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Abstract We present an analysis of data from a measurement campaign performed at the

Bolund peninsula in Denmark in the winter of 2007–2008. Bolund is a small isolated hill

exhibiting a significantly steep escarpment in the main wind direction. The physical shape

of Bolund represents, in a scaled-down form, a typical wind turbine site in complex terrain.

Because of its small size the effect of atmospheric stratification can be neglected, which

makes the Bolund experiment ideal for the validation of neutral flow models and hence

model scenarios most relevant to wind energy. We have carefully investigated the upstream

conditions. With a 7-km fetch over water, the incoming flow is characterized as flow over flat

terrain with a local roughness height based on the surface momentum flux. The nearly perfect

upstream conditions are important in forming a meaningful quantitative description of the

flow over the Bolund hill. Depending on the wind direction, we find a maximum speed-up of

30% at the hill top accompanied by a maximum 300% enhancement of turbulence intensity.

A closer inspection reveals transient behaviour with recirculation zones. From the wind

energy context, this implies that the best site for erecting a turbine based on resource con-

straints unfortunately also imposes a penalty of high dynamic loads. On the lee side of

Bolund, recirculation occurs with the turbulence intensity remaining significantly enhanced

even at one hill length downstream. Its transient behaviour and many recirculation zones

place Bolund in a category in which the linear flow theory is not applicable.
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1 Introduction

Atmospheric flow above complex terrain is our focus, and because wind turbines are

increasingly erected in areas with complex orography, furthering the course of wind energy

is the main impetus for the investigation. Good knowledge of the flow over complex terrain

is essential for precisely estimating wind-energy potential, and assessing structural loads on

turbines. An understanding of flow in complex terrain is also crucial for the parametrization of

form drag in meteorological models. It is also significant for various dispersion applications.

Various atmospheric boundary-layer flow experiments have been performed over hills

during the last thirty years with a main focus on hills with gentle slopes of less than 0.3 or

17◦ (Walmsley and Taylor 1996). The experiments commenced in the 1970s with the inves-

tigation of flow over an escarpment on the Risø peninsula by Jensen and Peterson (1978) and

in hilly terrain with inhomogeneous roughness by Sacré (1979). The escarpment experiment

was followed by a more systematic and controlled experiment at the Hjardemaal escarp-

ment, Denmark, where turbulence spectra were also measured (Emeis et al. 1993). Using the

framework of the linear flow theory Taylor et al. (1987) summarized the early experiments

on low hills. To a great extent the emphasis in the early years has been on the mean pro-

files of streamwise speed and turbulence intensity, whereas insight into the modification of

turbulence structures by orography has been limited.

In the early 1980s, a well-known hill experiment was conducted by an international group

on the Askervein Hill in the UK (Taylor and Teunissen 1983, 1984). The slope of that rela-

tively smooth hill is generally less than 20◦, with small areas reaching 30◦, and the roughness

was believed to be relatively uniform with the exception of a coastline several kilometres

upstream. The mean wind profiles over Askervein have been extensively used for research

with particular interest in the so-called linearized models, which assume the slopes to be

gentle to avoid detachment and recirculation that are not captured by these models. The

linear models (Jackson and Hunt 1975; Hunt et al. 1988) quite satisfactorily reproduce the

measured speed-up on Askervein at the hilltop but perform less successfully on the lee

side. An effective computational speed parameter, one of the strengths of linearized mod-

els, has led to their commercialization and availability for wind-energy resource estimation

(Troen and Petersen 1989; Corbett et al. 2008). Velocity spectra from the Askervein Hill

experiment have also been compared quite successfully to rapid distortion theory (RDT) pre-

dictions by Mann (2000), which builds on previous work by Britter et al. (1981) and Mann

(1994).

Wind-tunnel investigations of the validity of linearized models show that they overesti-

mate the speed-up over the tops of steep ridges (Athanassiadou and Castro 2001; Ayotte and

Hughes 2004). Such an effect has led to overly optimistic predictions of power production

and thus the economic feasibility of certain wind farms. Although rarely placed here, turbines

downstream of steep hills have been known to suffer from excessive mechanical loads, caused

by the unsteady wake of the hill. More commonly, turbines on the top of steep ridges with

sub-ridges pointing away from the main ridge experience extremely large fluctuations in wind

speed and direction, which can be detrimental to turbines. These deficiencies have stimulated

research in non-linear atmospheric-flow models such as Reynolds-averaged Navier-Stokes

solvers (RANS) and large-eddy simulation (LES). Again the Askervein experiment continues

to serve well for comparison with these non-linear models (Castro et al. 2003; Lopes et al.

2007; Chow and Street 2009; Bechmann and Sørensen 2010).

Extremely steep or complex terrain is highly relevant to wind energy, however, simulat-

ing the flow is a challenge (Palma et al. 2008). We strongly believe that new atmospheric

experiments addressing these types of terrains are essential for validating numerical models.
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The Bolund Experiment, Part I 221

The steep Bolund site gives rise to recirculation, stagnation and unsteady, erratic flow phe-

nomena and is therefore well suited for such an experiment.

Planning was initiated toward a field campaign at the Bolund peninsula. Approvals from

landowners and various public officials were obtained and the experimental design and logis-

tics were planned. Masts were erected on site and a dedicated wireless network was estab-

lished. The campaign proceeded from December 2007 through February 2008. In this study

we present the results of the main analysis of these data. A secondary outcome of the Bolund

campaign was an international workshop held in December 2009 at Risø DTU, in which

more than 50 different numerical (both linearized, RANS and LES) and physical models

were used in a blind comparison with the observations. These results are presented in Part II

(Bechmann et al. 2011).

With the Bolund experiment we leave the realm of gentle slopes, and thus the applicability

of the linear flow theory. In addition to the steep slopes present at Bolund, there is also a

significant jump in local aerodynamic roughness that was not present in previous hill exper-

iments. Thus Bolund provides challenges in more than one aspect, and we therefore believe

that the experiment serves as a valuable benchmark for advanced, atmospheric-flow models.

The high attendance at the workshop held at Risø DTU confirmed this belief.

Our paper begins with a section devoted to the physical characteristics of Bolund and a

description of the instrumentation. In Sect. 3 we consider the upstream conditions, including

local wind climate, sea fetch and stability. Section 4 presents one-point statistics of mea-

surements, including mean wind, tilt, deflection and turbulence intensity along a transect.

