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THE BLOW-UP BOUNDARY FOR NONLINEAR
WAVE EQUATIONS1

LUIS A. CAFFARELLI AND AVNER FRIEDMAN

Abstract. Consider the Cauchy problem for a nonlinear wave equation Du = F(u)
in N space dimensions, N < 3, with F superlinear and nonnegative. It is well
known that, in general, the solution blows up in finite time. In this paper it is shown,
under some assumptions on the Cauchy data, that the blow-up set is a space-like
surface t = <j>(x) with <f>{x) continuously difierentiable.

Introduction. Consider the nonlinear wave equation

(0.1) Uu = u,t- Au = F(u)

for x 6 R", í > 0, with the initial data

(0.2) u(x,0)-/(x),       ul(x,0) = g(x)

for x G RN. It is well known that if F(u) is nonnegative and superlinear, then, in
general, a solution cannot exist for all times. Furthermore, if T is the supremum of
all times s such that a classical solution exists for all 0 < t < s, then

sup |w(jc, t) | -* oo    if t -* T.

For details see [1-5].
In this paper we are interested in studying the blow-up set, i.e., the set

T = d{u< oo} n{t > 0}.

We assume that N < 3 in order to ensure that the fundamental solution of the
d'Alembertian D is positive (the same assumption is made in [2, 3]). Our main result
is that

(0.3) T is a C1 space-like surface,

that is, T is given by

(0.3') T:t = <t>(x),   with </> e C1 and |v<f>| < 1.
The conditions on /, g and F are such that they ensure that

(0.4) u > 0,        du/dt >\vxu\;

further, F(u) is convex and F(u) - Aup as u -» oo (A > 0, p > 1).
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224 L. A. CAFFARELLI AND AVNER FRIEDMAN

We shall actually establish (0.3') only in a bounded set { |jc| < R} (R is arbitrary),
making the corresponding assumptions on / and g in a suitably larger set {|x| < R
+ T}.

In §1 we give some preliminaries and also state our main theorem. In §2 we
construct a classical solution of (0.1), (0.2) with maximal domain of definition Œ;
fi = {u < oo}. In §3 we establish a crucial a priori estimate
(0.5) c<w„/«2<C       (0<c<C<oo).
We also prove that

u(x,t)îcc   if 7"f<i>(jc),and
<Í>(jc) is Lipschitz continuous with coefficient < 1.

In §4 we proceed to estimate all the first three derivatives of u in terms of powers
of d(x, t), the distance to the blow-up boundary. These estimates make it possible to
work with blow-up limits with respect to any point (jc0, t0) e T, i.e., with limits of
sequences
(0.7) Xlu(x0 + Xnx,t0 + Xnt)        (q=2/(p-l))
as Xn -» 0. Every limit v is shown to be a convex function.

In §§5 and 6 we show that the blow-up set of any blow-up limit v is planar; in §5
we prove this for N = 1 and in §6 for N = 2,3. Using this result we establish, in §7,
the continuous differentiability of the function <b(x).

1. Preliminaries. Consider the Cauchy problem for the inhomogeneous wave
equation

Uw = h(x,t)     (x&RN,t>0),

(1.1) w(x,0)=fo(x)       (x<=RN),
w,(x,0) = g0(x)       (x<=RN).

The solution can be represented in the following form: For N = 1,

(1.2.) w(x,t) = \(f0(x + t) +f0(x - t)) + \f*+* g0(è)di

+ -f'dsf    h(x+(t - s)-q,s)dri;
A Jc,        J - l

for N = 2,
£o(* + 0 « , a  1  /■     /o(* + 0íi o  \ í     t\       l    (       go(^ + *) j, ,   3    1    r       fQ(x-(1.22)       w(jc,f) = —/       -===■ d£ + -r- t— 1       -==
Jt2-\t\2 °t2«J\t\<t Jt2-\ï\

h(x + t),s)

2
d|

1    /"' / x  ,  C h(x + y,s)+ T;j {t-s)dsj V        h   '     dV;

for N = 3,

(1.23)     u(x,t) = j-f      g0(x + ti) dw( + j~ f      f0(x + tt)dat
47T Jß\ = x Ot  477 J\t\-\

+ J¿ Í ('-^dsf      h(x+(t- s)i¡,s)da.
Av Jo JM=f
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THE BLOW-UP BOUNDARY FOR NONLINEAR WAVE EQUATIONS 225

These formulas show the positivity of the fundamental solution in dimensions
iV<3.

Consider now the nonlinear wave equation

(1.3) nu = F(u)       (x^RN,t>0),
where N < 3, with the data
(1.4) u(x,0)=f(x)       (xeR"),
(1.5) u,(x,0) = g(x)       (x^RN).

We assume throughout this paper that

F(u)>0   if«>0,
F(«)isinC4    forw>0,
F'(u)>0,       F"(u)>0   iiu>0,

(!-6) F(u)u~p ^> A   as u -» oo; A > 0,1 <p < oo,

lim sup FXm)!/1-'</!(/>+(/?- l)/2),
«—» 00

|F(^(m)|< Cu"~j   ifl<M< oo,2<y'<4, OO.
Let R and T be any two positive constants. We shall actually study the behavior

of solutions of (1.3)—(1.5) only for |jc| < R, t < T. Hence, whatever assumptions we
impose on the data /, g, we need to impose them only for |x| < R + T.

