorize

the participants within the network. There are many platforms

that support building consortium chains and private chains, for

example, Multichain and Eris.

Additionally, a blockchain-based system can maintain a

unique chain to record all types of transactions together or

maintain multiple chains to isolate information of separate

parties or of separate concerns, for example, using one chain

to store transactions, and using a separate chain to store

access control information (Application Design Decision 3 in

Table II).

Challenges of public blockchain Scalability is one of the

main criticisms of public blockchains. Currently, the public

blockchains, like Bitcoin and Ethereum, can only handle on

average 3-20 transactions per second, while the mainstream

payment service, like VISA, can handle on average 2000

transactions per second. There are works trying to improve the

scalability (Blockchain Design Decision 1 in Table II). Bitcoin

plans to increase its block size from 1MB to 8MB to allow

miners to include more transactions into one block. Bitcoin

lightening network [21] moves some of the transactions off-

chain. A multisignature transactions is established between

two participants as a micropayment channel to transfer value

offchain. Once both sides wish to close the micropayment

channel and finalize the value transfer, a transaction is sub-

mitted to the global Bitcoin blockchain. Segregated witness4

proposes to remove the signatures from transactions to reduce

the size of transactions, thus, one block could contain more

transactions. Bitcoin-NG [8] decouples Bitcoin’s blockchain

operation into two planes: leader election and transaction

serialization. Once a leader is selected randomly, it is entitled

to serialize transactions until the next is selected.

Another concern of using blockchain is that all the in-

formation on the blockchain is publicly available to all the

participants within the network, especially the information

on the public blockchain, which is publicly accessible by

everyone. Cryptography is the only way to preserve data

privacy.

Besides, if a public blockchain is used, running computa-

tions on the blockchain costs actual money. Thus, applications

are not supposed to deploy all computations and store all data

on the blockchain. A common practice we also observed in

our projects is to keep the big and private raw data off-chain,

and stores the meta-data on-chain.

C. Communication Service

Communication service is a primary block of component

interaction, which transfer data among components. Fig. 2

shows the internal structure of a node within the blockchain

network. Components use blockchain as a mediator to transfer

data. There are two ways to store data on the blockchain.

One is to add data into transactions, like Bitcoin; the other is

to add data into contract storage, like Ethereum. Both ways

store data through submitting transactions to the blockchain,

which may contain the information of money transfer together

with some arbitrary data. After the transaction is included in

the blockchain, the data becomes publicly accessible to the

components within the network.

Some blockchain platforms provide an API and/or tools to

access and filter the historical transactions. Ethereum suggests

to cache all transactions to prevent the blockchain network

from being under heavy stress due to frequent queries. The

authors of MultiChain also plan to establish a bridge between

its blockchains and regular relational databases in its future

versions. Using the ordinary database indexing techniques, the

historical transactions can be analyzed more efficiently.

Other than transactions, blocks also contain the state of the

whole system after applying those transactions, In Bitcoin,

4https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

Application layer

Off- chain
control

Off-chain
data

Off- chain
control

Off- chain
control

Contract Contract

TX TX

Blockchain layer

Application layer

Off- chain
control

Off-chain
data

Off- chain
control

Off- chain
control

Contract Contract

TX TX

Node Node

OracleOracleValidation oracle

Blockchain layer

Figure 2: Interaction between applications and blockchain

the state is the collection of coins of all the accounts that

have not been spent yet. In Ethereum, the state of the system

is the changes of the whole contract storage. In Ethereum,

every contract has its own storage where only the contract

can write to. The contract storage can be viewed as a flexible

key-value data store. The data stored in contract storage can

be updated through sending transactions to the corresponding

contract with new value. The contract has an address, which

is used to query the contract storage. In the block, the state

is stored in a tree data structure. For example, Bitcoin uses a

Merkle tree whereas Ethereum uses a Patricia tree. Similarly

as the transactions, the state of contract storage can be queried

through API. By default, the query returns the current state.