Turbulence structure is the focus of Sect. 5, and finally, a discussion and conclusions are

presented in Sect. 6.

2 Site and Instrumentation

A photo of Bolund peninsula is shown in Fig. 1. Bolund is a natural hill 12-m tall (h),

130-m long (L), and 75-m wide (W ), located in Roskilde Fjord, Denmark, just north of Risø

DTU (55.7035◦N, 12.0982◦E). It is surrounded by water in all directions except to the east,

where a narrow isthmus, submerged at times, leads to the mainland. From absolute water

level readings in the harbours of Roskilde and Risø, and from fixed time readings of relative

water level on the platform itself, a time series of the absolute water level at the platform

was constructed (Bechmann et al. 2009). During the measurement campaign the sea level

Fig. 1 The Bolund peninsula viewed from a 125-m tall meteorological mast located south of the site at Risø
DTU. Westerly winds thus approach Bolund from the left
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Fig. 2 A contour map of Bolund with meteorological masts denoted from M1 to M8 (see Sect. 2.2). A value
of 0.75 m has been used for the water level in Roskilde fjord. The centre point, Cp = (0, 0) is located at
the position (694682.1, 6177441.8) in the UTM WGS84 zone 32 coordinate system. The map was created
through airborne laser terrain mapping and a high resolution laser scanner positioned on the beach at Bol-
und. Two masts, M0 and M9, are not located in the map; they are located at positions (−181.7, 101.7) and
(327.3,−37.5); that is, to the left (west) and right (east) of Bolund, respectively

in Roskilde Fjord fluctuated ≈2 m, covering the isthmus for a substantial fraction of the

time.

The contour map in Fig. 2 gives an impression of the vertical escarpment to the west

of Bolund. A slight overhang exists although not evident from the contour map, which is a

very challenging feature for flow model resolution. In front of the escarpment, a small beach

covered with small rocks is present. The top of Bolund consists of a relatively flat, well-

defined plateau covered with grass. The slopes of the northern, southern and eastern sides

are also steep with slopes of up to 40◦, but here the crests are rounded. Except for the vertical

escarpment and the narrow beach around the hill, Bolund is uniformly covered by grass.

The corresponding roughness length is estimated at z0 = 0.015 m, which was obtained by

adapting neutral logarithmic wind profiles to measurements in Sect. 3. The roughness length

of the surrounding water was much lower and can be (as seen in Sect. 3) described as in

Charnock (1955). For model purposes we recommend z0 = 0.0003 m. No larger roughness

elements on the surface of Bolund have been deemed sufficiently important for individual

treatment.

2.1 Scale Effects

In every respect Bolund is a small hill: the maximum height of Bolund is 12 m, the length is

approximately 150 m, and the roughness length, z0, varies from 0.0003 m over the water to

0.015 m over the hill itself. In this section we compare Bolund with a theoretical mesa-type

hill with physical dimensions 10−30 times larger. Examples of such hills are often seen

in Texas and other states in the USA with wind turbines typically situated near the edges.

Bolund is therefore a relevant and realistic scenario for wind-energy purposes. Our goal

is to investigate whether the flow around Bolund is geometrically similar to that around a

significantly larger hill of the same shape.
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The Bolund Experiment, Part I 223

The geometry for the mesa hill is

h → 120−360 m,

L → 1500−4500 m,

z0 → 0.15−0.45 m.

We first consider the Reynolds number, Reh, based on hill height. Reynolds number

similarity implies Reynolds-number-independent flow solutions and is the foundation of

turbulent viscosity and Reynolds stress modelling (Pope 2000). However, recent studies con-

ducted in a wind tunnel have shown that the Reynolds number must be very high to obtain

independence regarding bluff bodies in a turbulent boundary flow with concentrated vortex

motion (Lim et al. 2007). The Reynolds number in the Bolund case is Reh = Uh/ν ≈ 107

with U = 10 m s−1. This is somewhat larger than the maximum range of up to Reh ≈ 106

investigated by Lim et al. (2007) in a somewhat different flow case. Even at this large number,

variation was observed in surface parameters such as pressure and speed as a function of the

Reynolds number. We therefore cannot completely rule out that some dependence (vanishing

maybe) on the Reynolds number is present at Bolund. The same argument can be applied to

the mesa hill, although with less probability.

The inner length scale, ℓi, characterizes the height over the terrain for which turbulent

stresses dominate the flow. The relationship of Jensen et al. (1984) is, for a small hill where

the size, L ≫ h,

ℓi log2(ℓi/L) = 0.3L. (1)

For Bolund we estimate, ℓi ≈ 2 m (21−63 m for the mesa). Strictly speaking, ℓi makes sense

only for gently sloping hills; therefore we may not necessarily expect the turbulence intensity

to peak this close to the surface.

When up-scaling Bolund to the mesa, the influence of atmospheric stability and the height

of the atmospheric boundary-layer, zi is more important. In the case of Bolund, h ≪ zi

and h ≪ LMO (LMO, the Obukhov length is defined in Eq. 2); therefore we may expect the

perturbations on the flow induced by the hill to be larger than those caused by changes in

stability. For all practical purposes, we can treat the atmosphere as neutral. However, this

application may not be appropriate for the mesa. In neutral situations in which the wind

speed is very high and in highly unstable situations in which zi is very high, stability may

be neglected. However, in stable situations, where zi tends to be very low and comparable

with h, strong effects of stratification are expected; thus the generalization from Bolund to

the mesa fails.

The final effect we consider is the influence of the Coriolis force. For the vertical direc-

tion, we can repeat the proceeding arguments because the Ekman depth generally is similar

in size to the atmospheric boundary-layer height. Turning of the wind with height could

interfere with the mesa-hill perturbations in at least stably stratified situations, while it can

be neglected in the Bolund case. For the horizontal direction we consider the Rossby num-

ber, Ro = U/f L, where f is the Coriolis parameter (f ≈ 10−4 s−1 for mid-latitudes). For

Bolund, Ro = 667. Because this value is much larger than one, Coriolis effects can be

neglected. For the mesa, however, Ro ≈ 20−60, and Coriolis effects may be significant.

2.2 Instrumentation

The masts are positioned on two main transects: line A and B in Fig. 2. The eight red

dots denoted as M1−M8 represent the mast positions. Two additional masts were erected,
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to measure an undisturbed approach flow. M0 was located on a jack-up platform to the west

of Bolund, while M9 was located on a small beach east of the isthmus east of Bolund.

