
The BlueJ system and its pedagogy

1

The BlueJ system and its pedagogy1

Michael Kölling†, Bruce Quig, Andrew Patterson, John Rosenberg
†Mærsk Institute, University of Southern Denmark

†mik@mip.sdu.dk

Faculty of Information Technology, Monash University
{ajp, bquig, johnr}@infotech.monash.edu.au

1 published in the Journal of Computer Science Education, Special Issue on Learning and Teaching
Object Technology, Vol 13, No 4, Dec 2003.

Abstract

Many teachers experience serious problems
when teaching object orientation to beginners
or professionals. Many of these problems
could be overcome or reduced through the use
of more appropriate tools. In this paper, we
introduce BlueJ, an integrated development
environment designed for teaching object
orientation, and discuss how the use of this
tool can change the approach to teaching.

1 Introduction

Teaching software engineering with an object-
oriented language has become commonplace
in universities in the last decade or so. Most
courses have moved towards teaching object-
orientation with some software engineering
elements in their introductory programming
course in the first year of study. We agree with
these moves and will not argue the benefits of
this approach anymore - we rather assume that
the reader agrees or leave it to other papers to
pick up this argument.

In this paper, we will discuss how such a
course should be taught. It is a common
observation that those teaching introductory
object-oriented programming courses find this
more difficult than they experienced with the
teaching of procedural languages. Why is this?

Our hypothesis is that teaching object
orientation is not intrinsically more complex,
but that it is made more complicated by a
profound lack of appropriate tools and
pedagogical experience with this paradigm.

This paper will introduce BlueJ, an integrated
development environment (IDE) specifically
developed for teaching and learning object-
oriented programming, and present a
pedagogical approach developed to be used
with a system such as BlueJ. We will not
remain at an abstract, theoretical level, but will
give concrete examples by presenting a
sequence of assignments designed to support
and exploit the pedagogical ideas and
technical possibilities of the environment.

We start, however, by summarising briefly the
problems we have found in other
environments for object-oriented languages.

2 Shortcomings of traditional
systems

This section provides a brief summary of what
we see as the key criticism of existing
development environments for object-oriented
teaching. For a more detailed discussion, see
(Kölling, 1999a).

The fundamental problems with most existing
environments can be summarised in three key
points:

1. The environment is not object-oriented.

2. The environment is too complex.

3. The environment focuses on user
interfaces.

We discuss each of these in some more detail.

The BlueJ system and its pedagogy

2

Figure 1. The BlueJ main window

2.1 The environment is not object-
oriented.

An environment for an object-oriented
language does not make an object-oriented
environment. The environment itself should
reflect the paradigm of the language. In
particular, the abstractions students work with
should be classes and objects. In most existing
environments, students deal with files and an
application instead. They are forced to think
about the operating system's file system and
directory structure. Setting up projects can be
difficult. All this creates overheads that hinder
teaching and distract from the important
issues. When students work in such
environments, their interaction is exclusively
with lines of source code, not with objects.
Consequently, they come to view
programming as dealing with lines of code,
rather than dealing with object structures.
Objects as interaction entities are not
commonly supported. Yet they are one of the
most fundamental abstraction concepts.

2.2 The environment is too
complex.

Many teachers do not use an integrated
environment, because of problems with
finding a suitable one. Students must work
from a command line (using Sun's Java SDK)
and spend considerable time becoming
familiar with Unix or DOS instead of learning
about programming. The result is a loss of
valuable opportunities for improved teaching
and learning through the use of better tools.
The converse problem is that many other
environments are developed for more
professional users and present an over-
whelming set of interface components and
functionality. Students are lost in these
environments, and the effect can be as bad as
having no integrated environment at all. Other
environments are really modifications of non-
object-oriented (procedural) environments and
offer the wrong set of tools and abstractions.
Thus, the tools are either too minimalist, too
complicated or inappropriate and cause
considerable problems.