D. Coordination Service

Different components of the architecture can coordinate

their computations through the blockchain. To do so, it is

possible to submit transactions to smart contracts to invoke

the functions defined in the smart contracts, or use a validation

oracle to sign transactions, the outcome of which depends on

the external state.

As shown in Fig. 2, the control of the application flows

through transactions initiated from externally owned accounts

and transferred among contract accounts. Contracts behave like

autonomous agents that live in the execution environment of

the blockchain network. Contracts are instantiated by submit-

ting transactions with the source code of the contracts to the

blockchain network. A contract defines a set of functions. At

the function level, the contract runs the code of a function

when receiving a transaction calling the function with its

required parameters. At the contract level, a contract could

create a new contract by sending a transaction. The contract

can also kill itself. The contract cannot receive any transactions

after killing itself, but the source code of the contract cannot be

removed from the blockchain. The source code is permanently

stored within the transaction that creates the contract.

Validation oracle The execution environment of blockchain is

a closed environment, which is not allowed to import external

states through polling external servers. To address this limita-

tion, the concept of validation oracle is introduced to evaluate

conditions that cannot be expressed within blockchains.

A validation oracle is a mechanism that facilitate component

coordination within the network using external state. Valida-

tion oracle is part of the blockchain connector, but can be

independent of the blockchain network (Application Design

Decision 4 in Table II). When a validation of transactions de-

pends on some external state, the validation oracle is requested

to validate the transaction and sign the valid transaction. This

will block the progress of the transaction until a condition over

the external state is verified by the validation oracle.

If the validation cannot be automated, a human arbitrator

can validate transactions and sign valid transactions. If the

validation can be automated, an automated arbitrator, could

periodically pull the value of the variables from contract

storage as state of the application to validate the transactions.

However, both ways introduce a externally trusted party again.

The last way is to inject the external state into the blockchain

through periodically updating the value of variables within the

contract storage. The last way can cause time delay between

the external state changes and the change being injected into

the blockchain.

In Bitcoin, an automated validation oracle can be imple-

mented as a server outside the blockchain network, which

has its own key pair. When a transaction requires external

state to be validated, the validation oracle is requested to sign

the transaction on-demand. The logic of validating transaction

is defined by the user. Thus, the validation oracle signs a

transaction when the user-defined expression on the server is

evaluated to be true [2]. To reduce the required trust, Orisi5

runs a set of independent validation oracles. Orisi allows the

participants involved in a contract to select a set of oracles

they both are comfortable using before initiating the contract,

and then sign a contract requiring a certain number of the

validation oracle signatures.

E. Facilitation Services

1) Transaction validation: The mechanism to validate

transactions is specific to blockchains. Generally, the trans-

actions are validated by being re-executed by the node that

receives the transactions. For example, in Bitcoin, the val-

idation of transactions relies on two scripts, including a

locking script in the output of a transaction that specifies the

conditions to spend the coins referred by the transaction, and

an unlocking script that satisfies the conditions placed on a

transaction output by the locking script. When a transaction

is validated, the unlocking script in each input is executed

alongside the corresponding locking script to see if it satisfies

the spending condition. The transaction is valid if the result

of executing scripts is “TRUE”, which means the unlocking

script has succeeded in resolving the spending condition. If

the result is not “TRUE” after executing the combined script,

the transaction is invalid.

2) Mining mechanism: Mining is a process, in which some

nodes within the blockchain network aggregate transactions

into blocks. These nodes are called miners in the blockchain

network. Once a new block is generated by a miner, the miner

propagates the block to the blockchain network. And the new

5Orisi: Distributed Bitcoin oracles — http://orisi.org/

http://orisi.org/

block is included into the public blockchain after the whole

network reaching consensus.

There are different mechanisms to select the miner as the

next author to update the ledger (Blockchain Design Decision

2 in Table II). In Bitcoin, the miner is chosen at random

through “Proof-of-work”. “Proof-of-work” is a piece of data

that is very costly to produce but easy to be verified. Producing

a “Proof-of-work” is a random process with low probability.