To resolve the wind in all three directions we have primarily employed sonic anemometers.

We have used Metek USA 1-Basic sonics with two-dimensional head correction (http://www.

metek.de/). At a sampling rate of 20 Hz, a good signal-to-noise ratio, and an almost negligible

flow distortion, they provide acceptable mean and turbulence measurements. The sonic ane-

mometers provide data with a two-dimensional head correction, which is a function of only

the azimuth angle. Therefore, to account for realistic flow angles, we have post-processed the

measurements with a three-dimensional head correction, which is a function of the azimuth

and tilt angle, given by Metek (2004). This measure was assigned utmost importance in the

present measurement campaign. Validation of the corrections is given in Bechmann et al.

(2009) and Dellwik et al. (2010a). The 10 masts were instrumented as detailed in Table 1. On

the upstream masts, M0 and M9, as well as higher aloft we have installed cup anemometers

of the type Wind Sensor P2546 “Risø” cup anemometer (http://www.cupanemometer.com/

products.htm).

Table 1 Mast instrumentation

Instr. ID zagl (m) x (m) y (m) z (m) Start End

M0_Cup_2 – −183.5 −102.7 3.1 211207 250208

M0_Cup_5 – −180.8 −103.3 6.1 211207 250208

M0_Cup_9 – −180.8 −103.3 10.1 211207 250208

M0_Cup_15 – −181.7 −101.7 16.1 211207 250208

M0_S_5 – −181.3 −102.5 6.1 211207 250208

M0_S_12 – −180.8 −103.3 13.1 100108 250208

M0_Tabs_2 – −180.8 −103.3 3.1 211207 250208

M0_Tdiff_12_2 – −180.8 −103.3 3.1−13.1 211207 250208

M0_Tsurf – −180.8 −103.3 – 211207 250208

M0_Twater – −180.8 −103.3 – 211207 250208

M1_S_2 2.1 −52.4 −31.0 2.8 211207 250208

M1_S_5 5.1 −52.4 −31.0 5.8 211207 250208

M1_S_9 9.0 −52.4 −31.0 9.8 211207 250208

M0_Tdiff_9_2 2.1–9.0 −52.9 −29.2 2.8–9.8 211207 250208

M2_Cup_9 9.1 −34.8 −21.1 19.9 211207 240108

M2_Cup_11 11.1 −34.9 −19.3 21.9 240108 250208

M2_S_1 1.1 −34.8 −21.1 11.9 211207 250208

M2_S_2 2.1 −34.9 −20.2 12.9 211207 250208

M2_S_3 3.6 −34.8 −21.1 14.4 140108 250208

M2_S_5 5.1 −34.8 −21.1 15.9 211207 250208

M2_S_9 9.1 −34.8 −21.1 19.9 240108 250208

Zephir unit 102 0.0 −34.8 −27.8 10.8 280108 150208

M3_S_9 9.0 3.1 3.6 20.6 211207 250208

M3_S_2 2.0 3.2 0.0 13.6 211207 250208

M3_S_5 5.0 3.2 0.0 16.6 211207 250208

M3_S_9 9.0 3.2 0.0 20.6 240108 250208
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Table 1 continued

Zephir unit 102 0.0 3.2 −10.0 11.7 150208 250208

M4_S_2 1.4 51.5 30.6 2.8 211207 250208

M4_S_5 4.4 51.5 30.6 5.8 211207 250208

M4_S_9 8.4 51.5 30.6 9.8 211207 250208

M5_S_2 2.2 1.5 −48.9 4.8 211207 240108

M5_S_5 5.2 1.5 −48.9 7.8 211207 240108

M6_Cup_9 8.9 −46.1 0.2 20.4 211207 250208

M6_S_2 1.9 −46.1 0.2 13.3 211207 250208

M6_S_5 4.9 −46.1 0.2 16.4 211207 250208
M7_S_2 2.0 −66.9 0.0 2.8 211207 250208

M7_S_5 5.0 −66.9 0.0 5.8 211207 250208

M8_Cup_9 8.8 92.0 −0.1 10.8 211207 250208

M8_S_2 1.8 92.0 −0.1 3.8 211207 250208

M8_S_5 4.7 92.0 −0.1 6.8 211207 250208

M9_Cup_2 1.9 327.3 −39.3 3.3 211207 250208

M9_Cup_5 5.0 327.3 −39.3 6.4 211207 250208

M9_Cup_9 9.0 327.3 −39.3 10.4 211207 250208

M9_Cup_15 15.6 327.3 −39.3 17.0 211207 250208

M9_S_5 5.0 327.3 −38.4 6.4 211207 250208

Zephir unit 2 0.0 327.3 −49.3 1.4 211207 250208

M9_Tdiff_14_2 1.9–14.0 327.3 −39.3 3.3–15.4 231207 250208

The instrument identity is as follows: MX is the mast, number X, with “Cup” denoting cup anemometer, “S”
sonic anemometer, and “T” temperature sensors. For the latter case, Tdiff_z1_z2 is the difference between
the two heights z1 and z2, while Tabsz is the absolute temperature measured at height z. Tsurf and Twater
are water temperature at the surface and below, respectively. The instruments ZephIR unit 102 and unit 2 are
lidars. The height zagl is the height above ground level. No numbers are given for Mast M0 because the water
level fluctuates. The name extension corresponds to the approximate height above water level. x is easting, y

is northing, and z is height in the local coordinate system. Start and End denote the time of operation for the
given instrument. The time format is given by DDMMYY

Table 2 Boom directions

Mast ID M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Boom direction 151◦ 179◦ 179◦ 175◦ 180◦ 175◦ 179◦ 180◦ 180◦ 178◦

Absolute temperature was measured on mast M0 and M9 using passively ventilated radi-

ation screens and a Pt100 sensor (Risø P2449A). Furthermore, we measured temperature

differences between two layers by Risø Pt500 sensors. Sensible heat fluxes were obtained

from sonic anemometers. All instruments were installed on booms 1.8 m long and oriented

as detailed in Table 2.

To study the feasibility of wind lidars in complex terrain, two ZephIR lidars were deployed,

though the analysis of these data falls outside the scope of the present work, see Dellwik et al.

