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§1. Introduction.

In a recent paper1, J. L. Synge gives an interesting derivation of
the conservation equations Tij, 3 = 0 satisfied by the energy tensor
Tij of a continuous medium. Previous to the appearance of this
paper, these equations were generally obtained by assuming the
classical equations of motion and continuity, after which it was
necessary to appeal to the Principle of Equivalence2. It then follows
that the path of a free particle is a geodesic. Synge however starts
with the hypothesis that the path of a particle between collisions is a
geodesic and that the proper mass is constant. The conservation
equations are then deduced exactly from the law of conservation of
momentum for collisions.

The object of the present paper is to consider the particular case
of Synge's problem that arises when it is assumed that no collisions
take place. In this case, conservation of momentum can be replaced
by conservation of particle number, i.e. a system of particles is
required to satisfy the condition that no particle shall be created or
destroyed. Thus if we choose in space-time a three-dimensional
surface which is such that the world-line of any particle will meet
this surface once and once only, then since the world-lines are
prescribed, the distribution of particles at any point of space-time
can be determined when the distribution at each point of this surface
is known. Hence if the system is specified by distribution functions
(one for material particles and another for photons) at each point of
space-time, these functions are restricted in that they must satisfy
certain differential equations, the generalised Boltzmann equations.
The boundary conditions which determine particular solutions of
these equations are given by the forms of the distribution functions

1 Trans. Roy. Soc, Canada (3), 28 (1934), 127-171.
2 See, for example, Eddington, " Mathematical Theory of Relativity," §§ 53, 54.
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at points of the surface mentioned above. The main object of this
paper is to obtain the Boltzmann equations for general space-time.
No general solution of these equations has yet been found, but it is
seen that the problem of finding a solution is exactly the problem of
finding a first integral of the geodesic equations.

When the distribution of particles is known, the energy tensor
for the system can be found, and it is verified as a matter of interest
that the energy tensor satisfies the conservation equations Tij, j = 0

as a consequence of the Boltzmann equations. This is to be expected,
for Synge has derived these equations in the more general case when
collisions are admitted.

In the general theory of relativity, the energy tensor is identified
with a certain geometrical tensor, so that the macroscopic distribu-
tion can be determined when the form of space-time is given. The
geometry does not however determine explicitly the microscopic
distribution, and it is evident that the problem of finding this distri-
bution is insoluble if collisions are admitted. The problem is more
precise if collisions are neglected, although even then we should not
expect the solution to be unique; it is possible however that one
distribution is to be preferred to others on grounds of symmetry, etc.
This converse problem is of some interest from the geometrical, if
not physical, point of view. No general solution has yet been
obtained, but a particular case is considered in the last section of
this paper.

We deal with a continuous distribution of particles, and it is
therefore necessary to consider separately the distribution on the
velocity boundary, i.e. the distribution of photons. This is per-
missible, for in the absence of collisions material particles and
photons evidently constitute systems satisfying separately the law
of conservation of number. It follows that the energy tensor will be
the sum of two parts, one being provided by material particles and
the other by photons.

§ 2. Material particles.

The hypothesis concerning material particles is that a particle is
free from collisions, its proper mass is constant, and its path is a
geodesic in space-time. If the metric of space-time is

d82 = gijdxidx> (1)

where i, j take the values 0, 1,2, 3, the unit vector tangent to the
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path of a particle is A* = dxi/ds. This vector is time-like so that,
adopting the usual convention1 that the indicators of time-like and
space-like vectors are positive and negative respectively, the com-
ponents must satisfy the relation

0«A<A' = 1. (2)

Also since the path is a geodesic,

d\* + r)t X> dx* = 0 (3)

where rjh are the Christoffel symbols of the second kind. I t is
assumed that the arc s increases in the direction of propagation along
a path, so that the vector A* points from the past to the future.
This will be assumed for all vectors A* mentioned in this paper.

