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With a digital fingerprinting scheme a vendor of digital copies of copy-
righted material marks each individual copy with a unique fingerprint. If
an illegal copy appears, it can be traced back to one or more guilty pirates,
due to this fingerprint.

Boneh and Shaw have deviced a classic fingerprinting scheme, and sev-
eral recent papers have designed improvements. In the present paper we
make a new error analysis of Boneh and Shaw’s original scheme, and we
prove that it is far better than assumed and in fact better than the improve-
ments in some respects.
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1 Introduction

The problem of digital fingerprinting was introduced in [19], studied in [2], and given
increasing attention following [3, 4]. A vendor selling digital copies of copyrighted
material wants to prevent illegal copying. Digital fingerprinting is supposed to make
it possible to trace the guilty user (pirate) when an illegal copy is found. This is done
by embedding a secret identification mark, called a fingerprint, in each copy, making
every copy unique.

The fingerprint must be embedded in such a way that it does not disturb the infor-
mation in the data file too much. It must also be impossible for the user to remove or
damage the fingerprint, without damaging the information contents beyond any prac-
tical use. In particular, the fingerprint must survive any change of file format (e.g. gif
to tiff) and any reasonable compression including lossy compression. This embedding
problem is essentially the same as the problem of watermarking.
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2 PRELIMINARIES

If a single pirate distributes unauthorised copies, they will carry his fingerprint.
If the vendor discovers the illegal copies he can trace them back to the pirate and
prosecute him. If several pirates collude, they can to some extent tamper with the
fingerprint. When they compare their copies they see some bits (or symbols) which
differ and thus must be part of the fingerprint. Identified bits may be changed, and thus
the pirates create a hybrid copy with a false fingerprint. A collusion-secure code is a
set of fingerprints which enables the vendor to trace pirates even when they collude,
given that there are no more thant pirates for some thresholdt.

Collusion-secure coding is also employed in traitor tracing [6, 7]. Whereas fin-
gerprinting protects the digital data in themselves, traitor tracing protects broadcast
encryption keys. The fingerprinting literature is most often interested in probabilis-
tically collusion-secure coding, where the vendor shall be able to trace a pirate with
probability at least 1− ε for some small error rateε. In the traitor tracing literature,
combinatorially collusion-secure codes is the norm, where the tracing is required to
succeed with probaility 1. Still, in principle, there is no obvious reason not to use
combinatorial codes for fingerprinting and probabilistic ones for traitor tracing. Other
important variants of the problems are dynamic traitor tracing (e.g. [14]) and anony-
mous fingerprinting [13].

In this paper we make a new error-analysis to show that the Boneh and Shaw
scheme from [3, 4] is better than previously known. The lengths can be made shorter
than previously assumed. In particular the scheme yields asymptotic classes of codes
with positive rate and exponentially decreasing error rate, a property first proved for
the BBK scheme [1]. In the case with two pirates, we also present modifications which
greatly reduce the required length.

2 Preliminaries

We use notation and terminology from coding theory. The set of fingerprints is an
(n,M)q code, which provides for up toM buyers, uses an alphabet ofq symbols, and
requiresn such symbols embedded in the digital file. The Hamming distance between
two wordsx andy is denotedd(x,y), and the minimum distance of a codeC is denoted
d(C) or justd. The normalised minimum distance isδ = d/n. The code bookC is a
matrix where the rows are the codewords ofC. The rate of the code isR = (logM)/n.

Closest neighbour decoding is any algorithm which takes a wordx and returns a
word c ∈ C such thatd(c,x) is minimised. This can always be performed inO(M)
operations, and for some codes it may be faster.

Concatenation is a standard technique from coding theory, and it has proven ex-
tremely useful in fingerprinting.

Definition 1 (Concatenation)
Let C1 be a(n1,Q)q and letC2 be an(n2,M)Q code. Then the concatenated code
C1◦C2 is the(n1n2,M)q code obtained by taking the words ofC2 and mapping every
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symbol on a word fromC1. Each set ofn1 symbols corresponding to one word of the
inner code will be called ablock.

Concatenated codes are often decoded by first decoding each block using some
decoding algorithm for the inner code, so that a word of symbols from the outer code
alphabet is obtained. This word can finally be decoded with a decoding algorithm
designed for the outer code.