(2010b). Further details on the technical aspects of the campaign can be found in Bechmann

et al. (2009).
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3 Upstream Conditions

The importance of characterizing the upstream conditions appears quite obvious. For

modelling purposes, the inflow conditions should be known in advance. Hunt et al. (1978)

determined that the surface stagnation point downstream of a bluff body approaches the bluff

body when the inflow changes from laminar to turbulent. The same was observed by Castro

and Robins (1997) in a wind tunnel, who discovered that the addition of turbulence and shear

considerably reduced the size of the recirculation zone behind the bluff body. It is not possible

for us to investigate these findings with respect to Bolund because conditioning the inflow

based on the profile and turbulence would require a much longer measurement period with

a higher variety of meteorological conditions and a larger number of masts deployed in the

wake of Bolund.

3.1 Stability and Wind Climate

Mast M0 was located in the fjord 150 m away from Bolund, which is approximately one hill

length away. For westerly winds, the measurements at M0 were influenced to some degree

by the presence of Bolund. From numerical simulations, Bechmann et al. (2011) estimated

the speed-down at M0 to be ≈0.5%. We can thus use M0 to characterize the incoming flow.

On the contrary, other geographical features in addition to Bolund will affect the incoming

flow. According to the fetch over water, we have divided westerly winds into three classes.

When the flow is from 180◦ to 220◦, the water fetch is approximately 0.8 km, a point at

which various buildings and trees on the Risø DTU premises to the south will most likely

affect the turbulence intensity. Flow at 225◦−250◦ has a fetch length of approximately 4 km,

while flow at 260◦−300◦ has a fetch of approximately 7 km, with the upstream land mostly

covered by beech trees. A maximum angle of 300◦ has been chosen to avoid mast shadow

effects. For example Table 2 shows the boom direction at M0 to be 151◦.

The left panel of Fig. 3 shows the wind direction as measured with a sonic located at 5 m at

M0. Grey shading in the figure illustrates that the vast majority of winds were from westerly

and south-westerly directions and fell within the three fetch classes previously defined. For

a short time, the wind was from the south to east, while northern winds were nearly absent

in the measurement period.

The campaign was designed for westerly and south-westerly winds and transects were

chosen accordingly. The data coverage is excellent and the upstream conditions were

ideal. The upstream conditions for easterly winds were difficult to characterize because of
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Fig. 3 Left: Distribution of wind directions at Mast M0 at 5 m. Numbers denote probability in percentage,
while the grey areas sweep the three fetch classes. Right: Histogram of five different stability classes. The
data, 30-min averages, are from Mast M0 at 5 m
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insufficient data and a quite inhomogeneous terrain in that direction. For these reasons, we

now consider winds only from the west.

The stability at M0 is characterized by the Obukhov length (measured at 5 m)

LMO = −
u3

⋆

κ(g/θ)w′θ ′
, (2)

where the friction velocity, u⋆, is defined by

u⋆ = |u′w′|1/2. (3)

In the preceding equations and for all future references, u is the magnitude of the horizontal

mean wind vector and w is the mean wind in the true vertical direction, while primed quan-

tities are fluctuations around these values. θ is the potential temperature, and the covariance

w′θ ′ is directly obtained from sonic measurements. If nothing else is stated, mean values cor-

respond to 30-min averages, g is the acceleration due to gravity, here, taken to be 9.82 m s−2,

and κ = 0.4 is the von Karman constant.

In the right panel of Fig. 3 we have plotted probability histograms of the dimensionless

parameter z/LMO. Five stability classes were defined: very unstable (1/LMO ≤ −0.02),

unstable (−0.02 < 1/LMO < −0.004), neutral (|1/LMO| ≤ 0.004), stable (0.004 <

1/LMO < 0.04) and very stable (1/LMO ≥ 0.04). The majority of data were generally

in the neutral or slightly stable regimes.

3.2 Mean Wind Profiles

The bulk Richardson number is defined as

Rib =
g�θ�z

T (�u)2
, (4)

where �θ is the potential temperature difference between 2 and 12 m and T is evaluated at

2 m. �u is the mean wind difference, �u = (u15m + u9m)/2 − u2m.

In Fig. 4 Rib is plotted as a function of z/LMO. The three panels represent the three

fetch classes according to wind direction with fetch in parentheses: 180◦−220◦ (0.8 km),

225◦−250◦ (4 km) and 260◦−300◦ (7 km). The dashed black line in all three panels repre-

sents the Monin–Obukhov empirical relations for flow over flat homogeneous terrain (Kaimal

and Finnigan 1994).

Ri(z/LMO) ≡

(

z

LMO

)

φh(z/LMO)

φm(z/LMO)2
=

{

z/LMO z/LMO < 0

(z/LMO)(1 + 5z/LMO)−1 z/LMO ≥ 0
(5)
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Fig. 4 The bulk Richardson number, Rib as a function of z/LMO for wind from the west. The left, mid-

dle, and right panels represent the three fetch classes: 0.8, 4, and 7 km, respectively. The different colours
refer to wind speeds: u5m < 4 m s−1 (red), 4 m s−1 < u5m < 8 m s−1 (orange), 8 m s−1 < u5m < 12 m s−1

(green) and 12 m s−1 < u5m (blue). The dashed curve is Eq. (5)
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In the preceding equation, φh(z/LMO) and φm(z/LMO) are non-dimensional stability

functions for heat and momentum, respectively, and in principle, are based on the gradi-

ent Richardson number and not the bulk Richardson number used here. For a short fetch (top

left), there is no collapse between data and the empirical relations. For a higher fetch (top

right and bottom left), the collapse is good. Another trend is that for increasing wind speeds

(green to blue), data cluster around z/LMO = 0, which indicates neutral stability.

For the longest fetch (7 km) the well-known logarithmic wind profile

u

u⋆

=
1

κ
log

(

z

z0

)

(6)

is found with z0 = 0.0008 m for constant κ = 0.4; z is the height above the surface, which is

not constant because of the varying sea level. We have therefore used a time-dependent value

in the various profiles giving rise to the fit. Because the platform causes a small speed-up

close to the water, we have not included data from the cup anemometer at 2 m and at 5 m, 3%

speed-up and 1% speed-up, respectively, in the fits.

Because the dominant fetch is over water we might expect z0 to be a function of u⋆, which

according to Charnock (1955), is given by z0 = αcu
2
⋆/g, where αc is the Charnock constant.

For the two longest fetches we found excellent agreement with constants, αc, being 0.025

and 0.030, respectively. Compared with the open sea all values were rather large (Geernaert

1997), probably due to the limited fetch and shallow water depth in Roskilde Fjord.