Thus, the miners in Bitcoin network compete to generate the

“Proof-of-work” through burning their CPU time. The first

miner to find the “Proof-of-work” is the potential next author

of the blockchain. The difficulty of the work is adjusted to

generate a new block every 10 minutes. However, proof of

work largely limits the capacity of processing transactions.

“Proof-of-stake” is an alternative mechanism, which grants

mining rights to participants in proportion to their holding

of the currency within the blockchain network. For example,

the miners in Peercoin blockchain network need to prove

the ownership of a certain amount of currency to mine

blocks. “Proof-of-stake” blockchains provide protection from

a malicious attack because executing an attack would require

the attackers to own large amount of currency, which is very

expensive. Besides, the miners owning a large stake most

probably won’t attack the system, for example, through double

spending. In long term, such attacks will decrease the value

of the cryptocurrency and the value of their stake.

The “Proof-of-burn” process used in Counterparty block-

chain involves destroying Bitcoins and generating propor-

tionally XCPs (coins used in Counterparty). More recently,

Permacoin proposes a modification to Bitcoin [17], which

uses “Proof-of-retrievability” to re-purpose Bitcoin’s mining

resource to distributed storage of archival data. This approach

provides additional incentives to contribute resources to the

network.

3) Secure clearing payment: Blockchain provides a service

of trusted peer-to-peer payment through cryptography. Every

transaction is associated with the public key of its initiator.

The transaction can be broadcast to the blockchain network

only after the initiator signing the transaction with the cor-

responding private key. Thus, the authenticity is enforced by

the key pairs. The transaction validation checks if new extra

money created from the blockchain network after a specific

transaction.

4) Permission management: Blockchains could be classi-

fied into permissioned blockchains and permissionless block-

chains (Application Design Decision 5 in Table II). The service

of permission management is provided by a permissioned

blockchain network.

The participants of a permissionless blockchain networks

is either pseudonymous or anonymous, like Bitcoin and Eth-

ereum. Using anonymous validators takes the risk of Sybil

attack, where the attacker gains a disproportional amount

of influence on the system. For example, in Bitcoin, any

participant with a sufficient share of computational power is

able to change the records in the blockchain without respecting

jurisdictional boundaries and therefore undermine financial

sanctions and seizure of assets [7]. Besides, the “Proof-of-

work” process, used as a Sybil protection mechanism, is costly

and wasteful.

By contrast, permissioned blockchain networks, like Ripple

and Eris Industries, are more congruent with traditional bank-

ing systems and can provide more utility to financial institu-

tions [25]. In permissioned blockchain networks, the identity

of the validators or even the participants is whitelisted through

some types of KYC (Know Your Customer) procedure, which

is a widely used method of managing identity in traditional

finance. It means that the participants of the system require

legal identities in real world to validate transactions. Thus,

permissioned blockchains are able to legally host off-chain

assets in the real world, while permissionless systems cannot.

Other than the permission of validation, basic permissions

like joining the network, submitting transactions, mining, and

creating assets can be also managed by the permission man-

agement service. Once joining a blockhain network, the par-

ticipant inherently has the read permission on the blockchain

because all the information recorded is publicly available. The

permission information can be stored on-chain as well.

There are trade-offs between permissioned and permis-

sionless systems including transaction processing rate, cost,

censorship, reversibility, finality [25] and the flexibility in

changing and optimizing the network rules.

5) Economic incentive: Every blockchain introduces eco-

nomic incentives, reputation and rating mechanisms for miners

to validate transactions and generate blocks and participants

to be honest.

For example, in Bitcoin, the miners have two incentives to

mine blocks, including the reward of generating new blocks

and the transaction fees associated with transactions being

aggregated into the blocks. Ethereum also charges computation

fee for the miner to execute the smart contracts. Enigma has a

fixed price for storage, data retrieval, and computation within

the network. Besides, a node is required to submit a security

deposit to join the network. If a node is found to lie, its deposit

will be split among the other honest nodes.

