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1 Introduction and summary

Symmetry is a physicist’s compass and Poincaré invariance is perhaps the most precisely
tested symmetry in nature [1–4]. Empirically, we observe it everywhere: from electromag-
netism to the reign of subatomic particles and the expanse of the cosmos. But just as
importantly, Poincaré invariance sits at the heart of our description of the laws of nature.
On the one hand, it provides us with the organizing principle to model the interactions of
subatomic particles through Quantum Field Theory (QFT), and constitutes one of the pil-
lars of the standard model of particle physics. On the other hand, Poincaré symmetry is so
powerful and rigid that it makes our theoretical description inevitable. We can appreciate
this from two complementary points of view.

Weinberg argues in [5] that Poincaré invariance, combined with quantum mechanics
and locality (in the form of cluster decomposition), uniquely selects QFT as the necessary
language of nature, at least at low energies. Moreover, from this standpoint, microscopic
causality and the analyticity of the S-matrix follow from the above assumptions rather than
being invoked as general principles. But fields come at a cost: the spectrum of massless
particles cannot fit inside a set of Poincaré covariant fields and we are obliged to invoke
unobservable “gauge” symmetries. Also, the scattering of particles cannot be uniquely
mapped into the interactions of fields, as is evident in perturbative field redefinitions. These
observations have motivated physicists to look for an alternative description of scattering
that does not invoke fields or gauge redundancies. Modern on-shell methods for amplitudes,
an intellectual descendant of the S-matrix program of the 60’s (see e.g. [6]), have made
tremendous progress towards precisely this goal (reviews include [7–9]). It is from this
complementary point of view that the rigidity imposed by Poincaré invariance becomes once
again manifest. All (analytically continued) non-perturbative three-particle amplitudes
for massless fields of any spin are uniquely fixed by symmetry, and in theories such as
Yang-Mills [10, 11] and general relativity [12] all higher tree-level amplitudes are uniquely
determined in terms of these building blocks.

In the discussion so far we have implicitly assumed that Poincaré invariance is a sym-
metry of the ground state of the theory. While this is a good approximation for some
particle physics applications, the vast majority of physical systems are not Poincaré invari-
ant in their ground state. Indeed, the specific way in which Poincaré is thus spontaneously
broken determines much of the behavior of a given system. While all possibilities have
been classified [13], a particularly simple and interesting case arises when the “vacuum”
consists of a static, homogeneous and isotropic medium that permeates spacetime. Ob-
servers at rest with respect to this medium are special, as they observe a more symmetric
configuration, hence Lorentz boosts are spontaneously broken. This is the case for many
condensed matter systems but also for cosmological models as we will discuss in detail
shortly. Some even go a step further and speculate about possible explicit breaking of
Poincaré invariance, perhaps arising in a UV-complete theory of gravity.

The above considerations beg the question of what happens to the rigidity of the
laws of nature when Poincaré invariance is not respected by the ground state, as it is for
example the case in our universe at cosmological distances. If the free theory is Poincaré
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invariant, what can we say about interactions? In particular, we will focus on the following
formulation of this question:

What boost-breaking interactions are allowed for massless, relativistic spinning parti-
cles?

This question is not just academic. Rather it’s motivated by practical considerations.
For example, we have recently observed that the free propagation of gravitational waves
is extremely well described by the relativistic theory of a (classical) massless spin-2 parti-
cle [14]. What does this imply for the interactions that gravitons can have in a consistent
theory? More precisely, in this work we will derive all possible on-shell three-particle
amplitudes for relativistic, massless, luminal particles, while allowing for boost-breaking
interactions. Whether Lorentz boosts are broken explicitly, or more likely only sponta-
neously, will be irrelevant for our discussion (see [15] for a recent discussion of Goldstone
theorem for boosts). Remarkably, we will find that internal consistency severely restricts
the allowed set of interactions, especially in the presence of a massless spin-2 particle. We
summarise our results in section 1.2.

1.1 Motivations

Because of the very general model-independent methodology that we adopt, our results
can be approached and interpreted from a variety of perspectives. In the following, we
motivate our analysis from three points of view.

Cosmology. The expansion of the universe spontaneously breaks time translations and
boosts.1 Both breakings are manifest in many cosmological phenomena. For example, the
breaking of time translations can be thought of as the root cause of the redshift of light as
it travels freely across the cosmos: in the absence of time translation invariance, energy is
not conserved and the energy of a free photon can change with time. The breaking of boost
invariance is evident in the existence of the Cosmic Microwave Background (CMB) or the
cosmic neutrino background. The CMB picks out a preferred reference frame in which
the universe looks homogeneous and isotropic. The Earth moves with respect to this
preferred frame and so we observe the CMB to be anisotropic to one part in a thousand.
Measurements of this CMB dipole by the Planck satellite are shown in figure 1 [16].

A priori, it is impossible to compare the breaking of time translations with that of
boosts because the respective parameters have different dimensions:2 the breaking of time
translations is characterized by a certain time scale tb, while that of boosts by a certain
velocity vb. Since in this work we will study the time-translation invariant dynamics of
massless particles with broken boosts, it is important to understand under what conditions
our results have a chance to be relevant for cosmology.

1Everywhere in this paper we assume invariance under spacetime translations and rotations, but for

conciseness we will avoid stating this repeatedly.
2This is evident in the examples above. In observing the CMB, we see the breaking of boosts in the

presence of a dipole, but we can safely neglect the breaking of time translations because observations are

conducted over tens of years while the CMB changes in time over 105 years. Conversely, the redshift of

photons from distant sources is mostly caused by the breaking of time translations, while the effect of

peculiar motion, which is evident in redshift space distortions, is much smaller.
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First, we notice that for the scattering of particles at energy E, the breaking of time
translation should be parameterized by 1/(Etb), which is negligible at sufficiently high
energies. So in cosmology, where the characteristic time scale is the Hubble parameter,
t−1
b ∼ H, time-translation invariance is often a good approximate symmetry at energies
E ≫ H. Conversely, for the scattering of massless luminal particles, which are the focus of
our study, the typical center of mass velocity is always of order the speed of light. Hence,
in cosmology, where the speed of light is often the characteristic speed vb ∼ c, the breaking
of boosts can be a large effect.

Second, in many models of the very early universe and of dark energy, additional
symmetries are invoked to suppress the breaking of time translations. The archetypal
example is that of a so-called superfluid or P -of-X theory, namely a shift-symmetric scalar
field whose evolution is assumed to be approximately linear in time.3 In this case, while
time-translations, which are generated by T 0µ, and shifts, which are generated by jµ, are
separately broken spontaneously, an (approximate) unbroken diagonal linear combination
tµ exists

tµ = T 0µ + jµ ⇒ ∇µt
µ = 0 . (1.1)

In inflationary models this unbroken diagonal symmetry is eventually responsible for the
(approximate) scale invariance of primordial perturbations that we have observed in the
data. One might ask whether a similar mechanism can be developed to suppress or elim-
inate the breaking of boosts. As pointed out recently in [21] (see also [22]), this is prob-
lematic because one would need to invoke a higher-spin symmetry, which in flat space is
forbidden by the Coleman-Mandula theorem [23]. Indeed, it was proven in [21] that if
one insists on having unbroken boost invariance for cosmological correlators in single-clock
inflation, all interactions are forbidden and the theory must be free. Thus, the breaking of
boosts cannot be eliminated and in principle it could always affect the interactions.

The discussion above highlights the importance for cosmology of time-translation in-
variant theories that (spontaneously) break boosts. In this work we study precisely these
theories in the context of scattering amplitudes. It will turn out that the application of
our results to cosmology shows an unexpected and very interesting twist. We will discuss
this in section 5.

Cosmological correlators. The calculation of primordial initial conditions from mod-
els of the early universe provides a major motivation for the study of boost-breaking
amplitudes. The key observation is that the correlators of n fields of momenta ~ka with
a = 1, . . . , n in an expanding universe encode the information of n-particle scattering am-
plitudes in Minkowski in the residue of the highest kT pole (see [24, 25]), where kT =

∑ |~ka|
3In general, the existence of a shift symmetry is not sufficient to ensure time-translation invariance.

Rather, its general consequences are new cosmological soft theorems [17] and recursive relations for the time-

dependence of the low-energy coupling constants [18]. It is only when one further assumes a linear evolution

for the shift-symmetric scalar that a diagonal symmetry emerges, which plays the role of time-translation

invariance, a general mechanism that goes under the name of spontaneous symmetry probing [19]. See [20]

for a recent discussion on using a constant shift symmetry, and other symmetries, to realise a diagonal form

of unbroken translations in the presence of additional non-linearly realised symmetries.
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Figure 1. The figure shows CMB dipole at the level of 3 mK align with the ±β‖ direction. The two
perpendicular directions ±β× and ±β⊥ are also shown for reference. This observation highlights
the existence of a preferred frame in our universe and hence implies the spontaneous breaking of
boost invariance.

is sometimes called the “total energy”. Schematically, the relation takes the form4

lim
kT →0

〈
n
∏

a=1

φa〉′ ∼ ReAn

(
∏n

a=1 ka)2 kp
T

+ . . . (1.2)

where the dots represent subleading terms in kT → 0, φa are fields (not necessary scalars),
An is the flat space amplitude for the scattering of the particles created by the φa’s, and a
prime denotes that we are dropping the momentum conserving delta function. The value
of the positive exponent p depends on the interactions included in the theory, with larger
p’s corresponding to the inclusion of operators of higher and higher dimension [26]. This
relation gives us a handle to leverage our knowledge of amplitudes to better understand
cosmological correlators.

The idea to constrain cosmological correlators from symmetries has been pursued from
various angles over the years. In [24] it was shown that the graviton bispectrum is com-
pletely fixed non-perturbatively by the isometries of de Sitter to be a linear combination
of only two shapes, one corresponding to the Einstein-Hilbert term and the other to a
higher-derivative term. In [27], de Sitter isometries were used to fixed the bispectrum of a
spectator scalar. In [28], it was shown how an approximate version of de Sitter isometries
constraints the leading-order scalar-scalar-tensor bispectrum. In [29–31] the study was
extended to the scalar bispectrum and trispectrum. In [32], it was shown that the ζ bis-
pectrum in the de Sitter-invariant limit of single-field inflation is fully fixed by approximate
de Sitter isometries. More recently, in [33–37] an ambitious program has been proposed to
systematically use not only symmetries but also general principles such as unitarity and
locality to “bootstrap” correlators, in analogy with the on-shell methods for amplitudes. In
the current incarnation of this cosmological bootstrap, the isometries of de Sitter spacetime
still play an essential role, analogously to the role Poincaré invariance plays for amplitudes.

4There are many exceptions to this result. For example, when the amplitude vanishes, this relation

should be modified since the leading pole disappears. This is what happens in the DBI theory, due to the

increased symmetry in the flat space-limit, as recently noticed in [20].
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On the one hand, it is clear from the above literature that de Sitter isometries are so con-
straining that many correlators are uniquely specified by them. On the other hand, we
know that most observationally interesting correlators, such as for example equilateral and
orthogonal non-Gaussianity, are not de Sitter invariant, and so cannot be studied directly
with these methods. More generally, in [21] it was proven that in single-field inflation, the
only theory whose ζ correlators are invariant under de Sitter isometries is the free theory.
It is therefore very important to extend the cosmological bootstrap to less symmetric cases.
In particular, it is the invariance under de Sitter boosts that should be relaxed, as this has
not been observed in the data and indeed is not present in many models, for example those
with a reduced speed of sound, cs < 1. Much insight can already be gained by perturbative
calculations [38–43].

The amplitudes that emerge on the total energy pole in (1.2) when de Sitter boosts
are broken are not Lorentz invariant, rather they break Lorentz boosts. So one crucial
step to extend the cosmological bootstrap to correlators with broken de Sitter boosts is
to understand boost-breaking amplitudes. This is one of our primary motivations for this
work.

Gravitational waves. The recent detection of gravitational waves has ushered a new
era in astronomy. But the detection of this 100 year old prediction of general relativity
(GR) has implications well beyond the study of binary compact objects. It provides strong
constraints on modified gravity (see e.g. [44–47]) and on the properties of the graviton.
In particular, the concurrent observation of GW170817 [48] and the gamma-ray burst
GRB170817A [49] has put extremely strong constraints on the difference ∆v between the
speed of gravity and the speed of light [14]

−3 × 10−15 < ∆v/c < 7 × 10−16 . (1.3)

More general Lorentz-breaking modifications of the graviton dispersion relation were clas-
sified and severely constrained in [50] using gravitational Čerenkov radiation by cosmic
rays, and the constraints are even stronger when the GW170817 and GRB170817A data
is included [14]. In particular, Lorentz-breaking deviations from a relativistic dispersion
relation E2 = c2p2 have to be smaller than a part in 10−13, and some specific modifications
must be as small as a part in 10−45. The mass of the graviton is also strongly constrained
by a variety of measurements. Largely model-independent bounds on the graviton mass
mg can be as strong as mg < 10−22 eV from observations such as Yukawa-like corrections to
Newton’s law [51] or gravitational waves from binary mergers [52] (see [53] for a recent sum-
mary and more details). More model-dependent bounds can be as strong as mg < 10−32 eV
from observations of gravitational lensing [54] or of the earth-moon precession [55]. All of
these bounds strengthen our confidence that GR provides a good description of free gravi-
tons.5

It is then natural to ask: what gravitational interactions are compatible with the ob-
servation that the graviton is a relativistic, massless spin two particle? Any theoretical

5Finally, from a more theoretical perspective, [56] argues that the special relativistic energy-momentum

relation is a consequence of locality and of the existence of massless gravitons mediating long range forces.
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guidance in answering this question is of particular relevance also because it is much harder
to directly probe the non-linear dynamics of gravitons, due to the weakness of gravity. It
has been known for half a century that Lorentz invariance forces the self-interaction of
a massless spin-2 particle, as well as the interactions with any other particle, to be uni-
versal in the infra-red around Minkowski spacetime and to correspond to the interactions
of GR [57, 58]. More generally, from a purely on-shell perspective, there are only three
possible cubic (analytically continued) amplitudes for three gravitons, which reduce to two
if one assumes parity [59]. These are the interactions of GR, coming from the Ricci scalar
R, and higher derivative interactions from the (dimension 9) Riemann cubed terms, which
are highly suppressed at low energies. Self-interactions with broken Lorentz boosts have
received less attention. In [60], it is argued that the explicit breaking of Lorentz symmetry
is inconsistent with dynamical gravity, while this obstruction may be absent if the break-
ing is spontaneous. In [61], the authors show that assuming only spatial covariance, the
leading order couplings of the graviton must display Lorentz invariance, which from this
perspective appears as an emergent symmetry.