3.3 Variances and Covariances

Turbulence can be roughly quantified as second-order moments of velocity fluctuations with

the turbulence intensity defined as

Iu ≡

√

u′u′

u
. (7)

A plot of Iu measured at 5 m at M0 is presented in the left panel of Fig. 5 with the other two

components: transverse
√

v′v′/u and vertical
√

w′w′/u. For wind from the south, it is evident

that all three intensities are increased in comparison to the longer fetch directions, which must

be caused by the buildings and trees on the Risø peninsula. For covariances, only u′w′/u2 is

significantly enhanced corresponding to a larger u⋆, whereas the components orthogonal to

the mean wind direction are constant, albeit with widespread scatter. Another interesting fea-

ture is the positive nature of v′w′. In a perfect reflection symmetric case, this quantity should

be zero. However, this is not the case. The value of |v′w′| is approximately 30% of |u′w′|,

and hence not negligible. Because a misalignment of sonic instruments would give rise to a

directional dependence, which is also not the case here, we attribute the positive nature to

physical processes, especially the Coriolis force and its Ekman spiralling cross-isobaric flow

close to the surface. This matter will be studied in more detail in a future study.

3.4 Spectra

To obtain a deeper insight into the turbulence structure of the inflow, we calculated the spectra

from the 20 Hz sonic data from Mast M0 at 5 m. We calculate the two-sided time spectrum,

Sui
(f ),
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Fig. 5 Turbulence at Mast M0. Left: turbulence intensity Iu as a function of wind direction with u′u′ (red),

v′v′ (green) and w′w′ (blue). Right: covariance. u′v′ (red), u′w′ (green), and v′w′ (blue)

Sui
(f ) ∝ |ûi(f )|2, (8)

where ûi(f ) is the Fourier transform of ui(t), and f is the frequency in Hz. Two-sided refers

to the normalization

σ 2
ui

=

∞
∫

−∞

Sui
(f )df, (9)

with σ 2
ui

as the variance of the time series, ui(t). Plotted with a logarithmic x-axis and

normal y-axis half the variance equals the area under the graph. We have only used wind

speeds between 10 and 14 m s−1. We used frequency domain ensemble averaging to reduce

the scatter of the estimated spectrum (for a rigorous treatment, see Pope 2000).

All calculated spectra were multiplied by f/u2
⋆ and plotted as a function of the non-

dimensional frequency n = f z/u. The latter represents the ratio z to eddy wavelength u/f ,

which assumes the validity of Taylor’s hypothesis.

In Fig. 6 we present the spectra Su(f ), Sv(f ), and Sw(f ) and the cospectrum Suw(f ) for

the three fetch classes. The Kaimal model spectra (Kaimal and Finnigan 1994) are superposed

in similar colours for clarity.

f Su(f )

u2
⋆

=
51n

(1 + 33n)5/3
, (10a)

f Sv(f )

u2
⋆

=
8.5n

(1 + 9.5n)5/3
, (10b)

f Sw(f )

u2
⋆

=
1.05n

1 + 5.3n5/3
, (10c)

f Suw(f )

u2
⋆

= −
6n

(1 + 9.6n)7/3
. (10d)

The turbulence is enhanced when the flow is in the direction of Risø (first panel). The

transverse component is especially enhanced in comparison to that of the longer fetch cases.

There appears to be no shift in horizontal length scales for the incoming turbulence between

the three fetch classes, because the maximum level for each individual component occurs
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Fig. 6 Turbulence spectra at M0. The three panels represent the three fetch classes. The spectra are plotted
in dimensionless units f S(f )/u2

⋆ as a function of n = f z/u. The four spectra plotted are Su(f ) (red), Sv(f )

(green), Sw(f ) (blue) and Suw(f ) (black). The Kaimal model is plotted with the dashed lines in a similar
colour code, while the ESDU spectra are plotted with dotted lines only for the two horizontal components

for similar n in all three panels. For the vertical component, the length scale is reduced

when the fetch is increased. The Kaimal spectra were obtained from the Kansas experiment

(Izumi 1971) performed under nearly perfect flat, homogeneous conditions and at higher

elevations above the terrain. We would therefore expect the data in fetch class three (right

panel) to be closest, although remaining at larger levels in the streamwise direction due to

the finite fetch length. In addition, we experienced the following patterns: for all wavenum-

bers, n, the streamwise component (red) was significant larger with the maximum occurring

at a large integral scale (to the left). The transverse component (green) was more evenly

distributed on all wavenumbers compared with the Kaimal spectrum, while the vertical

component (blue) and the cospectrum were similar. We thus have a much more differen-

tiated picture with a large gap (a factor of approximately 100) between the typical length

scale of streamwise and vertical velocity fluctuations. The match for w and uw spectra

with the Kaimal spectrum was probably caused by the overall local equilibrium at these

scales bounded by the height. The larger streamwise integral scale in our data compared to

the Kaimal spectrum could have been caused by several factors. The data from the Kansas

experiment were high pass filtered (5 min), and hence large temporal fluctuation behav-

iour has been neglected. We have performed such high pass filtering only for the upper

limit of 30-min of consecutive measurements in the statistics. In addition, one can con-

sider the homogeneity of the terrain upstream of Bolund: with a 7-km fetch one could

easily believe that measurements at 5 m above water would be similar to those measured

over truly homogeneous terrain. Högström et al. (2001), however, determined that surface-

layer turbulence can be affected by detached eddies that originate from above the surface

layer; hence, they are not in are not in local equilibrium with eddies created locally at

the measuring site. If this case is correct, roughness changes of more than 7 km upstream

could, in principle, affect the spectrum measured even at 5 m through advection of inactive

eddies.

We have also plotted the Engineering Science Data Unit (ESDU) spectra (ESDU Inter-

national 1985) for the horizontal components. ESDU proposes that turbulent length scales

increase with wind speed. In addition, the non-local effect of a finite-height boundary layer

is included. In the streamwise direction for the 7-km fetch, the ESDU spectrum, represented

by the red dotted line, peaked at a similar or only slightly smaller length scale than that of

our measurements. On the contrary, the variance is, approximately 50% larger than mea-

surements. We have also attempted to apply the RDT turbulence model in Mann (1994);

however, the longitudinal spectra did not coincide with the model spectra.
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4 Hill Measurements: Mean Quantities

The two lines in Fig. 2 denoted as line A and line B are the two transects along which data

are presented. Transect A is oriented along 239◦, while transect B is oriented along 270◦.