Set Rp = { jc; |jc| < p}. The first assumption is

(1.7) /and g belong to C4(RÄ+r).
The next assumption will be needed to establish the positivity of ux (defined in (2.1))
and subsequently of «:

(l.0l)   f(x + t)+f(x-t)+ ¡x+'g(i)di>0   if|jc|<R,0<i<r(JV = l),
J x-t

(1.83)
/(jc + t£) + tg(x + i£) > i|v/(x + i£)|    if |jc|< R,0 ^ t « T, |||< 1 (N = 3).

We next impose a condition on /, g in order to ensure that uXt (and ut) are
positive and, in fact, larger than \Vxux\ (and |Vxw|):

(1.90 S(*)>(l + e0)l/'(*)l    ii\x\<R+T(eo>0,N=l),
(1.9,)    g(X) -(1 + e0)|V/(*)|+ i(A/(A-) + F(/(*)) -(1 + e0)|vg(X)|)

>r|Vg(*)|+(l + e0)i|v2/(*)|    iîX=x + tÇ,

|jc|<R,0 < t < T, Hl < 1 (e0> 0, tV= 3).
We shall not impose direct conditions of the form (1.8), (1.9) in case of N = 2; it

is simpler to apply the method of descent here. Thus, if AT = 2 we define

(1.10) f(Xf,X2,X3)=f(Xf,X2), g(Xf,X2,X3) = g(Xf,X2),
and write
(1.82) (I.83) holds with /, g defined by (1.10)       (N = 2),
(1.92 ) (1.% ) holds with /, g defined by (1.10)       ( N = 2).
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226 L. A. CAFFARELLI AND AVNER FRIEDMAN

We finally need to impose a condition that implies a blow-up at some point jc in
BR in time smaller than T. For simplicity we state below a condition which ensures a
blow-up in time F, (7\ < T) for all x e BR.

Let w be the solution of

w"(t) = F(w)     (t>0),
(1.11) w(0) = 7l (7,>0),

H''(0) = y2        (y2>o),

where yx, y2 are constants such that

(1.12) w(i)îoo    if t î Tx for some Tx < T, yx + Txy2 > TyYx.

We shall assume that

(1-13) />2Vl,    Yi>|v/|,        g>y2    mBR+T.

Finally, we also assume that

condition (1.8) holds for/m, gm with
m = (3p — l)/2,        m = 2p - 1.

For any (jc0, i0) set

^-(*o<'o) = {(x,t); \x-x0\^ t0- t,t> o},

(1-15) KRT=   U   K_(x,T).
xeBK

We now state the main result of this paper.

Theorem 1.1. Let the conditions (1.6)-(1.9) and (1.13), (1.14) hold. Then there
exists a classical solution u(x, t)  of (1.3)-(1.5)  in KRTC\cl,  where  ß = {(jc, r);
x g BR, 0 < t < <t>(x)}, satisfying

(i)0<4>(x)< T,
(ii) u(jc,/)Too//rT<p(jc),

(iii) <i>(x) is continuously differentiable in BR with |v<i>(x)| < 1/(1 + e0). The
solution is unique in KR T.

The solution u will belong to C3,1.

The proof of Theorem 1.1 is given in §§2-7.
In §2 we construct the solution u in KRT and in §§3-7 we derive various

estimates on u near the blow-up boundary / = <¡>(x) and establish the C1 nature of
<b(x).

2. Construction of the solution. Let u0 = 0 and define successively a sequence um
by

Dun+X = F(u„)     (x <ERN,t> 0),

(2.1) u„+l(x,0) = f(x)      (x<=RN),

%¡un+1(x,0) = g(x)     (XŒR").
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THE BLOW-UP BOUNDARY FOR NONLINEAR WAVE EQUATIONS 227

From the representation formulas in (1.2) and from (1.7) it follows that the um are
C4 functions in KRT (defined in (1.14)).

Lemma 2.1. // (1.6)-(1.8) hold, then
(2.2) 0*zu„(x,t)^un+1(x,t)    inKRT.

Proof. The inequality m, > 0 follows from the representations (1.2) and (1.8),
noting that F(u0) = F(0) > 0. Proceeding by induction we suppose that u„_x < un.
Then F(un_f) < F(un). Representing both w„ and un+1 by (1.2), we see that
un < un+1.

Lemma 2.2. // (1.6)-(1.9) hold, then

(2.3) oujot >(1 + e0)\vxu„\    inKRT.

Proof. Set X = 1 + e0. For any unit vector e in RN, set J„ = 'du Jot + Xe ■ Vxu„.
Then UJn+f = F'(un)Jn and

Jn + X(x,0) = g + Xe-Vf = f,

TJn+i(x>°) = z~iun+f(x,0) + Xe • Vxj-tun+l(x,0)

= Af+F(f) + Xe-Vg = g,
Notice that J0 = 0, so that F'(u0)J0 = 0. We can now proceed inductively: if
Jn > 0, then F'(u„)J„ > 0 and, using the representation (1.2) for Jn+1, we find that
J„ + f 3* 0; here the condition (1.8) on /, g follows from the condition (1.9) on /, g.

Let
(2.4) m(jc,í)=  lim u„(x,t)   inKRT.

n—* ce

Since u(x, t) is monotone increasing in t, there is a function <i>(x) defined in BR
such that 0 < <b(x) < T and, for x G BR, 0 < t < T,

u(x,t)< co    if t < <¡>(x),        u(x,t)=cc    iit><t>(x).

Introduce the set

(2.5) ß= {(x,t); xeBR,0^t <4>(x)}.

Lemma 2.3. Let (1.6)-(1.9) hold. Then u is a C31 solution of (1.3)-(1.5) in ß.