In this work we will take a complementary approach. We will only discuss physical on-
shell (massless) particles, thus avoiding any mention of gauge symmetries such as general
covariance. General principles such as unitarity and locality will then enforce Lorentz
invariance and agreement with GR. Our results will be summarized in section 1.2.

1.2 Summary of the main results

The main body of the paper consists of a detailed derivation of our results. We attempted
to make our derivation pedagogical and the presentation self-contained, so that this paper
can be approached without much familiarity with on-shell methods and the spinor helicity
formalism. While many of our derivations are technical in nature, our final results can be
stated in simple terms. For the reader who is not interested in the details, we therefore
outline our main findings here. All the statements below are valid under the following
assumptions:

• The spacetime is Minkowski.

• All particles are relativistic, massless and luminal, i.e. they all propagate at the same
speed, which we set to one and call the “speed of light”, even when no photons are
present in the spectrum.

• All interactions respect spacetime translations and rotations, but we allow for general
interactions that are not invariant under Lorentz boosts. Whether Lorentz boosts
are non-linearly realized or explicitly broken plays no role in our analysis.

• While our results for three-particle amplitudes are non-perturbative in nature, our
factorization constraints on the four-particle amplitudes ignore loop contributions.

From these assumptions and demanding unitarity and locality through the consistent fac-
torizations of four-particle amplitudes, we are able to show that the set of consistent inter-
actions is severely restricted. In more detail:

– 6 –
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• We derive all possible boost-breaking cubic amplitudes for relativistic massless parti-
cles of any spin. Unlike in the Lorentz-invariant case, there are always infinitely many
possibilities, which are characterized by a generic function of the particles’ energies
(see (3.18)). This result is completely non-perturbative.

• If interactions with a massless spin-2 particle are allowed, three-particle amplitudes
must be Lorentz invariant, even those that do not involve a graviton (see section 4.3).
For example, amplitudes corresponding to boost-breaking cubic scalar interactions
such as φ̇3, φ̇(∂φ)2 and all other higher-derivative ones are forbidden. We conjecture
this to be true for all other higher-particle amplitudes. This is a strong evidence that
Lorentz invariance follows from having consistent interactions involving a massless
spin-2 particle.

• The cubic graviton amplitudes must be those of GR at low energies (corresponding
to dimension-5 operators). As for the Lorentz-invariant case, the only other graviton
amplitudes correspond to the two possible Riemann3 couplings (dimension-9 opera-
tors).

• Particles with spin S > 1 cannot have an electric charge (see section 4.2). Particles
with spin S > 2 cannot have cubic self-interactions of dimensionality lower than 3S.
They also cannot interact gravitationally via the GR vertex (see section 4.1 and 4.3).
Lower spin particles (S < 2) can indeed be minimally coupled to the graviton and
these couplings are fixed by the coupling of the GR vertex. This is the on-shell
manifestation of the equivalence principle.

• Unlike for the Lorentz-invariant case, cubic self-interactions of a single massless spin-
1 particle do exist (dimension-6 operators) when boosts are broken (see section 4.1).
All lower dimension operators are forbidden, including the cubic interaction for three
transverse modes in the Framid EFT [13]. We plan to investigate this further, and
consider other EFTs discussed in [13] in future work.

• We find large classes of self-consistent, boost-breaking interactions among scalars,
photons and spin-1/2 fermions, already at leading order in spatial derivatives. In
other words, QED, scalar QED and scalar theories allow for the breaking of boosts
at the cubic level (see section 4.2).

• We point out that the four-particle test for massless particles is highly IR sensitive
(see section 5). As a consequence, the results that follow from it cannot be straight-
forwardly applied to cosmology, where the Hubble parameter that characterizes the
curvature of spacetime constitutes an IR modification of Minkowski spacetime. Con-
versely, all those results that are exclusively based on symmetries, such as for example
the form of the three-particle amplitude (see section 3) are robust and do apply to
curved spacetime as well.

Notation and conventions. Since we will be dealing with boost-breaking theories, for
dimensional analysis we will have to separate units of length from units of time. Working
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with ~ = 1 = c, we will indicate by “dim {. . . }” the scaling of an object with spatial
momentum, which has units of inverse length, excluding the dimension of all coupling
constants. For Lorentz-invariant theories this gives to the standard energy/mass dimension,
as e.g. in [9]. For example,

dim {(ii)} = 0 , dim {[ij]} = dim {〈ij〉} = 1 . (1.4)

We will work with the mostly minus metric signature ηµν = diag(+1,−1,−1,−1) and
follow [62] for spinor conventions. We use the beginning of the Greek alphabet for SU(2)

indices (α, β, γ, . . .), and the middle of the alphabet for SO(1, 3) indices (µ, ν, ρ, σ, . . .). Our
basis for the Pauli matrices σµ

αα̇ and (σ̄µ)α̇α is

(σ0)αα̇ = (σ̄0)αα̇ =

(

1 0

0 1

)

, (σ1)αα̇ = −(σ̄1)αα̇ =

(

0 1

1 0

)

, (1.5)

(σ2)αα̇ = −(σ̄2)αα̇ =

(

0 −i
i 0

)

, (σ3)αα̇ = −(σ̄3)αα̇ =

(

1 0

0 −1

)

, (1.6)

and amongst the many useful identities these matrices satisfy

σµ
αα̇σ̄

β̇β
µ = 2δα

βδβ̇
α̇ , (1.7)

σµ
αα̇(σµ)ββ̇ = 2ǫαβǫα̇β̇ , (1.8)

(σ̄µ)α̇ασ̄β̇β
µ = 2ǫαβǫα̇β̇ , (1.9)

where the components of the epsilon and delta tensors are

ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1 , δα
β =

(

1 0

0 1

)

. (1.10)

We use these epsilon tensors to raise and lower the dotted and undotted SU(2) indices as

ψα = ǫαβψ
β , ψα = ǫαβψβ, ψ̄α̇ = ǫα̇β̇ψ̄

β̄, ψ̄α̇ = ǫα̇β̇ψ̄β̇ . (1.11)

Note added. During the completion of this work a paper appeared [63] that argues that
the consistent description of a massless spin-2 particle requires certain tree-exchange dia-
gram to be Lorentz invariant. One of our main results in this work is in complete agreement
with this finding, while other results for gravitons are new. In a similar vein, [64] recov-
ers the central tenets of electromagnetism, such as charge conservation, without imposing
boost invariance. Our point of view and methodology are complementary to that in [63, 64]
since we only use on-shell methods and make no use of the field theory apparatus.

2 On-shell methods: symmetries and bootstrap techniques

The aim of the S-matrix bootstrap program is to construct, directly at the level of the
S-matrix, consistent scattering amplitudes exhibiting a given set of (linearly realised) sym-
metries. This on-shell technique bypasses the usual Lagrangian formalism of effective field
theories, thereby avoiding redundancies such as field redefinitions and gauge transforma-
tions. In this section we introduce the basic principles of this bootstrap program.
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2.1 Symmetries and on-shell conditions for free particles

We begin by discussing the symmetries we are assuming so that we can clearly compare
and contrast our results with those in the literature [8, 9, 59, 65–67]. Up to now, on-
shell methods and the four-particle test of [59] have been applied to theories for which
the vacuum is assumed to be invariant under the full Poincaré group ISO(1, 3), consisting
of spacetime translations, spatial rotations and Lorentz boosts. In this work we relax
the assumption that Lorentz boosts leave the vacuum unchanged, while assuming that
spacetime translations and spatial rotations remain good linearly realised symmetries. We
will be agnostic about whether boosts are explicitly broken or spontaneously broken and
non-linearly realized. In four spacetime dimensions our symmetry group is therefore R4 ⋊

SO(3). Throughout our paper, we will use the following terminology:

Boost-invariant theories: unbroken ISO(1, 3) (2.1)

Boost-breaking theories: unbroken R4 ⋊ SO(3). (2.2)

In the bootstrap program one has to provide the on-shell data which includes the on-shell
conditions relating the energy and spatial momentum of each free particle. In boost-
invariant theories massless particles satisfy the usual on-shell condition E2 − p2 = 0, while
in boost-breaking theories many other on-shell conditions are allowed due the reduced
symmetry. Below we classify these possibilities:

• Relativistic: each free particle satisfies E2 −c2
sp2 = 0 with the speed of sound cs being

the same for each particle. Without loss of generality, in this case we can choose to
work in units such that cs = c = 1 and we will do this in the rest of the paper.

• Linear : each free particle satisfies E2 − c2
sp2 = 0, where at least two particles have a

different cs.

• General: the on-shell condition for each particle is S(E, p) = 0. One could assume
that the equation is invertible in the sense that there exists a continuous map E :

C → C, p 7→ E(p) such that S(E(p), p) = 0. For example, for S(E, p) = E2 −p2 +αp4

we can write E(p) = p(1 − αp2)1/2.

In this paper we consider the relativistic case where each particle has a Lorentz invari-
ant propagator and leave generalisations to other on-shell conditions for future work. So,
we focus on theories where all boosts are broken at the level of the interactions only. We
therefore combine the energy and spatial momentum into the usual 4-vector pµ satisfying
pµpµ = 0 for each particle.

2.2 Little group scaling and the spinor helicity formalism

Let us now emphasise that the usual classification of massless particles in terms of helicity
remains valid for boost-breaking theories. In this subsection we also present the spinor
helicity formalism, which for boost-invariant theories has been reviewed in many cases
e.g. [7–9, 67, 68], and for boost-breaking theories was introduced in [24] (see also appendix
C of [37]).
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Spacetime translation symmetry alone entails that there exists a basis of one particle
states |p, E〉, which are the eigenstates of the momentum and energy operators:

p̂i|p, E〉 = pi|p, E〉, Ê|p, E〉 = E|p, E〉. (2.3)

States with the same p and E may be degenerate and additional quantum numbers are
collectively indicated by an index σ i.e. |p, E;σ〉. An important subgroup of the full Lorentz
group is the little group which is the group of transformations that leave the 4-momentum
pµ invariant. Such transformations map

|p, E;σ〉 7→ D σ′

σ |p, E;σ′〉. (2.4)

Single particle states can then be further classified according to their eigenvalues under
the little group. In both boost-invariant and boost-breaking theories, this is the projective
SO(2),6 and the states |p, E〉 carry a label corresponding to helicity h = 0,±1

2 ,±1, . . ..
Clearly the relevant symmetry here is spatial rotations, rather than Lorentz boosts. The
helicity of a particle is the same in all frames related by a rotation and changes sign under
a spatial reflection. For that reason, we may consider the allowed helicity states for a
massless particle of spin S > 0 to be +S and −S.

Throughout this work we will make use of spinor helicity formalism as a powerful tool
to present amplitudes in a compact form. This formalism, introduced below, provides a
compact way of expressing amplitudes and its simplicity is beautifully captured by the
Parke-Taylor formula for gluon scattering [70]. Here we extend these methods along the
lines of [24] for application in boost-breaking theories.

We start by using the Pauli matrices (we follow the conventions of [62]) to map the
momentum 4-vector pµ into a 2 × 2 matrix7

pαα̇ = σµ
αα̇pµ =

(

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)

, (2.5)

where σµ = (1, σi). The dotted and undotted indices transform in the fundamental and
anti-fundamental representation of SL(2,C)8 respectively, such that pαα̇ transforms in
the (1/2, 1/2) representation. The dotted and undotted indices run over two values, e.g.
α = 1, 2, and in a boost-invariant theory dotted and undotted indices are contracted with
the epsilon tensors ǫα̇β̇, ǫαβ . Using pαα̇ alone, the only Lorentz invariant quantity we can
construct is pαα̇pαα̇ = 2 det(p) = 2pµpµ = 0. It follows that pαα̇ is at most rank one thereby
allowing us to write

pαα̇ = λαλ̃α̇, (2.6)

6In the boost-invariant case, the little group for massless particles is ISO(2), but we recover SO(2)

if we make the reasonable assumption that the fields transform trivially under the noncompact subgroup

representing the translations in ISO(2). (See [69], Chapter 2 for more details.) Once boosts are broken,

the little group becomes SO(2) straight away.
7Since σµ

αα̇σ̄β̇β
µ = 2δα

βδβ̇
α̇ we have pµ = 1

2
σ̄α̇α

µ pαα̇.
8In 4 dimensions, the group of proper Lorentz transformations is SO(1, 3) ≃ SL(2,C)/Z2. Thus, pro-

jective representations of the Lorentz group can be identified with representations of SL(2,C).
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where λ and λ̃ are two-component spinors. Note that these objects are not Grassmanian,
rather they are complex numbers satisfying λαλ̃α̇ = λ̃α̇λα. We also note that these spinors
are not unique and are only defined up to a little group, or helicity, transformation. Indeed
the transformation

(λα, λ̃α̇) 7→ (t−1λα, tλ̃α̇), (2.7)

where t is a nonzero complex number, leaves pαα̇ invariant. For physical processes, the
external momenta are always real and therefore the spinors can be chosen to satisfy the
reality condition λ̃α̇ = ±(λ∗)α̇ and we can restrict the transformation parameter t to a
phase. However, to study the analytic structure of the S-matrix we must keep the momenta
complex, and therefore the spinors are in general independent.

