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Abstract. In this paper, the bond-based peridynamic system is analyzed as a
nonlocal boundary value problem with volume constraint. The study extends

earlier works in the literature on nonlocal diffusion and nonlocal peridynamic
models to include non-positive definite kernels. We prove the well-posedness of

both linear and nonlinear variational problems with volume constraints. The

analysis is based on some nonlocal Poincaré type inequalities and compactness
of the associated nonlocal operators. It also offers careful characterizations of

the associated solution spaces such as compact embedding, separability and

completeness. In the limit of vanishing nonlocality, the convergence of the
peridynamic system to the classical Navier equations of elasticity is demon-

strated.
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1. Introduction

Nonlocal models are becoming ubiquitous in describing physical and social phe-
nomena. The monograph [3] presents results on the nonlocal equations that ap-
proximate, for instance, equations of porous media flow. The recent paper [22]
models self-organized dynamics using nonlocal equations. A study of nonlocal op-
erators with application to image processing is given in [17] and [4]. Other areas of
application include, to name a few, modeling wave propagation, pattern formation
and population aggregation.

Of interest to us is the recent nonlocal reformulation of the basic equations of
motion in a continuous body, originally proposed by Silling [23]. In its core this
nonlocal continuum model, called peridynamics (PD), uses integration in lieu of dif-
ferentiation to compute the force on a material particle by summing up interactions
with other near-by particles. The model completely avoids spacial derivatives and
is found to be effective in modeling problems related to the spontaneous formation
of discontinuities in solids

The PD system of equations of motion, for a bond-based materials [23], is

(1.1) m(x)utt(x, t) =

∫
Bδ(x)∩Ω

f(x′ − x,u(x′, t)− u(x, t))dx′ + b(x, t)
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where the body has a mass density m(x) and occupies the bounded domain Ω. The
vector valued function f(ξ,η) is a pairwise force density function that contains all
constitutive relations. The function u is the displacement field and b is a given
loading force density function. The parameter δ > 0 is called the horizon and
specifies the extent of the nonlocal interaction. The first expression on the right
hand side of (1.1) represents the force per unit reference volume at a particle due
to interaction with other particles.

Focusing on the case when the relative displacement |u(x′)− u(x)| is uniformly
small, our goal in this paper is to closely study the linearized equilibrium equations
corresponding to (1.1). For a class of bond-based materials, namely microelastic
and isotropic, the linearized PD equilibrium system takes the form

(1.2) −
∫
Bδ(x)∩Ω

C(x′ − x)(u(x′)− u(x))dx′ = b(x),

where the matrix function C(ξ), called the micromodulus tensor, is

(1.3) C(ξ) = 2
ρ(|ξ|)
|ξ|2

ξ ⊗ ξ + 2F0(|ξ|)I

where I is the identity matrix and ρ and F0 are given radial functions. Equation
(1.2) will be accompanied by a ”boundary” condition, imposed as a volumetric
constraint. This is in contrast to local problems where conditions are prescribed on
the boundary of the domain. We will study the linear system (1.2) as a nonlocal
boundary value problem with Dirichlet-type volumetric boundary conditions. We
prove well posedness of the system after establishing some structural properties of
the function space associated with it, and in the event of vanishing of nonlocality
we show that (1.2) approximates the Navier equations of linear elasticity.

We briefly describe the content of this paper and, along the way, the contributions
of our work.

First, to apply standard variational techniques, we present a careful study of the
function space associated with (1.2):

S(Ω) =

{
u ∈ L2(Ω;Rd) :

∫
Ω

∫
Ω

ρ(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2 dx′dx <∞
}
.

To begin with, if ρ(|ξ|) ∈ L1
loc(Rd), then we will show that the space S(Ω) is pre-

cisely L2(Ω;Rd). In the absence of this condition however, S(Ω) is a proper subset
of L2(Ω;Rd) and obtaining desirable structural properties of S(Ω) is the key issue.
One way to get such properties is to determine kernels ρ where S(Ω) coincides with
well known spaces, such as the fractional Sobolev spaces. This has been done in
[14, 27] for cases where Ω = Rd, or for a subspace of functions satisfying certain
periodic boundary conditions, where Fourier transform/expansion can be used to
characterize S(Ω) and the underlying nonlocal operator. Indeed, when ρ is com-
parable to |ξ|−d−2s for s ∈ (0, 1) and Ω = Rd, the space S(Ω) coincides with
Hs(Ω;Rd). For bounded domains, however, it is not obvious that S(Ω) coincides
with fractional Sobolev spaces, partly due to the lack of Korn-type characterization
of fractional Sobolev spaces. As such, basic structural properties such as complete-
ness, compactness and separability need to be shown from scratch using the space
S(Ω) as is. In Section 2, we study S(Ω) and the energy space corresponding to the
nonlocal Dirichlet-type boundary value problem. We establish the completeness
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and separability in an appropriate norm and present conditions on ρ that guaran-
tee compactness in L2(Ω;Rd). A nonlocal Poincaré-type inequality that holds in
the energy space can then be proved and in turn it is used to establish the weak
coercivity of the underlying peridynamic operator. We should mention that the
analysis carried out benefits from the works Bourgain, Brézis and Mironescu [5],
Brézis [7] and the vector extension [20].

Second, although analytical and numerical aspects of the linear model (1.2) have
been studied by [1, 11, 14, 15, 16, 18, 27], they have done so under the assumption
that F0 ≡ 0. However, Silling in [23] argued that this assumption is too restrictive
to impose in modeling real materials, and that not only F0 is not identically zero
but also must change sign. This is the physical motivation for our work of analyzing
(1.2) with ρ nonnegative but F0 sign changing. The extra requirement creates the
challenge of having a micromodulus tensor C(ξ) that has sign changing eigenvalues
ρ(|ξ|) + F0(|ξ|) and F0(|ξ|). This difficulty is circumvented here by interpreting
(1.2) as a small or compact perturbation of a well behaved system, thus extending
similar results obtained in [1, 11, 14, 15, 16, 18, 27] for physically more realistic
cases involving indefinite kernels. In Section 3 we define, and gather necessary
properties for, both the nonlocal ”leading” and the peridynamic operators. In
Section 4 we prove the well posedness (1.2) as a nonlocal constrained value problem
with Drichlet-type volume constraint. In the same section we also discuss some
related nonlinear variational problems.

Finally, in Section 5 we demonstrate that in the limit of vanishing nonlocality,
solutions to the nonlocal problems approximate the classical Navier systems. In the
absence of the perturbation due to the presence of F0 the result is already proved
in [14, 27, 12, 15]. With proper scaling, we show, the solutions of the nonlocal
system (1.2) strongly converge in L2(Ω;Rd) to that of the same Navier equation
even with the presence of F0. This is significant in the sense that while the ’large
scale’ Navier system does not see the effect of the addition of F0, the ’small scale’
peridynamic system does indeed detect the effect. The convergence is possible due
to the compactness result proved in [5, 20] and a tighter version of Poincaré-type
inequality whose proofs uses arguments similar to that of A. Ponce used in [25] for
scalar functions.

2. The energy space

2.1. Definition and notation. Throughout the paper we take Ω to be a connected
bounded domain with sufficiently smooth boundary. We assume that:

(H)


ρ is nonnegative, radial, compactly supported and

ρ̂(|ξ|) = |ξ|2ρ(|ξ|) ∈ L1
loc(Rd),

and there exists a constant σ > 0, such that (0, σ) ⊂ supp(ρ).

The radial function ρ is not necessarily locally integrable rather we assume that
it has finite second moments, a property that is necessary to ensure well-defined
elastic moduli [23]. As we proceed, additional necessary conditions on ρ will be
provided.

We also assume that F0 is a radial locally integrable function in Rd. Unlike ρ,
F0 may be sign changing with additional conditions being imposed later.
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As we discussed in the introduction the space of vector fields that will contain
our equilibrium solution is

S(Ω) =

{
u ∈ L2(Ω;Rd) :

∫
Ω

∫
Ω

ρ(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2 dx′dx <∞
}
.