IV. COMPARISON WITH OTHER CONNECTORS

A. Centralized, Shared Data Store

Shared data stores, like key-value stores, export a basic

Create/Read/Update/Delete (CRUD) interface. The blockchain

is an append-only data store as it does not support update

but rather supports the creation of new transactions. Any

changes/updates on contract states are appended to the block-

chain as new transactions. An analogy with this so-called

ledger in data stores is the concept of log where data items

get appended but never deleted or updated. This immutability-

of-stored-information property is the key to the traceability of

the relevant assets recorded on the blockchain.

Traditional shared data stores use different strategies to

improve sustainability and throughput, and reduce latency,

such as master-slave replication, and multi-master replication.

Blockchain provides a more sustainable data storage because

the data is duplicated on every node within the blockchain

network. But the throughput of some blockchains is not

comparable with shared data store due to the latency caused

by mining.

Traditional shared data stores have their own consensus

protocols to synchronize replicas [11] in a fully trusted envir-

onment, such as 2-Phase Commit and Paxos. The consensus

protocol of blockchain is aimed to tolerant Byzantine Gener-

als’ Problem [13], in which components of the system aim

at reaching agreement among themselves to process correct

operations despite a faulty component. The comparison of

the consensus protocols used for blockchains and for general

distributed systems is detailed in Section IV-B.

Besides, blockchain is able to validate the consistency of

transactions based on rules attached with the transactions in

terms of smart contract. Such rules can be applied on the whole

blockchain, for example, to prevent double-spending problem

through checking new extra money created during a spending

transaction.

B. Replicated State Machine

Replicated state machine [22] is a general method to im-

plement a fault-tolerant service with a distributed system. To

cope with failures, it replicates the service at several servers

and coordinates the service requests issued by the clients.

Similarly, the blockchain uses distribution not to depend nor

rely on any single entity.

State machine replication typically relies on a consensus

protocol that takes as an input the requests of the components

and decides upon one of these requests [12]. In the case of

a distributed locking service, the consensus will guarantee

that only one particular client acquires a lock, while multiple

clients requested it concurrently. Blockchain also features a

consensus protocol to ensure that among multiple conflicting

proposed transactions, only one gets approved, preventing for

example a double spending of the same coins.

For reaching a consensus on a particular transaction request,

the replicated state machine requires sufficiently many votes.

Replicated state machine rely on quorums of voters [15]

that stem from the concept of weighted votes [9]. Typical

blockchain implementations also requires sufficiently many

votes. In Ripple, sufficiently many votes are obtained when

a minimum of nodes in a unique node list have voted whereas

in Bitcoin sufficiently many votes are obtained when a suffi-

ciently complex challenge (Proof-of-work) is solved.

A replicated state machine supports communication by

transmitting data among components. Components can store

and retrieve information that will persist despite failures.

The state machine replication guarantees that the information

stored by one component gets replicated and delivered to

another components upon requests even when some failures

occur.

To address arbitrary failures or Byzantine failures [13],

replicated state machines exploit security mechanisms. The

sender of a message is typically authenticated with public-key

cryptography so that the encryption with the sender private key

serves as a signature to whoever decrypts the message with

the corresponding public key. The digital signature resulting

from public-key cryptography is also used in blockchains

to preserve the ownership of coins. Collision-resilient hash

functions help verifying the integrity of the message. They

take the content of the message and produce a digest. This

digest once sent encrypted allows the receiver to observe that

the signed message was not altered. As an example, Bitcoin

uses the SHA256 whereas the early replicated state machine

tolerating Byzantine failures [5] used the AdHash solution

based on MD5.

Finally, a replicated state machine totally orders the requests

from components. It controls concurrency by scheduling re-

quests issued by components and thus serves as a facilitation

connector. This total order is also the key property of the

blockchain. In Bitcoin, each block contains the hash of the

previous block according to this total order, hence allowing to

audit preceding transactions by backtracking the blockchain

up to the genesis block. To maintain this total order and to

prevent the chain from becoming a tree, miners always append

blocks to the first chain of maximal length they hear of and all

transactions that are part of forked blocks in shorter branches

are simply discarded.