The momentum vector associated with a particle of proper
mass m0 is

pi=m0A
i. (4)

This vector therefore has the sense of A', and since m0 is constant by
hypothesis, then from (2) and (3), the components satisfy

gupip^ml (5)

dp1 + Y)kpidxk = 0. (6)

From special relativity, this momentum vector has the property that
at an event P, the energy of the particle relative to an observer
at P is

E = c2(gij¥pi)P

where h? is the unit vector tangent to the observer's world-line. For
an observer moving with the particle at P, hl = A% and the energy is
m0c

2, from (2) and (4).

§ 3. Distribution of material particles.

At a point P (x), let dQ.x be the element2 of three-dimensional
solid angle determined by the range of directions (A*, Xi-{-dXi). We
define this solid angle as follows: Consider the flat space EP tangent
to space-time at P . The metric of EP is ds2 = (g^p dXi dX\ and if
X' = r\l, where A' is a unit vector at P, then the X's may be considered

1 With this convention, the signature of the quadratic (1) is - 2.
2 The subscript 1 attached to d Q indicates that we are dealing with material

particles. The subscript 2 will occur when we discuss photons.
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as the coordinates of a point Q distant r from P in EP. The element
of volume of EP at Q is V( — 9)P d%° dX1 dX2 dX3, and the element of
solid angle d Qx at P is defined to be such that this element of volume
is r^drdQ.^ Hence the element of solid angle corresponding to the
range (X\ A' + dX{) of unit vectors at P is given by

r3 dr d flx = V{ ~ Q)P dX° dX1 dX2 dX\ X' =•- rX\

Equation (9) below is obtained by writing m0 for r and p1 for Xf in
this relation.

Now let d F be the element of volume of a three-dimensional
space orthogonal to the vector A* at P . Suppose that the number of
particles crossing d V, whose paths issue in the angle d Qi and whose
proper masses are in the range (m0) m0 + dm0), is dN. Then this
number can be expressed in the form

dN = x*ix> mo> X) mQX dmodV dO-i, (7)

where %* (x, m0, A) is some distribution function. Since m0, A* can be
expressed in terms of pi by means of (4) and (5), we can write

x*(x,m0,X)=x(x,p). (8)

Also, from (4), we have

( - g)i dp0 dp1 dp2 dp3 = mg dm0 d Qx. (9)

Hence, (7) can be written

dN = x (x, p) mo~
4 ( - gf dVdp0 .. dps. (10)

The function x (%> P) is not arbitrary, for it is required that the
number of particles shall be conserved. Hence, x (#> P) must be
such that

0, (11)

where A denotes the increment for a displacement from P (x) along
the path in direction Ai.

We can, without loss of generality, assume that the coordinates
are chosen so that the surfaces x° = constant are space-like, i.e. the
normals to these surfaces are time-like, and that the value of x°

increases from past to future. Then g00 > 0, and the quadratic1

g^ X* X" is negative definite. Also, the vector A' has the correct

1 It will be understood that Latin suffixes h, i, j , k, I take the values 0, 1, 2, 3,
and Greek suffixes /J., v take the values 1, 2, 3.
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sense if and only if A0 > 0, for A0 = dx°/ds, and since ds > 0, we have

dx° > 0 if A0 > 0 and conversely.

The element of volume of a surface x° = constant is, from (1),

dW = ( - | g^| )* dx1 dx2dx* = (— gg00)* dx1 dx2dx3,

and the covariant components of the vector normal to this surface

are ((<700)~i, 0, 0, 0). Hence, the element of volume dV is

dV = \°(g°°)-ldW = ( - g)n°dx1dx2dx3,

and writing p°/m0 for A0, (10) becomes

dN = x(x,p)m^5(-g)p°dx1 .. dp0 .. dp3. (12)

Passing along the path in direction A* from the surface a;0 to

the surface x° + Ax°, where A*0 is small and positive, and writing

xH = x1 + Ax1, pH = pi + Apl, we have from (4) and (6),

. rn'i = pi ff* pipk (14)

where e = Ax°/p°.

Hence, since e is small,

= 1 — ^—• I
8

whence we find

A(dx1 . .dp0 ..