Differences between the two transects exist. The shorter transect, A, is close to symmetric

with the western edge slightly steeper than the eastern edge, while transect B has a more

pronounced escarpment at the western edge and a more gentle slope on the eastern edge.

As we will subsequently discuss minor differences exist when considering speed-up and the

production of turbulent kinetic energy.

4.1 Transect A

We considered relative speed, that is, the horizontal speed at a given station and height

divided by the horizontal speed at the reference mast, M0, at 5 m. In all figures, the x-axis

denotes wind direction of the incoming wind measured at M0. The use of the same refer-

ence, M0 at 5 m, makes the definition of speed-up slightly different from that usually used.

Data are presented in the left panels of Fig. 7. In the right panels, the normalized turbulence,

σu/σuref is shown, where σuref is the measured standard deviation of u from M0 at 5 m with

a sonic anemometer. In Fig. 8, the associated tilt and deflection angles are presented. The

tilt angle is measured in degrees with the horizontal denoting zero tilt angle. The deflec-

tion is relative to the incoming wind direction. For example, a measured deflection angle

of 10◦ for a wind direction of 200◦ means that the wind direction at the anemometer is

210◦.

For both figures and all panels, the different colours refer to various heights: 1, 2, 3,

5 and 9 m are represented by yellow, red, orange, green and blue, respectively. Each data

point refers to neutral stratification. The vertical lines at each data point represent the mean

deviation from neutral due to stability. Instead of including the neutral cases only, all mea-

surements regardless of stability have been included. As seen in the histogram of z/LM0 in

Fig. 3 stable stratification is the most likely case while unstable stratification is rather rare. In

Sect. 2.1 we stated that thermal stratification only has a minor effect compared to orographic

perturbations. This finding is verified in figures where the deviation in most matters is either

minor or non-existent.

Transect A is in the 239◦ direction.

M1 Just in front of the hill, the flow was blocked, and a decrease in the wind speed centred

near 239◦ was observed. There was an increase in turbulence of around 20% for the low-

est height, 2 m and slightly less for 5 m, red and green, respectively. Positive tilt angles

were observed for all wind directions, and the three-dimensional shape of Bolund was

observed in the deflection plot with negative and positive deflection for values larger

and smaller of 239◦, respectively.

M2 At the hill-top mast, we observed nearly zero wind speeds close to the ground (yellow

and red) accompanied by a large increase in the turbulence of a maximum factor of four.

At greater heights, we observed discontinuous jumps with increasing wind direction,

which indicates that the specific shape of the local topography has a significant impact

on the flow. At 9 m, the flow was nearly independent of wind direction with an average

20% speed-up. However, no increase in turbulence intensity was observed. Closest to

the ground negative tilt was observed indicating that the mast was positioned close to

the edge or near a small region of detached flow.
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Fig. 7 Transect A: from top to bottom: M1, M2, M3 and M4. Left to right: speed-up and normalized tur-
bulence intensity. Data for neutral stability are plotted with range of the other stability classes marked with
vertical lines. The different colours refer to the various heights: 1, 2, 3, 5 and 9 m are represented by yellow,
red, orange, green, blue, respectively. Bottom: height profiles of transect A at 239◦ with masts M1, M2, M3,
and M4. The distance on the horizontal axis is with reference to Mast M3 located close to (0, 0) in Fig. 2
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Fig. 8 Transect A: from top to bottom: M1, M2, M3 and M4. Left to right: tilt and relative deflection. Data for
neutral stability are plotted with range of the other stability classes marked with vertical lines. The different
colours refer to the various heights: 1, 2, 3, 5 and 9 m are represented by yellow, red, orange, green, blue,
respectively. Bottom: height profiles of transect A at 239◦ with masts M1, M2, M3 and M4. The distance on
the horizontal axis is with reference to Mast M3 located close to (0, 0) in Fig. 2
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Mast M2 was positioned approximately 10 m from the western edge. Therefore, one

might speculate that moving the mast just a few metres to one side will result in quite a

different pattern. It is also interesting to observe that even at 5 m (green), the turbulence

level remained nearly a factor of two larger than that of M0 from certain wind directions,

indicating that the inner length scale, ℓi = 2 m, does not fully characterize the viscous

layer.

M3 At Mast M3 at the centre of the hill, the flow speed remained low for the transect direc-

tion near the surface, and the turbulence remained twice as large as that of the incoming

level. The changing slope of the western edge was observed near 225◦ in both panels.

No tilt or deflection was observed.

M4 Mast M4 was placed just beyond the hill on the transect. On the lee side from 160◦

to 230◦, the flow was nearly blocked completely for all heights. The turbulence level

remained moderate at up to 1.5σuref for all heights. As was previously discussed, the

exact position of the mast could have a significant influence on the measured wind speed

and turbulence. Similar to the case of M2, the flow pattern around M4 was more com-

plex than illustrated here, and we will study these conditions in the future. The tilt was

positive for all angles near 200◦ up to 5 m with zero tilt at 9 m. Again, this is a clear

signature of a region with some type of detachment. The three-dimensional shape of

Bolund is strongly manifested in deflection angles up to 5 m.

4.2 Transect B

The data recorded along transect B (in the 270◦ direction) are presented in a similar manner

to that of transect A. The results can be seen in Figs. 9 and 10.

M7 The relative speed-down before the hill was quite significant with symmetry near the

250◦ direction. In addition a slight increase in the turbulence intensity was observed.

The tilt was positive and the deflection displayed a clear three-dimensional-shaped hill

with a circumpolar flow most pronounced for the 2-m sonic measurements.

M6 This mast was positioned approximately 10 m from the escarpment. While speed-up

was evident at 5 m, nearly zero mean winds and a dramatic increase in turbulence was

observed at 2 m. Both speed-up and turbulence for the transect direction (270◦) resem-

ble the pattern observed at Mast M2 at transect A’s direction (239◦). This feature was

reproduced with a slightly positive tilt aloft and a strong negative tilt close to the surface.

M3 Common to transect A and B, see description in Sect. 4.1.