V. PROJECT RETROSPECTIVE

A. Data Monetization

Our first project is a platform to support the scenario of data

monetization in which the data owners increase the value of

their data through trading their data sets with data consumers.

We consider two use cases. In one case, the data providers

publish their data sets on the platform and the data consumers

could select data sets from one or more data owners to do

analytics for different purposes, and pay the data owners

according to the value of their data sets. In the other case, the

data consumers first post their analytics jobs with the price

information on the platform, after which data owners could

browse the list of analytics jobs and select the jobs based on

the conditions defined in the offer.

The platform can be used in different business scenarios, for

example, trading personal data produced by individuals. This

scenario is inspired by [14], which discusses an economy of

micropayment based on the Web to compensate people for

originally creative work they post on the Web. Thus, personal

data is treated as private property that can be traded.

Another possible scenario is the data analytics across or-

ganizations. The organizations doing data analytics pay the

organizations who provide the data. The amount of money is

calculated based on the value of the data set. For example,

in an analytics based on two data sets from two different

insurance companies, the data set from a company with larger

number of customers is more valuable than the one from

a company with smaller number of customers. Thus, the

insurance company, which provides more valuable data set

gets more money from the organization doing the analytics

using the data sets.

Fig. 3 shows the architecture of the platform. The plat-

form provides mainly three functions, including data trading,

Register data set,
Upload data analytics script...

Owner Consumer

Transfer raw data

Dataset®istry&&
•  Metadata&

•  Policy&address&

&

Job®istry&
•  Contribu3on&criteria&

•  Dataset&requirement&

Tamper1proof&log&of&events&
•  Usage&policy&compliance&result&

•  When&and&what&analy3cs&job&&

Off1chain&

Data&analy:cs&& Hosted&raw&data&

Data&analy:cs&

infrastructure&

Policy&compliance&checker&

Policy&

Compiler&

Policy&

enforcement&

On1chain&

Condi:onal&

payment&

Conflict&

resolu3on&

Usage&policy&

specifica:on&

Figure 3: Architecture of data monetization platform

compliance checking of user-defined usage policy and data

analytics. The policy compliance checking and data analytics

is off-chain functionality, the technical detail of which is out

of the scope of this paper.

The blockchain in this project allows the communication

and facilitates the interactions between data owners and data

consumers through running a set of smart contracts, logging

events in an immutable data storage and providing a condi-

tional payment infrastructure.

On the blockchain, there is a data set registry implemented

as a smart contract, which stores all the data sets registered

on the platform and allows data owners to register a new

data set on the blockchain. The new data set is registered

through calling the data set registry contract to create a data

set contract, which stores the hash of the data set to allow

consumers to check the integrity of the off-chain data. The

metadata of the data set, like the description and the size of

the data set, and a pointer to the corresponding user-defined

usage policy is stored off-chain.

Similarly, we use another smart contract to implement a job

registry that stores the list of the existing analytics jobs on the

platform and allows data consumers to add new analytics jobs.

Every analytics job is a contract, which defines the requirement

of the requested data sets and the criteria to measure the

contribution of an involved data set, for example, the size of

the data set, the publish date of the data set, and the coverage

of the data set etc. A more comprehensive value model is out

of the scope of this project. The trading and negotiation logic

are implemented in smart contracts as well.

Blockchain provides a tamper-proof log of events that ever

occurred in the platform, including both on-chain and off-

chain events/activities/data. On-chain events/activities include

registering, trading and negotiating. Off-chain data include

results of usage policy compliance checking and the informa-

tion of analytics job, such as processing time, the data sets

involved, and the monetary value eventually paid to each

of the data owner. Besides, the blockchain is inherently a

payment infrastructure that supports conditional payment. In

our case, for example, the payment is triggerd before the

analytic job starts. The amount of money is calculated by the

smart contract according to the contribution criteria associated

with the analytics job and metadata of the involved data set.