Also, from (13) ;

(x'i

d(xl

dp1

and

. . p ' °
. . p °

') = ^

(14),

A

• • P'l

••P*)

t - 2 n*

(-9) =

(p0)-1 Y%pipk}dxx ..dp0 .. dp3.

A (p°) = —

Hence we have
A ( - gp° dx1 ..dp0 .. dpz) = 0. (15)

Since ra0 is constant along a path, A (m0) = 0, so that from (11), (12)

and (15), we see that x (x> P) must satisfy A^ = 0, i.e.

-J^pi— Jk Tl
kp

jpk = 0. (16)

This therefore is the generalised BoUzmann equation that must be

satisfied by the distribution function x(x>P) ^n order that number shall

be conserved. I t can be verified that the form of this equation is

invariant under transformations of the coordinates.
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Returning to the identity (8), we have from (4)

dx* _ H fy*
 8X

dx* ~ ox1' dX °dpi'

Hence, (16) is equivalent to the equation

§ 4. The energy-tensor for the material system.

The energy-tensor at a point P is defined in terms of the
distribution by

j (18)

where da is the proper number-density of particles at P, the
integration being over all proper masses and all directions. From
(7), the number-density is given by

dN
da = d~f = X* (x> mo> X) "V1 dmo d ̂ J>

whence

T» = J x* (x, TO0, A) A* \idmo d D^

Writing

<f>(x,X)= x * (x> mo> A) dm0, (19)
Jo

the expression for T% becomes

Q1. (20)

It is easily seen from (17) and (19) that <f>(x, X) satisfies a similar
equation, i.e

An expression similar to (20) is obtained if it is assumed that all
material particles have the same proper mass m0. In this case, the
particle number is

dN = (f>(xyX)m^ldVdQ1,

where <f> satisfies (21), and the energy-tensor is found to be given by
(20). I t appears therefore that, for simplicity, we can assume that
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all material particles have the same proper mass. The integration
giving <f>(x, A) from \* ix> mo< ^) is simply equivalent to the process of
combining into one particle all particles moving together.

We observe that equation (21) expresses the condition that
<f>(x, dx/ds) = constant shall be an integral of the geodesic equations
(3). The problem of finding these integrals has been considered1,
but no solution for a general space has yet been obtained.

In order to obtain an explicit expression for the integral in (20),
it is convenient to choose a coordinate system as in § 3, and to allow
A1, A2, A3 to be the independent components of the vector A*. The
component A0 must now be expressed in terms of A*1 by means of the
relation

gij A< A'' = g00 (AT + 2g0ll A" A0 + g^ A* A* = 1. (22)

It has been shown that the vector A* has the correct sense if and only
if A0 > 0. Since however g00 > 0 and g^X^X" < 0 for all real components
A", equation (.22) for A0 has just one positive root for any values of
A*\ Hence the components A*1 are not restricted, and the corresponding
value of A0 is unique.

To find dCii, we use the relation pl = m0 A*. We have

d£_ dA° _ m0

dX» ~ m° 8X» - ~ Xo

from (22), and

It follows that
d(po,p\P*,p3) _ m|
8(mo,X\Xz,X3) ~ AO '

whence
dp0 .. dp3 = (Ao) -

1 ml dm0 dX> dX* dXs.
Hence, from (9),

d Qj = (— g)i(X0)~
1dX1dX2dX3. (23)

Substituting in (20),
lXH->= \\\

where A0, Ao are to be expressed in terms of A*\ Since the variables
A" are not restricted, the limits of integration are (— oo, + oo ) for
each.

1 See Eisenhart, " Riemannian Geometry," §39.
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§ 5. The conservation equations for T*(.

It will now be proved that the tensor defined above satisfies the

equations Tj>,3 = 0 when <j>{x,\) satisfies (21). Consider the value

T'\ of the tensor at the point xH = xi + el, where the e's are small

arbitrary constants. Then from (24),

T'» = \\\<t>{x', A') A'< \'i ( - g'Y (A'o)-1 dX'1 dX'2 dX's, (25)

where A'0, A'o are given by g'^X1'= \, A'0 > 0, X'o = g'oiX'i. Now

transform from A'** to new variables A*1 by means of the relations

A'* = A' - T\k X> ek (26)

where the F's are evaluated at the point (z). I t is easily verified

that

and that X° > 0. Hence, X° is given correctly in terms of A" by (22).
Further, the limits of integration are evidently unaltered.