What scalar quantities can we construct from these spinors? In boost-invariant theories
we have the following two inner products

〈ij〉 = ǫαβλ(i)
α λ

(j)
β , [ij] = ǫα̇β̇λ̃

(i)
α̇ λ̃

(j)

β̇
, (2.8)

defined for two particles i and j. We refer to these products as angle and square brackets,
respectively. Since the epsilon tensors are anti-symmetric and the spinors are not Grassma-
nian, these brackets are anti-symmetric i.e. 〈ij〉 = −〈ji〉 and [ij] = −[ji], which of course
implies 〈ii〉 = [ii] = 0. From these brackets we can construct the familiar Mandelstam
variables for four-particle scattering amplitudes. Taking all particles as incoming, we have

s = (p1 + p2)2 = (p3 + p4)2 = 〈12〉[12] = 〈34〉[34], (2.9)

t = (p1 + p3)2 = (p2 + p4)2 = 〈13〉[13] = 〈24〉[24], (2.10)

u = (p1 + p4)2 = (p2 + p3)2 = 〈14〉[14] = 〈23〉[23]. (2.11)

For our interests, however, we have a reduced set of symmetries and therefore additional
scalar quantities are allowed. Indeed, in boost-breaking theories we can mix the dotted and
undotted indices by contracting the spinors with (σ̄0)αα̇. We therefore have an additional
inner product which we denote as

(ij) = (σ̄0)αα̇λ(i)
α λ̃

(j)
α̇ , (2.12)

and refer to as round brackets. As will be explained in section 3, only the diagonal com-
ponents of this new bracket i.e. (ii) are independent objects. For the relativistic on-shell
condition, the 0-component of the momentum 4-vector for each particle is the energy of
the particle, which we denote by E. The diagonal round brackets pick out precisely this
component: (ii) = 2Ei. For boost-breaking theories we therefore have precisely three types
of invariant inner products: 〈ij〉, [ij], (ii).

For spinning particles there is a key piece of on-shell data which we haven’t yet dis-
cussed: the polarisation tensors. These form non-trivial representations of the little group
and therefore encode the helicity of the particle in question. For a spin-S particle we write
the rank-S polarisation tensor as a product of S polarisation vectors which in the spinor
helicity variables take the form

e+
αα̇ =

ηαλ̃α̇

〈ηλ〉 , e−
αα̇ =

λαη̃α̇

[λ̃η̃]
, (2.13)
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for +1 and −1 helicity respectively. The form of the polarisation vectors follows from the
fact that they should be orthogonal to the corresponding momentum. Indeed,

pαα̇e+
αα̇ = [λ̃λ̃] = 0 = pαα̇e−

αα̇ = 〈λλ〉. (2.14)

For each particle, the reference spinors η and η̃ are linearly independent from λ and λ̃

respectively, but are otherwise arbitrary. Different choices for the reference spinors can
alter the polarisation vectors, but only by a gauge transformation, which of course leaves
the amplitude unchanged. We have seen above that for boost-breaking theories we can mix
dotted and undotted indices using (σ̄0)αα̇. This allows us to make choices for the reference
spinors for which the zero-component of the polarisation vectors vanishes [24].

For an n-particle scattering amplitude, we have n distinct momenta and therefore
n distinct helicity transformation generators Ĥi, corresponding to rotations of a particle
around its momentum vector. If we treat all particles as incoming and represent the initial
state as |p;h〉 = |p1;h1〉 ⊗ . . . ⊗ |pn;hn〉, then the ith helicity generator is represented on
the space of initial states as Ĥi = id⊗ id⊗ . . .⊗Ĥi ⊗ . . . id, and we have Ĥi|p;h〉 = hi|p;h〉.
The amplitude itself must transform under Ĥi in the same way the initial state does, i.e.

ĤiAn(p;h) = hiAn(p;h), (2.15)

which in turn implies that under {λ(i), λ̃(i)} 7→ {t−1
i λ(i), tiλ̃

(i)} the amplitude transforms as

An({λ(i), λ̃(i);hi}) 7→ An({t−1
i λ(i), tiλ̃

(i);hi}) =
∏

t2hi
i An({λ(i), λ̃(i);hi}). (2.16)

This little group scaling of the amplitude can very powerfully constrain the allowed struc-
ture of the amplitude, see e.g. [7, 9]. For boost-invariant theories it completely fixes the
non-perturbative form of the three-particle amplitudes, while in boost-breaking theories
it completely fixes the amplitude up to an arbitrary function of the energies of the three
particles, as we shall see in section 3.

2.3 Unitarity, analyticity and the four-particle test

Analytic properties of the S-matrix have been extensively studied in boost-invariant theo-
ries. Analyticity, the singularity structure and crossing symmetry of amplitudes are very
important aspects of the S-matrix bootstrap. In this paper we rely on the possibility of
extending these essential S-matrix properties to a more general setting and so here we out-
line why these properties do not require the theory to be invariant under the full Poincaré
group.

Let us start with analyticity of the S-matrix. By analyticity, we mean that once the S-
matrix is stripped of the momentum conserving delta function, the remaining factor, when
continued into the complex space, is an analytic function of the kinematic variables, except
for a finite number of singularities and (possibly) branch cuts. In this paper we will be
considering tree level exchange for four-particle amplitudes and so will not encounter any
branch cuts. Our three-particle amplitudes are however non-perturbative and are almost
completely fixed by symmetry. An argument for analyticity (away from singularities, which
are going to be discussed shortly), which does not rely on the invariance of physics under
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boosts was presented in [71] and so we will take it for granted that scattering amplitudes
are (locally) analytic functions of the kinematic variables discussed above. Our amplitudes
will also be crossing symmetric. Crossing symmetry [72] is a symmetry of the S-matrix
under the following transformation: for a given particle of momentum pµ in the final state,
consider instead its own antiparticle with momentum −pµ in the initial state. The S-matrix,
understood as an analytic function of the complex energies and momenta, must not change
under such a transformation. Thus, without loss of generality, we will consider all particles
participating in a given process as incoming (an incoming particle with negative energy is
to be interpreted as an outgoing antiparticle).

The most powerful constraint on effective theories and their interactions will come
from the singularity structure of the S-matrix. The factorisation theorem, following from
locality and unitarity, states that

Theorem 2.1 (Factorization Theorem) Singularities of codimension 1 in 4-particle am-
plitudes are at most simple poles in the momenta, and each pole is in one-to-one correspon-
dence with an exchange diagram (figure 2), in the limit when the exchanged particle I goes
on-shell. The residue of each pole factorises into a product of three-particle amplitudes:

lim
s→0

(sA4) = A3(1, 2,−I) × A3(3, 4, I) (2.17)

where s is the propagator of the intermediate particle, and s → 0 corresponds to the interme-
diate particle going on-shell. The limit is taken in such a way that both of the three-particle
amplitudes on the right hand side converge.

The above result is almost trivial in perturbation theory where it can be seen as
a consequence of Feynman diagram representation, but it can also be demonstrated via
purely on-shell arguments without any reference to perturbation theory as we will now
briefly outline. Starting from the Weak Causality Postulate (If initial state consists of
wave packets colliding at time t1 and the final state consists of wave packets colliding at
time t2, and t1−t2 is much larger than the typical spatial width of the wave packets, then the
scattering amplitude should be small9) and by considering wave packets sharply localized
in momentum space, Peres [74] has shown that the existence of an interacting particle of
mass M 6= 0 leads to a contribution A1A2/(E

2
I − p2

I − M2 + iǫ), which is to be identified
with processes that involve two collisions of the wave packets (with amplitudes A1 and
A2 respectively) separated by a macroscopic time interval. Conversely, if the amplitude
in the vicinity of a pole takes the form A1A2/(E

2
I − p2

I − M2 + iǫ)+ regular terms, then
the first term represents the amplitude for scattering of wave packets through two or more
subsequent collisions, which will be non-negligible provided that the 4-vector connecting the
collisions is approximately parallel to the 4-momentum (EI , pI). This is then interpreted as
a propagating particle of mass M . The argument of [74] does not rely on invariance under
boosts10 and can be easily generalized to on-shell conditions of the form E2 − ω2(p) = 0,

9More rigorously [73]: scattering amplitude should decay faster than any power of ∆t = t1 − t2 as

∆t → ∞.
10Although the author does fix Lorentz frame to the center of mass frame, this convenient trick serves

illustrative and pedagogical purposes only and can be eliminated altogether.
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provided there is a mass gap. Other derivations of factorisation, which do not rely on
invariance under Lorentz boosts and emphasise the important role of unitarity, can be
found in [75] and section 10.2 of [69]. See also [68] for further discussions.11 We emphasize
that this result is valid in the complexified momentum space, which can be deduced from
the off-shell, Feynman-diagrammatic proof.

None of the above proofs can on its own exclude the possibility that the poles cor-
responding to an intermediate particle going on-shell have order higher than 1. For this
we need an additional argument: consider an exchange channel which, according to the
Factorization Theorem, leads to a contribution A1A2/(E

2
I − p2

I −M2 + iǫ)+ regular terms
to the amplitude. We want to show that the first term contains only first order pole in
(E2

I − p2
I −M2 + iǫ). The essential observation is that if it contained a higher order pole,

then one of the three-particle amplitudes, A1 or A2, would have to be singular on some
large subset of the s = 0 hypersurface. But A1 and A2 are three-particle amplitudes in a
physical configuration (because the original amplitude could be taken to be in the physical
configuration and the intermediate particle is on-shell), so they cannot be singular any-
where. This last statement is also confirmed by an explicit calculation starting from (3.18)
- this quantity is finite in a generic configuration.

We will use the factorization theorem to constrain the constructible part of the tree-
level four-particle amplitudes. For this application, it will be sufficient that the tree-
level propagator corresponds to a relativistic on-shell condition. If one made the stronger
assumption that this is the case also for the full non-perturbative propagator, then one
might be able to use our results to derive some constraints on non-perturbative four-particle
amplitudes.

Summarizing, four-particle scattering amplitudes for particles with Lorentz invariant
propagators have the following singularity structure:

• The amplitude has only simple poles in the Mandelstam variables s, t and u,

• and on these poles the amplitude factorises into a product of three-particle ampli-
tudes.

It should be noted that for massless particles, the s → 0 limit of the amplitude makes
perfect sense in Minkowski spacetime but this is not the case in curved spacetime. For
example, in an FLRW spacetime this limit always takes us outside the validity of the
flat-space approximation. Hence, the constraints imposed by Theorem 2.1 apply to flat
spacetime but care is required when considering cosmological spacetimes. We discuss this
in detail in section 5.

These properties form the basis of the four-particle test [59]. This test requires the
singularity structure of four-particle amplitudes to satisfy these two conditions, and for

11While, strictly speaking, there is no rigorous proof of the Factorization Theorem for massless particles,

Feynman rules entail that tree-level diagrams in perturbation theory retain the stipulated property. More-

over, there is no known counterexample to the Factorization Theorem for massless particles. With this in

mind, we will follow the many papers we have mentioned previously in the context of this theorem and

assume that the theorem holds for massless theories.
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Figure 2. Exchange diagram. Circles represent non-perturbative, exact 3-particle amplitudes.

each pole to be interpreted as the propagation of a physical particle. Ensuring consistency
in all three channels (s,t and u) is highly non-trivial and rules out almost all interactions
for massless particles in boost-invariant theories, see [9, 59, 65–67, 76].12 The reason why
the test is non-trivial is that the residue on say the s-channel pole can contain inverse
powers of t and u, as we shall see. In this paper we will see that the four-particle test is
also very constraining when we allow for boost-breaking interactions.

3 Three-particle amplitudes

In this section we construct general on-shell three-particle amplitudes using the spinor
helicity techniques outlined in section 2. Then, as an example, we discuss the cases where
all three particles are identical.

3.1 Non-perturbative structure for all spins

We assume that every particle is massless, has a definite helicity, and satisfies the relativistic
on-shell condition pµpµ = 0. We take all particles as incoming and therefore by momentum
conservation we have

pµ
1 + pµ

2 + pµ
3 = 0, (3.1)

where 1, 2, 3 label the external particles. The amplitudes only depend on the observable
quantities that can be defined on the asymptotic states and these in turn can be fully
recovered from the spinors and helicities hi. The amplitudes are then only a function of
λ(i), λ̃(i) and hi. Indeed, written in terms of the spinor helicity variables, (3.1) becomes

λ(1)
α λ̃

(1)
α̇ + λ(2)

α λ̃
(2)
α̇ + λ(3)

α λ̃
(3)
α̇ = 0. (3.2)

The simple form of this equation is the main reason why computations are considerably
simpler when dealing with relativistic on-shell conditions. For any other on-shell condition,
such as linear or general, (3.2) does not hold and the following analysis needs to be modified.

12The test was originally formulated using BCFW momentum shifts [11]. Indeed, the authors of [59]

demanded that two different BCFW shifts gave rise to the same answer for the four-particle amplitudes.