Users, as data owner or data consumer, interact with the

smart contracts running on the blockchain. In this platform,

due to its size, the raw data is stored and transferred off-chain.

This reflects current practices of popular Web applications

which allow users to download the data associated with their

accounts, for example, Google takeout service6.

One issue of this kind of marketplaces is how to verify that

the data being sold complies with the owner’s description. In

our platform, we introduce reputation and rating mechanisms

for data owners to be honest. A similar ongoing industrial

project, called Slur7, is an anonymous marketplace for trad-

ing secret information. Slur introduces an additional role,

called Arbitrators, that validates the data. When the buyers

claim that the content does not match the seller’s description,

slur randomly selects several arbitrators to evaluate the con-

tent. The arbitrators are paid for their effort.

B. Organizations Sharing Sensitive Data

Another project we are working on is a platform for parti-

cipating organizations to securely negotiate and store sensitive

data values (such as prices, delivery dates, or legal contracts).

The architecture of this project is given in Fig. 4. This scenario

requires secure data exchange and negotiations. Some details

had to be omitted and generalised due to Intellectual Property

reasons.

The users could log on to the platform via federated access.

There are negotiation templates stored in a central place with

specific value fields in the template to be negotiated. The

sensitive information is still kept inside the organizations

where the data was originated, and thus not available to

other organizations using the same platform or stored in

any centralised third party platform. The negotiation can be

initiated, negotiated and signed through a web application or

a mobile application.

As a part of the platform, blockchain is used to facilitate the

negotiation by using smart contracts, and store the different

versions of sensitive data produced during negotiation. One

smart contract is used to represent one negotiation. The nego-

tiation is initiated by a participant from an existing template

by selecting initial values for the negotiable variables. All

the values produced during the negotiation are included in

blockchain. Since the information on blockchain is publicly

available to all users, the value is encrypted before being

6https://www.google.com/settings/takeout
7http://slur.io

https://www.google.com/settings/takeout
http://slur.io

Initiate, negotiate, sign

Organisation C

Documents

Identities

Organisation B

Documents

Identities

Organisation A

Documents

Identities

Confidential

Key$distribu,on$ Access$control$$

Tamper6prooflogof$events$
•  Proposal(of(new(value(

•  Agree/disagree(

Key$genera,on$

Off-chain

Federated$

Authen,ca,on$

On6chain$

Contract$

template$

Document$

generator$

Contract$

template$
Nego,a,on$

template$

Figure 4: Overview of the legal platform

included into the blockchain. When a negotiation is created

by an involved participant, our platform generates a secret

key associated with the negotiation, which is used to encrypt

the value of the negotiable variables before adding the inform-

ation into blockchain. Then a smart contract is generated to

facilitate this negotiation. The smart contract 1) implements

the negotiation process, 2) has access-control management to

restrict the access to the negotiation, and 3) distributes the

secret key of the contract by encrypting it with the participant’s

public key, which is his/her blockchain address, and allows

the participant to retrieve his/her encrypted contract secret

key. Once a participant gets the encrypted contract secret key,

he/she decrypts it with his/her private key. With the contract

secret key, the participant can query the encrypted value of

the negotiable variable and decrypt it. The retrieval of the

negotiable variable and decryption is transparent to the end

user.

The negotiation is done peer-to-peer and may require

manual user intervention. Every activity, such as proposing

a new value, agreeing or disagreeing on a value, are included

in the blockchain as different versions of the negotiation.

Once an agreement is reached and signed by all the involved

participants, the negotiation is finalized, a digital document of

the negotiation is generated. The digital document is stored

internally in the organisation. To bind the digital document

and the corresponding smart contract, the address if the smart

contract is included in the digital documents, and then the hash

of the digital document is included in the smart contract. After

the binding, the smart contract could be killed to avoid further

interaction and modification.