To prove that d Q'a = dQlt we have, from (26) and (22),

Hence,
d (A'1 A'2 A'3)

;A2;A3) = i - (r& - (Ao)-1 A , r & ) «*

Also,
(-!/')* = ( -?)* ( !

and
A'0 = A 0 -A i r

Combining these expressions, we have

(-9')i(X'0)-
1dX'ldX'2dX'3 = (

Thus (25) can be written

where
\ X'1 = Xl — r j t AJ e*.
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Expanding both sides of this equation and substituting from
(20), we have

*= £k
 Kit ~ %

r**xh
)
x< xi d

 ̂  ~
 Thi r** •* - Tih ̂ eK

Hence, since these equations hold for arbitrary values of the e's,

Contracting for j and k, we see at once that if <£ satisfies (21),

T$,i = 0. (27)

Thus, if the free paths are geodesies, the energy tensor for a conserved

system of material particles satisfies the equations Tij,j = 0.

Geometrically, it has been proved that the divergence of a
tensor defined by an expression of the form (20) vanishes if
<f>(z, dx/ds) = constant is an integral of the geodesic equations. Thus
the problem of finding a second order tensor whose divergence
vanishes can be reduced to the problem of finding an integral of the
geodesic equations.

§ 6. Photons.

The hypothesis concerning photons is that a photon is free from
collisions, its path is a null geodesic, and the associated momentum
vector is tangent to, and propagated by parallel transport along, the
path. Thus the momentum vector is given by1 pi= dxi/dr, where r is
a suitable parameter along the path, and the components satisfy the
equations

<7ijP'>=.0> (28)

dp* + r j t pi dxk = 0. (29)

From the definition of this vector, it points from the past to the
future, and at an event P, the energy of the photon relative to an
observer at P is

J0 = es(0<,*V)p. (30)

where hl is the unit vector tangent to the observer's world-line.

1 The vector pi will refer to photons in the remainder of this paper, and should not
be confused with the momentum vector associated with a material particle.
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§7. The distribution of photons.

Since there is no preferential observer associated with a photon,

it is necessary to express the distribution in terms of observations

made by an arbitrary observer, and it is convenient to do this in

such a way that the distribution function so introduced is independent

of the particular observer chosen. Consider therefore at an event

P (x) an observer A whose world-line is tangent to the vector hl at P,

and let dV be the element of volume of A's instantaneous space,

i.e. the space orthogonal to ¥. Also let dw be the element of two-

dimensional solid angle, measured by A, which is defined by the range

(p^ pi _|_ dp1) at P ; and if E is the energy of the photon pl measured

by A, let (E, E -f dE) be the range of E defined by the range

(p\ pi + dp1). Then it can easily be verified that for a given

distribution at P, the expressions EdV, EdEdco are separately

invariant for a change of observer.

If dN is the number of photons crossing dV and issuing inside

the solid angle dco and with energies in the range (E, E + dE), we can

express this number in the form

dN = c - 6 I/JE2 dE dV dco,

the factor c~6 being included for convenience. Then since EdV,

EdEdco are invariant, we see at once that I/J is also invariant for a

change of observer, i.e. ifi is a function of (x) and (p) and does not

involve h1. Writing

dn2 = c-4EdEdco, (31)
we thus have

dN = c-2xf,(x,p)EdVdQ2. (32)

Assuming that the coordinate system is chosen as in § 3, we can

choose the observer making the counts to be an observer whose

world-line is orthogonal to the surface x° = constant at P (x). Then

from (30) and (1), we find

E = c2p°(g00)-b, dV = ( - gg°°)ldx1dx2da?.