Obviously S(Ω) is a subspace of L2(Ω;Rd). Let the bilinear form ((·, ·)) : S(Ω) ×
S(Ω)→ R be defined by
(2.1)

((u,w)) =

∫
Ω

∫
Ω

ρ(|x′−x|) (x′ − x)

|x′ − x|
· (u(x′)−u(x))

(x′ − x)

|x′ − x|
· (w(x′)−w(x))dx′dx.

Denoting the L2 inner product by (·, ·), the space (S(Ω), (·, ·)s) is then a real
inner product space with the inner product (·, ·)s defined as

(2.2) (u,w)s = (u,w) + ((u,w))

We use the notation ‖u‖ to denote the L2 norm of u and |u|s to denote the

seminorm
√

((u,u)) of u in S(Ω) and ‖ · ‖s to denote the norm on S(Ω):

‖u‖2s = ‖u‖2L2 + |u|2s.
We remark that, using the function ρ̂ introduced in (H), the above bilinear form

can be equivalently expressed as

((u,w)) =

∫
Ω

∫
Ω

ρ̂(|x−x′|)
(

(x′ − x)

|x′ − x|2 · (u(x
′)− u(x))

)(
(x′ − x)

|x′ − x|2 · (w(x′)−w(x))

)
dx′dx.

which enables us make connections between ((·, ·)) and standard (local) bilinear
forms. Indeed, for smooth u, say u ∈ C2(Ω;Rd), we have

(x′ − x)

|x′ − x|2
· (u(x′)− u(x)) ≈ 〈e(∇u)

(x′ − x)

|x′ − x|
,

(x′ − x)

|x′ − x|
〉 for all x′,x ∈ Ω

where e(∇u) = 1
2 (∇u + ∇uT ) is the symmetrized gradient. Thus one may think

of ((u,w)) given by (2.1) as a nonlocal counterpart of the local inner product
(e(∇u), e(∇w)).

2.2. Some structural properties of S. We prove in this section, among other
things, that function space S(Ω) actually is a complete inner product space with
the inner product given (2.2). As discussed earlier if ρ(|ξ|) satisfies the additional
condition

(2.3) ρ(|ξ|) ∈ L1
loc(Rd),

then the space S(Ω) is precisely L2(Ω;Rd) and in this case there is nothing to
prove. But the completeness of the space S(Ω) in the event that(2.3) does not
hold requires justification. Related results in [14, 27] are applicable when Ω is the
whole space or when the functions in S(Ω) satisfy certain periodicity conditions.
In these special cases, the applicability of the Fourier transform or Fourier series
expansion in characterizing the function space proves to be convenient. In this
work, our argument for the completeness of S(Ω) is more direct and general as
it is applicable for some nonnegative radial ρ on any connected and bounded and
measurable domain Ω.

Theorem 2.1. Assume that ρ satisfies (H). Then (S(Ω), (·, ·)s) is a Hilbert space.
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Proof. It suffices to check that the space S(Ω) is complete since we already know
it is an inner product space. To that end, suppose that {un} ∈ S(Ω) is a Cauchy
sequence in S(Ω). Then the sequence {un} is also Cauchy in L2(Ω;Rd) and there-
fore converges to some {u} strongly in L2(Ω;Rd). We claim that {un} actually
converges to u in S(Ω). To show that we only need to check that |un − u|s → 0 as
n→∞. Let ε > 0. Choose K large such that for all n,m ≥ K

|un − um|2s ≤ ε2.

For all τ > 0, we denote ρτ (r) = ρ(r)χ[τ,∞)(r). Then for all n,m∫
Ω

∫
Ω

ρτ (|x′−x|)
∣∣∣∣ x′ − x

|x′ − x|
· ((un − um)(x′)− (un − um)(x))

∣∣∣∣2 dx′dx ≤ |un−um|s .

Since the kernel is integrable the left hand side can be written as

−2

∫
Ω

(∫
Ω

ρτ (|x′ − x|)( (x′ − x)⊗ (x′ − x)

|x′ − x|2
(un − um)(x′)− (un − um)(x)dx′

)
(un−um)(x)dx .

Note that for a fixed n, and all x ∈ Ω,

lim
m→∞

∫
Ω

ρτ (|x′ − x|) (x′ − x)⊗ (x′ − x)

|x′ − x|2
[(un − um)(x′)− (un − um)(x)] dx′

=

∫
Ω

ρτ (|x′ − x|) (x′ − x)⊗ (x′ − x)

|x′ − x|2
[(un − u)(x′)− (un − u)(x)] dx′

and therefore by dominated convergence theorem, for all τ > 0 and for all n ≥ K,

− 2

∫
Ω

(∫
Ω

ρτ (|x′ − x|) (x
′ − x)⊗ (x′ − x)

|x′ − x|2
[
(un − u)(x′)− (un − u)(x)

]
dx′
)
(un − u)(x)dx

= lim
m→∞

−2
∫

Ω

(∫
Ω

ρτ (|x′ − x|) (x
′ − x)⊗ (x′ − x)

|x′ − x|2
[
(un − um)(x′)− (un − um)(x)

]
dx′
)
(un − um)(x)dx ≤ ε2.

That is, for all τ > 0 and for all n ≥ K,

−2

∫
Ω

(∫
Ω

ρτ (|x′ − x|) (x′ − x)⊗ (x′ − x)

|x′ − x|2
[(un − u)(x′)− (un − u)(x)] dx′

)
(un−u)(x)dx ≤ ε2.

Rewriting the left hand expression, which we can do since the kernel is integrable,
we have for each τ > 0 and n ≥ K∫

Ω

∫
Ω

ρτ (|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· [(un − u)(x′)− (un − u)(x)]

∣∣∣∣2 dx′dx ≤ ε2.
Now applying Fatou’s lemma, we obtain that for all n ≥ K,∫

Ω

∫
Ω

ρ(|x− x′|)
∣∣∣∣ (x′ − x)

|x′ − x|
· ((un − u)(x′)− (un − u)(x))

∣∣∣∣2 dx′dx ≤ ε2,
proving that for any ε > 0, there exists K large such that

|un − u|s ≤ ε, ∀n ≥ K,

This completes the proof of the theorem. �

The next result gives a relationship between the standard Sobolev spaceH1(Ω;Rd)
and S(Ω): namely H1(Ω;Rd) is continuously embedded in S(Ω). This result is pre-
cisely [20, Lemma 2.1 ]. For functions see [5, Theorem 1]. For completeness we
state the theorem as a lemma but refer to [20] for the proof.
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Lemma 2.2. Assume that (H) holds. Then the Sobolev space H1(Ω;Rd) is contin-
uously embedded in S(Ω). In particular, there exists a positive constant C = C(Ω)
such that for all u ∈ H1(Ω;Rd),

|u|s ≤ C|e(∇u)|L2‖ρ̂‖L1(Rd)

where e(∇u) = 1
2 (∇u +∇uT ).

2.3. A special subspace. As our goal is to study the solvability of the peridy-
namic equation with Dirichlet-type boundary conditions, we now define the the
energy space in which we expect the solution to belong. Clearly this special space
will be a subspace of S(Ω). It is well known by now that (1.2) together with a
Dirichlet data on the boundary of Ω, ∂Ω, does not have to be well posed, as the un-
derlying operator is a nonlocal one. Thus the energy space must contain elements of
S(Ω) that satisfy certain volumetric constraints as opposed to surface constraints.
As a consequence the Dirichlet-type condition we are imposing must be imposed
on a subspace of Ω with positive volume measure.

To that end, for a given Ω′ that is compactly contained in Ω, denoted as Ω′ b Ω,
define V0(Ω′) to be the closure in S(Ω) of C∞c (Ω′;Rd);
(2.4)
V0(Ω′) = {u ∈ S(Ω) : un → u in S(Ω) as n→∞ for some un ∈ C∞c (Ω′;Rd)}.

The set V0(Ω′) contains essentially all u ∈ S(Ω) that vanish on the subset of Ω
outside of Ω′, which has a positive volume measure.