For the error analysis, we will use the well known Chernoff bound as given in the
following theorem. See e.g. [10] for a proof. The relative entropy is defined as

D(σ||p) = σ log
σ

p
+ (1−σ) log

1−σ

1−p
. (1)

Theorem 1 (Chernoff)
Let X1, . . . ,Xt be bounded, independent, and identically distributed stochastic vari-
ables in the range[0,1]. Let x be their (common) expected value. Then for any
0< δ < 1, we have

P

(

t
∑

i=1

Xi ≤ tδ

)

≤ e−tD(δ||x), whenδ < x.

We writeB(n,p) for the binomial distribution withn trials with probabilityp. If X
is distributed asB(n,p), we writeX ∼ B(n,p).

3 The fingerprinting problem

To understand the fingerprinting problem, we must know what the pirates are allowed
to do. This is defined by the Marking Assumption.

Definition 2 (The Marking Assumption)
Let P ⊆ C be the set of fingerprints held by a coallition of pirates. The pirates can
produce a copy with a false fingerprintx for anyx ∈ FC (P ), where

FC (P ) = {(c1, . . . , cn) : ∀i,∃(x1, . . . ,xn) ∈ P,xi = ci}.

We callFC (P ) the feasible set ofP with respect toC.

The Marking Assumption defines the requirements from the embedding of the
fingerprint in the digital data. Constructing appropriate embeddings, is non-trivial,
though it is not theoretically impossible [4]. Alternative assumptions have been pro-
posed, and some overview of this can be found in [1].

A tracing algorithmfor the codeC is any algorithmA which takes a vectorx as
input and outputs a setL ⊆ C. If x is a false fingerprint produced by some coallition
P ⊆ C. thenA is successful ifL is a non-empty subset ofP . We say that we have an
error of Type I ifL∩P = ∅ and an error of Type II ifL\P 6= ∅. A Type I error means
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3 THE FINGERPRINTING PROBLEM

that we do not find any guilty pirate, wheras Type II means accusing an innocent user.
Let ε1 andε2 denote the probabilites of Type I and Type II errors respectively. Given
our juridical system, Type II is clearly a graver error than Type I, so we might accept
ε1 higher than we can acceptε2.

A code is said to be said to be combinatoriallyt-secure, if it has a tracing algorithm
which succeeds with probability 1 when there are at mostt pirates. It is said to bet-
secure withε-error if the probability of error (of either type) is at mostε when there
are at mostt pirates.

Fingerprinting is a cryptographic problem; it is a problem of identification. The
pirates should be prevented from hiding their identity when they make and distribute
copies of a file. According to Kerchoff’s principles it is important to have a clear
understanding of what is secret information and what is public information.

A binary fingerprinting scheme consists of a binary (n,M) codeC, a tracing algo-
rithm A, and a mappingι betweenC and the set of users. The tracing algorithmA is
public information. The codeC is secret information, but it is drawn at random from
some probability distribution which is publicly known. The mappingι may be secret
or public. The ensemble of secret information is called thekey.

The fingerprinting scheme should be evaluated for eachM, according to the code
lengthn, the error probabilitiesε1 andε2, the running time ofA, and the amount of
secret information which has to be stored (key size). This is a lot of parameters, so we
do not expect one scheme to be better than any other in every way.

In the next main section, we will study and improve the classic concatenated
scheme due to Boneh and Shaw (BS-CS) [4], but first we will briefly present some
other fingerprinting schemes from the literature. We will need most of the key ideas
from those schemes in our discussion later on.

It is well known that any code withδ > 1− t−2 is a socalledt-traceability code,
which is combinatoriallyt-secure using closest neighbour decoding. Unfortunately,
this large minimum distance is only possible when the alphabet is large. A binary code
cannot be combinatorially collusion-secure.

3.1 Boneh and Shaw replication scheme (BS-RS)

BS-RS is used as the inner code in the Boneh and Shaw concatenated scheme (BS-
CS). It uses a binary (r(M −1),M) code which isM-secure withε-error. The code
book hasM −1 distinct columns replicatedr times. A set of identical columns will be
called a type. Every column has the form (1. . .10. . .0), such that thei-th (1≤ i ≤M)
user has zeroes in the firsti− 1 types and a one in the rest. We can see that unless
useri is a pirate, the pirates cannot distinguish between the (i−1)-th and thei-th type.
Hence they have to use the same probability of choosing a 1 in both these types. Ifr
is large enough we can use statistics to test the null hypothesis that useri be innocent.
The output is a list of users for which the null hypothesis may be rejected.
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3.2 General binary schemes

Theorem 2 (Boneh and Shaw)
The BS-RS with replication factorr isM-secure withε-error wheneverr=2M2 log(2M/ε).