If also we allow p1, p2, p3 to be the independent components of the

vector pi, then it can easily be verified that1

d Q2 = ( - g)i (po)-1 dp1 dp2 dpK (33)

JThis expression for dfi2 may be compared with the expression for dill given

by (23).
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The components p°, p0 must now be expressed in terms of p* by
means of (28) and p0 = gOiPl. In order that the vector pi shall have
the correct sense, p° must be the positive root of the equation (28).
It is seen that the components p* are not restricted, and the corre-
sponding value of p° is unique. Substituting in (32), we now have

dN = I/J(Z, p)(-g) (po) - 1 p° dx* dx2 dx3 dp1 dp2 dps. (34)

It is required that the number of photons shall be conserved,
whence the distribution function tj/(x, p) must be such that

A (dN) = 0, (35)

where A denotes the increment for a displacement from P (x) along
the path in direction p1-. Passing along the path in the direction
pi from the surface x° to the surface x° + A a;0, where A a;0 is small and
positive, and writing xH = xi + As1, pH = pf + &p\ we get from (29),

xH = x1 + epi,

p'i = pi — eFi
j(.p

ipk,

where e = A x°/p°.

Calculating 8 (re'1, . . , p'1, . . )/S (a;1, . . , p1, . .) from these relations, and
remembering that p° is given by (28), we find that

Also,
A (-g) - - e2«7 Y\kp\

A (p°) = - € V%pipk,

A(p0) = eTikPiPk.
Hence

&{-g(Po)-1 p°dx1.. dp1..} = o.

Thus, from (34), equation (35) becomes A <p = 0, i.e.

This therefore is the generalised Boltzmann equation that must be satisfied

by the distribution function if/(x, p) in order that the number of photons

shall be conserved.

§ 8. The energy tensor for the system of photons.

The energy tensor for a system of photons is defined to be

x
d<j, (37)

where da is the number-density relative to some observer and E is
the energy relative to this observer of the photon with momentum
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vector pi, the integration being over all energies and directions. The
expression (18) for T» is equivalent to (37), for then da is the proper
density, so that E = m0c

2. From (32), the number-density is

clN

whence
U2. (38)

In the coordinate system referred to above, d D.2 is given by (33), and
since the components p* are not restricted, the limits of integration
in (38) are (— oo , + oo ) for each variable.

Proceeding exactly as in § 5, we find

whence
T%,j=O (39)

when ip(x,p) satisfies equation (36). Hence, the energy tensor for a
conserved system of photons satisfies the equations Tli, j = 0.

§ 9. The complete energy tensor.

Combining the systems of material particles and photons, the
complete energy tensor is

rpij rpij I rpij (A.(\\

Thus the energy tensor is constructed from functions ip(x, A), >p{x, p)
satisfying the Boltzmann equations (21) and (36).

From (27) and (39), we see that the energy tensor satisfies the
equations of conservation

r«fi=0. (41)

§ 10. The converse problem.

The converse problem is:—given a tensor T» satisfying (41),
what functions <f>, tfi, if they exist, are such that they satisfy (21) and
(36), and such that Tij can be derived from these functions by the
above process ? No solution of this problem has yet been found, but
there is little doubt that a solution exists and that it is not unique.

In the general theory of relativity, the energy tensor is related
to the form of space-time by the field equations, which can be written
in the form

T=9ijT», (42)
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where B{j is the contracted curvature tensor, R = g'i Rti, K is Einstein's
constant, and A is the cosmical constant. The problem now becomes
essentially geometrical: what functions <f>, tp, if they exist, will lead
to equations (42) ? We have

TV = \ <j>\1 A' d n x + j ifiptp* d Q2,

and since g^ Ai A3' = 1, gtjp pi = 0,

T= f ^dfia.

Substituting in (42), functions <j>, ift, satisfying (21) and (36), are
required so that the integral equations

RU — AgH = K[ <f> dgV - A' \>) d fij - K f if, pi pi d Q2 (43)

shall be satisfied at all points of space-time. This problem has not
yet been solved, and a solution would be interesting from the point
of view of geometry as well as physics.

§11. The Lemaitre universe.