In this platform, the blockchain prevents tampering and

enforces integrity and auditabilty of the sensitive data. A

consortium blockchain or public blockchain can be selected in

this scenario since the privacy of the data is preserved through

cryptography.

VI. DISCUSSION

Lesson: scalability and performance The performance of

public blockchain is very limited. As mentioned earlier, public

blockchains can only process 3-20 transactions per second.

The average transaction processing rate we calculated from

the whole blockchain (1020156 blockchains at 18/02/2016

00:21:12 GMT) is 1.7 transactions per block, and the average

transaction processing rate from the latest 100000 blocks

(920156-1020156) is 3.4 transactions per block. The average

mining time is 17 seconds.

We conducted a small experiment to test the performance

of a private blockchain, and compared the result with the

public blockchain. We built a Ethereum private blockchain and

created 50 accounts in the genesis block. We issued simple

transactions which transfer 0.001 ether from one account to

another. The sender and the recipient of the transactions were

chosen randomly from the 50 accounts. During the experiment,

we found a bug in Ethereum that causes many transactions

failed to be included. The issue was reported and confirmed

as legitimate8. After fixing the issue, the performance of the

private chain became much better than the public chain. The

number of transactions included into one block was around

15000 transaction on average, and the mining time was around

41 second on average. Thus, the transaction process rate was

around 366 transactions per second.

Lesson: Privacy Public blockchains do not guarantee data

privacy. Also permissionless blockchains cannot preserve pri-

vacy of the data because anyone could join the blockchain

network without permission, and all the data on the blockchain

is visible to all participants. Thus, for scenarios like the

legal contract platform, a permissioned blockchain is more

appropriate, which can allow developers to explicitly grant

permissions to the participants. Besides, the information on

blockchain might need to be encrypted to preserve privacy. In

this case, the key needed to be generated and stored off-chain.

Thus, the blockchain doesn’t have enough information that can

be used by the components without permissions to access the

sensitive data.

Lesson: Trusted third-party Using external state does not

always introduce the need for trusting an additional party. For

example, in the licence renewal scenario, the government is a

trusted party anyway, thus, we use government as an validation

oracle that injects external state into the blockchain.

Lesson: Incentives If a blockchain-based system has com-

putation ran off-chain or data stored off-chain, an additional

economic incentive is required for the participants to be

honest. Incentives for miners may include rewards, transaction

8https://github.com/ethereum/go-ethereum/issues/2139

fees, computation fees, or data storage fees. Incentives for

participants to be honest can involve: security deposits, or

reputation and rating mechanisms used in our first project.

Lesson: Reducing cost The applications on top of the block-

chain could reduce the transactions being included into block-

chain. For example, establishing micropayment channel, which

only submit the transaction once being closed by either party.

The transient state does not need to be included into block-

chain, for example, not all the activities during negotiation are

worth to be included into blockchain. To reduce the number

of submitted transactions, an alternative design is to only

record the different value of negotiable variables and the final

voting result of the value rather than record every single voting

activity.

Lesson: Data and contract management If the data to be

stored by the application is associated with the state of the

contract processing it, the data will be discarded once the

functionality of the contract is updated through uploading a

new version of the contract to the blockchain. To address this

problem, we suggest to separate the computation from the data

in dedicated smart contracts.

Once deployed on the blockchain, the smart contract is

always ”running” and responding to requests. We suggest to

kill the contract explicitly once the functionality of the contract

is not used to avoid further interaction and unnecessary cost.

Lesson: Off-chain data Store We stored meta-data on-chain to

be publicly accessible, and kept the raw private data off-chain.

For example, we put the hash of personal data on-chain, but

transfer the raw data off-chain.

Due to the limited size of the data store provided by

the blockchain [23], an off-chain data store is necessary for

some applications. There are existing platforms providing

a data layer on top of the blockchains, such as Factom,

which stores only the hash of the the private data and small

amounts of public data in their own blockchain. Factom also

anchors the Bitcoin blockchain every 10 minutes to be more

secure. Distributed data storage, like IPFS9, DHT (Distributed

Hash Table) are also sometime used in combination with the

blockchains to build decentralized applications.