As discussed in [9, 66], the test can actually be formulated as above where only complex factorisation is

required.
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As explained in section 2, the quantities from which we should construct amplitudes
are the three inner products: 〈ij〉, [ij], (ij). However, momentum conservation and the fact
that each particle is on-shell ensures that any contraction of two distinct momenta is zero.
Indeed,

(p1 + p2)2 = 2p1 · p2 = p2
3 = 0, (3.3)

(p2 + p3)2 = 2p2 · p3 = p2
1 = 0, (3.4)

(p1 + p3)2 = 2p1 · p3 = p2
2 = 0. (3.5)

In the spinor helicity variables this translates into

〈12〉[12] = 〈13〉[13] = 〈23〉[23] = 0. (3.6)

It follows that if 〈12〉 6= 0, we have [12] = 0 but by momentum conservation we have

〈12〉[23] = −〈11〉[13] − 〈13〉[33] = 0, (3.7)

and therefore [23] = 0 too. We also have 〈12〉[13] = 0 which requires [13] = 0. So having one
angle bracket non-zero requires the three square brackets to vanish and vice versa. This
tells us that three-particles amplitudes split up into holomorphic and anti-holomorphic
configurations:

Holomorphic kinematics : [12] = [13] = [23] = 0, (3.8)

Anti-holomorphic kinematics : 〈12〉 = 〈13〉 = 〈23〉 = 0. (3.9)

Furthermore, the off-diagonal components of (ij) are degenerate with other brackets. In-
deed for i 6= j we can write

(ij)〈jk〉 = −(ii)〈ik〉, (ij)[ik] = −(jj)[jk], (3.10)

which allows us to solve for the off-diagonal components of (ij) for both the holomorphic
and anti-holomorphic configurations. The brackets we can use to construct amplitudes are
therefore 〈ij〉, [ij] for i 6= j and (ii). Recalling that for the relativistic on-shell condition
(ii) = 2Ei, we therefore write the amplitudes as a sum of holomorphic and anti-holomorphic
pieces as

A3({λ(i), λ̃(i);hi}) = MH(〈ij〉, Ei;hi) +MAH([ij], Ei;hi). (3.11)

We are now in a position to constrain the amplitude by demanding it scales in the
correct way under a helicity transformation (λ(i), λ̃(i)) 7→ (t−1

i λ(i), tiλ̃
(i)). As explained in

section 2, under this transformation the amplitude scales as

A3({t−1
i λ(i), tiλ̃

(i);hi}) =
3
∏

j=1

t
2hj

j A3({λ(i), λ̃(i);hi}), (3.12)

which constrains the dependence of the angle and square brackets. Note that the diagonal
round brackets, or the energies, are invariant under this helicity transformation and so this
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symmetry does not constrain how they enter the amplitude. First consider MH , which we
can write as

MH(〈ij〉, Ei;hi) = 〈12〉d3〈23〉d1〈31〉d2FH
h1,h2,h3

(E1, E2, E3). (3.13)

Demanding the correct scaling of the amplitudes fixes

d1 = h1 − h2 − h3, (3.14)

d2 = h2 − h3 − h1, (3.15)

d3 = h3 − h1 − h2. (3.16)

Likewise, for MAH we have

MAH([ij], Ei;hi) = [12]−d3 [23]−d1 [31]−d2FAH
h1,h2,h3

(E1, E2, E3). (3.17)

Now consider the three cases h > 0, h < 0 and h = 0 where h = h1 + h2 + h3 is the
sum of the three helicities. If h > 0, we have d1 + d2 + d3 < 0 meaning that the MH part
of the amplitude would become singular in the entire region defined by 〈ij〉 = 0 (as long
as FH 6= 0 in that region). Three-particle amplitudes cannot have such singularities, so
we require FH = 0 whenever 〈ij〉 = 0. But FH is just a function of energies, not of the
〈ij〉 brackets, and it is impossible to generate these brackets from the energies alone. So
in fact when h > 0 we require FH = MH = 0 everywhere. A similar analysis for h < 0

shows that we require FAH = MAH = 0 everywhere. For the third possibility, h = 0, both
contributions to the amplitude can be non-zero.

We can also argue this by locality of the interactions. Let us define the mass dimension
of an object A by dim {A} where we do not include the functions of energy in the mass
dimension. Now since each angle and square bracket has mass dimension 1, we have
dim {MH} = −h and dim {MAH} = h. The helicity part of the amplitudes cannot have a
negative mass dimension as that would require inverse powers of Lorentzian derivatives in
the interactions which cannot occur in a local theory. We therefore require h ≤ 0 for the
holomorphic configuration and h ≥ 0 for the anti-holomorphic one.

In conclusion, three-particle amplitudes for boost-breaking theories take the general
form

A3({λ(i), λ̃(i);hi}) =







〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1FH
h1,h2,h3

(E1, E2, E3), h ≤ 0,

[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2FAH
h1,h2,h3

(E1, E2, E3), h ≥ 0.

(3.18)
Note that in our convention particles are arranged cyclically in the order 123, and energy
conservation

∑

Ei = 0 ensures that FH and FAH can be reduced to functions of two
variables only. Thus we will sometimes write

F (E1, E2) ≡ F (E1, E2, E3 = −E1 − E2) . (3.19)

We will also drop the H/AH index unless it is necessary. For local theories, the F function
should be of the form

F (E1, E2, E3) =
f(E1, E2, E3)

En1
1 En2

2 En3
3

, (3.20)
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where f is a polynomial not divisible by any of the Ei. We allow for inverse powers of
energies as these may originate from polarization tensors (see appendix B of [24]), but
exclude any other nontrivial analytic functions in the denominator as they would lead to
unphysical singularities.

Qualitatively, therefore, the only difference between the boost-invariant (see [7, 9]) and
boost-breaking amplitudes is an arbitrary function of the energies that we can add to the
latter thanks to the reduced set of symmetries. Our task in section 4 will be to constrain
these functions using the four-particle test. To recover the boost-invariant amplitudes one
can simply set FH,AH to a constant.

Before going on to discuss some examples, we first show that the functions FH and
FAH are not independent. They are related by a parity transformation (space inversion)
P , which does not belong to the connected component of the identity of the Lorentz group.
The amplitude can either stay the same (scalar) or inherit a minus sign (pseudoscalar)
under P . The transformation of all the 4-momenta (E,p) 7→ (E,−p) can be represented
in spinor-helicity formalism by transforming the spinors according to13

λα 7→ λ′
α = (−iλ̃2, iλ̃1) , λ̃α̇ 7→ λ̃′

α̇ = (iλ2,−iλ1) , (3.21)

which leads to [ij] 7→ −〈ij〉 and 〈ij〉 7→ −[ij]. The helicities also change sign under P and
so the helicity dependent part of the amplitude transforms as

[12]−d3 [23]−d1 [31]−d2 7→ (−1)d〈12〉d3〈23〉d1〈31〉d2 , (3.22)

where d = d1 + d2 + d3 = −h, and vice versa. Therefore requiring the amplitude to
transform as scalar or psuedoscalar under P fixes

FH
h1,h2,h3

(E1, E2, E3) = ±(−1)hFAH
−h1,−h2,−h3

(E1, E2, E3), (3.23)

with + for a scalar transformation and − for the pseudoscalar. We will therefore often
quote results for FH or FAH only.

Let us finally emphasise that we have not assumed anything here other than the sym-
metries of the theory and locality. These amplitudes hold completely non-perturbatively
and for any external particles, both bosonic and fermionic.14

3.2 Identical particles: symmetric and alternating polynomials

As an example, in this subsection we discuss the three-particle amplitudes for identical
spin-S particles. Note that the spin-statistic theorem implies that S must be an integer
in this case i.e. the particles are bosons. This is clear from (3.18) since for fermions each
of the brackets has a fractional exponent and therefore when we exchange two fermions
the amplitude does not transform into minus itself as it should by Fermi statistics. At the
Lagrangian level there is no way to contract the SU(2) indices of three fermions to create
a scalar quantity. This is the case for both boost-invariant and boost-breaking theories.

13The presence of a factor of i is due to the requirement that the (+) polarization tensor should be

transformed exactly into the (-) polarization tensor under spatial reflection.
14Fermions always come in pairs and so the exponents are always integers.
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There are two fundamentally distinct helicity configurations with either two or three
identical helicities. The corresponding amplitudes have mass dimension S and 3S respec-
tively and so come from different operators. We can read off the amplitudes from (3.18).
First consider the lowest dimension amplitudes (±S,±S,∓S) which take the form

A3(1+S2+S3−S) =

(

[12]3

[23][31]

)S

FAH
+S,+S,−S(E1, E2), (3.24)

A3(1−S2−S3+S) =

(

〈12〉3

〈23〉〈31〉

)S

FH
−S,−S,+S(E1, E2), (3.25)

where we have eliminated E3 by energy conservation. Now, since particles 1 and 2 have
the same helicity and they are bosons, the amplitudes must be invariant under their ex-
change. The spinor helicity part of these amplitudes inherits a factor of (−1)S under this
transformation and so the functions of energy must be symmetric if the particles have even
spin and anti-symmetric if they have odd spin:

FAH
+S,+S,−S(E1, E2) = (−1)SFAH

+S,+S,−S(E2, E1), (3.26)

FH
−S,−S,+S(E1, E2) = (−1)SFH

−S,−S,+S(E2, E1). (3.27)

To make further progress, we will use the fact that in perturbative local theories the
functions F are polynomials divided by powers of E1, E2 and E1 + E2:15

F (E1, E2) =
f(E1, E2)

Ea
1E

b
2(E1 + E2)c

, (3.28)

It is easy to see that symmetry implies a = b for any spin.16

Now let us restrict to the case of even S where the functions f are required to be
symmetric polynomials. By the fundamental theorem of symmetric polynomials, f can be
written purely in terms of elementary symmetric polynomials. For n variables, there is a
single elementary symmetric polynomial of degree m for all non-negative integers m ≤ n. If
we label the n variables as x1 . . . xn then the degree-m elementary symmetric polynomial is

em(x1, . . . xn) =
∑

1≤j1<j2<...<jm≤n

xj1 . . . xjm . (3.29)

For example, for n = 2 we have

{1, x1 + x2, x1x2}. (3.30)

On the other hand, if S is odd, the functions of energy in the numerators should be
alternating polynomials. An alternating polynomial17 is defined by the property

Poly(xσ(1), . . . , xσ(n)) = sign(σ)Poly(x1, . . . , xn) , (3.31)

15The factorisation constraints we derive in section 4 will actually hold for more general functions of the

energies too.
16We can naturally assume that a, b and c are minimal. If a > b, then we would have Ea−b

2 f(E1, E2) =

±Ea−b
1 f(E2, E1) and thus f(E1, E2) would be divisible by E1, contradicting the assumption that n was

minimal.
17Notice that the only object that is anti-symmetric under all possible permutations is zero. That’s why

anti-symmetric polynomials don’t exist. The non-trivial objects are alternating polynomials, which are

symmetric or anti-symmetric depending on the sign of the permutation.
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for any permutation σ of the n variables. All alternating polynomials can be written as the
Vandermonde polynomial vn multiplied by sums and products of any number of elementary
symmetric polynomials and numerical coefficients (it’s an ideal on the ring of polynomials).
The Vandermonde polynomial is defined as

Vn(x1, . . . , xn) ≡
∏

1≤i<j≤n

(xj − xi) , (3.32)

and it is an alternating polynomial of order n(n− 1)/2. In the case at hand the functions
are of two variables (n = 2) and therefore the relevant Vandermonde polynomial is V2 =

E1 − E2. For the above amplitudes we therefore have

f+S,+S,−S =

{

Poly(E1 + E2, E1E2) for S even,
(E1 − E2)Poly(E1 + E2, E1E2) for S odd,

(3.33)

and similarly for f−S,−S,+S .
The remaining two three-particle amplitudes have mass dimension 3S and take the

form

A3(1+S2+S3+S) = ([12][23][31])S FAH
+S,+S,+S(E1, E2, E3), (3.34)

A3(1−S2−S3−S) = (〈12〉〈23〉〈31〉)S FH
−S,−S,−S(E1, E2, E3). (3.35)

Now the amplitudes need to be invariant under the exchange of any two external particles
as they all have the same helicity. Thus, in 3.28 we require a = b = c. For even S the
functions f must be symmetric polynomials, meaning that they are constructed out of the
elementary symmetric polynomials with n = 3, namely

{1, x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3}. (3.36)

For odd S the functions are constructed from these elementary symmetric polynomials
multiplied by the order 3 alternating polynomial V3. We therefore have

f+S,+S,+S =

{

Poly(E1E2 + E1E3 + E2E3, E1E2E3) for S even,
V3 (E1, E2, E3) Poly(E1E2 + E1E3 + E2E3, E1E2E3) for S odd,

(3.37)

and similarly for f−S,−S,−S . Note that for n = 3 we have E1 + E2 + E3 = 0 since we are
constructing on-shell amplitudes. So there are only two non-trivial elementary symmetric
polynomials. Here we did not eliminate E3 using energy conservation, so as to ensure that
the permutation invariance of F+S,+S,+S remains manifest.

Scalar. If the identical particles are three scalars, i.e. S = 0, then the amplitude is simply
a function of the energies:

A3(102030) = F0,0,0(E1, E2, E3). (3.38)

The helicity part of the amplitude disappears because scalars transform in a trivial way. In
the boost-invariant case the amplitude is just a constant F0,0,0 = const. After considering
the four-particle test in the next section, we will provide a Lagrangian interpretation for
why this amplitude takes this form.
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Photon. For identical S = 1 particles, each of the four amplitudes presented above
requires the functions of energy F±1,±1,∓1 and F±1,±1,±1 to be alternating polynomials,
possibly divided by powers of E1E2 and (E1 +E2). This rules out the possibility of three-
particle amplitudes for a photon in a boost-invariant theory, since a constant polynomial
cannot be alternating. More generally any odd number of photons cannot self-interact.
This well-known fact can be understood at the level of a Lagrangian where three-particle
interactions for a single massless vector should be invariant under the U(1) gauge symme-
try Aµ → Aµ + ∂µΛ(x). The building block of invariant Lagrangians is the field strength
Fµν = ∂µAν − ∂νAµ with the indices contracted with ηµν or ǫµνρσ to produce a Lorentz
scalar. Three-particle vertices therefore contain at least three derivatives and so the mass
dimension of the three-particle amplitudes is dim {A3} ≥ 3. This is the Lagrangian rea-
son why the (±1,±1,∓1) amplitudes vanish since they have mass dimension 1. For the
(±1,±1,±1) amplitudes we can try to contract three powers of the field strength. How-
ever, all Lorentz scalars cubic in the fields, e.g. Fµ

νF
ν

ρF
ρ

µ, ǫµνρσFµνFρκFσ
κ, vanish by

symmetry.18 This Lagrangian interpretation requires us to jump through a few hoops,
most notably the introduction of a gauge redundancy to remove the additional degrees of
freedom required to write down a manifestly Lorentz invariant and local Lagrangian. The
on-shell approach where such redundancies are not required is clearly more efficient and
elegant.

