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The Bochner curvature tensor on almost
Hermitian manifolds

By L. VANHECKE and D. JANSSENS
(Received June 22, 1977; Revised September 26, 1977)

Abstract. We prove a decomposition theorem for curvature tensors on
a Hermitian vector space over R and use this to introduce Bochner curvature
tensors. Applications which include the well known K\"ahler case are given
for almost Hermitian manifolds.

0. Introduction

Singer and Thorpe [11] established a natural decomposition of curvature
tensors on an n-dimensional real vector space with inner product and Nomizu
[10] used this decomposition to study generalized curvature tensor fields.
Kowalski [8] considered also a decomposition theory to study conformal
differential geometry. In these papers the Weyl conformal curvature tensor
is obtained in a very natural way as a projection of the Riemann curvature
tensor.

Sitaramayya [12] and Mori [9] gave a similar decomposition to study
curvature tensors on K\"ahler manifolds.

In this paper we extend these results, based on [14]. First we prove
a decomposition theorem for a class of curvature tensors L on a Hermitian
vector space V and derive the Bochner curvature tensor associated with
L. Then we consider a large class of almost Hermitian manifolds and study
some properties of the Bochner curvature tensor field associated with the
Riemann curvature structure.

1. Curvature tensors

Let V be an n-dimensional real vector space with inner product g. A
tensor L of type (1, 3) over V is a bilinear mapping L:V\cross Varrow Hom(V, V) :
(x, y)arrow L(x, y) . L is called a curvature tensor on V if it has the following
properties :
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i) L(x, y)=-L(y, x) ;
ii) L(x, y) is a skew-symmetric endomorphism of V, i . e. , L(x, y, z, w)

+L(x, y, w, z)=0 where L(x, y, z, w)=g(L(x, y)z, w) ;
iii) \mathfrak{S}L(x, y)z=0 , where \mathfrak{S} denotes the cyclic sum over x, y and z.

This is the first Bianchi identity.

This means also that L is a symmetric double form of type (2, 2) which
satisfies the first Bianchi identity [2].

The Ricci tensor L_{R} of type (0, 2) associated with L is a symmetric
bilinear function on V\cross V defined by

L_{R}(x, y)=trace(z\in V\mapsto L(z, x)y\in V)

Then, the Ricci tensor Q=Q(L) of type (1, 1) is given by L_{R}(x, y)=g(Qx,y)

and the trace of Q is called the scalar curvature l=l(L) of L.

2. K_{i}-curvature tensors

Now let V be a 2n-dimensional real vector space with a complex struc-
ture J and a Hermitian product g, i . e .

J^{2}=-I, g(Jx, Jy)=g(x, y)

for all x, y\in V, I denoting the identity transformation on V.
The Ricci * tensor L_{R}^{*}

. of type (0, 2) resp. Q^{*} of type (1, 1) associated
with a curvature tensor L is defined by [5]

L_{R}^{*}(x, y)=g(Q^{*}x, y)= \frac{1}{2} trace (z\in V}arrow L(x, Jy)Jz\in V)

l^{*}=traceQ^{*} is called the scalar * curvature.
It follows from the theory of almost Hermitian manifolds [6], [7] that

it is interesting to consider the following identities for a curvature tensor L :

1) L(x, y, z, w)=L(x, y, Jz, Jw) ;
2) L(x, y, z, w)=L(Jx, Jy, z, w)+L(Jx, y, Jz, w)+L(Jx, y, z, Jw) ;
3) L(x, y, z, w)=L(Jx, Jy, Jz, Jw) .

1) is called the K\"ahler identity. Further, let \mathscr{F}_{i}(V) denote the vector space
of all curvature tensors over V satisfying the identity i).

DEFINITION A K_{i} -curvature tensor L on V is a curvature tensor L\in

.\mathscr{F}_{i}(V) . Then it is easy to check the following.