VII. CONCLUSIONS

In this paper we have presented our experience from

using the blockchain in several projects. The blockchain

provides communication and coordination services through

transactions, validation oracles and smart contracts, and spe-

cific facilitation services, including permission management,

cryptography-based secure payment, transaction validation,

mining and incentives. We have compared the blockchain to

related software connectors such as the shared data store and

the replicated state machine, highlighting the most important

theoretical differences. Based on the practical project experi-

ence we have distilled important design decisions implied by

9IPFS — https://ipfs.io/

the choice of introducing a blockchain in the architecture and

discussed the corresponding trade-offs.

ACKNOWLEDGMENTS

NICTA is funded by the Australian Government through the

Department of Communications and the Australian Research

Council through the ICT Centre of Excellence Program.

REFERENCES

[1] Crypto-currency market capitalizations. http://coinmarketcap.com/.
[2] bitcoinwiki. Contract. https://en.bitcoin.it/wiki/Contract#Example 7:

Rapidly-adjusted .28micro.29payments to a pre-determined party.
[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.

Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In the 36th IEEE Symposium on Security and Privacy

(SP2015), pages 104–121, May 2015.
[4] V. Buterin. On public and private blockchains. https://blog.ethereum.

org/2015/08/07/on-public-and-private-blockchains/.
[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc.

of OSDI, pages 173–186, 1999.
[6] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,

and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, 2003.

[7] EBA. Eba(european banking authority) opinion on “virtual currencies”.
2014.

[8] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16), Santa Clara, CA, Mar.
2016. USENIX Association.

[9] D. K. Gifford. Weighted voting for replicated data. In Proceedings

of the seventh ACM symposium on Operating systems principles, pages
150–162. ACM Press, 1979.

[10] IBM. Device democracy saving the future of the internet of things.
2015.

[11] B. Kemme and G. Alonso. Database replication: a tale of research across
communities. Proceedings of the VLDB Endowment, 3(1-2):5–12, 2010.

[12] L. Lamport. The part-time parliament. ACM TOCS, 16(2):133–169,
1998.

[13] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[14] J. Lanier. Who Owns the Future? Simon and Schuster, 2013.
[15] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings

of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 569–578, 1997.

[16] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of
software connectors. In Proc. of ICSE, pages 178–187, June 2000.

[17] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin:
Repurposing bitcoin work for data preservation. In IEEE Symposium

on Security and Privacy, May 2014.
[18] M. Morisse. Cryptocurrencies and bitcoin: Charting the research

landscape, August 2015.
[19] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf.
[20] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelli-

gence. AI Matters, 1(2):19–21, Dec. 2014.
[21] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain

instant payments. 2016.
[22] F. B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial.
[23] P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby. Business processes

secured by immutable audit trails on the blockchain. 2014.
[24] M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US,

2015.
[25] T. Swanson. Consensus-as-a-service: a brief report on the emergence of

permissioned, distributed ledger systems. 2015.
[26] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture:

Foundations, Theory, and Practice. Wiley, 2009.
[27] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical

survey on decentralized digital currencies. IACR Cryptology ePrint

Archive, 2015:464, 2015.

https://ipfs.io/
http://coinmarketcap.com/
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Introduction
	Blockchain
	Background
	Blockchain Applications and Platforms
	Cryptocurrency
	Smart contract

	The Blockchain Connector
	Software Connector
	Overview
	Communication Service
	Coordination Service
	Facilitation Services
	Transaction validation
	Mining mechanism
	Secure clearing payment
	Permission management
	Economic incentive

	Comparison with Other Connectors
	Centralized, Shared Data Store
	Replicated State Machine

	Project Retrospective
	Data Monetization
	Organizations Sharing Sensitive Data

	Discussion
	Conclusions
	References