Proof. Fix any positive R', 7" such that KR, r c ß. It suffices to show that
u g CXX(KR,T). Notice that

(2.6) 0 < u„ < C    in KR,r.

Let wn = du„/dt. Then

Uw„ = F'(u„_f)wn_f,    w„(x,0) = g(jc),    ^w„(x,0) = A/+F(/).

We shall compare vv„ in KR,T, with the function W = MeBl which satisfies

UW=B2W,    W(x,0) = M,    Wt(x,0) = MB.
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228 L. A. CAFFARELLI AND AVNER FRIEDMAN

Clearly W > wn for small t, say for 0 < t < tj, if M is large enough (say
M> s\xpBJ).

We claim that W > wn for KR, T, provided M and R are large enough, indepen-
dently of n. Indeed otherwise there is a smallest value t = t0 such that W = vv„ at
(jc0, t0) for some jc0 g Rä. Representing both W and w„ at (x0, t0) by (1.2) and
noting that, by (2.6), B2W > F'(un_f)wn in K_(xQ,t0) if B is large enough, and
M + íA/R > / + tg - í|v/| (which is the condition (1.83) for W - wn), we deduce
that (W - wn)(x0, r0) > 0, a contradiction.

Similarly we can prove that — wn < W in KR, r, so that

(2.7) |9u„/9r|<C.
The x, derivatives of un can now be estimated in a similar way, or also by (2.3),
(2.7). Thus
(2.8) |2>m„| < C   V«,
for any derivative.

Next we apply the above argument to a second derivative wn = D2un. Observe
that

üw„ = F'(«„_iK + F"(un_f)Du„Du„
and the last term on the right-hand side is bounded (by (2.8)). Also, vv„(x,0) and
Dtwn(x, 0) involve only the second derivatives of / and g, so that the same
comparison function W can again be used provided M and B are large enough. This
yields the estimate |tD2m„| < C in KR. r. Similarly we can estimate the third and
fourth derivatives of un. Going to the limit we conclude that u is in C3,1.

Lemma 2.4. // (1.6)-(1.9) and (1.13) hold, then
(2.9) $(x)<T   Vx e BR.

Proof. We compare u with the solution w of (1.11), (1.12). By assumption, w < u
for x g BR, and all t small enough; here R' is any positive number < R. We claim
that w < u if x g BRI, 0 < t < Tv Indeed, otherwise we use the representation (1.2)
for both w and u and argue as in the previous lemma. (The condition (1.13) imphes
the condition (1.8) for u — w.) Having thus established that u > w in BR,x(0, 7\),
(1.12) implies that <p(x) < Tx < T.

Proof of uniqueness. Suppose w(x, t), <j>(x) form another solution satisfying
(i)-(iii). Using the representation (1.2), we find, by a standard contraction argument,
that

sup|(«-M)(x,i)l =0       ((x,t)<z-KRT)
x

if t is small enough. Using the fact that <t> and <£ are Lipschitz continuous with
coefficients smaller than 1, we can now proceed step-by-step to deduce that u = ü in
all of KRTn {t < <b(x)} n {t < ¡Kx)} and then <i>(x) = ^(x) (by (ii)).

3. A ult estimate. From this section on, we assume that the conditions (1.6)-(1.9)
and (1.13) hold, and we shall study the behavior of u near T = {/ = <i>(x)} and the
regularity of <i>(x).
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THE BLOW-UP BOUNDARY FOR NONLINEAR WAVE EQUATIONS 229

For any S0 > 0 denote by ßs the set of all points in ß (defined in (2.5)) whose
distance to T is < 80.

Theorem 3.1. There exists a 80 > 0 such that the following estimates hold in ßs :

(3.1) cup < «„ < Cu",

(3.2) cu("+X)/2 < u, < Ci/("+1)/2,

(3.3) c(<f>(x)-t)-''<u(x,t)<C(<b(x)-t)-''       (q = 2/(p-l)),

(3.4) c(<b(x) - ty~l « u,(x,t) ^ c(<t>(x) - ty~\

(3.5) c(<f(x) - ty-2 < u„(x,t) < C(<t>(x) - t)'q~2,

where c, C are positive constants; inparticular, u(x,t)t oo //1 T <f>(x).

Proof. We have, for n > 2,

n"„ + i,„ = F'{un)untl + F"(u„)u2„„

nF(u„) = F'(un)Uun + F"(u„)(ul, - Wxun\2)

= F'(u„)F(un„f) + F"(u„){u2n,, - |Vxun\2),

°"n + l,r = *"("»)"«,/•

Setting J„ + 1 = m„ + 1 „ - F(un) + A/u„ + lií (M > 0) we get

(3.6) njn+f = F'(un)Jn + F"(un)\vxun\2.

Also

,     . -In + i(x,0)=ff + Mg,
K'} Jn+u(x,0) = gf + M(Af+F(f)),
where /,, g, are functions independent of n and M.