A special case is when Ω′ = Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, the set of points
in Ω that are δ distance away from the boundary, where δ is the horizon. This
enable us to impose ”boundary” conditions on a boundary layer of thickness δ,
mimicking the local Dirichilet boundary value problems. We denote this energy
space by V δ0 = V0(Ωδ), the set of elements of S(Ω) that vanish on a boundary layer
of thickness δ.

Theorem 2.3. Assume that (H) holds. Then the following claims hold.

i) H1
0 (Ω′;Rd) ⊂ V0(Ω′) ⊂ L2(Ω′;Rd).

ii) V0(Ω′) is a closed subspace of S(Ω). As a consequence, it is a separable
Hilbert space with the inner product (·, ·)s.

iii) V0(Ω′) is a dense and closed subspace of L2(Ω′;Rd).

Proof. Observe that elements of V0(Ω′) are supported on the fixed set Ω′, and we
understand the inclusions as restrictions on Ω′. The proof of i) follows from the
definition. If u ∈ H1

0 (Ω′;Rd) ⊂ H1(Ω;Rd), then there exists a sequence un ∈
C∞c (Ω′;Rd) such that un → u in H1(Ω′;Rd). Applying Lemma 2.2,

‖un − u‖S(Ω) ≤ C‖un − u‖H1(Ω;Rd) ≤ C‖un − u‖H1(Ω′;Rd) → 0 as n→∞,

obtaining that u ∈ V0(Ω′).
The set V0(Ω′) is closed under addition and scaler multiplication, and thus it is

a subspace of S(Ω). Moreover, V0(Ω′) is a closed subspace of S(Ω). Indeed, suppose
that vn ∈ V0(Ω′) converges to v in S(Ω). For each n, choose un ∈ C∞c (Ω′;Rd) such
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that ‖un − vn‖s ≤ 1/n. Then

‖un−v‖S(Ω) ≤ ‖un−vn‖S(Ω)+‖vn−v‖S(Ω) ≤ 1/n+‖vn−v‖S(Ω) → 0 as n→∞,

implying that the limit v ∈ V0(Ω′). Separability follows from the separability
of H1

0 (Ω′;Rd), part i) and Lemma 2.2. Indeed, the countable dense subset of
H1

0 (Ω′;Rd) will also be dense in V0(Ω′) with the norm ‖ ·‖s. Part iii) is obvious. �

2.3.1. Nonlocal Poincaré-type inequality. The subspace V0(Ω′) supports a nonlocal
Poincaré-type inequality that help us control the L2 norm of an element by its
semi-norm, | · |s. To obtain such an inequality we first give a characterization of
the zero set of the seminorm | · |s. We use the notation Π to denote this set which
is precisely the set of rigid deformations:

Π = {u : u = Qx + b,Q ∈ Rd×d,QT = −Q,b ∈ Rd}

The following lemma provides a nonlocal means of identifying elements of Π, See
[20, Corollary 3.2] or [12] for proof.

Lemma 2.4. Suppose that ρ satisfies (H). Then

u ∈ Π ⇐⇒
∫

Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ x′ − x

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2 dx′dx = 0.

Remark 2.1. It is not difficult to observe that there are no nontrivial rigid defor-
mation defined on Ω that vanishes in a subset of positive volume measure. As a
consequence,

V0(Ω′) ∩Π = {0}.

We will also need the following compactness result for the proof of the nonlocal
Poincaré inequality. The lemma is precisely [20, Theorem 5.3] adapted to our
setting.

Lemma 2.5. Suppose that un is a bounded sequence in L2(Ω;Rd) with compact
support in Ω. Then if

lim
n→∞

∫
Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x)

∣∣∣∣2 dx′dx = 0,

then un is precompact in L2(Ω;Rd).

We now state and prove the nonlocal Poincaré-type inequality. We should men-
tion that for functions nonlocal Poincaré-type inequalities are available in the lit-
erature, see for example, [25, 20, 12, 18].

Proposition 2.6 (Nonlocal Poincaré Inequality). Suppose that ρ satisfies (H).
Then there exists C = C(ρ,Ω) such that

‖u‖2L2 ≤ C
∫

Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ x′ − x

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2 dx′dx, ∀u ∈ V0(Ω′).

As a consequence, by taking κ =
√
C|diam(Ω)|

‖u‖ ≤ κ|u|s, for all u ∈ V0(Ω′).
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Proof. We will show that

0 < m = inf
u∈V0(Ω′),‖u‖L2=1

(∫
Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ x′ − x

|x′ − x|
· (u(x′)− u(x))

∣∣∣∣2 dx′dx
)
.

Clearly m ≥ 0. Suppose m = 0. Then there exist un ∈ V0(Ω′) such that for all n,
‖un‖L2(Ω) = 1, and

lim
n→∞

∫
Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x)

∣∣∣∣2 dx′dx = 0.

We can now apply Lemma 2.5 to conclude that un is precompact in L2(Ω;Rd). Let
u ∈ V0(Ω′) be a strong limit (up to a subsequence) of un in L2(Ω;Rd). Then on
the one hand,

‖u‖L2(Ω;Rd) = 1.

On the other hand rewriting the expression, which is possible since ρ̂ ∈ L1
loc, and

letting n→∞, we obtain that

0 = lim
n→∞

∫
Ω

∫
Ω

ρ̂(|x′ − x|)
|x′ − x|2

∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x)

∣∣∣∣2 dx′dx
= lim
n→∞

∫
Ω

(
−2

∫
Ω

ρ̂(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(un(x′)− un(x))dx′
)
· un(x)dx

=

∫
Ω

(
−2

∫
Ω

ρ̂(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′
)
· u(x)dx

=

∫
Ω

∫
Ω

ρ̂(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (u(x′)− u(x)

∣∣∣∣2 dx′dx.
By Lemma 2.4 and Remark 2.1, we have u ∈ V0(Ω′) ∩ Π = {0}. But this is a
contradiction as ‖u‖L2 = 0. That completes the proof. �

Remark 2.2. Later we may need to know the details of the dependence of the
constant κ in Proposition 2.6 in terms of the size of the support of ρ. That requires
us to give a tighter version of the nonlocal Poincaré-type inequality, and this is
accomplished in Section 5.

2.3.2. Compact embedding. The nonlocal Poincaré-type inequalities proved above
imply that V0(Ω′) with the norm | · |s is continuously embedded in L2(Ω;Rd). In
applications a stronger than continuous embedding is necessary, namely compact
embedding. In this subsection we state condition to expect compactness or not.
The following lemma says if ρ is locally integrable we cannot expect compactness.

Lemma 2.7. Suppose that in addition to (H), ρ satisfies (2.3). Then S = L2(Ω;Rd).
Moreover, then there exists constants 0 < c ≤ C such that

c‖u‖L2(Ω) ≤ |u|s ≤ C‖u‖L2(Ω) for all u ∈ V0(Ω′).

Proof. The proof of the Lemma follows from the observation that when ρ(|ξ|) is
locally integrable, the seminorm |u|2s can be written as

|u|2s =

∫
Ω

u ·
(
−2

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′
)
dx
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and the function

x 7→ −2

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′

is in L2(Ω;Rd). The latter part of the lemma uses the nonlocal Poincaré’s inequal-
ities proved in the previous section. �

When condition (2.3) fails, in general, the space S may become a proper subset
of L2(Ω;Rd). We next present a condition on ρ such that the closed subspace V0(Ω′)
is compactly embedded in L2(Ω;Rd).

Lemma 2.8. Suppose that in addition to (H), ρ̂(|ξ|) is nonincreasing in |ξ| and
satisfying the density condition

(2.5)
ε2∫

Bε(0)
ρ̂(|ξ|)dξ

→ 0 as ε→ 0.

Then V0(Ω′) is compactly embedded in L2(Ω;Rd).