The tracing complexity of BS-RS is clearlyO(n). The key space consists of all the
permutations of the columns of the code book, so the key size in bits is

K = log
(r(M −1))!

(r!)M−1
.

3.2 General binary schemes

Barg, Blakley, and Khabatiansky introduced a new scheme, which we call the BBK
scheme, in [1]. They use socalled separating codes as inner codes, and codes with
large distance as outer codes. The outer code distance must be larger than what is
required for traceability codes, because the codes have to correct tracing errors from
inner decoding in addition to the tracing. An important idea behind this scheme is that
the inner code can have a very high error rate, because the outer code can be made
powerful enough to correct it. We shall see that this idea applies to the Boneh and
Shaw scheme as well.

The BBK scheme exhibits asymptotically non-zero rate and exponentially declin-
ing error rate with increasing code size. They suggest to use algebraic geometry codes
as outer codes, and to decode them with the GS list decoding algorithm [9]. Though
the running time for inner decoding may be heavy, the asymptotical complexity is
polynomial in the code lengthn.

The BBK scheme uses a key much shorter than that of other known schemes. Only
the mapping from the outer code alphabet onto the inner code must be kept secret. On
the other hand, this mapping must be chosen at random for each block. Thus the key
size isn2 logQ! = O(logM) bits, wheren2 is the outer code length andQ is the outer
code alphabet size.

Another scheme was proposed in [12] withn=O(logM− logε), but the paper only
states asymptotic bounds on the lengths besides a few lengths against three pirates.

3.3 Against two or three pirates

In addition to the generalt-secure schemes, there exist a few 2- or 3-secure codes.
Simplex codes were proved to be 2-secure withε-error in [11]. Small simplex codes
are very good, and closest neighbour decoding can be used. However, the asymptotic
rate of these codes is zero. A similar idea was employed in [16], where an asymp-
totically good family (2,2)-separating codes was proven to be 2-secure withε-error,
whereε tends to zero with increasing code size.

Scattering codes were introduced in [18], and by concatenating scattering codes
and simplex codes, 3-secure codes withε-error are obtained. This scheme also works
well for smallM, but the asymptotic rate is zero.
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4 CONCATENATED SCHEMES

4 Concatenated schemes

Two combinatoriallyt-secure codes can simply be concatenated to obtain a largert-
secure code. The fingerprints can be viewed alternately as words of the outer codeCO

or of the concatenated codeC. Decoding starts with an element of the feasible set with
respect toC. Successful inner decoding of a block gives an outer code symbol which
is seen by one of the pirates; thus inner decoding yields a vector in the feasible set with
respect to the outer code, which can be decoded.

Having two probabilisticallyt-secure codes, concatenation is non-trivial, but it can
still be done, as it is for BS-CS. Suppose we want to construct at-secure codeC with ε-
error. BS-CS uses closest neighbour decoding, and Boneh and Shaw chose parameters
such that inner decoding succeeds in every position with probability 1− ε/2, and and
such that outer decoding, given perfect inner decoding, succeeds with probability 1−
ε/2. Thus the total error probability is less thanε.

BS-CS is actually far better than proved by Boneh and Shaw. Demanding that inner
decoding be correct in every position is a strong requirement, because its probability
declines exponentially in the code length. This requirement is not necessary. A small
fraction of failures from inner decoding will only slightly increase the error probability
in outer decoding and improve the overall error rate significantly. This observation
was put to use in the BBK scheme, but it should be remembered for any concatenated
scheme.

We suggest to decode the outer code with list decoding. Apart from the obvious
advantage of allowing us to trace more than one pirate in many cases, it also makes the
error analysis simpler, and it becomes clear how to adapt the error analysis for other
choices for inner and outer codes in the scheme. Even though an error analysis for
closest neighbour decoding can be made, it is not expected to give better error bounds.

4.1 List decoding of concatenated codes

Let CI be an (n1, q) inner code which ist-secure withεin-error, andCO an (n2,M)q
outer code. LetRI andRO denote the rates ofCI andCO respectively.