THEOREM 1.
i) .\mathscr{F}_{1}(V)\subset \mathscr{F}_{2}(V)\subset{?}_{3}(V) ;

ii) Q^{*} is a complex linear (Q^{*}\circ J=J\circ Q^{*}) symmetric endomorphism of
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V for any L\in.\mathscr{F}_{i}(V) , i=1,2,3 . The same holds for Q.
We prove, for example, that.\mathscr{F}_{2}(V)\subset \mathscr{F}_{3}(V) . Note that the second identity
implies

L(z, w, Jx, Jy)=L(Jz, Jw, Jx, Jy)-L(Jz, w, x, Jy)-L(Jz, w, Jx, y)t

Substituting in 2) gives

L(x,y, z, w)=L(Jx, Jy, Jz, Jw)+L(Jx, y, z, Jw)-L(x, Jy, Jz, w)

Hence we have also

L(z, w, x,y)=L(Jz, Jw, Jx, Jy)+L(Jz, w, x, Jy)-L(z, Jw, Jx, y)

The required result follows now at once by adding the last two identities.
Finally we give an example of a K_{i} incurvature tensor which will play

an important role in what follows. Let x\wedge y be the skew-symmetric end0-
morphism of V define by (x\wedge y) g\{y,z) x-g(x, z)y. Further we define
L_{A,B,\alpha} for any complex linear symmetric endomorphisms A and B of V and
any \alpha\in R , by

L_{A,B,\alpha}(x, y)=Ax\wedge By+Bx\wedge Ay+JAx\wedge JBy+JBx\wedge JAy

+2g(Ax, Jy)JB-2g (Jx, By) JA+\alpha\{3x\wedge y-Jx\wedge Jy-2g(x, Jy)J\}

It follows immediately that L_{A,B,\alpha}\in \mathscr{F}_{2}(V) and L_{A,B,\alpha}\in \mathscr{F}_{1}(V) if and only if
\alpha=0 .

We need also the following formulas which are easily verified:

Q(L_{A,B,\alpha})=A tr B+B tr A+2(AB+BA)+6\alpha(n-1)I ;

Q^{*}(L_{A,B,\alpha})=Q(L_{A,B,\alpha})-8\alpha(n-1)I ;
(1)

l(L_{A,B,\alpha})=2 tr A tr B+4 tr AB+12\alpha n(n-1) ;

l^{*}(L_{A,B,\alpha})=l(L_{A,B,\alpha})-16\alpha n(n-1)(

3. Decomposition theorem

In what follows we denote by X(V) the vector space of K_{3} incurvature
tensors. This is a subspace of the tensor space of type (1, 3) over V and
has a natural inner product induced from that on V :

\langle L,\tilde{L}\rangle=trace\overline{L}^{T}\circ L=\sum_{i,j,k=1}^{2n}g(L(e_{i}, e_{j})e_{k},\tilde{L}(e_{i}, e_{f})e_{k}) :

\{e_{i}\} being an orthonormal basis of V. Further, let Hom_{cs}(V, V) denote the
space of all complex linear symmetric endomorphisms of V and define the
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Ricci contraction map \mathscr{B} as follows :

\mathscr{B}:x( V)arrow Hom_{cs}(V, V)\cross R:Lrightarrow(Q+3Q^{*}, l-l^{*})

Clearly ,\mathscr{B} is linear. This is also the case for the map h defined by

h:Hom_{cs}(V, V)\cross Rarrow X(V) : (A, \alpha)\mapsto L_{A,I,\alpha}t

The definition of.\mathscr{B} and h is based on geometrical considerations [14].

Lemma 1. \mathscr{B},\circ h is an isomorphism.
PROOF. It is sufficient to show that .\mathscr{B}\circ h is injective. Let (A, \alpha)\in

Hom_{cs}(V, V)\cross R with \mathscr{B}h(A, \alpha)=0 . Hence l(L_{A,I,\alpha})=l^{*}(L_{A,I,\alpha}) and this im-
ph.es with (1) that \alpha=0 . Now, using Q(L_{A,I,\alpha})+3Q^{*}(L_{A,I,\alpha})=0 we obtain
from (1) 2 (n+2)A+I tr A=0 which implies tr A=0 and hence A=0.