Representing Jn + 1 by (1.2) and assuming inductively that Jn> 0 (note that
J2 > 0 if M is sufficiently large) we conclude that 7„+1 > 0 provided (1.8) holds for
the data in (3.7). Now, for N = 1 the condition (1.8) for (3.7) with M large reduces
to

g(x + 0 + g(* - 0 +  f+' (/"(£) + F(/(í))) ¿E > 0,
Jx-t

which is a consequence of (1.9,). For AT = 3 the condition (1.8) for Jn+1 (with M
large) reduces to

g(x + f¿) + i(A/(x + tt) + F(f(x + f*))) > t\vg(x + tt) |,

which is a consequence of (1.93). We conclude that, indeed,

(3.8) Jnl > 0.
Similarly, setting
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230 L. A. CAFFARELLI AND AVNER FRIEDMAN

we get, analogously to (3.6),

1 ,2 ■ .2
oJn+f = F'(un)Jn -[yyr-yrul, -|vxu„| }F"(un) < F'(u„)Jn,

where Lemma 2.2 was used. Further, condition (1.8) holds for the initial data of
—J„+f We can therefore deduce inductively that

(3-9) Jn+1 < 0.
From (3.9) and some of the assumptions on F in (1.6) we deduce, after recalling

that un < un+l, that the function w = un+l satisfies wlt < Cwp + Mwr Multiplying
by wte~2M' and integrating we easily get w2 < Cwp+1 + C, or dw/[Cwp+1 + C,]1/2
< dt.

It follows that
r«n+i(*o.O ds

(3.10) /" <  t -  T.
}»„ + i(xo.t)    [Csp + X + CfY/2

Taking t = t0 + e, where t0 = <#>(x0), and letting n -* oo we get

r°° ds
-m < tn + e - t.

Juixo.r)   [Csp + X + Cf]1/2 °

Letting e -> 0 and evaluating the integral we obtain, for some c > 0,

(3.11)       ■<*•»» ki^ï (»- A
which shows that m(x0, i) -> oo if / -» <>(x0).

We now take n -* oo in (3.9) and get

(3.12) u„ < F(u) + Mur

Proceeding as before (with w) we find that

(3.13) w,2< Cup+X + Cf.

Hence (3.12) can be simplified to

(3.14) u„ < Cup

with another constant C.
Similarly, using (3.8) we derive the estimate

u„>c0up-Cf       (co>0,Cf>0),

and therefore, by (3.11),

(3.15) u„ > cup       (c > 0)

in some ßSo. Multiplying both sides of (3.15) by u, and integrating we find that
u] > cup + x, or Sulxl'r) du/up+1 > c(t - t) with t < <b(x0) = t0, which yields the
estimate h(x0, t) sg c/(t0 - t)i thus complementing (3.11).

The remaining assertions of the theorem follow immediately from the estimates
already derived.
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THE BLOW-UP BOUNDARY FOR NONLINEAR WAVE EQUATIONS 231

From Lemma 2.2 we have

1 + £n(3.16) |vx«| < TTTU<'-
fco

this is valid in KR,T n ß for some R' > R (since <>(x) < Tx < T if x G BR., by the
proof of Lemma 2.4). Since u(x, t) < oo if t < <¡>(x) and u(x, t) = oo if t = <b(x),
we easily obtain

Corollary 3.2. <#>(x) is Lipschitz continuous with coefficient < 1/(1 + e0), i.e.,

(3.17) k(*)-*(*')I«irrf^ ifx,x'eBR..

Definition 3.1. We denote by d(x, /) the distance from a point (x, t) in ß to the
blow-up set T.

In view of Corollary 3.2,
(3.18) (<¡>(x) - t)/fi < d(x, t) < $(jt) - t.

From (3.3)-(3.5) and (3.16), (3.18) we get

Corollary 3.3. For some positive constants c, C the following estimates hold in
n«o:
(3.19) c^ud"^C,
(3.20) c^u,d"+1^C,

(3.21) c < utld"+2 < C,

(3.22) |vxm| < Cd-(«+1).

4. Blow-up limits.

Lemma 4.1. The following estimates hold in ß:
(4.1) |Da«| < Cup+^-2)/q < Cd-<-p«+W-2)       (0<|a|<4),
where Da is any space-time derivative of order \a\ and C is a constant.

Proof. Note that Du and Duu have already been estimated in Theorem 3.1. To
estimate any spacial derivative Duu we proceed as in the proof of (3.9) working with

J» + l =   1   _.°      un + l.ll ~ F("n) - MUn + l.ri -t- e0

This yields the estimate

(4.2) \D„u\*iCup.
Consider next any third order space-time derivative D3 and for simplicity take it

to be a pure derivative. Then

OD3u = F'(u)D3u + 3F"(u)DuD2u + F(3)(m)(F>m)3.
On the other hand, if m = p + 1/q,

Uum = m-^-um + m(m - T)um-2{u2 - |vr«ñ > m-^-um

by Lemma 2.2.
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232 L. A. CAFFARELLI AND AVNER FRIEDMAN

The last two conditions in (1.6) imply that, for some e > 0,

F'(u)^(m-e)^-    if u>Bc
u E

and

\F"(u)DuD2u\^ Cup-2\Du\\D2u\

< Cu3p-2-x/" = Cup-x + m < Cxm^^-um,
u

\F^(u)(Duf\<Cu"'2\Du\3 ^ Cu»-3 + 3p-3/<

= Cup-l + m < C,m^^-um,
u

where (4.1) for |a| < 2 was used; here RE, C and C, are suitable constants. It follows
that iî J = Mum + D3u, where M is a sufficiently large positive constant, then
\3J > F'(u)J. In view of (1.14), the initial data for J at / = 0 satisfy the condition
(1.8) if M is large enough. We can now easily deduce that

(4.3) J > 0   in ß.

Indeed, otherwise there is a smallest value t = t0 such that J(x0, t0) = 0 for some
x0 g BR. Representing J(x0, t0) by (1.2) we find that /(x0, t0) > 0; a contradiction.