Our decoding algorithm works as follows. LetP be a pirate coallition of size at
mostt, andx ∈ FC (P ). First each block is decoded with respect to the inner code, to
produce aq-ary vectory of lengthn2. The algorithm returns the setL of codewords
c∈ CO at a distanced(c,y) ≤D, for some decoding thresholdD.

Let F be the number of positions where inner decoding is incorrect. Clearly,F ∼
B(n,εin). The pirates matchy in at least (n−F )/t positions on average, which means
that if F ≤ tD − (t− 1)n2, then at least one guilty pirate is caught. The following
theorem follows by the Chernoff bound.

Theorem 3
Using a concatenated code of an(n1, q) t-secure inner code withεin-error, and an
(n2,M) outer code, with outer list decoding with thresholdD = n2∆, the probability
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4.2 Random codes (RC)

of identifying no guilty user is

ε1 ≤ P (F ≥ (1− t+ t∆)n2), F ∼ B(n2, εin),

and

ε1 ≤ 2−n2D(1−t+t∆||εin), if εin < 1− t+ t∆.

Corollary 1
If D(1− t+ t∆||εin) > 0, then the probability of Type I error tends to zero with increas-
ing code lengthn2.

Note that the bound onε1 is valid for any codes, and it depends only onn2, ∆, t,
andεin. The Type II error rateε2 will depend on the design of the outer code.

4.2 Random codes (RC)

Random codes for fingerprinting were introduced in [5], and they are used as outer
codes in BS-CS. LetCO be a (n2,M)q code, where each symbol in each codeword is
chosen uniformly at random from the alphabet.

The security of random codes for fingerprinting depends on the random code being
kept secret, which gives a large key for the vendor to store. Thus the key for the random
code scheme isM ·n2 · logq bits, not counting the keys required by the inner code.

Theorem 4
If a random code is used as outer code for concatenation and1/q < 1−∆, the proba-
bility of including a given innocent userc in the output list is bounded as

P (c∈ L) ≤ 2−n2D(1−∆||1/q),

and the total Type II error rate is bounded as

ε2 ≤ 2n2(RO logq−D(1−∆||1/q)).

Proof: Consider the outputy from inner decoding and an innocent userc 6∈ P . Let
X = n2−d(c,y). ClearlyX is a stochastic variable with distributionB(n2,1/q), and
P (c∈ L) = P (X ≥ n2−D). The error probability is bounded as

ε2 ≤
∑

c∈C\P
P (c∈ L) ≤M ·P (X ≥ n2(1−∆)),

and the theorem follows by Chernoff’s bound. �

Corollary 2
The Type II error rate tends to zero with increasing length ifRO <D(1−∆||1/q)/ logq.

One great advantage of random codes is that they can be made for any number of
users quite trivially. Observing the error bounds, we note thatε1 is unaltered, andε2

degrades gracefully whenM increases.
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4 CONCATENATED SCHEMES

4.3 Replication scheme with random codes

Suppose we use an (n1, q) BS-RS as an inner code, as Boneh and Shaw suggested. Let
r denote the replication factor, such thatn1 = r(2t−1). This scheme has several control
parameters which may be used to tune the performance of the system. The inner code
cardinalityq is the trickiest one. Most of the time we will follow Boneh and Shaw and
setq = 2t. Obviouslyn2 andr control a trade-off between code length and error rate.
Finally, we have∆ to control the trade-off between the two error types.

Theorem 5
If we use

q = 2t, ∆ =
t

t+1
, εin =

1
2t
,

then RS-RC is at-secure fingerprinting scheme withε-error accomodatingM users
requiring length

n = (2t−1)
⌈

8t2(3+2logt)
⌉

n2,

where

n2 =
max{− logε1, logM − logε2}

D( 1
t+1||

1
2t )

.

Asymptotically, the length is

n = Θ
(

t4(logt)(logM − logε)
)

.

In this theorem,∆ is made only slightly greater than the minimum value of (t−
1)/t. By Corollary 1 we requireεin < 1/(t+1), but to maken2 linear in t, εin must in
fact be much smaller than 1/(t+1).
Proof: Theorems 3 and 4 give two bounds onn2, so we get

n2 = max

{

− logε1

D( 1
t+1||

1
2t )

,
logM − logε2

D( 1
t+1||

1
2t )

}

.

It can be shown thatD(1/(t+1)||1/(2t)) = Θ(t−1), and hence

n2 = Θ(t(logM − logε)).