Proof. Suppose that un ∈ V0(Ω′) is bounded in S(Ω). This implies that un is
bounded in L2(Ω;Rd) and that

sup
n≥1

∫
Ω

∫
Ω

ρ(x′ − x)

∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x))

∣∣∣∣2 dx′dx <∞.
Extending un to be 0 outside of Ω, it is not difficult to show that

(2.6) sup
n≥1

∫
Rd

∫
Rd
ρ(x′ − x)

∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x))

∣∣∣∣2 dx′dx <∞.
Thus after some scaling we may assume that Ω = Rd and that supp(un) ⊂ B, the
unit ball. Let

P(z) =
d

ωd

z⊗ z

|z|2
χB(z)

and define Pε(z) = 1
εd
P(z

ε ). Then with inequality (2.6) and the boundedness in

L2(Ω;Rd) at hand, according to [20, Lemma 5.4] (see also [5]), it suffices to show
that

(2.7) lim
ε→0

lim sup
n→∞

‖un − Pε ∗ un‖L2(Rd) = 0.

Following the exact argument as in [5, 20], we obtain that

(2.8)

∫
Rd
|un(x)− Pε ∗ un(x)|2dx ≤ d2

|Bε|

∫ ε

0

rd−1Fn(r)dr.

where (Pε ∗ un)i =
∑d
i Pεi j ∗ (un)j and

Fn(r) =

∫
Sd−1

∫
Rd
|s · (un(x + rs)− un(x))|2 dxσ(s).

The rest of the proof is similar to the proof of the compactness theorem in [5]. The
function Fn enjoys similar properties as its counterpart in [5]. The most important
properties being that

F (2r) ≤ 22F (r),
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and that the estimate (2.6) can be expresses as

(2.9) sup
n

∫ 1

0

rd−1Fn(r)

r2
ρ̂(r)dr ≤ C.

Moreover, from application of [5, Lemma 2] (with g(r) = Fn(r)/r2 and h(t) = ρ̂(t))
we obtain that

|Bε|−1

∫ ε

0

rd−1Fn(r)

r2
dr ≤ C

(∫ ε

0

rd−1Fn(r)

r2
ρ̂(r)dr

)/(∫
Bε

ρ̂(x)dx

)
Then by (2.9) we obtain that for any ε > 0

|Bε|−1

∫ ε

0

rd−1Fn(r)dr ≤ Cε2|Bε|−1

∫ ε

0

rd−1Fn(r)

r2
dr ≤ C ε2∫

Bε
ρ̂(x)dx

, ∀n ≥ nε.

Now we take the limit first in n and then in ε, to obtain (2.7) by (2.5). That
completes the proof. �

Remark 2.3. Note that for ρ satisfying (2.5), the local integrability condition (2.3)
is no longer valid. Moreover, a simple calculation shows that ρ(|ξ|) that are com-
parable to |ξ|−d−2s for any s ∈ (0, 1), near the origin satisfy (2.5). Another kernel,
not included in the above class is the radial function

ρ(|ξ|) =

{
− ln(|ξ|)
|ξ|d when |ξ| ≤ 1

0 otherwise,

where d ≥ 2.

3. The nonlocal operator

3.1. Definition. The integral operator on the left hand side of (1.2) exists at all
points x ∈ Ω, and for all u ∈ L2(Ω;Rd) if C is locally integrable. But this is not so
in general in the absence of the integrability assumption on ρ. We, therefore, have
to make sense of underlying peridynamic operator corresponding to (1.2). First
we define and understand the ”leading operator” L corresponding to the kernel ρ.
Denoting the dual space of S(Ω) by S ′(Ω), define the operator −L : S(Ω)→ S ′(Ω)
by

(3.1) 〈−Lu,w〉 = ((u,w))

for any u,w ∈ S(Ω), where the bilinear form is as defined in (2.1). Then we see
that L is a bounded linear operator and satisfies the estimate

|〈−Lu,w〉| ≤ |u|s|w|s.
We would like to understand this operator better. To that end, let us look at the
simpler case when ρ satisfies (2.3). In this case S = L2(Ω;Rd) and L : L2(Ω;Rd)→
L2(Ω;Rd) is a linear and bounded operator. Moreover, since the duality pairing is
just the L2(Ω;Rd) inner product, for any u and w in L2(Ω;Rd),
(−Lu,w) = ((u,w)))

=

∫
Ω

w(x) ·
(
−2

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′
)
dx,

obtaining the value of L at u ∈ L2(Ω;Rd) by the closed form

(3.2) Lu (x) = 2

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′−x)⊗ (x′−x)(u(x′)−u(x))dx′, a.e. x ∈ Ω.
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However, without the additional integrability assumption on ρ, the operator L
is an unbounded operator on L2(Ω;Rd), and worse yet, the integral in (3.2) may
diverge for some u ∈ L2(Ω;Rd). The next proposition states that with the more
general assumption (H) of ρ one can understand L and give a closed form in some
generalized sense. We begin by introducing the sequence of operator

Lτu = 2

∫
Ω

ρτ (|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′,

where as defined earlier ρτ (r) = ρ(r)χ[τ,∞)(r). From our discussion above, for all

τ > 0, −Lτ is a linear bounded operators on L2(Ω;Rd), and therefore for each u,
−Lτu ∈ S ′(Ω).

Proposition 3.1. Suppose that ρ satisfies (H). Then

a) For each u ∈ S(Ω), and as τ → 0, −Lτu −→ −Lu, in S ′(Ω). That is,

Lu = (P.V.) 2

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′ − x)⊗ (x′ − x)(u(x′)− u(x))dx′ in S ′(Ω).

b) Let u ∈ C∞c (Ω;Rd), and h = dist(Supp(u), ∂Ω) > 0. Then

i) sup0<τ<h/2 supx∈Ω |Lτ (u)| ≤ C, C = C(u, ρ, h), constant

ii) As τ → 0, −Lτu −→ −Lu strongly in L2(Ω;Rd) .

iii) The integral formula for −Lu in part a) holds pointwise for x ∈ Ω.

Proof. Part a). For u,w ∈ S(Ω),

〈−Lτu,w〉 =

∫
Ω

∫
Ω

ρτ (|x′ − x|)
|x′ − x|2

(x′−x)·(u(x′)−u(x))(x′−x)·(w(x′)−w(x))dx′dx

Using the fact that ρτ → ρ pointwise, we may apply dominated convergence theo-
rem, to see that the last double integral converges to ((u,w)) = 〈−Lu,w〉. That is
precisely the convergence in S ′(Ω).

Part b). The proof of i) is as follows. Write the operator Lτu as

Lτu(x) = 2

∫
Ω

χ[0,h/2](|x′ − x|)ρτ (|x′ − x|) (x′ − x)

|x′ − x|2
· (u(x′)− u(x))x′ − xdx′

+ 2

∫
Ω

(1− χ[0,h/2](|x′ − x|))ρτ (|x′ − x|) (x′ − x)

|x′ − x|2
· (u(x′)− u(x))x′ − xdx′,

where h = dist(Supp(u), ∂Ω). Then using the Taylor expansion

u(x′)− u(x) = ∇u(x)(x′ − x) +
1

2
D2u(ζ)(x′ − x)⊗ (x′ − x), for some ζ,

we obtain that for any 0 < τ < h/2 and x ∈ Ωh/2 = {x ∈ Ω : dist(x, ∂Ω) ≥ h/2}
we have

|Lτu(x)| ≤
(

2

∫
Ω

(χ[0,h/2](|x′ − x|))ρ(|x′ − x|)|x′ − x|2dx′
)
‖D2u‖L∞(Ω)

+ 4

(∫
Ω

(1− χ[0,h/2](|x′ − x|))ρ(|x′ − x|)dx′
)
‖u‖L∞(Ω)
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while for x ∈ Ω \ Ωh/2, since B(x, h/2) ⊂ Ω \ Ωh,

|Lτu(x)| ≤ 4

(∫
Ω

(1− χ[0,h/2](|x′ − x|))ρ(|x′ − x|)dx′
)
‖u‖L∞(Ω).

To prove ii) define the the vector field L0u at x ∈ Ω as

L0u(x) := lim
τ→0

Lτu(x).