In a boost-breaking theory, we can use alternating polynomials in energies to ensure
that each of the four three-particle amplitudes have the correct Bose symmetry. It is
interesting that we can write down an amplitude of this form even though it has no boost-
invariant counterpart. But one must first check if these amplitudes pass the four-particle
test before declaring that such a theory exists!

Graviton and higher spins. For identical particles with S ≥ 2 and S even, we can
write down three-particle amplitudes in both boost-invariant and boost-breaking theories,
while for particles with S odd we can only write down such amplitudes in a boost-breaking
theory, just like for S = 1. Note that the graviton helicity amplitudes are literally the
square of the photon amplitudes. When we allow for multiple spin-1 particles, where Bose
symmetry in boost-invariant theories is satisfied thanks to the anti-symmetric couplings
(the structure constants), the structure of the amplitude is unchanged up to the addition
of some colour indices. This simple observation is one of the reasons for the symbolic
expression “GR = YM2” [77].

4 Four-particle amplitudes and the four-particle test

Having constructed general, non-perturbative three-particle amplitudes, we are now in the
position to constrain the almost arbitrary functions of energy using the four-particle test.
As explained in section 2, tree-level four-particle amplitudes contain poles and regular

18We can write down non-zero gauge invariant operators at quartic or higher order in the field strength,

which describe the interaction of an even number of photons. Such terms appear in the Euler-Heisenberg

Lagrangian, an effective description of QED below the mass of the electron.

– 21 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
8

Figure 3. s, t and u-channel exchange diagrams, respectively.

pieces. The latter correspond to contact diagrams while the former come from particle
exchange illustrated in figure 2. When the exchanged particle is taken on-shell, the ampli-
tude approaches a singularity whose residue should factorise into a product of three-particle
amplitudes. We use this feature to bootstrap consistent four-particle amplitudes due to ex-
change diagrams in boost-breaking theories. This bootstrap does not constrain the regular
parts of the four-particle amplitude; we are constraining the cubic couplings only.

To illustrate the idea behind this approach, we may first consider a naive attempt at
writing down a four-particle amplitude that factorises into three-particle amplitudes. We
have three channels, shown in figure 3, and so one could initially allow for three separate
terms with an order one pole in s, t or u as follows19

A4
?
=

A3(1, 2,−I) × A3(3, 4, I)

s
+

A3(1, 3,−I) × A3(2, 4, I)

t
+

A3(1, 4,−I) × A3(2, 3, I)

u
(4.1)

where I and −I label the exchanged particle outgoing from the vertex involving particle
1, or incoming into that vertex respectively.20 All external particles are incoming. If more
than one intermediate particle is allowed, we need to sum over all the species of I. Now it
would appear that this amplitude has the residues required by Theorem 2.1. However, it
is possible that A3(1, 2,−I) × A3(3, 4, I), when analytically continued beyond the loci of
s = 0, has a pole at t = 0 or u = 0. In this case, the first term contributes to the t = 0 or
u = 0 residue and the formula 4.1 could give an incorrect residue at t = 0. Finding a four-
particle amplitude with the correct residues in all three channels is therefore a non-trivial
matter. This is known as the four-particle test [59, 66], and as we shall see, it allows us
to constrain, or altogether eliminate, certain types of cubic interactions in boost-breaking
theories.

19We remind the reader that we are working with relativistic dispersion relations for each particle meaning

that we only encounter poles in the usual boost-invariant Mandelstam variables.
20Throughout our analysis in the spinor helicity variables we send pI → −pI by λ(I) → λ(I), λ̃(I) → −λ̃(I).

See appendix A for a justification of this method.
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4.1 Single spin-S particle

We begin by constraining the lowest dimension three-particle amplitudes for identical spin-
S bosons presented in (3.24), namely the (±S,±S,∓S) amplitudes. Consider the four-
particle amplitude A4(1−S2+S3−S4+S) due to exchange of the spin-S particle. By little
group scaling we can fix the helicity part of the amplitude leaving only the dependence on
the little group invariants (s, t, u, Ei) left to fix by the four-particle test. The amplitude
takes the general form

A4(1−S2+S3−S4+S) = 〈13〉2S [24]2SG(s, t, u, Ei), (4.2)

and its mass dimension is

dim {A4} = 4S + dim {G} . (4.3)

Now for exchanges in the s and u channels both constituent three-particle amplitudes
have mass dimension S and this can also be achieved in the t channel for one of the
two possible helicity configurations of the exchanged particle. Since factorisation requires
lims→0(sA4) = A3 × A3, for the case at hand the mass dimension of the four-particle
amplitude is

dim {A4} = 2S − 2. (4.4)

By equating (4.3) and (4.4) we find that the mass dimension of G satisfies

dim {G} = −2S − 2. (4.5)

However, locality dictates that the amplitude can only contain simple poles in s, t and u

and so we require dim {G} ≥ −6 yielding the constraint

S ≤ 2. (4.6)

This tell us that the above four-particle amplitude is inconsistent for bosonic particles
with S ≥ 3, even in boost-breaking theories. We require the corresponding (±S,±S,∓S)

amplitudes to vanish, so we set F−S,−S,+S = F+S,+S,−S = 0 for S ≥ 3. This very simple
argument leads to a profound result: massless, higher spinning particles cannot have cubic
self-interactions, at least at leading order in derivatives.

Let us consider this amplitude in more detail for S = 0, 1, 2 where dimensional analysis
did not exclude the possibility of consistent factorization. In the s and u channels there
are two distinct diagrams since we have two choices for the helicity configuration of the
exchanged particle (see figure 4 for the two s-channel possibilities). In the t channel there
is only one diagram. We therefore have two residues to compute in the s and u channels
and we label these as R−+

s , R+−
s and R−+

u , R+−
u . Using the three-particle amplitudes (3.24)

the residue on the s = 0 pole is

Rs = R−+
s +R+−

s (4.7)

=

(

〈I1〉3

〈12〉〈2I〉

)S (
[4I]3

[I3][34]

)S

F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)

+

(

[2I]3

[I1][12]

)S ( 〈I3〉3

〈34〉〈4I〉

)S

F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3),
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Figure 4. Two choices for the helicity configuration of the exchanged particle.

where we have used energy conservation to eliminate EI . Now in the spinor helicity vari-
ables there is not a unique way to approach s = 0. We have s = 〈12〉[12] = 〈34〉[34] = 0

and this has two main solutions. If [12] = 0, then by momentum conservation we have
0 = [12]〈23〉 = [14]〈34〉 and so to avoid imposing additional constraints on the kinematics
we have to choose 〈34〉 = 0. Similarly, if 〈12〉 = 0, then [34] = 0 too.

For [12] = 〈34〉 = 0, the second term in (4.7) vanishes21 leaving

Rs = R−+
s =

(

〈I1〉3

〈12〉〈2I〉

)S (
[4I]3

[I3][34]

)S

F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)

=
(〈13〉2[24]2)S

tS
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4), (4.8)

where using conservation of momentum at each vertex we eliminated all factors of I, for
example, 〈1I〉[I4] = 〈12〉[24]. For 〈12〉 = [34] = 0 the first term vanishes leaving

Rs = R+−
s =

(

[2I]3

[I1][12]

)S ( 〈I3〉3

〈34〉〈4I〉

)S

F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3)

=
(〈13〉2[24]2)S

tS
F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3). (4.9)

Again we see how S ≥ 3 amplitudes are ruled out: for S ≥ 3, the s-channel residue contains
higher order poles when t = 0 and so the corresponding amplitude is inconsistent. One
may also think that S = 2 is problematic since the denominator is quadratic in t. However,
when s = 0 we can write t2 = −tu. Before moving on to the other channels, we note that
the residue in the s-channel should not differ if we approach the pole in two different ways
and so we match the two different expressions for Rs yielding our first constraint on the

21Once we eliminate I from all brackets, one sees that the numerator vanishes faster than the denominator.
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three-particle amplitudes:22

F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)

= F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3). (4.10)

In the boost-invariant limit the two residues are trivially the same.
The u-channel also contains two diagrams and the corresponding residues can easily be

obtained from the s-channel ones by interchanging particles 2 and 4. With (4.10) imposed
the two residues are equivalent. We have, for example,

Ru = R−+
u =

(〈13〉2[24]2)S

tS
F+S,+S,−S(E4,−E1 − E4)F−S,−S,+S(−E3 − E2, E3). (4.11)

Finally, the t-channel is qualitatively different since it involves two particles of the same
helicity on each side of the diagram. There is therefore only a single choice for the exchange
particle’s helicity if this contribution to the amplitude is to have the same mass dimension
as the other channels. The residue is

Rt =

(

〈13〉3

〈3I〉〈I1〉

)S (
[24]3

[4I][I2]

)S

F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4)

=
(〈13〉2[24]2)S

sS
F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4). (4.12)

In summary, the residues are

Rs =
(〈13〉2[24]2)S

tS
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4), (4.13)

Rt =
(〈13〉2[24]2)S

sS
F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4), (4.14)

Ru =
(〈13〉2[24]2)S

tS
F+S,+S,−S(E4,−E1 − E4)F−S,−S,+S(−E3 − E2, E3), (4.15)

and are subject to (4.10). Let us now zoom in on the three different allowed values for S.

Scalar. For a single scalar, S = 0, consistent factorisation is trivial. Indeed, each residue
is simply a function of the energies and does not contain spurious poles. The consistent
four-particle amplitude is

A4(10, 20, 30, 40) =
F (−E1 − E2, E1)F (E4,−E3 − E4)

s

+
F (E1, E3)F (E2, E4)

t

+
F (E4,−E1 − E4)F (−E3 − E2, E3)

u
, (4.16)

22Here is a brief justification. Near s = 0, the schematic form of the amplitude is A ∼ s−1(f1(λ)F1(E) +

f2(λ)F2(E)), where fi are functions of the Lorentz invariants and Fi are functions of the energies only. The

amplitude has the same dependence on the Lorentz invariants in the two limits, which can then differ only

by a function of energies. Hence, we can write A ∼ s−1f(λ)F (E). Since we can take either of the limits

〈12〉 → 0 or [12] → 0 while keeping the energies fixed, we must get the same F (E), which is to be identified

with the energy-dependent functions in the main text.
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where F ≡ F0,0,0. The only constraint we have on the function of energy is that it should
be a symmetric function as explained in section 2.

We can understand this result from a Lagrangian point of view. In the boost-invariant
case the three-particle amplitude is a constant with consistent factorisation of the four-
particle amplitude for scalar scattering. One may wonder about cubic vertices with deriva-
tives. It is easy to contract the indices in a Lorentz invariant way but these vertices always
involve, up to integration by parts, the � = ∂µ∂µ operator acting on at least one of the fields
and therefore it vanishes on-shell and can be removed by a field redefinition in favour of
four-point vertices which only contribute to the regular part of the four-particle amplitude.

In the boost-breaking case we write operators using the usual Lorentzian derivative ∂µ,
but also have the freedom to add extra time derivatives. Because any terms with Lorentzian
derivatives can be removed by a field redefinition, the only non-trivial three scalar vertices
have zero derivatives, corresponding to a constant amplitude, or contain time derivatives
only giving rise to functions of energy in the amplitude. A well-known example is the φ̇3

vertex appearing in the flat space, decoupling limit of the EFT of single-field inflation.
Generalisations with more derivatives are easy to write down.

Photon. For a photon, S = 1, consistent factorisation becomes a nontrivial problem: Rs

has a pole when t = 0, Rt has a pole when u = 0, and Ru has a pole when s = 0. Therefore
the full amplitude must take the form

A4(1−12+13−14+1) = 〈13〉2[24]2
(

A

st
+
B

tu
+
C

us

)

, (4.17)

where A,B and C are constrained by

Rs = 〈13〉2[24]2
(

C −A

u

)

, (4.18)

Rt = 〈13〉2[24]2
(

A−B

s

)

, (4.19)

Ru = 〈13〉2[24]2
(

B − C

t

)

, (4.20)

where again we have used s+ t+u = 0. As explained in section 3, F−1,−1,+1 and F+1,+1,−1

are proportional with the proportionality factor ± for parity odd and even theories respec-
tively. Since only their product appears in each residue the following analysis is the same in
both cases, so without loss of generality let us take F = F−1,−1,+1 = F+1,+1,−1. Matching
our two expressions for the residues yields

C −A = −F (E2,−E1 − E2)F (−E3 − E4, E3), (4.21)

A−B = F (E1, E3)F (E2, E4), (4.22)

B − C = F (E4,−E1 − E4)F (−E2 − E3, E3), (4.23)

with

F (−E1 − E2, E1)F (E4,−E3 − E4) = F (E2,−E1 − E2)F (−E3 − E4, E3), (4.24)
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such that the residues in the s and u channels are the same regardless of how we approach
the pole. Taking the sum of (4.21), (4.22) and (4.23) yields the main S = 1 factorisation
constraint

F (E2,−E1 − E2)F (−E3 − E4, E3) − F (E1, E3)F (E2, E4)

−F (E4,−E1 − E4)F (−E2 − E3, E3) = 0,
(4.25)

which must be satisfied for all Ei subject to E1 + E2 + E3 + E4 = 0.
Recall from section 3 that F must be an alternating polynomial (possibly divided by

some powers of energies) such that the three-particle amplitudes have the correct Bose
symmetry. Since F is an alternating function of two variables, we can write

F (x, y) =
(x− y)P [x+ y, xy]

xmym(x+ y)k
, (4.26)

with xy ∤ P [x + y, xy] if m > 0 and (x + y) ∤ P [x + y, xy] if k > 0 (∤ means “does not
divide”). Writing the factorisation constraint (4.25) in terms of P , we can prove that
it requires P ≡ 0. The reason for this is that P , as we show in appendix B, has to
satisfy infinitely many distinct constraints of the form P [x, akx

2] = 0 ∀x and thus we need
(akx

2 − y) to divide P [x, y] for all the ak, which is impossible if P is a nonzero polynomial.
We therefore conclude that the four-particle test requires the (±1,±1,∓1) three-particle
amplitudes for a single photon in a boost-breaking theory to vanish: even when boosts
are broken there are no consistent three-point vertices for a single photon giving rise to
these lowest dimension amplitudes. Note that this result did not require us to impose the
additional constraint (4.24) from matching the residues. One may wonder if consistent
amplitudes are possible if we include additional particles, but we will show in section 4.2
that additional exchanges do not change this result.