The BlueJ system and its pedagogy

3

2.3 The environment focuses on
user interfaces.

Many environments using graphics use the
graphics for the wrong tasks. In particular,
many environments concentrate on building
graphical user interfaces (GUIs). Building
GUIs from the start conveys a very distorted
picture of programming and object-orientation.
Students spend their time dragging buttons
rather than thinking about building an
application. In discussions about the value of
IDEs for teaching, people often equate
environments with GUI builders. This is a
dangerous trap that should carefully be
avoided when discussing IDEs. There are
more useful tools for learning object
orientation than GUI builders.

One of the most beneficial uses of graphics is
often neglected: a display of class structure.
Object-oriented program structure can be
represented graphically in a way that makes it
easier to understand and discuss design issues.
Few existing environments make good use of
this.

3 BlueJ

BlueJ is an integrated Java development
environment specifically designed for
introductory teaching. BlueJ is a full Java 2
environment: it is built on top of a standard
Java SDK and thus uses a standard compiler
and virtual machine. It presents, however, a
unique front-end that offers a different
interaction style than other environments.

BlueJ offers a unique mechanism of direct
parameterised method calls. This mechanism
allows teachers to delay the introduction of
other interface technologies such as text based
interfaces, GUIs or applets until a more
appropriate point in the course.

The environment's interface facilitates the
discussion of object-oriented design and aids
in using a true "objects first" approach.

3.1 Overview

When a Java project is opened in BlueJ, the
main window shows a Unified Modeling
Language (UML) class diagram visualising the
application structure (Figure 1). Users can then
interact directly with classes and objects. A
class icon can be used to execute a constructor,

which results in an object being created and
placed on the object bench at the bottom of the
main window. Once the object has been
created, any public method can be executed
(this is discussed in more detail below).

A double-click on a class icon opens a text
editor that lets users read or edit the class's
source code. A simple click on a "Compile"
button will recompile all changed classes and
execution can start again. Compile-time errors
are displayed directly in the editor by
highlighting the corresponding line and
showing the text of the error message.

The following sections discuss some of the
most important aspects of the system in more
detail.

Figure 2. Object creation dialogue

3.2 Interaction

3.2.1 Creating objects

Clicking on a class icon with the right mouse
button displays a class menu. This contains
some environment operations (such as
compiling, editing and removing the class) as
well as entries to invoke the constructors of
the class.

When a constructor is invoked, a dialogue is
displayed prompting the user for a name for
the object (a default name is supplied) and, if
appropriate, the parameters. Figure 2 shows
the dialogue for a constructor with two
parameters.

Once the dialogue is confirmed, the
constructor is executed and the resulting object
is placed on the object bench.

3.2.2 Calling methods

A right-click on an object displays an object
menu (Figure 3). The object menu contains
two environment operations ("Inspect" and
"Remove") and an entry for each public
method defined in the object's class. Inherited

The BlueJ system and its pedagogy

4

methods are placed in submenus. Selecting
one of the methods results in that method
being executed. If the method expects
parameters, a dialogue similar to that shown
for object creation is displayed to let the user
specify the parameter values. Parameters can
either be typed in (any valid Java expression is
allowed) or other objects from the object
bench can be chosen. Objects are specified as
parameters by supplying their name (a simple
click on the object is a shortcut to inserting the
object's name into the parameter dialogue).

Figure 3. The object menu

If a method has a non-void return type, the
result is displayed in a method result dialogue.
If the result value itself is an object type, the
object can be placed on the object bench for
further interaction.

BlueJ also provides a mechanism to instantiate
classes from the standard Java class library.
Users can then interact with these objects in
the same way they do with objects from their
project. This allows students to explore and
experiment with library classes and objects.
They can, for instance, directly interact with
string objects or hash tables to observe their
behaviour.

3.2.3 Inspection

The interaction mechanisms allow very
sophisticated and detailed testing of classes.
Once a method has been written it can
immediately be tested without the overhead of
writing test drivers. Sometimes, however, a
user wants to test a method that alters the state
of the object, while no accessor methods are
available to directly observe the state. For
example, a constructor has just been written,
and no other methods are implemented yet, but
we would like to test the constructor before
proceeding.

In this case, object inspection can be used to
check the effect of the method. The "Inspect"
operation from the object menu opens the
object inspector, which displays the values of
all static and instance fields of the object
(Figure 4). Any fields that are themselves
objects can be recursively inspected.