Having proved (4.3) we conclude that (4.1) holds for |a| = 3. The proof for
|a| = 4 is formally similar, working with D4u + Mum, where m' = p + 2/q. Actu-
ally, since u is only in C3'1, we work first with the Daun + 1 + Mu™ for |a| = 3, then
with Daun + l + Mu™' for \a\ = 4 and finally let n -» oo.

Let (x0, î0) be any point of T, and introduce the scaled functions

(4.4) mx(x, t) = X'>u(x0 + Xx, i0 + Xt)       (X > 0).

Any sequence { ux } with Xn -* 0 is called a blow-up sequence.
Denote by {t = <¡>\(x)} the blow-up set for ux, i.e.,

(4.5) *x(*) = (*(x0 + \x)-4>(x0))/\.

Let ßx = {(x, /); (x0 + Xx, t0 + Xt) g ß} and denote by dx(x, t) the distance
from a point (x, t) in ßA to the blow-up set Tx = {t = <bx(x)}.

From Lemma 4.1 we obtain

(4.6) \Daux\^DuC(lal~2)/q <Cdx(p+q+M~2)       (0<|a|<4),

and from Theorem 3.1 and (3.16), (3.17) we have

cu{ < D„ux < Cu{,

Cu{p+X)/2 < Dtux < Cu[p + X)/2

(4-7) \vxux\ ^ ——DlUx,i -i- e0

\<t>\(x) - <t>x(x')\ < YTY^X ~ x'''
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It follows that any blow-up sequence ux^ has a subsequence for which
(4.8) <bK(x) -> <b0(x)

uniformly in compact sets,
(4.9) uK -^¡)   in C3a VO < a < 1

in any compact subset of

(4.10) ß0= {(x,t);x^RN, t<<b0(x)},

and
(4.11) Do = Avp    in ß0,

(4.12) ID^I « çv(p+\«\-V/i   in fi0 (|a| ^ 4),
(4.13) cvp < v„ < Cvp    inß0,

(4.14) cv<»+1)/2 < v, < G/'+1)/2    in ß0,

(4.15) cdzi < v < Cdö?    in ß0,

(4.16) |vxt;| <S t—— v,   inß0,
1    "T   E0

(4.17) |</>0(x)-<f>0(x')|< —^-|x-x'|       (x,x'gR"),

where c, C are positive constants and d0(x, t) denotes the distance from a point
(x,t) of ß0 to 3ß0.

Definition 4.1. The function v is called a blow-up limit of m with respect to the
center (x0, t0).

We conclude this section by proving

Lemma 4.2. Any blow-up limit is convex.

Proof. Let v be a blow-up limit and let / = vu + -qv, (tj > 0), where v„ is any
pure second derivative of v (in any direction in RN+X). Then

(4.18) UJ =pAvp-xJ + p(p - T)Av"-2v2.

Fix a point (x, t) in ß0 and consider J in K_(x, t). Because of (4.17)

(4.19) c< d°(x'^ <C    if (x,t) & K (x,i),t^ -oo,
\t\

where c, C are positive constants.
We claim:

(4.20) />0   inAL(jc,i).
It will suffice to prove it for N = 3. By (4.12), (4.14) and (4.19), J = tji>,(1 + 0(l/\t\))
in K_(x, i) as t -» - oo, so that J > 0 in t\T_(x, t) {t < -a) for some sufficiently
large a.

If (4.20) is not true, then there must exist a point (x0, t0) in K_(x, t) with smallest
t0 such that

(4.21) J(xo,ro) = 0.
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Consider the cones K_(x0,t0) and K+(x0,tx) = {(x, t); \x - x0| < t - tx, t >
tx} when tf = t0 - 2M and M is a positive constant to be determined. We represent
/(x0, i0) in K_(x0, t0)n {t> t0- M} and J(x0, tf) in K+(x0, tf) n {t < t0 -
M} by (1.2) and, by adding, obtain

J(x0,t0) + J(x0,tf)

= j-(       (rfr)d^+^-f       J(x0 + Mt,t0-M)dooi
¿TT J^=l . ¿IT J^=f

(4.22) +4^j     (M-s)dsJ       J(x0 +(M - s)r¡, s + t0 - M) d^

+ -¡—/     (M-s)ds J(x0+(M - s)-q, -s + tf + M)duvAt Jq •/|i)| = i

= I0 + Ix + I2 + I3,

where / is equal to J(x0 + x,t0 - M) = J0(x) evaluated at x = A/£, fr is the radial
derivative of J0(x) evaluated at Mi, and r = M. By (4.12), (4.14), (4.15), (4.19),

J(x0,tf) = O\     , X/(       \ ^0   if M ^oo.

On the other hand, I0 = 0(Mx-p) -► 0 if M -* oo, by (4.12), (4.15), (4.19). Also
If > 0, I2> 0, I3 > 0; furthermore, I2 > c > 0 where c is independent of M. It
follows from (4.22) with M large enough that /(x0, r0) > 0, a contradiction to
(4.21). This completes the proof of (4.20) and, in particular, vu(x, i) + t)vt(x, t) > 0.
Taking tj -» 0, we get vu(x, i) > 0. Since (x, t) and / are arbitrary, the lemma
follows.

Set

(4.23) ro-aoo={(*,0;'-*>(*)}•
In the next two sections it will be proved that T0 is a plane (a line, if N = 1).