For the inner code, we have

n1 = (q−1)2q2(log(2q)− logεin) = (2t−1)8t2(3+2logt) = Θ(t3 logt).

The theorem follows sincen = n1n2. �
For comparison, we include the original theorem from [4].
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4.3 Replication scheme with random codes

t = logM BS-CS RS-RC

10 6.64·108 3.14·108

15 3.91·109 1.82·109

20 1.40·1010 6.56·109

25 3.80·1010 1.80·1010

30 8.68·1010 4.15·1010

Table 1: Some lengths whent = logM.

Theorem 6 (Boneh and Shaw)
BS-CS with replication factorr andq = 2t users for the inner code, is at-secure(n,M)
code withε-error, where

n2 =
⌈

2t log
2M
ε

⌉

, r =
⌈

8t2 log
8tn2

ε

⌉

,

n = n2r(2t−1)≈ 16t3(2t−1)
(

log
2M
ε

)(

log
8tn2

ε

)

.

The decoding complexity wasΘ(n+M).

The most interesting point in BS-CS is thatr = Θ(logn2), such thatn grows faster
than linearly inn2. Sincen2 depends onM and onε, the length of BS-CS is much
more dependent onε andM than is our scheme. In Table 1 we see some real sample
lengths for these codes, with our and Boneh and Shaw’s formulæ.

Considering asymptotic classes of codes,∆ can be made smaller. The following
theorem gives the better rates.

Theorem 7
There exists an asymptotic class of fingerprinting codes with exponentially declining
error rate for any rateR satisfying

R <
D(1−2q2−r/(2q2)

t ||1/q)

r(q−1)
, (2)

if q andr are natural numbers such that(1−2q2−r/(2q2))/t > 1/q.

Proof: Asymptotically,εin can be taken arbitrarily close to 1− t+ t∆, or in other
words

∆ ≈
t−1+ εin

t
=

t−1+2q2−r/2q2

t
.

By Theorem 3, the outer rate can be chosen arbitrarily close toD(1−∆||1/q)/ logq.
We get the following component code rates

RO ≈
D(1−2q2−r/2q2

t ||1/q)

logq
, RI =

logq
r(q−1)

,
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5 FIGHTING TWO PIRATES

RS-RC BBK
t q r Rate CI Rate

2 4 238 2.42·10−4 (126,214) 0.0172
3 5 410 3.62·10−5 (2046,27) 3.98·10−4

4 7 847 9.62·10−6 (32766,210) 1.82·10−5

5 9 1457 3.53·10−6 (1048572,212) 4.36·10−6

7 13 3223 8.04·10−7 (1028−1,212) 0.116·10−8

Table 2: Asymptotic rates and maximising values ofq andr for the RS-RC codes for
some numbers of pirates.

which gives the total rate as stated in the theorem. �
In Table 2, we can see some asymptotic rates for our codes. The BBK codes given

are the best we could find using constructible inner codes from the literature, namely
duals of BCH codes [17]. Better codes are known to exist but they have not been
constructed yet. We can see that BBK is better for few pirates, but for largert we
could not find (t, t)-separating codes which are good enough. It is also interesting to
note that 2t is not the maximising value ofq asymptotically, except fort = 2.

5 Fighting two pirates

We mentioned that the BS replication codes may not be the ideal choice for inner
codes. For two pirates we have good alternatives, which we consider now.

Definition 3
A (t,u)-separating code or(t,u)-SS has the property for any two disjoint setsT and
U of respectivelyt and u codewords, there is one coordinate position where every
codeword ofT is different from any codeword ofU .

Separating codes have been applied in various fields for more than three decades,
see [15] for a survey. It is known that any (2,2)-SS is 2-secure with 1/3-error [1],
and that the [126,14] punctured dual of the two-error correcting BCH code is (2,2)-
separating [8].

Of course, an error rate of 1/3 in the inner code is a lot, but with proper thresh-
old ∆ this may be compensated. Furthermore 214 codewords means that 1/q in the
calculation ofε2 is very small.