Figure 4. The object inspector

3.3 Visualisation

One of the central aspects of the BlueJ
environment is the class structure display in its
main window. This forces students to
recognise and think about structure from the
very first time they see a Java program. When
showing students the very first example
program, it becomes immediately clear that an
application is a set of cooperating classes.

Traditionally, one of the hard-to-explain (but
very important) issues is the difference
between classes and objects, and their
relationships. Using BlueJ, a teacher can
interactively create multiple objects of a class
and inspect and interact with every one of
them. The relationship between classes and
objects usually becomes clear very quickly.
Without the need to talk much about it,
students see that the class is used to create
objects (as many objects as desired), and that
the objects contain data. They also notice that
the type of data in each object of the same
class is the same, while the actual values are
different.

It also becomes apparent that objects are
manipulated by invoking operations on them
(which they provide) that alter their state.
Some operations return information about the
state.

The BlueJ system and its pedagogy

5

Thus, visualising the important abstraction
entities of object orientation (classes and
objects) and allowing direct interaction with
each serves to illustrate the OO concepts in a
powerful and easy-to-understand manner
without the need for long, dry explanations.

3.4 Simplicity

The third cornerstone of the BlueJ architecture
(besides interaction and visualisation) is
simplicity. The major problem with many
existing environments is their complexity.
Most environments were designed primarily
for professional programmers, and the
complexity of their tools overwhelms
beginners. Beginning students need different
tools than professional software engineers.
This issue has been discussed in detail in the
context of the original Blue system (Kölling,
1999b) on which BlueJ is based.

BlueJ is designed specifically for beginners.
The central aim is that we want to teach about
OO programming, not about using a particular
environment.

With BlueJ, students can start using the
environment on their own almost immediately.
After the first half hour of the first tutorial, we
never talk about the environment again, and
students are able to competently use it. We
have traded some advanced functionality not
needed in first year courses for ease-of-use,
resulting in an environment not necessarily
suitable for professional development, but
much better suited to first year teaching.

3.5 Other BlueJ features

BlueJ includes a variety of other features,
which we will not discuss in detail here. Some
of the most important are an integrated, easy-
to-use debugger, integrated support for
Javadoc generation, sophisticated support for
generating and executing applets and an export
function that can create executable jar files.

The applet support includes automatic
generation of an applet skeleton, automatic
generation and loading of an HTML page and
the ability to run the applet in web browsers
and applet viewers.

Details can be found on the BlueJ web page
(Kölling, 2001) and in the BlueJ
documentation (available from that web page).

4 Pedagogy

BlueJ, through its unique functionality and
interface, allows teachers to teach introductory
courses differently than can be done without it.
Standard programming examples from
existing courses and textbooks can be used,
and students will benefit from the greater level
of interaction and the simplicity of the
interface. To exploit the full potential of BlueJ,
however, a course should be specifically
designed for the functionality of BlueJ.

In an earlier paper (Kölling & Rosenberg,
2001) we have outlined the principal ideas
behind the pedagogy for teaching with BlueJ.
The main points were presented as a sequence
of eight guidelines for developing
programming assignments for BlueJ. They
were:

Guideline 1: Objects first.

Guideline 2: Don't start with a blank screen.

Guideline 3: Read code.

Guideline 4: Use "large" projects.

Guideline 5: Don't start with "main".

Guideline 6: Don't use "Hello World".

Guideline 7: Show program structure.

Guideline 8: Be careful with the user
interface.

In summary, these guidelines suggest an
approach to teaching that starts by presenting
to students reasonably large projects from the
beginning. Students would then be expected to
execute, read, modify and extend the projects
(in that order). Writing completely new
projects from scratch is seen as an advanced
exercise. This approach contains elements
described in (Linn & Clancy, 1992), which
report benefits from the use of case studies in
programming teaching. It is also related to the
Applied Apprenticeship Approach (Astrachan
& Reed, 1995), which encourages students to
read, study, modify and extend existing
programs. Some elements from problem based
learning approaches (Barg et al., 2000) are
also included.