As discussed in section 3, for boost-invariant theories the three-particle amplitudes
could not satisfy Bose symmetry. Instead, boost-breaking amplitudes can easily satisfy
Bose symmetry but they fail the four-particle test. This is somewhat difficult to fully un-
derstand at the level of a Lagrangian. One may want to take a boost-invariant Lagrangian
and add additional time derivatives. For three photons this would require the amplitude
to have mass dimension ≥ 3 since each field should appear via the field strength. However,
this may well not be the full story at the Lagrangian level. In any case, our results show
that the Framid EFT [13], arising from the breaking of Poincaré symmetry to an unbro-
ken subgroup of translations and rotations, does not pass the test when the propagation
speeds of the transverse and longitudinal modes are equal. Indeed, to leading order in
derivatives the Framid EFT contains a cubic vertex for three transverse modes that gives
rise to (+1,−1,±1) amplitudes with a single power of energy and here we have shown that
such interactions are inconsistent. Furthermore, the Framid EFT contains a (+1,−1, 0)

vertex mixing the transverse and longitudinal modes which we will show to be inconsistent
in section 4.2. It would be interesting to investigate this further. In particular, we would
like to see if allowing for different speeds changes this conclusion. If not, we would have
a convincing answer to the question of the why the Goldstone modes of broken boosts do
not appear to be seen in nature.
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In a theory with only a single photon the four-particle test cannot constrain the other
three-particle amplitudes, namely those with (±1,±1,±1) helicities since these amplitudes
do not contain inverse powers of brackets and therefore residues constructed out of these
amplitudes cannot contain poles. These three-particle amplitudes are therefore only con-
strained by Bose symmetry which for S = 1 tells us that F−1,−1,−1 and F+1,+1,+1 are alter-
nating functions in the three energies. Amplitudes of the lowest possible dimension are23

A3(1−12−13−1) = g〈12〉〈23〉〈31〉(E1 − E2)(E2 − E3)(E1 − E3)

E1E2E3
, (4.27)

A3(1+12+13+1) = ±g[12][23][31]
(E1 − E2)(E2 − E3)(E1 − E3)

E1E2E3
, (4.28)

while the first amplitudes arising from a U(1) gauge invariant theory are

A3(1−12−13−1) = g′〈12〉〈23〉〈31〉(E1 − E2)(E2 − E3)(E1 − E3), (4.29)

A3(1+12+13+1) = ±g′[12][23][31](E1 − E2)(E2 − E3)(E1 − E3), (4.30)

where we allow for parity-even and parity odd possibilities and g, g′ are coupling constants.
All of these amplitudes are consistent since the four-particle test for photon scattering does
not impose any conditions on (+1,+1,+1) and (−1,−1,−1) interactions.

Let us briefly comment on the Lagrangian approach to all-plus (and all-minus) ampli-
tudes. Despite the fact that (4.27)–(4.28) are allowed by symmetry and the 4p test, they
cannot arise from a gauge invariant cubic term. This is because gauge invariance requires
us to construct interactions out of the field strength Fµν , which already contains three
derivatives, but Fµ

νF
ν
ρF

ρ
µ vanishes identically. In contrast, for (4.29)–(4.30) there exists

an underlying local Lagrangian which is gauge invariant. By taking boost-invariant inter-
actions and adding time derivatives we find both a parity-even and parity-odd possibility
given by

F̈µ
νḞ

ν
ρF

ρ
µ, ǫµνρσF̈µνḞρκFσ

κ. (4.31)

In appendix C we show that the latter interaction does indeed give rise to the purported
amplitudes (4.29)–(4.30). The calculation for the first interaction is similar.

In conclusion, boost-breaking theories of a single photon do exist but any gauge in-
variant cubic interactions require at least 6 derivatives meaning that its low energy conse-
quences are heavily suppressed. In addition, in section 4.3 we will show that in the presence
of gravity these interactions do not pass the four-particle test!

Graviton. The graviton, S = 2, is the final case to consider. Here we see that each residue
contains a pole in the other two Mandelstam variables and so consistent factorisation is
non-trivial. This tells us that a four-particle amplitude with consistent factorisation must
take the form

A4(1−22+23−24+2) = 〈13〉4[24]4
A

stu
, (4.32)

23We acknowledge Maria Alegria Gutierrez’s findings on the possible structures of F±1,±1,±1.
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with the function A constrained by matching to each residue. Our S = 2 factorisation
conditions are

−A = F (−E1 − E2, E1)F (E4,−E3 − E4) (4.33)

= F (E1, E3)F (E2, E4), (4.34)

= F (E4,−E1 − E4)F (−E3 − E2, E3), (4.35)

where again we have dropped the subscripts denoting the helicities, and cover both parity
even and parity odd cases. We also need to satisfy (4.10).

In appendix B we show that the only solution to this set of equations, given that F
is now a symmetric polynomial multiplied by inverse energies, is F = const. This reduces
the (±2,±2,∓2) three-particle amplitudes, and the four-particle amplitude due to these
vertices, to the boost-invariant limit. The four-particle amplitude is then what one finds in
General Relativity (GR). Indeed, in this boost-invariant limit the three-particle amplitudes
have mass dimension 2 which is due to the two-derivative nature of the Einstein-Hilbert
action. Note that the minus sign in the overall amplitude is because gravity is an attractive
force. We denote the magnitude of the three-gravity coupling as κ.

As with the photon case, we may have anticipated this result from a Lagrangian point
of view. In GR the required gauge redundancy is diffeomorphism invariance under which
the spacetime coordinates transform. Furthermore, the quantum effective theory of GR
is best understood by expanding the Einstein-Hilbert action around the vacuum solution
gµν = ηµν + hµν . One finds a tower of two-derivative terms with each coupling fixed by
diffeomorphisms relating operators at different orders in hµν . Given that in this work
the two-derivative kinetic term is assumed to be of the boost-invariant form, adding time
derivatives to the cubic vertex would break the (linearised) diffeomorphsim symmetry and
one would therefore expect issues to arise. However, let us again emphasise that although
this Lagrangian interpretation can yield some intuition, the on-shell analysis presented here
is preferable given that it is independent of gauge redundancies and field redefinitions and,
as we shall see in section 4.3, is robust against adding additional particles.

Now in contrast to the photon case, here we can constrain the other three-particle
amplitudes (±2,±2,±2) thanks to the non-vanishing GR amplitudes. The dimension 6

amplitudes are

A3(1−22−23−2) = (〈12〉〈23〉〈31〉)2 F−2,−2,−2(E1, E2, E3), (4.36)

A3(1+22+23+2) = ([12][23][31])2 F+2,+2,+2(E1, E2, E3), (4.37)

where F−2,−2,−2 and F+2,+2,+2 are symmetric polynomials. Now consider the four-particle
amplitude A4(1+2, 2+2, 3+2, 4−2). We can arrange the helicities of the exchanged particle
such that each residue has mass dimension 8 and going through an analysis mirroring those
above we see that the amplitude takes the form

A4(1+2, 2+2, 3+2, 4−2) = [12]4[23]4〈24〉4 B

stu
, (4.38)
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and consistent factorisation requires

−B = κF+2,+2,+2(E1, E2,−E1 − E2) (4.39)

= κF+2,+2,+2(E1, E3,−E1 − E3) (4.40)

= κF+2,+2,+2(E2, E3,−E2 − E3). (4.41)

It is clear that the only solution to this system, for generic energies, is F+2,+2,+2 = const.
We therefore also have F−2,−2,−2 = const by parity and so the amplitudes are reduced to
their boost-invariant limits.

At the Lagrangian level, these mass dimension 6 three-particle amplitudes are due to
terms cubic in the Riemann tensor. Note that there are no three-particle amplitudes with
mass dimension 4. One may expect terms quadratic in curvature, R2, R2

µν and R2
µνρσ, to

give rise to mass dimension 4 amplitudes. However, in 4D the Riemann squared term is
degenerate with the other two up to the Gauss-Bonnet total derivative and both of these
can be removed by a field redefinition since they are proportional to Rµν which vanishes
on-shell. One may also wonder about terms with four or more powers of curvature, but
these do not contribute to three-particle amplitudes since at cubic order in fluctuations at
least one curvature would need to be evaluated on the flat background where it vanishes.

Brief summary. Let us briefly summarise our results for a single spin-S particle:

• For S = 0 factorisation is trivial with each residue a function of the external energies.

• For S = 1 the four-particle test forces the leading order three-particle amplitudes to
vanish. This result assumes that the functions of energies are polynomials divided
by some powers of the energies, but does not rely on any specific truncation of such
polynomials. This shows that the Framid EFT [13] does not pass the test when the
speeds of the transverse and longitudinal modes are equal. The highest dimension
three-particle amplitudes are unconstrained by the four-particle test and at the level
of a Lagrangian, the leading order gauge invariant vertices are (C.4).

• For S = 2 all three-particle amplitudes are forced to their boost-invariant limit. These
are the amplitudes in GR with the addition of a term cubic in curvature. Again we
assume that the functions of energies are polynomials divided by some powers of
energies and our result does not rely on a truncation of the numerator. Lorentz
violation in graviton cubic vertices is therefore impossible for a relativistic on-shell
condition, in contrast to the photon

• For S ≥ 3 the four-particle test cannot be passed and there cannot be any cubic
self-interactions for these particles, at least to leading order in derivatives. This
is potentially tricky to understand at the level of a Lagrangian, but here simple
dimensional analysis and the four-particle test ruled out these vertices.

In the following sections we will see that these results are robust against including additional
massless particles.
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4.2 Couplings to a photon: Compton scattering and beyond

We now move to couplings between spin-S particles and a photon. We take S 6= 1 as
we will consider multiple spin-1 particles in section 4.4. Apart from this restriction, we
allow for both bosonic and fermionic particles. We initially consider Compton scatter-
ing A4(1−S

a , 2+1, 3+S
b , 4−1) to constrain the (+S,−S,±1) amplitudes, allowing for multiple

spin-S particles since in the boost-invariant limit a single copy cannot have a U(1) charge.
These amplitudes have mass dimension 1 and so correspond to the familiar cubic couplings
of a charged particle. We then present a complete analysis, i.e. we constrain all amplitudes
that can be constrained, for a theory of a single scalar coupled to a photon. Couplings to
a graviton are studied in section 4.3.

Compton scattering. Consider the amplitude A4(1−S
a , 2+1, 3+S

b , 4−1) with dim {A4} =

0. Each residue must have mass dimension 2 which in turn must come from two mass
dimension 1 three-particle amplitudes.24 First consider the s-channel where there are two
possibilities for the spin of the exchanged particle. We can exchange a spin-S particle or a
spin-|S − 2| particle. However, we find that the latter case yields spurious poles for all S
and so consistency demands that the (∓S,±(S−2),±1) amplitudes vanish. For the former
case we use the three-particle amplitudes

A3(1−S
a , 2+S

b , 3−1) = 〈12〉−1〈23〉1−2S〈31〉2S+1FH
ab (E1, E2), (4.42)

A3(1−S
a , 2+S

b , 3+1) = [12]−1[23]2S+1[31]1−2SFAH
ab (E1, E2), (4.43)

where we have dropped the helicity subscripts on the F ’s in favour of the internal indices
(a, b) labelling the external spin-S particles, and have used energy conservation to eliminate
E3. Computing the s-channel residue we find

(Rs)ab =
(〈14〉[23])2S(〈34〉[23])2−2S

u

∑

e

FAH
ae (E1,−E1 − E2)FH

eb (−E3 − E4, E3), (4.44)

where we have summed over the possible spin-S exchanged particles.
Moving to the t-channel, we see that we must exchange a photon to realise the de-

sired mass dimension. A non-zero residue then requires non-zero three-photon amplitudes
(−1,+1,±1). In section 4.1 we showed that in the absence of other particles these ampli-
tudes must vanish but since we have now included additional particles, we have to check
if this result still holds. Going back to the amplitude A4(1−1, 2+1, 3−1, 4+1), we see that
in the s and u channels only photon exchange can yield a dimensionless amplitude while
in the t-channel we can exchange a photon, as we considered in section 4.1, but can also
exchange a spin-3 particle. The required three-particle amplitudes are (±1,±1,∓3) but
we find that such a residue induces spurious poles in t and therefore consistency requires
these three-particle amplitudes to vanish. So our result in section 4.1 on the absence of
a consistent mass dimension 1 three-particle amplitude for photons is unchanged when
we allow for additional exchanges. It follows that there is no t-channel contribution for
Compton scattering.