For a space-time of the form studied by Lemaitre and other
writers, equations (21) and (36) can be solved for <f> and ip, and the
integral equations (43) become more explicit. The metric is now

ds2 = c2 dt2 - R2 \ v dx* dx", (44)

where R is a function1 of t, the h's are independent of t, and
h^dx^dx" is the metric of a three-space of constant curvature 1,0,
or — 1. Thus the coordinate t plays the part of x° and has the
properties stated in § 3.

It is evident from symmetry that <f> is required to involve only
t and A°(= dt/ds). Calculating the Christoffel symbols, equation (21)
becomes

i.e., since R2 h^ A" A" = c2 (A0)2 - 1 from (44),

c2A° 3<£ R' dcf>

C2 (A0)2 _ i dt~R~d)fi— •

1 This function R{t) must not be confused with the scalar curvature It —
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This equation can at once be integrated to give

where / is an arbitrary function of its argument.

From (44), (-?)* = cR3 , \ v |* = cR3 h*. and Ao = c2 A0. The energy
tensor Tj> is therefore, from (24),

= f f f + 7 A* A* (cA°) - 1 R 3 hi dX1 dX2 dX3,

where cA° = (1 + J?2 h^ A" A")*. These integrals can be evaluated
without much difficulty, and we find, on writing R2 h^ A* A" = r2,

c Jo

4TT r

/Ttuv rtU-v I ff T>J i = — T -5- /(-Ki
o Jo

Writing for convenience

F(x)=~

where K is Einstein's constant, these expressions become

T°
w
 = 0,

KT<? = - gr 4 f ^ ( ^ ) (1 + r2) - • r2 dr.
i t JO

The procedure for finding i/r and T1^ is very similar. Assuming
that t/> involves only t and #°, equation (36) gives

where g is an arbitrary function of its argument. Writing R2hliVp>ipl'—r2,

we find from (38) and (33),

c
2
 Jo

= 0,

Writing
4 f™

iC = —77/c g(z)x3dx, (45)
^ Jo
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we have

2 cR

Tf- = 0,

Thus, finally, from (40),

KT
°°

=
iw

+
A

2
\o

F{Rr){i+r2)idr
>
 (46)

T°» = 0, (47)

KT*» = - g>~U^ + J j JQ F{RT) {1 + r*)-if8dr J . (48)

Adopting the value Sny/c2 for K, the relative density, p00, and
the pressure, p, are given by

T* = (POO + •§ ) ^ S«o Ŝo - J fl«, (49)

whence, from (46) and (48),

= ^ + £2 Jo ^ ( ^ (1 + r
^

idr
' (5°)

*« (51)

Hence, the proper density, p0 = pOo — Sp/c2, is given by

KPO = ~2 f F(Rr) (1 + r2) -* dr. • (52)

It can easily be verified from (50) and (51) that

| ) + f | ( ^ 3 ) = 0. (53)

This is to be expected, for the relation (53) can be deduced immedi-
ately from (41), (44) and (49).

Expressions for p00 and p in terms of R{t) are obtained from the
field equations (42). We need not however consider both expressions,
for p is given by (53) when p00 is known. Calculating p00 from (49),
(42) and (44), we find

3J?'2 3k ,
Kp0° = ^R~2 + W ~ '
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where £(= 1, 0, or —1) is the constant curvature of the form
h^dx^dx" in (44). Hence, from (50) and (45), the integral equations
(43) reduce to the equations

£ Az=**-, (54)

f F(Rr) (1 + r2)* dr = -I R'2 + k - i- Ai?2 - A . (55)
Jo c o it

Here K can be considered as an arbitrary constant provided the
right-hand side of (55) is always positive.

When R is a given function of t, R' can be expressed in terms of
R, and (55) is an integral equation for the function F, the parameter
being R. Conversely, when the functions F, g are given, equations
(54) and (55) can be used to find the form of R as a function of t.
Thus the form R{t) can be found if the distribution at any one event
is known provided the value of R is known at that event.

https://doi.org/10.1017/S0013091500027504 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027504