5. T0 is linear (AT = 1). In this section we take N = 1.
We shall need the special solutions of

(5.1) nv=AVp
with blow-up boundary

(5.2) {(x,t); t = ax, - cc < x < oo},       a real,

given by

(5.3) Va(x,t) = Ca(ax-t)-'1,        Cp-l=\q{q+l){l-ct2).

We refer to them as linear solutions.
Remark 5.1. If v is a convex solution of (4.11)-(4.16) and ß0 is half a plane, then

v is a linear solution. Indeed, let / be a line in ß0 parallel to 3ß0. Then, along /, v is
bounded (by (4.15)) and convex; hence v is constant along /. Since v also satisfies
(5.1), it easily follows that it has the form (5.3) with some a, |a| < 1.
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Lemma 5.1. ro is a straight line and v = Va for some a, \a\ < 1.

Proof. From Lemma 4.2 we have that, for any positive y, the set {v < y} is
convex. Thus the level curves {v = y) are given by t = \py(x) with ^(x) concave,
and also <i>0(x) is a concave function.

We introduce an implosion (i.e., a blow-up at oo) by vx(x, t) = Xqv(Xx, Xt) with
X -* oo. As in the case of blow-up limits, for any sequence of X's there is a
subseqeunce Xn —> oo such that vx -* w uniformly in compact subsets of ß = {w
< oo} and (4.11)-(4.16) hold for w. Further, since (j>0(x) is concave, the blow-up
boundary f of w is given by two rays, la and Iß, with slopes a and ß, and ß < a;
also |a| < 1, |R| < 1. If
(5.4) a = ß,

then, by Remark 5.1, </>0(x) is a linear function. In order to prove (5.4) we may take,
for definiteness,

(5.5) 0<j8<a<l,
so that

/«={/ = ax,x <0},       lß = {t = ßx,x > 0).

Introduce the sectors

(5.6) ßa = the sector bounded by the rays /„ and < t - —, x < 0),

(5.1) Üa = the sector bounded by the rays la and {t = -x,x>0}.

We introduce directional derivatives

Da = aD, + Dx    (space-like),        DT = D, + aDx    (time-like);

we refer to the direction determined by DT as the conjugate to la (or the conjugate
normal to /„).

We shall need several lemmas.

Lemma 5.2. There holds

(5.8) w < Va    in Qa.

Proof. Since

tDt2 - D2 = (D, + aDx)2 -(aDt + Dxf = (1 - «2)D,
we have

(5.9) (D2-D2)w = A(l -a2)w".

Also, since DaVa = (aD, + Dx)Va = 0,

D2Va = A(l-a2)Vp.

Comparing with (5.9) and recalling that, by the convexity of w, D2w > 0, we see
that

(5.10) Z)T2(w - Va) > A(l - a2)(wp - Vp).
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Let VJ be an e-translation of Va with blow-up boundary {t = ax - e}.
Let m be any ray in the direction —t with initial point on {t = ax — e). Then

w — V¿ = — oo at the initial point of m, and w - V¿ -* 0 as (x, t) goes to infinity
along m. Since (5.10) holds also with Va replaced by V¿, we can apply the maximum
principle to conclude that w - V* < 0 along m. Taking e -» 0, assertion (5.8)
follows.

Lemma 5.3. There holds
(5.11) w(x - X,i - aX) -» Va(x,t)    asX-*<x>
uniformly in any compact subset of ß = {t < ax, — oo < x < oo}.

Proof. Set wx(x, t) = w(x — X, t — aX). By the C31 estimates on w it follows
that for any sequence of X's converging to oo there is a subsequence X„ such that
wx (x, t) -» W uniformly in compact subsets of ß, and
(5.12) DW=AWp    inß;
furthermore, W is convex and satisfies (4.12)-(4.16), and its blow-up boundary is
3Q.

By Remark 5.1 we now deduce (recalling the definition of ß) that W = Va, and
the assertion (5.11) follows.

Lemma 5.4. There holds
(5.13) w = Va   in ß„.

Proof. Consider any level curve Ay {w — y}. By Lemma 5.3 w - Va -* 0 along
AY as x -» - oo. Hence

(5.14) y = cae-",    ca = ca(i + a2y/2,
where

6 = limdist((x,t), la)   as(x,i)GAy,       x^-oo.

We claim that
(5.15) Ay is parallel to /„    in ß„.

Indeed, since Ay is convex to /„, if the assertion (5.15) is not true then there exist
points (x, t) in Ay n ßa whose distance Ô to /„ is larger than 6. It follows that

Va(x, t) = Cj~" < Ca0-< = y = w(x, t),

a contradiction to Lemma 5.2.
From (5.15) we quickly deduce that w = Va.
We next extend Lemma 5.4 by proving:

Lemma 5.5. There holds
(5.16) w=Va   in Ûa.

Proof. Since Va is constant in every direction parallel to la whereas w is convex,
we immediately deduce from Lemma 5.4 that
(5.17) w > Va    in ß„.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE BLOW-UP BOUNDARY FOR NONLINEAR WAVE EQUATIONS 237

Take any square T in Ûa with one of the diagonals parallel to the i-axis, and
denote its vertices by P¡, so that P, = (x0, tf), P2 = (x0, t2) with t2 < tf. By (1.2j)

(5.18) w(Pf) + w(P2) = w(P3) + w(P4) + \f Aw",

(5.19) Va(Pf) + Va(P2) = Va(P3) + Va(PA) + \lrAVp.

If T is chosen so that R, and P2 belong to ßa, then the left-hand sides of (5.18)
and (5.19) coincide. Since also w > Va in T, it follows, by comparing the right-hand
sides of (5.18), (5.19), that w = Va in T.