Then it is not difficult to see that the limit exist for all x ∈ Ω. Using part i) and
dominated convergence theorem,

Lτu(x) −→ L0u

strongly in L2(Ω;Rd). In addition, for any w ∈ S
〈−L0u,w〉 = (−L0u,w) = lim

τ→0
(−Lτu,w) = ((u,w)) = 〈−Lu,w〉,

proving that Lu = L0u, when u ∈ C∞c (Ω;Rd).
Part iii) is an easy consequence of ii) since Lu ∈ L2(Ω;Rd) �

We note that the operator L has been discussed in earlier works such as [11, 12] so
that nonlocal peridynamic models can be reformulated via nonlocal divergence and
gradients. Briefly, given an anti-symmetric mapping α = α(x,x′) from R3 × R3

to R3, e.g., α(x,x′) = (x − x′)/|x − x′| = −α(x′,x) as in our case, for vector
valued functions Ψ : R × R3 → R3 and v : R3 → R3, the nonlocal divergence
operator DΨ : R3 → R3 for tensors and its adjoint nonlocal gradient operator
D∗v : R3 × R3 → R3×3 are defined as

D(Ψ)(x) =

∫
R3

(
Ψ(x,x′) + Ψ(x′,x)

)
·α(x,x′) dx′ for x ∈ R3,(3.3a)

D∗(v)(x,x′) =
(
v(x′)− v(x)

)
⊗α(x′,x) for x,x′ ∈ R3.(3.3b)

Then, we have formally L = −D(ρ(D∗)T ). The discussion given above puts such
definitions on a rigorous footing even when ρ = ρ(|x − x′|) is not in L1

loc(R).
Moreover, we see that (3.1) is simply the relation between adjoint operators:

〈D(ρ(D∗)T )u,w〉 = (ρD∗u,D∗w) .

By building upon our understanding of the operator associated with (1.2), we
interpret the integral operator

P u =

∫
Ω

C(x′ − x)(u(x)− u(x′))dx′,

as a perturbation of the leading operator L. To make this precise, corresponding
to F0 define the nonlocal operator

Fu(x) = 2

∫
Ω

F0(|x′ − x|)(u(x′)− u(x))dx′.

Using the integrability assumption on F0, we see that F is a linear bounded operator
on L2(Ω;Rd). Moreover, for any u,w ∈ L2(Ω;Rd),

(−Fu,w) =

∫
Ω

∫
Ω

F0(|x′ − x|)(u(x′)− u(x)) · (w(x′)−w(x))dx′dx.

Noting that C(ξ) = 2ρ(ξ)
|ξ|2 ξ ⊗ ξ + 2F0(ξ)I, we can now write

(3.4) P = L+ F .
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Observe that we are not imposing any assumption on the sign of F0. As a con-
sequence, the perturbation of L by F may result in a nonlocal integral operator
P with an indefinite kernel. Indeed, the kernel matrix for P is C(ξ) and for any
v ∈ Rd

(C(|ξ|)v,v) = 2
ρ(ξ)

|ξ|2
|ξ · v|2 + 2F0(|ξ|)|v|2,

could change sign.

3.2. Properties of the nonlocal operator. From the nonlocal Poincaré-type
inequality we notice that the seminorm | · |s defines an equivalent norm in V0(Ω′).
It is possible to pose variational problems in V0(Ω′). A standard application of Riesz
representation theorem yields the following result. V ′0(Ω′) denotes the dual space
of V0(Ω′)

Lemma 3.1. Assume that ρ satisfies (H). For a given b ∈ V ′0(Ω′), there exists a
unique u ∈ V0(Ω′) such that∫

Ω

∫
Ω

ρ(|x′ − x|)
|x′ − x|2

(x′ − x) · (u(x′)− u(x))(x′ − x) · (w(x′)−w(x))dx′dx = 〈b,w〉,

for all w ∈ V0(Ω′). Moreover, |u|s = |b|V ′0 (Ω′).

Utilizing the operator L defined in the previous section, it follows then that

−L : V0(Ω′)→ V ′0(Ω′); u 7→ −Lu

is an isometry with ‖ − Lu‖V ′0 (Ω′) = |u|s for any u ∈ V0(Ω′) and |(−L)−1b|s =

|b|V ′0 (Ω′) for any b ∈ V ′0(Ω′). In case, b ∈ L2(Ω;Rd), there exists a constant C,

independent of b such that |L−1b|s ≤ C‖b‖L2 . This follows from the continuous
embedding of L2(Ω;Rd) into V ′0(Ω′).

Our tool in proving the well posedness of the peridynamic equation is the Fred-
holm Alternative Theorem. When applying the theorem we will encounter the
operator K = L−1F . Anticipating this, we obtain some useful properties of the
composite operator K = L−1F : L2(Ω;Rd)→ L2(Ω;Rd) defined as

v = Ku if and only if 〈−Lv,w〉 = (−F u,w), for all w ∈ V0(Ω′).

Observe that the range of K is contained in V0(Ω′). The following lemma gives
conditions such that the operator K is a compact operator.

Lemma 3.2. Suppose that in addition to (H), ρ̂(r) is nonincreasing and satisfies
(2.5). Then K is a self adjoint compact operator on L2(Ω;Rd).

Proof. The proof follows from the facts that under the assumption on ρ, Range(K) ⊂
V0(Ω′) and the subspace V0(Ω′) is compactly embedded into L2(Ω;Rd), by Lemma
2.8. �

Corollary 3.3. Under the assumption of Lemma 3.2, K has at most countably
many eigenvalues, Σ = {λk}∞k=1.

We now examine the case where (2.5) is not satisfied. Under the assumption
(2.3), we have the following necessary and sufficient condition for K to be a compact
operator. The main idea used here is that the operator F is made to act like the
convolution operator on elements of the subspace. Recall that V δ0 = V0(Ωδ), where
Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}.
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Theorem 3.4. Suppose that (H) and (2.3) hold. Suppose also that F0(r) is a
function supported on (0, δ) for δ > 0 small. Denote

m0 = 2

∫
Bδ(0)

F0(|ξ|)dξ.

Then the operator K : L2(Ω;Rd) → V δ0 ⊂ L2(Ω;Rd) is compact if and only if
m0 = 0.

Proof. Now sufficiency follows from the fact that when m0 = 0, then the operator F
is the convolution operator, and hence a compact operator. Indeed, when m0 = 0,
for any u ∈ L2(Ω;Rd) and x ∈ Ωδ, Fu(x) = 2F0 ∗u(x), u being the zero extension
of u to Rd, and ∗ is the standard convolution operator. It follows then that the
linear operator K is essentially a composition of a compact and a bounded operator
on L2(Ω;Rd) and therefore compact,[6].

Let us now prove the necessity by contradiction. Suppose that K is compact.
and yet m0 6= 0. Recalling the definition of K, we have

v = Ku if and only if (Lv,w) = (Fun,w) for all w ∈ V δ0 .

It follows then that if v = Ku,

L(Ku)(x) = Lv(x) = Fu(x) = 2F0 ∗ u−m0u(x) for almost every x ∈ Ωδ.

Then identifying V δ0 by L2(Ωδ;Rd), the last equation, together with the assumption
on K and m0, enable us to write the identity operator as a sum of two compact
operators:

u(x) =
1

m0
(−L(Ku) + 2F0 ∗ u) for all u ∈ L2(Ωδ;Rd),

which obviously is a contradiction. �

4. The peridynamic equilibrium equation

In this section we study the well-posedness of the linear peridynamic equilibrium
equation as a nonlocal constrained value problem:

(4.1)

−
∫

Ω

C(x′ − x)(u(x′)− u(x))dx = b(x), x ∈ Ω′

u(x) = 0 x ∈ Ω \ Ω′

where C(ξ) = 2ρ(|ξ|)|ξ|2 ξ ⊗ ξ + 2F0(|ξ|)I is as given in (1.3). Note that unlike local

boundary value problems, the necessary ”boundary condition” is in fact a volume
constraint. In a generalized sense we may write the constrained value problem (4.1),
as given b ∈ V ′0(Ω′) find u ∈ V0(Ω′) such that

−P u = b,

where P is given by (3.4). To be precise, we define the weak solution to (4.1) as
follows.