In the following section, we present a
sequence of assignment projects that
implements these ideas.

The BlueJ system and its pedagogy

6

5 An assignment sequence

The sequence of assignments presented here is
designed to span two courses over two
semesters. Source code for all assignments is
avai lable f rom a web s i te a t
http://www.mip.sdu.dk/~mik/code.

5.1 The first step: execution

The purpose of the first project is to convey a
feeling of the basics to students. These are an
impression of objects, classes and methods and
of a program as a collection of interacting
classes.

For this we use a project called "shapes". This
project contains classes for creating circles,
squares and triangles, which are represented
on screen and can be moved, resized and
changed in colour by interactively invoking
methods on the separate shape objects.

Students interactively manipulate these objects
to create a picture on screen. Note that the
manipulation is done via interactive method
calls, not by dragging picture objects as in
some graphics programs.

In doing this, students practice creating
objects, calling methods and passing
parameters. They also get a first hint at types:
integer and string types are used as
parameters. In addition, we let students inspect
objects (that is: view the values of the internal
variables). This activity illustrates several
important concepts:

Java applications consist of a collection of
classes;

classes can be used to create objects;

many objects can be created from one class;

objects have operations (methods);

methods may have parameters and return
values; and

objects have a state (fields with values that
may change through method calls).

Students can experiment with objects and get a
feel for these important concepts without
being distracted and held back by Java syntax
issues.

5.2 Writing Java: “picture”

The next step is to give students an impression
of program source and Java syntax. In this
activity, they start making small modifications
to existing code. We use a project named
"picture". "picture" is similar to the “shapes”
project, but contains an additional "Picture"
class that combines various shapes to draw a
picture. Students look at the picture by
creating a picture object and invoking its
“draw” method. This draws the picture on
screen.

We then get students to open the source and
find and read the “draw” method. The picture,
inside its draw method, creates a few
rectangles, triangles and circles, changes their
size, position and colours, and thus creates
what looks like a simple block painting of a
house with the sun in the sky.

 Students immediately notice that the source
code implements exactly what they have just
done interactively in the “shapes” exercise.
They can very quickly understand the meaning
of the source and make modifications.

We start by giving them simple tasks to do,
such as “Make the sun blue”. We fairly
quickly move to creating completely new
pictures. Here, students write their first Java
code, consisting of object creation, method
calls and parameter passing.

Good students very quickly come up with
quite sophisticated ideas. The shape objects,
for example, have methods such as
“ s l o w M o v e V e r t i c a l (i n t) ” a n d
“slowMoveHorizontal(int)” to create an
animation effect by moving them slowly
across the screen. Students regularly start
creating animated pictures in which the sun
sets or a ball rolls over the screen.

5.3 Implementing methods:
Calculator, Blocks and MIF

The next step is for students to extend existing
classes by implementing methods or adding
their own methods to an existing class. Here,
the project typically consists of multiple
classes, but all the work the student is
expected to do is within one or two selected
classes. All other classes are provided fully
implemented. We use three assignments of this
kind, the first one is a "calculator" project.

The BlueJ system and its pedagogy

7

Similar projects have been used by other
people. A good example is described in a
paper by Reges (Reges, 2000).

The calculator project has a graphical user
interface (completely implemented) and a
"CalcEngine" class with method stubs, in
which students implement the calculator logic.
The CalcEngine class has fields to hold the
internal values and methods that are invoked
when a number or operator button is pressed.
Implementations for all these methods are very
simple. Loops, for instance, are not required.
Students deal mainly with variables,
assignments, simple operations (addition,
subtraction), instance fields and return values.
One of the main aims is for them to understand
the interaction of different objects in order to
make a program work.

There are two more assignments of this style,
where students are expected to implement
slightly more complex methods in an existing
class. The first is called “blocks” and is a
partial implementation of a Tetris-like game.
Again, students are given several classes,
including a graphical user interface, but are
expected to modify only a single class.