24It is not possible to exchange a particle such that one three-particle amplitude is dimensionless and the

other has mass dimension 2.
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Finally, for u-channel exchange we again find two possibilities for the exchanged par-
ticle: we can exchange a spin-S particle or a spin-(S + 2) particle. As in the s-channel
we find that the latter choice yields spurious poles for all S and so the (∓S,±(S + 2),∓1)

amplitudes must vanish. For the former case we find that the residue is

(Ru)ab =
(〈14〉[23])2S(〈34〉[23])2−2S

s

∑

e

FH
ae(E1,−E1 − E4)FAH

eb (−E3 − E2, E3), (4.45)

where again we have summed over the possible spin-S exchanged particles. Now we see a
fundamental difference between the two cases S < 1 and S > 1. For S > 1, each residue
contains a spurious pole in (〈34〉[23]) meaning that no consistent four-particle amplitude
is possible. The four-particle test therefore requires the (+S,−S,±1) three-particle ampli-
tudes to vanish for S > 1, implying that such a particle cannot have a U(1) charge. This
result is known in the boost-invariant limit and here we see that it is unchanged when we
allow for the breaking of Lorentz boosts. Compton scattering is therefore only possible
for low spins with S = 0, 1/2. The test is still non-trivial in these cases, since consistent
factorisation yields the constraints

∑

e

FAH
ae (E1,−E1 − E2)FH

eb (−E3 − E4, E3)

=
∑

e

FH
ae(E1,−E1 − E4)FAH

eb (−E3 − E2, E3), (4.46)

which needs to be satisfied for all Ei subject to E1 + E2 + E3 + E4 = 0. Again these con-
straints are the same for parity even and parity odd amplitudes so we will drop the H/AH
labels in the following. These factorisation constraints are solved by Fab = fabF (E1 +E2)

where fab is a constant matrix, and F is an arbitrary function of the sum E1 + E2.25

For bosons, fab needs to be anti-symmetric by Bose symmetry (given the form of (4.42)
and (4.43)), and therefore consistent factorisation is not possible for a single scalar which
in the boost-invariant limit is the well known fact that a single scalar cannot have a
U(1) charge. For two scalars, a consistent boost-breaking amplitude is possible with
Fab = ǫabF (E1+E2), and similarly a consistent amplitude exists for a charged S = 1/2 par-
ticle. In appendix D we provide a Lagrangian description of these boost-breaking versions
of massless QED.

Scalar-photon couplings. We now provide a full analysis for a theory of a single scalar
coupled to a photon. Many of the possible three-particle amplitudes have already been
constrained and our goal in this part is to constrain the others where possible. There are
five three-particle amplitudes arising from couplings between the scalar and the photon:
(±1,±1, 0), (−1,+1, 0) and (±1, 0, 0). However, we have already considered the (±1, 0, 0)

amplitude above and we find that there are no solutions to (4.46) for a single scalar and
therefore this amplitude must vanish. In addition, there are two amplitudes involving only
the photon: (±1,±1,±1). Finally, there is a single amplitude involving only the scalar:
(0, 0, 0).

25We haven’t shown that there are no other solutions.
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Helicities Amplitude A3 Constraint

(−1,−1,+1) 〈12〉3/(〈23〉〈31〉)F F = 0

(−1,−1,−1) 〈12〉〈23〉〈31〉F alternating F in (1, 2, 3)

(−1,−1, 0) 〈12〉2F symmetric F in (1, 2)

(−1,+1, 0) 〈13〉2/〈23〉2F F = 0

(−1, 0, 0) (〈12〉〈31〉)/〈23〉F F = 0

(0, 0, 0) F symmetric F in (1, 2, 3)

Table 1. Constrains on the three-particle amplitudes in a theory of a scalar coupled to a photon.

Lets start by constraining the (−1,+1, 0) amplitude. Consider the four-particle am-
plitude A4(1−12+13−14+1) between four photons. By little group scaling this amplitude
takes the general form

A4(1−12+13−14+1) = 〈13〉2[24]2G(s, t, u, Ei). (4.47)

Now in the s-channel we can exchange a scalar particle, meaning that this residue will have
a vanishing mass dimension. This can also be arranged for in the u-channel by exchanging a
scalar. If these residues are dimensionless, the four-particle amplitude has dim {A4} = −2

which in turn requires dim {G} = −6 and so the amplitude must take the form

A4(1−12+13−14+1) = 〈13〉2[24]2
F(Ei)

stu
, (4.48)

meaning that we require exchanges in all channels. In the t-channel we would need to
exchange a graviton to realise the same mass dimension for the amplitude. However, even
in the presence of a graviton the test cannot be passed, since the necessary (±1,±1,∓2)

amplitudes are forced to vanish by a different test, as we will show in section 4.3. Thus,
the (−1,+1, 0) three-particle amplitude must vanish.

We are therefore left with three distinct three-particle amplitudes and their parity
counterparts. The others are forced to vanish. This is summarised in table 1 and one
can see that the non-zero amplitudes do not contain inverse powers of the brackets and
therefore cannot give rise to spurious poles in four-particle amplitudes. For a theory of
a single scalar coupled to a photon, there are therefore no further constraints from the
four-particle test. The symmetry constraints on F tell us the minimum number of time
derivatives required to write down a consistent boost-breaking interaction. As we discussed
above, for the (±1,±1,±1) amplitudes we need at least three time derivatives. For the
(±1,±1, 0) and (0, 0, 0) vertices we need at least one and two respectively. The leading
order Lagrangian giving rise to these amplitudes is (assuming parity-even interactions only)

L =
1

2
(∂π)2 +

1

4
FµνF

µν + (a1π
3 + a2π

2π̈ + a3π̇
3 + . . .)

+ (b1π + b2π̇ + b3π̈ + . . .)FµνF
µν + (c1F̈

µ
νḞ

ν
ρF

ρ
µ + . . .), (4.49)

where ai etc are dimensionful Wilson coefficients.
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Brief summary. Let us briefly summarise our results for a spin-S particle coupled to a
photon:

• Compton scattering is not possible for S > 1, while for S = 0, 1/2 consistent boost-
breaking theories of massless scalar and fermionic QED exist. We can write down
Lagrangians in each case with generalised boost-breaking gauge symmetries (see ap-
pendix D). Along the way we also showed that the absence of (−1,+1,±1) vertices
is robust against adding additional particles and that the (∓S,±(S − 2),±1) and
(∓S,±(S + 2),∓1) amplitudes must vanish for S 6= 1.

• A consistent boost-breaking theory of a single scalar coupled to a photon does exist.
Self-interactions for both particles are possible and so are πγγ vertices. The leading
Lagrangian is presented in (4.49).

4.3 Couplings to a graviton: gravitational Compton scattering and beyond

We now move onto couplings between spin-S particles and gravity. This section contains:

• constraints on the (±2,+S,−S) vertices due to gravitational Compton scattering

• a full analysis of all possible three-particle amplitudes in a theory of a single scalar
coupled to gravity

• a full analysis of all possible three-particle amplitudes in a theory of a photon coupled
to gravity

• an analysis for theory of a massless S = 3/2 particle coupled to gravity a.k.a N = 1

supergravity.

Gravitational Compton scattering. We begin by constraining the leading, mass di-
mension 2, three-particle amplitudes for spin-S particles coupled to gravity, namely the
(±2,+S,−S) amplitudes. We take S 6= 2. Consider the four-particle amplitude
A4(1−S , 2+2, 3−2, 4+S) with dim {A4} = 2. As with the photon case above, there are
two ways to achieve the required dimension of the residues in s and t channels and a
unique way in the u-channel. In the s-channel we can exchange a spin-S particle or a
spin-|S − 4| particle. In the latter case we find spurious poles in the residue and so we set
the (∓S,±2,±(S − 4)) amplitudes to zero for all S 6= 2. For spin-S exchange, we need the
following three-particle amplitudes

A3(1−2, 2−S , 3+S) =
〈12〉2S+2〈31〉2−2S

〈23〉2
FH

−2,−S,+S(E1, E2), (4.50)

A3(1+2, 2+S , 3−S) =
[12]2S+2[31]2−2S

[23]2
FAH

+2,+S,−S(E1, E2). (4.51)

Computing the residue we find (for both integer and half-integer S)

Rs = −〈13〉2S〈34〉4−2S [24]4

tu
FAH

+2,+S,−S(E2,−E1 − E2)FH
−2,−S,+S(E3,−E3 − E4).
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The ordering of particles is especially important in the fermionic case, where changing the
order of two fermions gives rise to a minus sign. Here and in the remaining equations we
take particle 1 to always appear before particle 4.

In the t-channel, dimensional analysis allows for exchange of a spin-S particle and a
spin-(S + 4) particle. However in the latter case spurious poles are unavoidable for all S.
We therefore require the (∓S,∓2,±(S+ 4)) amplitudes to vanish. For spin-S exchange we
find the residue (for both integer and half-integer S)

Rt = −〈13〉2S〈34〉4−2S [24]4

su
FH

−2,−S,+S(E3, E1)FAH
+2,+S,−S(E2, E4). (4.52)

Finally, for u-channel exchange there is only a single choice for the spin of the exchanged
particle that yields a residue with the desired mass dimension; that particle must be the
graviton. The residue therefore depends on the lowest dimension three-graviton amplitude
which in section 4.1 we concluded must be reduced to the boost-invariant GR amplitude.
However, now that we have included additional particles we must check if that result is
robust against allowing for additional exchanges. Going back to the A4(1−2, 2+2, 3−2, 4+2)

amplitude, we see that if the amplitude has dim {A4} = 2 we can only exchange a graviton
in the s and u channels, but in the t-channel dimensional analysis allows for S = 2 and S = 6

exchange. In the latter case, however, we find a spurious pole in t and so only graviton
exchange can yield a consistent amplitude - consistency demands that the (±2,±2,∓6)

amplitudes are zero. Our result of 4.1, i.e. the (+2,−2,±2) amplitudes must be boost-
invariant and correspond to those of GR, is robust against including additional massless
particles.

We can now go back to gravitational Compton scattering. To compute the u-channel
residue, we now need the lowest dimension three-graviton amplitudes. As shown above,
these take the form

A3(1−2, 2−2, 3+2) =

(

〈12〉3

〈23〉〈31〉

)2

κ, (4.53)

A3(1+2, 2+2, 3−2) =

(

[12]3

[23][31]

)2

κ, (4.54)

where κ is related to the Planck mass in GR and we have used the fact that GR is a
parity-even theory. Now as we have seen a number of times before, there are two choices
for the helicity configuration of the exchanged graviton. The total residue is a sum of the
two, Ru = R+−

u +R−+
u , but one of these always vanishes once we declare how we approach

the u-channel pole. We first consider the case of bosons, meaning we can swap the order
of any two particles without introducing minus signs, but we keep factors of (−1)2S to
make the formulae easy to generalise to the fermionic case. When [14] = 〈23〉 = 0 we have
R+−

u = 0 and

R−+
u = − 〈13〉2S〈34〉4−2S [24]4

st
κFH

−2,−S,+S(−E1 − E4, E1), (4.55)
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and when 〈14〉 = [23] = 0 we have R−+
u = 0 and (for bosons)

R+−
u = (−1)2S+1 〈13〉2S〈34〉4−2S [24]4

st
κFAH

+2,+S,−S(−E1 − E4, E4). (4.56)

If the spin-S particles are fermions, then the expression for R+−
u inherits an overall minus

sign (due to the necessity of swapping the order of particles 1 and 4), which conveniently
cancels out the (−1)2S factor while R−+ is unchanged. The u-channel residue for both
integer and half-integer S is therefore

Ru = −〈13〉2S〈34〉4−2S [24]4

st
κFH

−2,−S,+S(−E1 − E4, E1), (4.57)

subject to

FH
−2,−S,+S(−E1 − E4, E1) = FAH

+2,+S,−S(−E1 − E4, E4), (4.58)

ensuring that the residue is the same regardless of how we approach the pole. This matching
condition ensures that operators generating the amplitudes (4.50) and (4.51) are parity-
even.

Now we see from each residue that when 4 − 2S < 0, i.e. S ≥ 5/2, a consistent
four-particle amplitude cannot be constructed due to the additional poles in s. Hence we
conclude that the above three-particle amplitudes for a massless particle with S ≥ 5/2

coupled to gravity are inconsistent and must vanish. In a boost-invariant theory this is
the well-known statement that a massless particle with S ≥ 5/2 cannot couple to gravity,
and we see that this statement is unchanged for boost-breaking theories. This is indeed
consistent with some recent study in the light-cone formalism in which the only explicitly
constructed cubic coupling of higher-spin particles to gravity is non-unitary [78].

For S < 5/2 we can construct a consistent amplitude for gravitational Compton scat-
tering. It takes the form

A4(1−S2+23−24+S) = 〈13〉2S〈34〉4−2S [24]4
A

stu
, (4.59)

and consistent factorisation requires

−A = FAH
+2,+S,−S(E2,−E1 − E2)FH

−2,−S,+S(E3,−E3 − E4)

= FH
−2,−S,+S(E3, E1)FAH

+2,+S,−S(E2, E4)

= κFAH
+2,+S,−S(−E1 − E4, E4). (4.60)

The F -functions are related by (4.58) and therefore both can be written as the same F . If
F contained any inverse powers of energies, then the singularities of the three expressions
wouldn’t match, so F must be a polynomial of a degree which we denote as p. The above
equations then imply that 2p = 2p = p, and therefore p = 0. So only constant solutions are
possible: the four-particle test has reduced the amplitudes to their boost-invariant limits!
Furthermore, the coupling constants of the (±2,+S,−S) amplitudes are not arbitrary.
The equations tell us that they are fixed in terms of the pure gravitational coupling κ:
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FH
−2,−S,+S = FAH

+2,+S,−S = κ. This is the on-shell derivation of the universality of gravity
for elementary massless particles with S ≤ 2: all particles couple to gravity with the same
strength.