Definition 4.1. Let b ∈ V ′0(Ω′). We say u ∈ V0(Ω′) is a solution to (4.1) if

〈−Pu,w〉 = 〈b,w〉 for all w ∈ V0(Ω′).
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Note that if u ∈ V0(Ω′) is a weak solution corresponding to b ∈ L2(Ω;Rd), then it
satisfies (4.1) for almost all x ∈ Ω′. Indeed, by definition for any φ ∈ C∞c (Ω′,Rd) ⊂
V0(Ω′),

〈−Pu,φ〉 =

∫
Ω

b(x) · φ(x)dx

implying that the distribution −Pu ∈ L2(Ω′;Rd) and that

−Pu = b a.e. x ∈ Ω′,

which is precisely (4.1) since u ∈ V0(Ω′).
Now we prove the existence of a weak solution corresponding to a given b ∈

V ′0(Ω′). A solution u ∈ V0(Ω′) solves the peridynamic equilibrium equation (4.1) if
and only if,

(4.2) 〈−Lu,w〉+ (−F u,w) = 〈b,w〉 for all w ∈ V0(Ω′).

The later in turn is true if and only if

〈−Lu,w〉 = 〈b + F u,w〉 for all w ∈ V0(Ω′).

The last equation can be rewritten to read as the variational equation

(4.3) (I + L−1F )u = −L−1b.

In Section 3 we have already introduced and studied the composite operator K =
L−1F as a bounded linear operator on L2(Ω;Rd). Note that we have its range
contained in V0(Ω′) with the estimate

|Ku| ≤ C1‖F u‖ ≤ C2‖u‖L2 , ∀u ∈ L2(Ω;Rd).

Moreover, depending on the integrability of ρ, we have shown that K is a compact
operator. We have now the right set up to apply Fredholm Alternative Theorem
to determine the solvability of (4.3).

The case when ρ satisfies (2.5). In this case by Lemma 3.2, K is compact. Thus we
may apply the Fredholm Alternative Theorem to obtain the following well posedness
result.

Theorem 4.2. Suppose that in addition to (H), ρ is nonincreasing and satisfies
(2.5). Suppose also g is a compactly supported locally integrable radial function.
Then either

−P u = 0 has a nontrivial solution in V0(Ω′)

or

−P u = b has a unique solution in V0(Ω′) for any b ∈ V ′0(Ω′).

To see clearly the above result indeed allows micromodulus tensors that are
indefinite, we use the well known property of compact operators: their spectrum is
discrete. To that end, assume that F = λF0, where λ is a parameter and F0 is given
compactly supported locally integrable radial function. Denoting Pλ = L+λF , we
have the following result.

Theorem 4.3. Suppose that in addition to (H), ρ̂(r) is nonincreasing and satisfies
(2.5). Suppose also F0 is a compactly supported locally integrable radial function.
Then the variational equation

(4.4) − Pλ = b, u ∈ V0(Ω′)
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has a unique solution for b ∈ V ′0(Ω′) if and only if λ /∈ Σ, the spectrum of K =
L−1F . Moreover the following holds.

(1) For each λ /∈ Σ, there exists a constant C, such that if u is a solution, then

|u|s ≤ C‖b‖V ′0 (Ω′).

(2) There exists λ0 > 0 such that for all |λ| < λ0 and any b ∈ V ′0(Ω′) the
unique solution u ∈ V0(Ω′) minimizes the potential energy

(4.5) Eλ(u) =
1

2
〈−Lu,u〉+

λ

2
(−Fu,u)− 〈b,u〉.

Proof. The only part that needs proof is part 2). Since Eλ is a quadratic energy
and V0(Ω′) is a closed subspace of S(Ω), by direct method of calculus of variations,
it suffices to prove that the functional Eλ is coercive. That will depend on λ and
we will find conditions on λ so that

|Eλ(u)| → ∞,when |u|s →∞, and u ∈ V0(Ω′).

But this follows from the estimate, for all u ∈ V0(Ω′)

Eλ(u)

‖u‖2s
≥ 1

2(1 + κ)

(
1− κ|λ|(2‖F0‖L1(Rd) + ‖f0(x)‖L∞(Ω))

)
− ‖b‖ ‖u‖

‖u‖2s
,

where κ = κ(V0(Ω′)) is the nonlocal Poincaré constant corresponding to V0(Ω′), and
f0(x) is the continuous function given by f0(x) = 2

∫
Ω
F0(|x′−x|)dx′. To complete

the proof, we now take λ0 to be 1
λ0

= κ(2‖F0‖L1(Rd) + ‖f0(x)‖L∞(Ω)). �

Remark 4.1. We observe that the micromodulus tensor associated with the equa-
tion (4.4) is given by

Cλ(ξ) = 2
ρ(ξ)

|ξ|2
ξ ⊗ ξ + λF0(|ξ|)I.

and it is now clear that for a given F0, any v ∈ Rd, one can find λ /∈ Σ large enough
such that (Cλ(ξ)v,v) is negative and yet (4.4) has a unique solution.

The case when ρ satisfies (2.3). In this case Lemma 3.4 proves the compactness of
K. Again application of the Fredholm Alternative Theorem, we have the following
result.

Theorem 4.4. Suppose that ρ satisfies (H) and (2.3). Under the assumption that
the function F0(r) has a support contained in [0, δ), m0 = 2

∫
Rd F0(|ξ|)dξ = 0, either

−P u = 0 has a nontrivial solution in V δ0

or
−P u = b has a unique solution in V δ0 for any b ∈ V δ

′

0 .

A nonlinear nonlocal constrained value problem. The operator P is taken
to be the perturbation of the nonlocal operator L by the linear operator F that
essentially act the same way as L. More generally one may consider a potentially
non-linear, however compact, perturbation of L. To illustrate this we minimize the
nonlinear potential energy

Eu =
1

2
〈−Lu,u〉+ ψ(u)− 〈b,u〉,

for b ∈ V ′0(Ω′) by imposing conditions on ψ, depending on the integrability of ρ.
We then have the following theorem.
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Theorem 4.5. Suppose that ρ satisfies (H), Assume that ψ is bounded on V0(Ω′),
and satisfies

(4.6) ψ(u) ≥ C − θ|u|2s, ∀u ∈ V0(Ω′).

Assume that

i) when ρ is nonincreasing and satisfies (2.5), ψ is continuous on V0(Ω′) with
respect to the L2 norm and

ii) when ρ satisfies (2.3), ψ is convex in V0(Ω′).

Then for sufficiently small θ, the functional Eu has a minimizer u in V0(Ω′). More-
over, u solves the equation

〈−Lu,v〉+Dvψ(u) = 〈b,v〉, for all v ∈ V0(Ω′),

as long as Dvψ(u), the Gâteaux derivative of ψ at u in the direction of v, exists
for all v ∈ V0(Ω′).

Proof. The proof is similar to that of part 2) of Theorem 4.3 and standard direct
method of calculus of variations. �

An example of a functional ψ satisfying (4.6) and the continuity condition is

ψ(u) =

∫
Ω

∫
Ω

F0(|x′ − x|)|u(x′)− u(x)|2dx′dx +

∫
Ω

hα(x,u(x))dx,

where F0 ∈ L1
loc, and h(x,η) is continuous in η, and has the growth condition

|hα(x,η)| ≤ c(k(x) + |η|α),

with 0 < α < 2 and k(x) ∈ L1(Ω). Note that using this functional, existence of
a minimizer of Eu in V0(Ω′) is guaranteed if ‖F0‖L1 + ‖

∫
Ω
F0(x′ − x)dx′‖L∞(Ω) is

sufficiently small.