The last example of this kind deals with image
manipulation (named “imageviewer”). Images
are represented in MIF - Monash Image
Format - which is a simple two-dimensional
array of bytes. Students implement a set of
image operations, such as “brighter”, “darker”,
“smooth”, “pixelise”, “flip” or “threshold”.
This assignment is partly designed to practice
loops and other control structures as well as
arrays. On the other hand, this assignment also
requires students not only to fill in bodies of
existing methods, but also to add completely
new method definitions.

This is the last assignment in semester 1. The
following two projects are semester 2
assignments.

5.4 Adding classes: The World of
Zuul

The next step is a project where students
create complete classes (again as part of an
existing project). Here, we have used a simple
text based adventure game called "The World
of Zuul" similar to that described in Adams
(2002). A basic framework is given to students

that implements different rooms, input of
commands and movement through rooms.

Students are asked to invent a game scenario,
add items to rooms, the ability for players to
carry items (up to a certain weight), etc. The
scope for challenge tasks is endless.

One crucial aspect is that some of the tasks
clearly require the addition of new classes, the
most obvious one being an “Item” class.
Students also go through exercises reading and
understanding the existing code. They have to
make changes in most (but not all) of the
classes, but they have to figure out themselves
what they have to change and where.

This has been one of the most successful
assignments, with surprisingly elaborate
student submissions both in inventiveness of
story telling and technical implementation.

5.5 The ultimate challenge: Do it all

The last step is a project where students work
in groups and create a whole application from
scratch. This time, only a brief problem
description is given, and students have to go
through the whole development process,
including the class design (with a lot of
guidance).

We have used a variety of continuous event
simulations as projects. They included a
supermarket checkout simulation, a traffic
intersection with traffic lights, a lift
simulation, emergency evacuation from
buildings, a marine life simulation and others.

At this stage of the course, we don’t discuss
small scale programming issues very much
anymore. The low level code writing is
assumed to be mastered by students, and the
project serves as a practice ground for
applying these skills. The really new and
challenging issues at this stage are application
design and group work.

Simulations are an ideal example for
practicing object-oriented design, because
almost all objects needed in the application
have corresponding objects in the real world,
and are very easy to recognise with fairly
simple methods. We use the noun/verb
analysis and CRC cards (Beck & Cunningham,
1989) for class discovery.

The BlueJ system and its pedagogy

8

Small scale problems are usually solved by
groups internally, while the lecturer and tutor
concentrate on discussing analysis, design and
group work issues. It is made very clear that
the group work aspect is not a coincidental
side issue, but one of the important study
topics of this course. Well organised group
work processes are expected to be set up and
documented.

This is the first time students do design, but
not the last. In the following year of study,
there is a whole subject about analysis and
design. We go through their first design with a
lot of advice and attention to make sure that all
groups arrive at a solution that is
implementable within their given time.

This project is by far the longest of the
assignment projects. Students are given eight
weeks to complete the project, and the
deliverables include a report and a
demonstration.

6 Discussion

The projects and assignments presented here
implement a sequence of activities that
introduce the important concepts of object-
orientation in a significantly different order
than traditional programming courses. One of
the unique aspects is a true “objects first”
approach: students start seeing and interacting
with objects as the very first thing, even before
being confronted with Java syntax or source
code.

"Objects early" approaches are quite popular
in the introductory object-oriented teaching
community, and most newer textbooks attempt
to follow such an approach. The problem,
however, that generally has to be overcome is
that of the syntax required to arrive at the first
objects. In traditional environments, Java
syntax has to be dealt with first, before objects
can be created. In addition to syntax, the
required Java code exposes concepts such as
the main method, array parameters, object
creation, variable declaration and dot notation
for method calls.

Beginning students typically struggle with this
syntax and language constructs, with the result
that they are already working hard on
understanding details by the time they get to
encounter the big concepts. For students, the
big concepts – classes, methods, parameters,

invocation – do not stand out very clearly.
They are in danger of being lost among the
detail.

The BlueJ environment, through its interaction
facilities, allows reversal of the order of
introduction. Interaction with objects can be
presented first, leading to detailed discussions
of the main concepts of object orientation,
before the need to deal with source code.
Students can interact with object as their first
task.