Lemma 2. Im h is orthogonal to Ker \mathscr{B} in L(V) .
PROOF. Let \^A Homcs{V,V), L=h(A, \alpha)=L_{A,I,a} and \overline{L}\in Ker\mathscr{B} . It is

always possible to choose an orthonormal J-basis \{e_{i}, Je_{i}, i=1,2, \cdots, n\} such
that Ae_{i}=\lambda_{i}e_{i} , AJe_{i}=\lambda_{i}Je_{i} . Further we have \tilde{l}=\tilde{l}^{*}=0 . The orthogonality
follows now by a straightforward calculation using the first Bianchi identity
for \overline{L} .

Lemma 3. dim Im h+\dim Ker \mathscr{B}=\dim\Leftrightarrow C( V) .
PROOF. It follows from Lemma 1 that h is injective and \mathscr{B} is surjective.

Hence dim Im h=\dim Hom_{cs}(V, V)\cross R=\dim\angle(V)- dim Ker \mathscr{B} .
Putting x_{B}( V)=Ker,\mathscr{B} we have

Lemma 4. X(V)={\rm Im} h\oplus L_{B}( V) .
Now let L\in_{\epsilon}C(V) . Using Lemma 4 we have

(2) L=h(A, \alpha)+L_{B}, \^A Homcs{V,V), \alpha\in R, L_{B}\in L_{B}^{1}( V) .

Define the map \mathscr{D}:\angle(V)arrow Hom_{cs}(V, V)\cross R by \mathscr{D}L=(A, \alpha) . We call \mathscr{D} the
deviation map (see also [8]). Hence we have if j denotes the canonical
inclusion of X_{B}(V) in X(V) :

DECOMPOSITION THEOREM. There is a unique linear map \mathscr{B}:X(V)arrow

\mathcal{L}_{B}(V) , called the Bochner map, and a unique linear map c\Lambda^{\overline{i}} : I(V)arrow Hom_{\epsilon s}

(V, V)\cross R, called the deviation map, such that the following commutative
diagram with two exact sequences holds:
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0

\mathcal{L}_{B}(V)\downarrow

\downarrow j \backslash id\searrow

0arrow Hom_{cs}(V, V)\cross RL(V)X_{B}(V)arrow 0\underline{h}\underline{\mathscr{D}}

id\backslash \backslash \downarrow \mathscr{D}

Homs_{I}(cV, V)\cross R0

Moreover, the decomposition \mathcal{L}(V)={\rm Im} h\oplus L_{B}’(V) is orthogonal and hence
the Bochner map \mathscr{D} is the orthogonal projection of \mathcal{L}(V) onto its subspace
\mathcal{L}_{B}(V) .

It is possible to express the maps \mathscr{D} and \mathscr{D} explicitly. Indeed we have
THEOREM 2. Let L\in X(V) . Then

\mathscr{D}L=(A, \alpha) ,

\mathscr{D}L=L-h\mathscr{D}^{\cdot}L=L-L_{A,I,\alpha}

where

A= \frac{1}{8(n+2)}(Q+3Q^{*}-\frac{l+3l^{*}}{4(n+1)}I) , \alpha=\frac{1}{16n(n-1)}(l-l^{*}) .

PROOF. It follows from (2) that l-l^{*}=l(L_{A,I,\alpha})-l^{*}(L_{A,I,\alpha}) . This gives
the required expression for \alpha . Further we have Q+3Q^{*}=Q(L_{A,I,\alpha})+3Q^{*}

(L_{A,I,\alpha}) and this implies 8 (n+2)A=Q+3Q^{*}-4I tr A. Taking the trace we
get 16 (n+1) tr A=l+3l^{*} and this gives the formula for A.