5. The limiting behavior for vanishing non-locality

So far we have not discussed about the significance of the horizon δ, the extent of
the nonlocal interaction between material points in a body. The aim of this section is
to demonstrate that with appropriate scaling when the horizon approaches to zero,
the solution to the nonlocal equation approximates the solution of the classical
Navier system. Approximations of this type are already known to hold, see for
example, [14, 27, 12, 15], although the case of indefinite kernels is not studied. To
that end, assume that ρ̂ is a nonnegative nonincreasing radial function satisfying

ρ̂(|ξ|) > 0, near ξ = 0, Supp(ρ̂) ⊂ B(0, 1), and

∫
B(0,1)

ρ̂(|ξ|)dξ = 1.

We also assume that F0 is a radial function supported in B(0, 1) such that F0 and
|F0| are in L1(B(0, 1)). We denote

ρ̂δ(|ξ|) =
1

δd
ρ̂

(
|ξ|
δ

)
, ρδ(|ξ|) = |ξ|−2ρ̂δ(|ξ|), and F δ0 =

1

δd
F0

(
|ξ|
δ

)
.

Given b ∈ L2(Ω;Rd), we would like to study the limiting behavior of the solution
to the nonlocal equation as the nonlocality δ → 0. We pick δ from a sequence of
positive numbers converging to zero. That is, δ ∈ I = {δn : δn → 0, as n→∞}.



18 TADELE MENGESHA AND QIANG DU

Denote Σ(n) to be the spectrum of Kn = (Lδn)−1Fδn (see Corollary 3.3) where
we used the notation Lδ, and Fδ corresponding to ρδ and F δ, respectively. Choose
λ /∈ Σ = ∪ni=1Σ(n), such that for each δ ∈ I the nonlocal constrained value problem−

∫
Ω

Cδλ(x′ − x)(u(x′)− u(x))dx′ = b x ∈ Ωδ

u = 0 on Ω \ Ωδ,

has a unique solution uδ ∈ V δ0 = V0(Ωδ) where we have denoted

Cδλ(ξ) = 2
ρδ(|ξ|)
|ξ|2

ξ ⊗ ξ + 2λF δ0 (|ξ|)I

and Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}. Let us first discuss the convergence of
operators. The following proposition states that the above sequence of nonlocal
operators converge to a well known local operator.

Proposition 5.1. For all w ∈ C∞c (Ω;Rd), for all x ∈ Ω, and all λ ∈ R we have

−(Lδ + λFδ)w(x) −→ −L0w(x), as δ → 0,

where −L0 is the (local) Navier operator (with Poisson ratio 1/4):

−L0w(x) = −µ∆w(x)− 2µ∇divu(x), (µ =
ωd
d+ 2

, ωδ = |B(0, 1)|).

Moreover, there exists a constant C = C(d,w) such that

(5.1) sup
δ>0

sup
x∈Ω
|(Lδ + λFδ)w(x)| ≤ C.

Proof. We will first evaluate the limit

− lim
δ→0

2

∫
B(x,δ)

ρδ(|x′ − x|)
|x′ − x|2

((x′ − x)⊗ (x′ − x))(w(x′)−w(x′))dx′,

for all x ∈ Ω. Note, for sufficiently small δ, after change of variables the above
expression is

−2

∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

(ξ ⊗ ξ)(w(x + ξ)−w(x))dξ.

Since w is smooth we can use Taylor expansion to write

w(x + ξ)−w(x) = ∇w(x)ξ +
1

2
D2w(x)ξ ⊗ ξ +R(x, |ξ|)

where R(x, |ξ|) ≤ C|ξ|3, and therefore,

ξ · (w(x + ξ)−w(x)) = (∇w(x)ξ, ξ) +
1

2
(D2w(x)ξ ⊗ ξ, ξ) + R̃(x, |ξ|)

where |R̃(x, |ξ|)| ≤ C|ξ|4, for all x ∈ Ω and |ξ| ≤ 1. Using the above expansion and
noting that ∫

B(0,δ)

ρδ(|ξ|)
|ξ|2

(∇w(x)ξ, ξ)ξdξ = 0,

we have that

−2

∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

(ξ ⊗ ξ)(w(x + ξ)−w(x))dξ

= −
∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

(D2w(x)ξ ⊗ ξ, ξ)ξdξ − 2

∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

R̃(x, |ξ|)ξdξ
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On the one hand, it is not difficult to show that

lim
δ→0
−2

∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

R̃(x, |ξ|)ξdξ = 0.

On the other hand,

− lim
δ→0

∫
B(0,δ)

ρδ(|ξ|)
|ξ|2

(D2w(x)ξ ⊗ ξ, ξ)ξdξ

= − lim
δ→0

∫
B(0,δ)

ρ̂δ(|ξ|)
(
D2w(x)

ξ

|ξ|
⊗ ξ

ξ
,
ξ

|ξ|

)
ξ

|ξ|
dξ

= −
∫
Sd−1

(
D2w(x)s⊗ s, s

)
sdσ(s).

= −µ∆w(x)− 2µ∇div w(x),

where µ = ωd
d+2 , and ωd is the volume of the unit sphere. One can check the last

equality with a mere evaluation of the surface integral, [20, See Appendix of ].
Similar calculation as above imply that for all x ∈ Ω,

2

∫
Ω

F δ0 (|x′ − x|)(w(x′)−w(x))dx′

=

∫
Bδ(0)

F δ0 (|ξ|)∇w(x)ξdξ +

∫
Bδ(0)

F δ0 (|ξ|)r(x, |ξ|)dξ

where |r(x, ξ)| ≤ C|ξ|2 for all x ∈ Ω. The first term on the right hand side is 0
since F0 is a radial function. We show that the second term goes to zero as δ → 0.
Indeed,

|
∫
Bδ(0)

F δ0 (|ξ|)r(x, |ξ|)dξ| ≤ δ2

∫
Bδ(0)

|F δ0 (|ξ|)|dξ = δ2

∫
B1(0)

|F0(|ξ|)|dξ → 0,

as δ → 0, since F0(|ξ|) ∈ L1.
To prove estimate (5.1), we note that when 2δ < h = dist(Supp(w); ∂Ω), then

for any x ∈ Ω\Ωh/2, (Lδ+Fδ)w(x) = 0 while for x ∈ Ωh/2, using similar arguments
as in the proof of Part b) i) of Proposition 3.1, we have

|(Lδ + Fδ)w(x)| ≤ C‖D2w‖L∞ .

�

Next we study the behavior of the sequence of solutions as δ → 0. Recal that
for all w ∈ V δ0 ,

(5.2) 〈−Lδuδ,w〉+ λ(Fδuδ,w) = (b,w).

We begin by obtaining estimates that are uniform in δ. Our means is the nonlo-
cal Poincaré-type inequality. We note, however, that the standard Poincaré-type
inequality proved in Proposition 2.6 is not good enough to offer precise estimates
that show the explicit dependence on δ as the constant depends on on the sub-
space V0(Ωδ), hence on δ. We thus need the following lemma which is a sharper
version. Its proof is an adaptation to our setting of the argument used in [25] for
a similar nonlocal Poincaré-type inequality for functions. Our proof of the sharper
version uses the compactness result [20, Theorem 5.1] (see also [5, Theorem 4] or
[25, Theorem 1.2] for functions) which we state here as a lemma.
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Lemma 5.2. Suppose that un is a bounded sequence in L2(Ω;Rd) with compact
support in Ω. Then if

sup
n

∫
Ω

∫
Ω

ρδn(|x′ − x|)
∣∣∣∣ (x′ − x)

|x′ − x|
· (un(x′)− un(x)

∣∣∣∣2 dx′dx <∞,
then un is precompact in L2(Ω;Rd). Moreover, any limit point u ∈W 1,2

0 (Ω;Rd).

Our sharper Poincaré-type inequality is the following.

Proposition 5.3. There exists δ0 and C(δ0) such that for all δ ∈ (0, δ0],

‖u‖2L2(Ω) ≤ C(δ0)

∫
Ω

∫
Ω

ρδ(|x′ − x|)
|x′ − x|2

|(x′−x) · (u(x′)−u(x)|2dx′dx ∀u ∈ V0(Ωδ) .