From there on, students go through a sequence
of progressively more complex activities.
They are:

make small modifications to existing methods;

implement complete method bodies where
method signatures are supplied;

add new methods to existing classes;

add new classes to existing projects; and

finally, create a complete project.

All of this work is done in the context of
relatively “large” projects. Students get used to
reading and modifying existing code from the
very beginning. Many of these activities
conform to an educational pattern called “Fill
in the Blanks” (Bergin, 2000).

 Without BlueJ, following such an approach is
not as easily possible.

It would be interesting to test BlueJ and its
capabilities in a real problem-based learning
(PBL) course. While the above set of projects
has some elements of PBL, the whole course is
not run in a PBL mode. We suspect that BlueJ
and PBL would complement each other in an
ideal way.

7 Evaluating BlueJ

BlueJ was first used in a CS1 course at
Monash University in 1999. Students taking
this course were invited to participate in a
series of surveys to allow us to evaluate the
environment. A detailed summary of this
evaluation was presented by (Hagan &
Markham, 2000). Student perceptions were
that the environment was helpful, particularly
the object bench functionality and integration
of the compiler error messages and source
editor.

The BlueJ system and its pedagogy

9

The majority of negative feedback related to
product stability and difficulty of installation.
Since that evaluation took place, the stability
of both BlueJ and the underlying Java libraries
upon which it depends have been greatly
improved. The study also notes that the results
of subject examinations and assignment
interviews showed that students generally had
a good grasp of object-oriented concepts. This
was in contrast to their earlier experiences
using C++.

There is continuing work on providing more
insightful methods of evaluating development
environments for teaching introductory
programming (McIver, 2002). This study
aims to develop a method for the empirical
study of development environments, both
comparatively and in isolation. The first
planned stage of this work is the use of BlueJ
in pilot trials. This will involve the use of an
instrumented version of BlueJ with logging
facilities in which user interaction is recorded.

8 Related Work

Several systems exist that provide similar
functionality to parts of BlueJ. Class structure
visualisation is provided by a number of
object-oriented design tools, such as Rational
Rose (IBM Rational Rose, 2003), and
development environments, such as JBuilder
(JBuilder, 2003). These systems, however, are
aimed at professional developers and lack the
ease-of-use needed to make them appropriate
for introductory teaching. They also do no
support interaction at an object level.

More recently, several systems were published
that allow direct interaction with Java objects.
Most notable among these are BeanShell
(BeanShell, 2003) and DrJava (DrJava, 2003).
Both of these are Java interpreters that allow
interactive evaluation of a series of Java
statements. Their interface resembles that of a
Unix shell or a traditional Lisp read-evaluation
loop.

The main difference between Java source
interpreters and BlueJ is the level of
conceptual abstraction provided by the user
interface. The abstraction used for interaction
in Java interpreters is lines of source code. The
conceptual abstractions used in BlueJ are
classes and objects, represented graphically.

We believe that the initial focus on higher
level concepts benefits a deeper overall
unde r s t and ing o f ob jec t -o r i en ted
programming. The early fixation on source
code can distract from important issues and
hide the bigger picture. We are, however, not
aware of a formal study to confirm or reject
these assumptions.

9 Potential Problem Areas

While our experience with BlueJ is
overwhelmingly positive, there are several
potential sources of problems that teachers
should be aware of. They are occasional
reluctance of students to leave BlueJ behind,
organisation of the transition out of BlueJ, and
the treatment of lower level language issues.
We discuss each of these topics in more detail.

9.1 The Need To Leave BlueJ

BlueJ is intended as an introductory learning
environment. Mastering the use of BlueJ has
no value in itself – it is a tool for a purpose. A
professional software engineer or computer
scientist should be familiar with more
professional development tools and be able to
cope with minimal installations, such as
command line environments and plain text
editors for the purpose of developing
programs. Thus, it is important that students
learn to use professional tools before leaving
the university.

In some students we observe a reluctance to
change: students cling on to the use of BlueJ
and use it at inappropriate levels. (Other
students are only too happy to migrate to more
powerful tools!)