Theorem 8
By concatenating the[126,14] punctured dual of the two-error-correcting BCH code
with a random code, we get an infinite class of2-secure codes withε-error and rateR,
for anyR < 0.0297and exponentially declining error rates given as

ε1 ≤ 2−n
D(2∆−1||1/3)

126 and ε2 ≤ 2n(R−D(1−∆||2−14)/126),
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logM BS-CS RS-RC Simplex SX-RC

10 759 330 299 889 1 023 1 305
15 848 085 334 359 32767 1 455
20 937 440 367 359 1048575 1 545
25 1 026 684 401 001 225−1 1 605
30 1 116 408 435 471 230−1 1 695

Table 3: Code lengths against two pirates for 1000 to a billion users and error rate
ε ≤ 10−10.

where∆ may be chosen freely in the interval2/3< ∆ < 1−2−14.

The best asymptotic rate offered in [1] was 0.015, and [16] offers a rate of 0.026, so
we have an improvement. Similarly, any (3,3)-SS is 3-secure with 4/7-error, and using
the (4092,212) subcode of the dual of BCH(3) presented in [17] we can construct an
asymptotic class of codes which are 3-secure withε-error and rate 2.74·10−4, where
ε vanishes.

Another possible choice is to use simplex codes as analysed in [11], where it was
shown that the [2k−1,k] simplex code is 2-secure withε-error whereε ≤ 2k−2k−1

. We
introduce the SX-RC scheme, with the [15,4,8] codes as inner codes, random codes
for outer codes, and list decoding.

Theorem 9
The SX-RC scheme forms an infinite class of2-secure codes withε-error and rateR,
for anyR < 0.062, and exponentially declining error rates given as

ε1 ≤ 2−n
D(2∆−1||1/16)

15 and ε2 ≤ 2n(R−D(1−∆||1/16)/15),

where∆ may be chosen freely in the interval17/32< ∆ < 15/16.

Corollary 3
The SX-RC codes are probabilisticallyt-secure with length

n = 15

⌈

max

{

logε1

D(2∆−1||1/16)
,

logε2− logM
D(1−∆||1/16

}⌉

,

for any∆ such that17/32< ∆ < 15/16.

This is a second improvement on the record code rate in the two-pirate case. In
Table 3, we present code lengths for 1000 to a billion users with the schemes we know.
The RS-RC codes are computed withq = 2t, εin = 0.002, and∆= 0.525. Here there is
probably room for improvement. The error rates were set such that bothε1 andε2 both
are less than 10−10/2. We used∆ = 0.655 for 210 users,∆ = 210/320 for 215 users,
∆ = 52/80 for 220 users,∆ = 41/64 for 225 users, and∆ = 203/320 for 230 users.
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Unfortunately, [12], [16], and [1] do not give explicit formulæ for the length for
a given, finite code size, and therefore these three schemes are not represented in our
table. Note that the simplex codes will have much better error rate than the 10−10 that
we require.

6 Conclusion and open problems

We have made a new error analysis of the Boneh-Shaw fingerprinting scheme, and
proved that it actually exhibits some of the advantages introduced by ‘improving’
schemes in recent years. It yields asymptotic classes of codes with constant rate and
exponentially declining error rate. The length of the codes can be made significantly
shorter than previously proved. The Boneh-Shaw style codes also have the advantage
that they can be constructed easily for any number of users, any number of pirates, and
any error rate.

Using list decoding facilitates the error analysis, in addition to making it possible
to trace more than one pirate most of the time. Either inner codes or outer codes may
be replaced, and modifying the error analysis should be fairly easy. It is particularly
interesting to make constructions with AG codes with long distance as outer codes, for
which list decoding can be done in time linear inn. The problem with such construc-
tions is that they require larger alphabets than do random codes, at leastq > t2, and
thus they are not very efficient with BS-RS as inner codes.

We have pointed out the control parameters in the scheme, and these may be used
to tune the performance of the scheme to actual applications. Good and general state-
ments on optimal choices of control parameters is still an open problem.

In the two-pirate case, we replaced the original inner codes by simplex codes in
order to get a further improvement. This gave the impressive length of only 1695 for
one billion users at an error rate of 10−10. It is probably possible to make similar
improvements against three pirates by using the scattering codes and simplex codes
from [18] as inner codes. Both BS-CS and RS-RC useq-secure inner codes with
q = 2t when only at-secure code is needed. A most interesting open problem is to
construct finite (n,q)2 t-secure codes forq >> t > 3, which can be used as inner codes
and improve the overall rate.

Barg, Blakley, and Khabatiansky [1] ask whether it is possible to compute a chan-
nel capacity for the fingerprinting problem. As we are able to construct schemes with
higher and higher rates, it is of increasing interest to know the theoretical capacity
limit.
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