M8 Beyond Bolund a large decrease in relative speed was observed in connection with an

increase in turbulence. Compared with Mast M6 at the hill top, this increase in turbulence

was largest for the sonic measurements at 5 m. Compared with transect A the behaviour

behind Bolund was less dramatic especially for the negative tilt angles that were mainly

positive at Mast M4.

The position of Mast M9, was approximately 200 m east of Bolund on the isthmus or

nearly one Bolund hill length. For true westerly winds, the mast was placed in the wake of

Bolund. In this region, the speed was decreased with only 5% compared with the undisturbed

flow at M0, while the normalized turbulence intensity increased by 10–14% (not shown).

These differences in the reference mast measurements could also be signatures from the often

exposed isthmus located to the east of Bolund and the west of Mast M9.
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Fig. 9 Transect B: from top to bottom: M7, M6, M3 and M8. Left to right: speed-up and normalized turbulence
intensity. Data for neutral stability are plotted with range of the other stability classes marked with vertical

lines. The different colours refer to the various heights: 1, 2, 3, 5 and 9 m are represented by yellow, red,
orange, green, blue, respectively. Height profiles of transect B at 270◦ with masts M7, M6, M3 and M8. The
distance on the horizontal axis is with reference to Mast M3 located close to (0, 0) in Fig. 2
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Fig. 10 Transect B: from top to bottom: M7, M6, M3 and M8. Left to right: tilt and relative deflection.
Data for neutral stability are plotted with range of the other stability classes marked with vertical lines. The
different colours refer to the various heights: 1, 2, 3, 5 and 9 m are represented by yellow, red, orange, green,
blue, respectively. Height profiles of transect B at 270◦ with masts M7, M6, M3 and M8. The distance on the
horizontal axis is with reference to Mast M3 located close to (0, 0) in Fig. 2
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5 Hill Measurements: Turbulent Structures

From the mean turbulence at the two transects, we observed significantly enhanced levels

as compared with the incoming turbulence levels measured at the upstream Mast M0. To

gain more insight into the structure of this turbulence we present the spectra measured from

the sonic time series sampled at 20 Hz. As observed in Figs. 7 and 9, low wind speeds (left

panels) are often accompanied by high variance, σu (right panels), which violates Taylor’s

hypothesis. It is therefore impossible to interpret the spectra as signatures of pure spatial var-

iability. For ease, we have therefore used the upstream velocity, and upstream surface friction

velocity u⋆ as normalization constants. Hence, the spectra are plotted in dimensionless units

f S(f )/u2
⋆,ref as a function of n = f z/uref .

5.1 Transect A

The results along transect A are presented in Fig. 11. Data have been selected for an upstream

wind direction of 239 ± 5◦, that is, along the transect itself.

M1 The form of the spectra observed at the three heights of 2, 5, and 9 m were similar with

enhanced power closest to the surface. The variance was the largest in the streamwise

direction (red) with maximum near n = 0.05, while the vertical component (blue)

peaked at yet smaller scales with higher n. The turbulent eddies were thus stretched in

the horizontal direction. The cospectra were all close to zero with the u′w′ component

(green) slightly negative corresponding to a negative momentum flux.

M2 Toward the hill top, the two sonics closest to the surface, at 1, and 2 m, showed extremely

high variance at scales yet smaller than that of M1. The peaks for the three directions

occurred at nearly the same value of n indicating a state toward isotropy. At 5 m, the

level of variance was decreased, however, the vertical component (blue) remained com-

parable in size to the streamwise component (red), albeit with a peak positioned at a

much smaller scale. For the highest positions, 5 and 9 m, the situation was calmer with

only moderate levels of variance. The cospectra showed high negative values for the

u′w′ component (green) closest to the surface. However, also the transverse compo-

nent, v′w′ (blue), displayed negative values. The latter was probably caused by specific

details of the local orography.

M3 At the centre of Bolund, a significant amount of turbulence existed for all heights. The

spatial scales of the turbulence remained constant with respect to M2, however, the

level of variance was decreased.

M4 Beyond the hill, the turbulence at 9 m was close to isotropic. At 5 m, the streamwise

component (red) only carried half the variance of the other two components but peaked

at a similar value of n. At 2 m, the peaks of the transverse and vertical components were

shifted to higher values of n. A positive value of u′w′ (green) at 2 m indicates a net

positive momentum flux associated with the turbulence at this level. Aloft all cospectra

were positive at 5 m, while the two main components u′w′ and v′w′ balanced each

other at 9 m.

5.2 Transect B

The results along transect A are presented in Fig. 11. Data have been selected for an upstream

wind direction of 270◦ ± 5◦.
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Fig. 11 Turbulence spectra along transect A for wind directions at 239◦ ± 5◦ measured at M0 for neu-
tral cases. The top panels through the bottom panels represent movement over the hill. The left panels
show the spectra Su(f ) (red), Sv(f ) (green) and Sw(f ), (blue) which are plotted in dimensionless units
f S(f )/u2

⋆,ref
as a function of n = f zref/uref . The different dashing styles correspond to the various

heights. Solid lines represent measurements close the surface while far-spaced dashed lines corresponds
to measurements taken aloft. The reference velocities are measured at M0 in 5 m. The right panels show
cospectra Suv(f ) (red), Suw(f ) (green) and Svw(f ) (blue). Different limits are evident on the vertical
axes
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M7 The conditions at M7 were quite similar to that of M1, with the greatest variance in the

streamwise direction peaking near n = 0.05.

M6 At the hill top the turbulence was smaller than at M2. More striking, however, was the

broad distribution of variance in the streamwise direction (red). Spanning two orders of

magnitude in n, eddies of all sizes ranging from many times the size of Bolund to sizes

much smaller contribute to the total variance. The very steep nearly vertical escarpment

along this transect thus generated significantly complex structures that could not be

easily characterized. This behaviour was accompanied by large negative values in the

cospectra for u′w′.

M3 Compared with M3, no remarkable differences were observed with the wind direction

along direction 239◦.

M8 At M4, behind the gentle slope at the rear of the transect, the largest variance occurred

closest to the ground in the streamwise direction. At 5 m, approximately half the height

of Bolund, the three components were nearly equal, indicating isotropic conditions.

Large negative values of momentum flux were observed for both heights (Fig. 12).