The design goal for BlueJ was to support
programming in the first year. The optimal
exit point for BlueJ is not entirely clear, and
can depend on a variety of factors. We feel,
however, that BlueJ should not be used
beyond the first year. We consider it essential
that students mature out of BlueJ and are
forced to gain experience with professional
development tools afterwards. Second or third
year courses should ensure, by setting
appropriate requirements, that students make
this step.

The BlueJ system and its pedagogy

10

9.2 Transition To Other
Environments

When students change to a different
environment the second potential problem can
arise: mastering the transition. Our experience
shows that the mere fact that use of another
environment is required, can leave some
students with problems.

We have found it beneficial to explicitly
address the transition to the next environment
in discussions. Expecting students to transfer
the concepts on their own, obvious as they
might seem to the teacher, is not always
successful. We have repeatedly observed an
effect where students who were successful in
the use of BlueJ have difficulty applying the
same concepts in a more traditional
environment.

Discussing the transition and the transfer of
concepts does not take much time: a single
one-hour lecture is usually enough. Such a
proactive approach, however, seems to make a
big difference.

9.3 Treatment Of ‘Traditional’
Material

We receive occasional feedback that students,
while gaining a good understanding of object-
oriented concepts, are weaker in traditional
areas, such as data structures and algorithms,
than students who learned without BlueJ.

We speculate that the reason for this is not
intrinsic in the BlueJ environment, but in the
way a BlueJ course may be structured. In our
BlueJ-related publications (such as in this
one), we often concentrate discussion on
object concept issues. It is not our intention to
suggest that these issues should replace more
traditional programming skills, but rather that
the environment facilitates a reordering of
topics. There seems to be a danger, however,
that teachers focus on object-oriented concepts
to such an extent, that basic writing of
algorithms is somewhat neglected.

It is a general problem that more and more
concepts are introduced into modern
introductory programming courses (such as
group work, testing, GUIs, concurrency,
design issues, etc.). This necessarily leads to a
reordering that results in some traditional
material being moved into another semester or

being dropped altogether. This is an issue
independent of the environment used. The
point to note is that important skills – the
competent use of control structures,
algorithmic thinking, recursion, etc. – still
need the same amount of attention they needed
in previous course structures. The use of an
objects-first-approach does not lead to students
magically mastering these issues.

10 Recent Developments

As a result of the continued growth in BlueJ’s
user base we are able to gain valuable
feedback from both course providers and end
users. This BlueJ community has helped to
shape the future directions the BlueJ
development group plan to take with the
further enhancement and refinement of BlueJ.

Two of the most notable recent additions to
the BlueJ environment are the integrated
support for regression testing using JUnit, and
an extension interface.

10.1 Regression Testing With JUnit

BlueJ’s object interaction facilities provide a
very low cost entry to testing on an informal
level, but lack support for more organised
testing. There is a growing recognition of the
value of the use of unit testing frameworks
such as JUnit (JUnit, 2002).

JUnit is a small framework that allows
organised regression testing through writing of
test methods. It provides functionality to easily
execute test banks, express assertions on the
results and be notified of failing test cases.

The JUnit test framework has recently become
very popular in the Java community as a tool
for organising testing, partly because of its
extensive use in the extreme programming
(XP) process (Beck, 1999).

The latest version of BlueJ (version 1.3.0)
includes an integrated implementation of JUnit
to support the teaching of organised testing to
students. The interaction mechanism described
above supports ad-hoc testing in a convenient
way, but is not suitable for more organised
repetition of test cases. The integration of
JUnit overcomes this problem.

The result is not only the sum of these two test
mechanisms, but the creation of a new quality

The BlueJ system and its pedagogy

11

of test tool through the combination of both:
interactive test sessions can now be recorded
and automatically saved as JUnit test methods
to be replayed later for regression testing.

10.2 The Extension Mechanism

A continuous tension exists between requests
for additional features being added to the
BlueJ environment and our desire to keep
BlueJ simple and small.

This tension has led to the development of an
extension (sometimes called “plug-in”)
interface. Using this interface, third party
developers can now write extensions to the
BlueJ environment. Extensions have access to
most of the BlueJ constructs and can be
notified of user or environments actions via an
event mechanism. The first extensions that
have become available support automated
project submission and code style checking.