DEFINITION [14]. Curvature tensors belonging to \mathcal{L}_{B}(V) are called
Bochner curvature tensors and the tensor L_{B} is called the Bochner curvature
tensor associated with L\in\angle(V) .

4. Applications

Let M be a Riemannian manifold with metric tensor g and Riemannian
connection \nabla . For each point m\in M we may consider curvature tensors
L over the tangent space T_{m}(M) with inner product g_{m} . A differentiate
curvature tensor field L on M is called a generalized curvature tensor field
[10]. We recall that L is proper [10] or a Riemannian double form of
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type (2, 2) [2] if it satisfies the second Bianchi identity, that is \mathfrak{S}(\nabla_{X}L) (Y, Z)

=0 for all X, Y, Z\in \mathscr{H}(M), where \mathscr{H}(M) denotes the Lie algebra of C^{\infty}

vector fields on M.
Now, let M be an almost Hermitian manifold, that is, the tangent bundle

has an almost complex structure J and a Riemannian metric g such that
g(JX, JY)=g(X, Y) for all X, Y\in \mathscr{H}(M) . In the same way as before we
may define generalized K_{i}-curvature tensor fields.

In what follows we take for L the Riemann-Christoffel curvature tensor
R. This is a proper tensor field and we suppose that R_{m}\in L(V), V=T_{m}M.
Then we find that the associated Bochner tensor R_{B}=B is the well known
Bochner tensor if M is a K\"ahler manifold (\nabla J=0) . For such a manifold
we know that M is a complex space form if and only if M is Bochner flat
(B=0) and Einsteinian.

In order to state a generalization we say that a curvature tensor L is
Einsteinian resp. *Einsteinian if Q=\lambda I resp. Q^{*}=\lambda^{*}I and we recall that
an almost Hermitian manifold with R\in X(V) is a generah.zed complex space
form [13] if an only if R=L_{\tau^{I,I}’ z}\prime 1\alpha , i . e .

R(X, Y)= \frac{\mu+3\alpha}{4}X\wedge Y+\frac{\mu-\alpha}{4}\{JX\wedge JY+2g(X, JY)J\} ;

\mu is the holomorphic sectional curvature and \frac{1}{4}(\mu+3\alpha) the antiholomorphic

sectional curvature. Both curvatures are pointwise constant. Further, a
nearly K\"ahler manifold M is an almost Hermitian manifold such that
(\nabla_{X}J)X=0 for all X\in \mathscr{X}(M)[3] . It follows then that S^{6} is a generalized
complex space form with respect to the three nearly K\"ahler structures on
S^{6}[1] . We have also that for any nearly K\"ahler manifold R\in \mathcal{L}(V)[3] .
So we obtain

THEOREM 3. Let M be an almost Hermitian manifold with R\in L(V) .
Then M is a generalized complex space form if and only if it is a Bochner

flat Einstein and *Einstein manifold.
Finally, using a classification theorem of A. Gray [4], we have

THEOREM 4. Let M^{n} be a nearly K\"ahler manifold with complex di-
mension n>2 . Then M^{n} is a Bochner flat Einstein and*Einstein manifold
if and only if it is locally isometric to a complex space from (C^{n}, CP^{n}(\mu)

or CD^{n}(\mu)) or S^{6}(\mu) , \mu denoting the holomorphic sectional curvature.

5. Remarks

a . Suppose M^{n} is almost Hermitian and R\in L(V) . One finds that the
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properties for B in relation with the theory of submanifolds are anal0-
gous with those in the K\"ahler case (see for example [14]).

b . The given decomposition method applies also to derive the well known
concircular and projective curvature tensors as projections of the Riemann
tensor. This is also true for the complex analogous tensors on an almost
Hermitian manifold. Moreover, one may introduce in the same way
a Bochner curvature tensor on a class of almost contact metric manifolds
which includes for example the Sasakian, nearly Sasakian and normal
cosymplectic manifolds. This will be shown in another paper.
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