By varying T we can cover some e-neighborhood of the ray {t = x/a, x < 0}.
Proceeding step-by-step we can cover in this fashion all of ßa, and (5.16) follows.

Completion of the proof of Lemma 5.1. If (5.4) is not true, then ß < a and
G = Ûa n Uß ± 0, where ß^ is the sector bounded by the ray lß and {t = x,
x < 0}. Similarly to Lemma 5.5 we have w = Vß in ß^, so that Va = Vß in G, a
contradiction.

Having proved that a = ß, it follows that T0 is linear and w = Va.

6. ro linear ( AT < 3). In this section we extend Lemma 5.1 to N = 2,3. It will be
convenient to state the result in a slightly more general form:

Lemma 6.1. Let v be any solution of (4.10)-(4.17) which is convex. Then 3ß0 is a
hyperplane and, for a suitable rotation of the x, coordinates,

(6.1) v(x,t)= Va(xN,t)    for some a G [0,1).

Proof. For AT = 1 the proof is the same as the proof of Lemma 5.1. We may
therefore proceed by induction on AT.

Introduce implosions vx as in the case AT = 1 and take any limit w = limx _, w vx .
Since v is convex, the same is true of w; further, the blow-up set of w is a convex
cone f with vertex at the origin. To prove that 3ß0 is a hyperplane it suffices to
show that
(6.2) the convex cone f is a hyperplane.

Let / be any generatrix of f, and lQ the straight line containing /. For simplicity
we take
(6.3) /= {jc, = 0ifl <i <tV-1, t= axN, xN < 0},
where a > 0; clearly a < 1. Set

ß = {w < oo},

xx=(x,,x2-X)   if AT = 2,       xA = (x,,x2,x3 - X)    if tV = 3,

ßx= {(x,i);(*\r-«X)Gß},

wx(x,t) = w(xx,t - aX).

Then, for any sequence of X's increasing to oo there is a subsequence X„ such that
limAn _O0 ßA«ß and wx" -» W uniformly in compact subsets of w; further,
(6.4) Ù is a cyhnder /0 X ß0 where ß0 is a convex set.
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To prove (6.4) denote bye a unit vector in the l0 direction. If X g ß, then clearly
X + Xe g ß for any real X, and thus ß is a cylinder l0 X ß0. Since the sets ßx" are
increasing and convex, their limit ß is also convex; hence ß0 is convex.

Observe that IF is a convex function satisfying (5.12) and (4.12)-(4.16).
Set f = 3ß, f0 = 3ß0.
Introduce time-like and space-like directional derivatives DT = D, + aDx and

Dg = aDt + Dxy, the direction determined by DT is called the direction conjugate to
the hyperplane {/ = axN}. Then

D2-D2=(l-a2){D2-D2N).

Remark 5.1 applies here too, showing that

(6.5) W is constant along any line parallel to /, i.e., DaW = 0.

Hence, from (5.12) we get, setting Ds = (1 - a2) 1/2DT and W'(xx,..., xN_x, s) =
W(x,t),

DfW - A'W = A(W')P,
where A' = L^P/dxf; notice that

x^ - at -<*xN + t
s =

l-«2' 1-a2 (1-«2)1/2'

W also satisfies (4.12)-(4.15), (4.16) with the same e0, and is a convex function.
Applying the inductive assumption to W we deduce that

f0 is an (AT — l)-plane, and

(6'6) W'=Cad-"(-,f0),        Ca=Ca(l+a2y/2.

We can now show that

if. n\ at an^ Pomt OI" a generatrix I tot there is a unique tangent
plane T¡ to f.

Indeed, suppose II, and il 2 are two tangent hyperplanes. Then each n, is still
tangent to f and thus, by (6.4), (6.6), it must coincide with the hyperplane /0 X f0.

From (6.7) we have that

(6.8) f is differentiable at each of its points.

Take any generatrix / and let T¡ be the hyperplane which supports ß at 0 and
contains /. We now fix a coordinate system such that

(6.9) Ty. {t = axN,(Xf,...,xN_f,xN)&RN}.

Set

(6.10) Vl(x,t) = Ca(axN-ty.

Let /' be any straight line parallel to /. In view of (6.6), w - V¡ -> 0 if (x, /) -> oo
along /' (With t -* - oo). Also D„(w - Vf) = Duw > 0 along /'. It follows that

(6.11) w > V,    in ß.
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We shall now establish an extension of Lemma 5.4. Choose again the x¡ coor-
dinates such that (6.9) holds. Introducing DT and Da as before we have

Uw = (1 - a2)D2w -(1 - a2)D2 - A'w = Awp,
(6.12)

UV,= (1 - a2)D2V[ = AVf.

Let m be any ray with initial point on /, in the direction conjugate normal to T¡,
i.e., the direction v = aeN + eN+1, where e¡ is the unit vector in the positive x,-axis
(xN+l = t). For any e > 0 let Vf and T be translations of V¡ and / downward by e.
Then Vf = oo > w at m Pi Ie, Vf- - w -* 0 along m as (x, t) -* oo and, by (6.12),

(1 -a2)D2(w- Vf)>A(wp-(Vf)p).

Applying the maximum principle along m, we get w < Vf and, as e -* 0,

(6.13) w < V,    along m.

Recalling (6.11) we conclude that

if, ia\        w = F", in the 2-plane sector (in ß) n, generated by / and the
conjugate normal to T¡.