Proof. Let

1

A
= inf

{∫
Ω

2µ|e(∇u(x))|2 + µ(div u(x))2dx : u ∈W 1,2
0 (Ω;Rd), ‖u‖L2 = 1

}
where the constant µ = ωd

d+2 . By standard local Poincaré inequality, ∞ > A > 0.

We claim that given ε, there exists δ0(ε) such that for all δ < δ0 the lemma holds
with C(δ0) = A+ ε.

We prove the above statement by contradiction. Suppose there exists C > A,
such that for all n, there exists, 0 < δn < 1/n, and un with the property that

uδn ∈ V0(Ωδn),

∫
Ω

|uδn(x)|2dx = 1,

and

∫
Ω

∫
Ω

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (uδn(x′)− uδn(x)|2dx′dx < 1

C
.

By Lemma 5.2, uδn is precompact in L2(Ω;Rd). Moreover, any limit point u will

be in W 1,2
0 (Ω;Rd), and ‖u‖L2 = 1. In addition, we claim that u satisfies∫

Ω

2µ|e(∇u(x))|2 + µ(div u(x))2dx ≤ 1/C.

This gives the desired contradiction as A is the best Poincaré constant. Let us now
prove the claim. Let φε be a standard mollifier. Then it is not difficult to show
that for each ε, φε ∗ uδn satisfies the bound

(5.3)

∫
Ωε

∫
Ωε

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (φε ∗ uδn(x′)− φε ∗ uδn(x)|2dx′dx < 1

C

Observe that for each fixed ε the mollified sequence φε∗uδn −→ φε∗u in C∞(Ωε;Rd)
as n→∞. Then we have∫

Ωε

∫
Ωε

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (φε ∗ u(x′)− φε ∗ u(x)|2dx′dx

≤
∫

Ωε

∫
Ωε

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (φε ∗ u(x′)− φε ∗ uδn(x′)|2dx′dx

+

∫
Ωε

∫
Ωε

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (φε ∗ uδn(x′)− φε ∗ uδn(x)|2dx′dx

+

∫
Ωε

∫
Ωε

ρδn(|x′ − x|)
|x′ − x|2

|(x′ − x) · (φε ∗ uδn(x)− φε ∗ u(x)|2dx′dx
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and letting n→∞ in the above and applying [20, Corollary 2.5], we obtain

2µ

∫
Ωε

(
|e(∇(φε ∗ u)(x))|2 +

1

2
|div(φε ∗ u)(x)|2

)
dx ≤ 1

C

Now we take ε→ 0 to obtain that

2µ

∫
Ω

(
|e(∇u(x))|2 +

1

2
|div u(x)|2

)
dx ≤ 1

C
.

as asserted. �

We now establish the convergence of the solutions uδ to u of the Navier system.

Theorem 5.4. Given ρ̂ and F0 as above, there exists λ0 > 0 such that for all
|λ| ≤ λ0, and b ∈ L2(Ω;Rd) the sequence of solutions uδ converges strongly in

L2(Ω;Rd) to u ∈W 1,2
0 (Ω;Rd), where u solves the Navier system{
−µ∆u(x)− 2µ∇div u(x) = b(x) a.e x ∈ Ω

u(x) = 0 on ∂Ω.

Proof. We begin the proof by obtaining some uniform estimates. Plugging in uδ in
place of w in (5.2) we obtain that
(5.4)∫

Ω

∫
Ω

ρδ(x′ − x)

|x′ − x|2
|(x′ − x) · (uδ(x′)− uδ(x))|2dx′dx

= −λ
∫

Ω

∫
Ω

F δ0 (x′ − x)|(x′ − x) · (uδ(x′)− uδ(x))|2dx′dx +

∫
Ω

b · uδdx

A simple calculation yields the following estimate
(5.5)∫

Ω

∫
Ω

ρδ(x′ − x)

|x′ − x|2
|(x′−x)·(uδ(x′)−uδ(x))|2dx′dx ≤ 4|λ|‖F0‖L1‖uδ‖2L2+‖b‖L2‖uδ‖L2 .

We next show that the left hand side of (5.5) is bounded uniformly in δ. Com-
bining (5.5) and the estimate Proposition 5.3, we notice that for all δ ∈ I, there
exists C independent of δ such that

‖uδ‖2L2 ≤ 4C|λ|‖F0‖L1‖uδ‖2L2 + C‖b‖L2‖uδ‖L2 .

Now if we choose λ0 small enough such that for all |λ| < λ0, the number ν =
C

1−4C|λ|‖F0‖L1
> 0, then

‖uδ‖L2 ≤ ν‖b‖L2

where ν is independent of δ. Plugging this estimate in (5.5) we obtain that∫
Ω

∫
Ω

ρδ(x′ − x)

|x′ − x|2
|(x′ − x) · (uδ(x′)− uδ(x))|2dx′dx ≤ C

where the constant C is independent of δ.
With these uniform estimates at hand, we may apply Lemma 5.2 to conclude that

the sequence {uδ} is precompact in L2(Ω;Rd), and any limit point u ∈W 1,2
0 (Ω;Rd).

Let us show that any limit point will solve the Navier system and therefore unique
and thus the entire sequence actually strongly converge to the unique solution u.

Let w ∈ C∞c (Ω;Rd). Then since the operator are self adjoint and Lδw ∈
L2(Ω;Rd) (see Proposition 3.1) we may rewrite (5.2) as

(5.6) ((−Lδ + λFδ)w,uδ) = (b,w).
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Using Proposition 5.1, the facts that uδ → u strongly in L2(Ω;Rd), uδ = 0 outside
of Ωδ and Ωδ ⊂ supp(w) as δ → 0, we obtain from (5.6) that for all w ∈ C∞c (Ω;Rd),

−µ
∫

Ω

(∆w(x) + 2∇div w(x)) · u(x)dx =

∫
Ω

b(x) ·w(x)dx.

as δ → 0, verifying that u solves the Navier system. �

Remark 5.1. When λ = 0, that is in the absence of any perturbation, the nonlocal
solutions uδ converge to u solving the same Navier system. This implies that the
’large scale’ Navier system does not see the effect of the addition of F0 while the
’small scale’ peridynamic system can detect the effect.

6. Conclusion

In this work we have analyzed a linear peridynamic system modeling microe-
lastic and isotropic materials. We have studied the equilibrium equations posing
as a system of nonlocal constrained value problems with pure Dirichlet-type volu-
metric constraint. The necessity in considering a sign-changing kernel for practical
applications has been highlighted in the original works of Silling [23], so that the
contribution of the paper is proving the well posedness of the systems for more gen-
eral class of PD models that are of close relevance to material modeling. We have
used standard variational methods and Fredholm Alternative Theorem was used to
prove well-posedness for the equilibrium system. We have presented conditions on
potentially indefinite micromodulus tensors that give rise to equilibrium solutions
minimizing a potential energy functional. These results are obtained as a conse-
quence a careful study of the energy space and the nonlocal operator. The energy
space is shown to be a separable Hilbert space with respect to a naturally defined
inner product. We have managed to prove the validity of a nonlocal Poincaré-type
inequality in the energy space. Conditions on the micromodulus tensor are provided
for the space to be compactly embedded in L2(Ω;Rd). We have demonstrated the
relationship between the nonlocal system with that the classical Navier system. In-
deed, we have proved the convergence of solutions to the nonlocal problem to that
of the local system when the extent of the nonlocal interaction is vanishing. Our
studies provide much theoretical basis to further numerical and modeling works
based on the peridynamic models. In the future, one may naturally consider the
extension to more general systems such as the state-based peridynamic Navier sys-
tems that cover a larger class of elastic materials [24, 11]. Our results on nonlinear
nonlocal variational problems also have close relevance to a number of interesting
theoretical development such as the nonlocal interaction models originally proposed
by Van der Vaals [26] and the nonlocal Cahn-Hilliard models [8, 9] of phase transi-
tions which have received much interests in recent years. In addition, the issue of
regularity of solutions relative to given data may also be investigated.
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