11 Future Work

Areas which are currently being investigated
are the support for group-work and scripting
support. Both are likely to be created using the
extension mechanism.

 Group work support aims at integrating tools
that allow groups of students to work on a
common project. A possible model currently
under investigation is an implementation based
on CVS with a simplified user interface.

Scripting support would allow the creation of
interactive tutorials with live links between the
tutorial and a BlueJ instance. An HTML based
tutorial could initiate actions in BlueJ and
monitor user actions to dynamically adapt its
sequence.

Both projects are now underway.

References
[1] Adams, R. (2002). The Colossal Cave

Adventure Page [Website]. Retrieved
S e p t e m b e r 2 0 0 2 a t
http://www.rickadams.org/adventure/

[2] Astrachan, O., & Reed, D. (1995). AAA and
CS 1: The Applied Apprenticeship Approach to
CS 1. Paper presented at the 26th SIGCSE
technical symposium on Computer science
education, Nashville, Tennessee USA.

[3] Barg, M., Fekete, A., Greening, T., Hollands,
O., Kay, J., & Kingston, J. (2000). Problem-
based learning for foundation computer
science courses. Computer Science Education,
10, 1-20.

[4] BeanShell (2003). BeanShell - Lightweight
Scripting for Java [Website]. Retrieved June
2003 at http://www.beanshell.org/

[5] Beck, K., & Cunningham, W. (1989). A
Laboratory For Object-Oriented Thinking.
Paper presented at the OOPSLA, New Orleans,
Louisiana USA.

[6] Beck, K. (1999) eXtreme Programming
eXplained. Addison-Wesley.

[7] Bergin, J. (2000, July, 2000). Fourteen
Pedagogical Patterns for Teaching Computer
Science. Paper presented at the Proceedings of
the Fifth European Conference on Pattern
Languages of Programs (EuroPLop 2000),
Irsee, Germany.

[8] DrJava (2003). DrJava [Website]. Retrieved
June 2003 at http://drjava.sourceforge.net/

[9] Hagan, D., & Markham, S. (2000, December).
Teaching Java with the BlueJ Environment.
Paper presented at the Australian Society for
Computers in Learning in Tertiary Education
(ASCILITE 2000), Coffs Harbour, Australia.

[10] IBM Rational Rose (2003). Visual Modeling
With Rational Rose [Website]. Retrieved June
2 0 0 3 a t
http://www.rational.com/products/rose/index.js
p

[11] J B u i l d e r (2003). Borland Sof tware
Corporation - JBuilder [Website]. Retrieved
June 2003 at http://www.borland.com/jbuilder/

[12] JUnit (2002). JUnit, Testing Resources for
Extreme Programming [Website]. Retrieved
September 2002 at: http://www.junit.org

[13] Kölling, M. (1999a). The Problem of Teaching
Object-Oriented Programming, Part 2:
Environments. Journal of Object-Oriented
Programming, 11(9), 6-12.

[14] Kölling, M. (1999b). Teaching Object
Orientation with the Blue Environment.
Journal of Object-Oriented Programming,
12(2), 14-23.

[15] Kölling, M. (2001). BlueJ - Teaching Java
[Website]. Retrieved September 2001 at:
http://www.bluej.org

[16] Kölling, M., & Rosenberg, J. (2001).
Guidelines for Teaching Object Orientation
with Java. Paper presented at the 6th
conference on Innovation and Technology in

The BlueJ system and its pedagogy

12

Computer Science Education (ITiCSE 2001),
Canterbury, UK.

[17] Linn, M. C., & Clancy, M. J. (1992). The Case
for Case Studies of Programming Problems.
Communications of the ACM, 35(3), 121-132.

[18] McIver, L. (2002, 18-21 June). Evaluating
Languages and Environments for Novice
P r o g r a m m e r s . Paper presented at the
Fourteenth Annual Workshop of the
Psychology of Programming Interest Group
(PPIG 2002), Brunel University, Middlesex,
UK.

[19] Reges, S. (2000, March 2000). Conservatively
Radical Java in CS1. Paper presented at the
SIGCSE 2000, Austin, Texas USA.