Remark 6.1. The conjugate normal to T, is time-like (in the original coordinates).
Indeed, this follows from the fact that v = aeN + eN+x (\a\ < 1) in the special
coordinates above, whereas the two coordinate systems are related by a rotation in
the x-space only.

We now represent the cone T in polar coordinates (8, p) by T: t = h(6)p, p < 0.
Assume that h0 = minfl h(8) is taken at 6 = eN. Then

T = [t = h0xN, (Xf,... ,xN_f,xN) G R   }

is the support hyperplane to the cone T along the generatrix p projecting on eN,
since both T and F have zero differential in 8 (T is differentiable, by (6.8)) and they
coincide along p. By (6.14) it then follows that w = V^ in the 2-plane sector (in ß)
n^ generated by (p,o), where a is the conjugate normal to T, that is, a = h0eN +
eN+f. Since both p and a are in the (eN, eA,+1)-plane, n^ is a vertical sector; thus

w=Vll   in nM,

n„= {(0,...,0,xN,t), xN/a < t <axN,xN> 0},

where we have taken a = h0 > 0.
We now proceed analogously to Lemma 5.5. Take any two cones in ß,

Kx¡s = {(x,f); |x - x| < i -t, t -8 < t < i}

and

Kxis = {(x,t); \x - x| < t - t, i < t < t +8),

where x = (0,..., 0, xN), i = i - 28, 8 > 0, and (x, i), (x, i") g n^. Take for defi-
niteness N = 3, and let t0 = t -8. Represent w(x, tQ + X) and w(x, t0 - X) by
(1.23), using the Cauchy data at t = t0, and add the corresponding expressions.
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Integrating with respect to X, 0 < X < 8, we obtain

(6.16)

f    w(x,t0 + X)dX= — (      w(x + 8i,t0)do>t:+ — [S dX[X (X-s)
J-s ¿v J\£\ = f 4ir/0        J0

X f       A[wp(x +(X - s)r],t0 + s) + wp(x+(X - s)t],t0 - s)] d<v
J\v\=l

Similar representation holds for V^. By (6.15) w(x, t) = Vy(x, r) if t < t < i. Since,
further, w > Vu in ß (by (6.11)), we conclude from (6.16) that

(6.17) w=Vll    in KxJS u KxJs.

By varying x, t, 8 we can establish that w = V^ in a cone t\T* = {|x| < t — c,
— oo < 7 < — a} for some positive constants c, a.

Since any generatrix / of f is space-like and its conjugate time-like (see Remark
6.1) the sector n, defined in (6.14) must intersect the cone t^T*. But then, by
comparing (6.17) with (6.14) we deduce that V¡ = V^ for any /, which means that f
is planar. Thus (6.2) is vahd and then also (6.1) holds.

7. Continuous differentiability of the blow-up boundary. In this section we complete
the proof of Theorem 1.1. Let (x0, r0) be any point of T and take any blow-up limit

(V.I) UK^V-

By Lemma 6.1, v is a plane solution, i.e.,

(7.2) v = Va

and {v < oo} is a half-space ß0. Denote the tangent plane by T0 and its inner
normal by AT0.

For any e > 0 denote by Se the set of all unit directions t with t ■ N0 > e. For any
t G Se consider the functions Un(x, t) = dux (x, 7)/3t in the domain

Gs = Bf n ß0 n (dist((x, t), r0) > 8},

where 8 is any small positive constant.
Since the convergence in (7.1) is in the C3-ß(Gs) sense (for any 0 < ß < 1), we

certainly have that

,    s v„ -» Va„      VXU„ -* vxvaiT,
(     ' D,Un -* D,VaT    uniformly in Gs.

Now, the condition (1.83) holds for VaT if the initial conditions are taken in the
base of a cone K* for which the base lies in Gs; the same is then true of Un if
n > n0. But for some small p > 0, every point (x, t) g Rp with ux(x, t) < oo can be
taken as a vertex of such a cone K* with «Xn < oo in K*. Appealing to the
representation (1.2) we deduce that Un(x, t) > 0 if n > n0. Thus, in particular,

t-«x    >0    in R„n(wx    < oo},
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which means that

(7.4) |^>0   inRXnp(x0,i0)nßVTGSe.
Or o

It follows that the blow-up surface in Bx (x0, tQ) is a graph in each direction t
of Se. Consequently, the Lipschitz surface t°= <¡>(x) satisfies \Di<p(x) - D¡<j>(x')\ <
Ce for a.e. points x, x' in some ball R„(x0), with a > 0. This imphes that (¡> is
continuously differentiable.

Remark 7.1. From the above proof it follows that for the full blow-up family «x
there holds ux -» Va in C3'ß in compact subsets of ( Va < oo}. This implies that

2        I I2

(7-5) ,Ti        ->-^r    asd(x,0-0,(x,0-(x0,^(x0)),

and

(7.6)

M? 2,4
1 -a2'    up + x       P + l 1-a

a =|v<i>(x0)|,

1-«2\1/("_1) ,„-i_.   1 2(/> + l)ud"^AA-—-\ ,       ¿g"
1 + «2/ ' ° ^(p-1)2'

Remark 7.2. The proof of Theorem 1.1 extends to the case where F = F(x, u).
Remark 7.3. For N = 1 Theorem 1.1 can be established assuming on /, g only

the condition (1.7); some monotonicity properties of <i>(x) can also be established.
This will appear in another publication (Differentiability of the blow-up curve for one
dimensional nonlinear wave equations, in Arch. Rational Mech. Anal.).
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