5.3 Reversed Flow

The extreme high level of turbulence occurring at the hill top and partially beyond the Bolund

hill indicate the presence of a mechanism greater than the possible inference from the 30-min

averages of relative wind speed presented in Sect. 4. In addition the somewhat wide peak

observed in the spectra at M2 on transect A close to the surface shows strong evidence of a

continuum of time scales. In the left panels in Fig. 13 we present a 30-min time series recorded

at M2 for 1 m of the wind speed, u239, along the upstream mean wind direction, here, ≈239◦,

that is, along the transect. Recirculation or reversed flow of any type was manifested though

negative u239. For the given period the local mean was 2.3 m s−1. We, however, observed that

in a substantial amount of time, the wind velocity was negative. The gusty nature of the flow

was evident. The speed fluctuated to a great extent on time scales from seconds (lower panel)

to half a minute (upper panel). The corresponding probability density function is given in

the right panel of Fig. 13. The negative velocities were only measured close to the surface

at 1 m and at 2 m (not shown), that is, within the inner layer, in approximately 22 and 3% of

the time, respectively. Gaussian distributions were observed for all heights and the decrease

of variance with height was evident (not shown).

At Mast M4 on transect A, positioned just beyond Bolund, we also encountered signifi-

cantly high turbulence levels with reversed flow, albeit with lesser probability (10% at 2 m,

5% at 5 m, and 0.3% at 9 m) than at the hill top (Mast M2). Conversely, negative velocities

extended to larger heights (not shown). This result was expected because the sonic anemom-

eter was positioned below the hill height. A similar pattern of reversed flow existed along

transect B.

6 Conclusions

We have attempted to present the most interesting flow features measured at Bolund. Although

Bolund is small in size, the phenomena occurring can be generalized to much larger hills at

least for cases with neutral stratification.

We argue that precise characterization of the upstream conditions is important. For the

7-km fetch over water, the relationship between z0 and u⋆ is well described by Charnock’s
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Fig. 12 Turbulence spectra along transect B, as detailed in the caption of Fig. 11

relation and the wind profile is logarithmic. The wind profile is established from cup anemom-

eters at several heights dependent on fetch and stability. The turbulence spectra are compared

with both Kaimal spectra and ESDU. In the streamwise and horizontally transverse directions

the measured spectra do not compare with traditional forms, which we attribute to non-local

effects and insufficiently low measurements heights. We also highlight the non-zero trans-

verse momentum flux 〈v′w′〉. The positive sign could indicate that the Coriolis force even in

such close proximity to the surface is important.
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Fig. 13 Left: time series of u239 at Mast M2 in 1 m. Data are sampled at 20 Hz corresponding to 36,000
timesteps for 30 min. Top left: 30 min. Bottom left: 1 min. The red horizontal line represents the mean while
the green lines represent the standard deviation. Right: probability density function of u239 at Mast M2 at 1 m.
A Gaussian fit is presented as a solid black line

From measurements of wind speed, turbulence and flow angles from various wind direc-

tions, we have observed that the flow is quite sensitive to even the slightest change in height,

which is illustrated in Fig. 8. For the measurements close to the ground, the flow is also

to some degree sensitive to changes in terrain. From a modelling perspective this indicates

that very high resolution probably much finer than 1 m, should be used. Another important

consequence of the sensitivity is that if we had moved the masts several metres in various

directions or placed the sonic instruments at slightly different heights, the measurements may

have registered different results, which could perhaps change the quantitative conclusions

of speed-up and turbulence for the various heights. This finding is especially true for the

measurements at the hill top, M2 and M6, and those beyond Bolund, M4 and M8, which

were located in regions of high turbulence levels. In Bechmann et al. (2011), this sensitivity

is evident from the various model studies.

At the hill top the speed-up was accompanied by extreme turbulence levels. A speed-up

of approximately 30%, as observed at M2 and illustrated in Fig. 7, is comparable with data

from Askervein Hill. On the contrary, the corresponding turbulence level of approximately

four times the upstream level is beyond any documented hill experiment, which implies that

the best site relative to wind-energy resources unfortunately also implies greatly enhanced

dynamic loads.

Closer inspection of the turbulence revealed significant reverse flow close to the sur-

face. To predict such unsteady flow structures, models capable of resolving both spatial and

temporal structures of turbulence are necessary. Even near one Bolund hill length, L, the

downstream flow showed signs of enhanced turbulence, although the mean wind speed had

generally relaxed to its upstream value. The inner length scale, ℓi, predicted by the linear flow

theory, was estimated to 2 m. We, however, observed a substantial amount of turbulence even

at heights larger than, ℓi. An example of this phenomenon was observed at Mast M3 at the

centre of Bolund, where the normalized turbulence intensity was constant up to a minimum

of 5 m. Therefore the inner length scale is not a characteristic length scale of the flow near

Bolund, as we expected.

Through these observations, it is clear that the linear theory is not applicable. In a model-

ling context, this would indicate that a simple solution with a linear model may provide no

insight. In addition non-linear models of the RANS type that currently are widely used in

both industry and academia, also are not likely to be perfectly suited because they lack

both time dependence and realistic representation of turbulence (spatial structure). LES

models appear to be the most promising candidates. With time, we expect LES models to

123



242 J. Berg et al.

successfully simulate a complex flow such as the one reported here. Again, spatial resolution

is very important. Whereas inflow turbulence is often mentioned as a crucial factor for mak-

ing an effective LES model (Bechmann and Sørensen 2010), this factor does not appear to

be of such great importance at Bolund due to the extreme level of turbulence created by the

presence of Bolund itself. As documented in Bechmann et al. (2011), LES models encounter

additional problems relative to modelling the flow near Bolund.

In retrospect, several steps could have been performed differently. Instead of working

with two transects, we could have focused on only one with more dense instrumentation,

which would have allowed us to study the size of the recirculation zone on the hill top and

the wake beyond the hill. In addition, positioning the sonic instruments in front of the hill

and in its wake at higher heights, at least comparable to the height of Bolund, would have

been desirable. We strongly urge researchers who are interested in the technical aspects of the

measurement campaign to consult the Risø DTU report (Bechmann et al. 2009) for details.

Future experiments on boundary-layer flow in complex terrain should address the issue of

stratification. Much larger hills, as well as measurement techniques that can sample a large

part of the boundary layer are necessary. The lidar wind scanner (Mikkelsen et al. 2008) is a

prominent candidate for this study. New types able to measure smaller scale turbulence are

in the development stage and could be of great assistance. Such new techniques would allow

for a three-dimensional scan over a hill; thus, a more complete picture that obtained from

anemometers at fixed positions could be possible.
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