Compared to photon Compton scattering considered above, we see some important
differences for gravity. Here boost-breaking interactions are not permitted whereas for a
photon coupled to S = 0, 1/2 particles such a breaking is permitted. Here we also see the
emergence of the equivalence principle, and allowed couplings to S = 3/2 particles. We
attribute these differences to the presence of a three-particle amplitude for three gravitons
which does not exist for three photons. The case of a S = 3/2 particle coupled to gravity
is particularly interesting. The amplitudes we have considered are those appearing in
N = 1 supergravity and here we have seen that boost-breaking versions, with relativistic
on-shell conditions, do not exist. We refer the reader to [65] for some very nice results using
factorisation when a massless S = 3/2 particle is in the spectrum. These results include:
the necessity of gravity, the derivation of super-multiplets, and a proof that having N > 8

requires the presence of a S = 5/2 particle and therefore the test cannot be passed if
there is too much supersymmetry. Most of these results come from pole counting and we
would therefore expect them to hold for boost-breaking theories with relativistic on-shell
conditions too.

Scalar-graviton couplings. We now turn our attention to the boost-breaking theory of
a single scalar coupled to gravity. Here we show that for relativistic on-shell conditions the
four-particle test requires all three-particle amplitudes for a scalar coupled to a graviton to be
boost-invariant. We have already seen that the pure graviton three-particle amplitudes are
forced to be boost-invariant and so are the (±2, 0, 0) amplitudes. The remaining amplitudes
to be discussed are (±2,±2, 0), (+2,−2, 0) and (0, 0, 0).

First consider the (+2,−2, 0) amplitude, which we can easily show is inconsistent in
both boost-invariant and boost-breaking theories. This vertex can contribute to s-channel
exchange in the four-particle graviton amplitude A4(1−2, 2+2, 3−2, 4+2). This s-channel
contribution to the amplitude has mass dimension −2 since the residue is dimensionless.
However, the scaling of this amplitude under a little group transformation requires it to
take the form

A4(1−2, 2+2, 3−2, 4+2) = 〈13〉4[24]4G(s, t, u, Ei), (4.61)

and so if dim {A4} = −2 the amplitude cannot be consistent, since simple poles require
dim {G} ≥ −6, while dim{〈13〉4[24]4} = 8.

We now constrain the (±2,±2, 0) amplitudes using A4(1+2, 2+2, 3−2, 40) with scalar
exchange in the s-channel. The contribution to the amplitude from this diagram has mass
dimension26 4. The same mass dimension can be realised in the t and u channels by ex-
changing a graviton and using the leading (mass dimension 2) three-graviton amplitudes.27

26This mass dimension can also be achieved by exchanging a spin-6 particle but such a residue contains

spurious poles.
27Another possibility is to exchange a spin-4 particle but in this case the residues again have spurious

poles.
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Given that

A3(1+2, 2+2, 30) = [12]4FAH
+2,+2,0(E1, E2), (4.62)

the three residues are given by

Rs = − [12]6〈13〉2〈23〉2

tu
κFAH

+2,+2,0(E1, E2), (4.63)

Rt = − [12]6〈13〉2〈23〉2

su
κFAH

+2,+2,0(E2,−E2 − E4), (4.64)

Ru = − [12]6〈13〉2〈23〉2

st
κFAH

+2,+2,0(E1,−E1 − E4). (4.65)

Here we have written FAH
+2,+2,0 as a function of two energies only and it must be a sym-

metric function by Bose symmetry. Furthermore, we have used the fact that the (−2, 0, 0)

amplitude is boost-invariant with its coupling identical to the graviton self-coupling κ. A
consistent amplitude must therefore take the form

A4(1+2, 2+2, 3−2, 40) = [12]6〈13〉2〈23〉2 B

stu
, (4.66)

with

−B = κFAH
+2,+2,0(E1, E2) (4.67)

= κFAH
+2,+2,0(E2,−E2 − E4) (4.68)

= κFAH
+2,+2,0(E1,−E1 − E4), (4.69)

which can only be solved if FAH
+2,+2,0 = const, thereby reducing the (±2,±2, 0) amplitudes

to their boost-invariant limits. Note that the coupling constant for these amplitudes is not
fixed in terms of κ.

Finally, we can constrain the pure scalar amplitude (0, 0, 0) using the four-particle
amplitude A4(10, 20, 30, 4+2). If we exchange a scalar in each channel with

A3(10, 20, 30) = F0,0,0(E1, E2), (4.70)

the three residues are

Rs = − [34]2[24]2〈23〉2

tu
κF0,0,0(E1, E2), (4.71)

Rt = − [34]2[24]2〈23〉2

su
κF0,0,0(E1, E3), (4.72)

Ru = − [34]2[24]2〈23〉2

st
κF0,0,0(E2, E3), (4.73)

and so the consistent amplitude is

A4(10, 20, 30, 4+2) = [34]2[24]2〈23〉2 C

stu
, (4.74)

– 38 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
8

with

−C = κF0,0,0(E1, E2) (4.75)

= κF0,0,0(E1, E3) (4.76)

= κF0,0,0(E2, E3). (4.77)

Again, the only solution to these factorisation constraints for generic energies is F0,0,0 =

const, thereby reducing the three-scalar amplitude to its boost-invariant form, which is
simply a constant.

We have therefore seen that all three-particle amplitudes, and therefore all three-point
vertices, in a theory of a graviton coupled to a scalar must reduce to their boost-invariant
limits. Let us discuss the allowed boost-invariant interactions in more detail. We have
discussed the pure gravity vertices at the level of a Lagrangian earlier on. The only allowed
pure scalar amplitude is a constant and so the cubic vertex is simply φ3. The other two
allowed interactions mix the scalar and the graviton and have mass dimension 2 and 4. The
coupling of the former is the same as the three graviton coupling κ, while the coupling of the
latter is independent of κ and is therefore a new Wilson coefficient in the effective action.
At the level of a Lagrangian they come from the (∂φ)2 = gµν∂µφ∂νφ and φRµνρσRµνρσ

terms respectively, expanded around the boost-invariant vacuum gµν = ηµν , φ = 0. Note
that there is no φ2R coupling as this can be removed by a field redefinition going from
Jordan to Einstein frame. We can also write down a parity-odd vertex φǫµνρσRµνκλR

κλ
ρσ.

In appendix E, we provide further clarifications on why a simple φ̇3 self-interaction for a
scalar coupled to gravity in Minkowski space is inconsistent.

In [79] it was conjectured that in the flat space, decoupling and slow-roll limit of the
EFT of inflation, if the scalar Goldstone has a boost-invariant kinetic term, then the only
possible UV completion is a free theory. In this language, the decoupling limit boils down to
neglecting all interactions with the metric fluctuations and the slow-roll limit corresponds to
neglecting all Lorentz-invariant interactions, such as for example a potential V (φ). In other
words, the conjecture is that any scalar EFT with cs = 1 and boost-breaking interactions
cannot be UV completed. The relation of this conjecture to our results is tantalizing
but not straightforward. On the one hand, we also found that for cs = 1 boost-breaking
interactions are forbidden, but we crucially needed to assume (i) that the scalar is coupled
to gravity and (ii) the theory is in Minkowski. Also, we did not use any constraints coming
from a putative UV completion. All our analysis is based on the low-energy EFT. This is
to be contrasted with the discussion in [79] where the coupling to gravity does not seem
to play a role, while all the constraining power comes from demanding a consistent UV
completion. Furthermore, the application of our results to the flat-space limit of FLRW
spacetimes clashes with the IR sensitivity of the four-particle test. We will discuss this in
section 5.

Photon-graviton couplings. We have seen that when a scalar interacts gravitationally,
all three-particle amplitudes and therefore all three-point vertices are required to be boost-
invariant by the four-particle test. One may therefore expect the presence of the graviton is
forcing boost-invariance upon us when free particles satisfy relativistic on-shell conditions.
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Here we provide more evidence of this by showing that when a photon interacts gravi-
tationally, all three-point vertices involving this photon have to be boost-invariant. This
result can be derived because of the existence of a (boost-invariant) three-point (+ + −)

vertex for gravitons, which is absent for photons. We expect that this behaviour is generic:
any theory with relativistic massless on-shell conditions which includes a graviton, and
other massless particles that are minimally coupled to it, can have only boost-invariant
interactions.

Let us recap the relevant results we have derived so far. We have shown that the
pure graviton three-particle amplitudes are boost-invariant. The lowest dimension photon
amplitudes are forced to vanish by the test, while boost-breaking possibilities have not yet
been ruled out for the (+ + +) and (− − −) three photon interaction. Now, for mixed
amplitudes, we have four possibilities (plus their parity counterparts) left to consider:

(+2,+2,+1), (+2,+2,−1), (+1,+1,+2), (+1,+1,−2). (4.78)

First consider the dimensionless choice (+1,+1,−2). These amplitudes have both
holomorphic and anti-holomorphic parts, and contribute to e.g. u-channel diagram for
the A4(1+1, 2−1, 3+2, 4−2) amplitude via a photon exchange. The dimensionality of this
amplitude is

dim{A4} = 0 + 0 − 2 = −2. (4.79)

On the other hand, to achieve correct helicity scalings, we need,

A4 ∼ [13]2[23]2〈24〉4G(s, t, u, Ei), (4.80)

but then dim{G(s, t, u, Ei)} = −10 < −6, which yields a contradiction. We therefore fail
the test, which mean these amplitudes must vanish. Note that this is the case for both
boost-invariant and boost-breaking theories. In [65] it was argued that all dimensionless
amplitudes, other than the pure scalar one, must vanish by virtue of the test. This result
is based on pole counting so we expect those general results to be valid in our case too.

Now consider pure graviton scattering via the amplitude A4(1−22−23+24+2) which by
the little group scaling takes the form

A4(1−22−23+24+2) = 〈12〉4[34]4G(s, t, u, Ei). (4.81)

Now if we allow for a photon to be exchanged in the s-channel, the residue can have mass
dimension 6 if we use the (+2,+2,−1) amplitudes and their parity counterparts. This
contribution to the amplitude therefore has mass dimension 4 and by comparing to (4.81)
we see that we need a t or u channel exchange to construct a consistently factorising
amplitude. However, to achieve the required same mass dimension in either the t or u
would require the exchange of a spin 3 particle with non-zero (+2,−2,±3) amplitudes. But
such amplitudes are not permitted.28 It is therefore impossible to achieve mass dimension

28Indeed, if we allow for graviton exchange in the s-channel of the A4(1−3, 2+2, 3−2, 4+3), we see that the

residue contains a 1/t3 piece and therefore the (+2, −2, ±3) amplitudes are forced to vanish.
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6 residues in the t and u channels of A4(1−22−23+24+2) and so the (±2,±2,∓1) amplitudes
must vanish. This is the case for both boost-invariant and boost-breaking theories.

Now consider the A4(1+1, 2+1, 3+1, 4−2) amplitude which we can use to constrain the
(+1,+1,+1) interactions. The process is very similar to what we have seen a number
of times. If we exchange a photon in the s-channel, we can construct a residue using
the (+1,+1,+1) and (+1,−1,−2) amplitudes. The former has not yet been constrained
beyond Bose symmetry, while the latter is required to be boost-invariant. By exchanging
a photon in the other channels too we find a non-trivial factorisation constraint which
fixes F+1,+1,+1 = 0.29 So in the presence of gravity, all three-particle amplitudes involving
three photons must vanish: there are no cubic self-interactions for a gravitationally coupled
photon in a boost-breaking theory, just as is the case for a boost-invariant one.

We have two more sets of amplitudes to constrain: (+1,+1,+2) and (+2,+2,+1)

(and their parity counterparts). We find that both are forced to their boost-invariant limit
using the four-particle test applied to A4(1+1, 2+1, 3+2, 4−2) and A4(1+1, 2+2, 3+2, 4−2)

respectively. In both cases we include all possible exchanges allowed by dimensional analysis
and find that any amplitudes involving higher spin (S > 2) particles are inconsistent.
The coupling of (+1,+1,+2) corresponds to a new Wilson coefficient unrelated to the
gravitational coupling κ. Meanwhile, the (+2,+2,+1) amplitudes are forced to vanish by
Bose symmetry.

In conclusion, all three-particle amplitudes are forced to their boost-invariant limits
when we have a photon and a graviton in the spectrum. Pure photon vertices are con-
strained to vanish. The only allowed amplitudes that mix the photon and the graviton
are (+1,−1,±2), (±1,±1,±2). At the level of a Lagrangian, the parity even operators are
the Maxwell kinetic term FµνFµν = gµνgρσFµρFνσ, and the non-minimal coupling term
FµνF ρσRµνρσ expanded around the vacuum g = ηµν , Aµ = 0. Parity-odd amplitudes come
from ǫµνρσFµνFρσ and ǫµνλκFλκF

ρσRµνρσ.

Brief summary.

• We have seen that massless particles with S ≥ 5/2 cannot couple to gravity, while
particles with S < 5/2 can consistently couple to gravity, in which case the test
yields universality of the gravitational couplings. No boost-breaking interactions are
permitted. Along the way we also showed that allowing for additional particles does
not change the fact that the lowest dimension vertices containing three gravitons
must be boost-invariant and given by GR. We also saw that the (∓S,±(S − 4),±2),
(∓S,±(S + 4),∓2) amplitudes must vanish since for all S 6= 2 they yield spurious
poles in gravitational Compton scattering.

• We have perfomed a full analysis for the cases of a graviton coupled to a scalar
or a photon. In each case we find that all three-point vertices, including the self-
interactions of the scalar or photon are forced to their boost-invariant limits. We

29We could also exchange a S = 4 particle to find residues with the same mass dimension, but these

additional exchanges lead to spurious poles.
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expect this behaviour to be generic: boost-breaking interactions are not permitted
for gravitational theories with relativistic on-shell conditions.

4.4 Multiple S = 1 particles

We now move on to considering multiple particles of the same spin. Consistent factorisa-
tion is trivial for multiple scalar particles since the three-particle amplitudes remain only
functions of the energies and therefore products of these amplitudes cannot yield singular-
ities. In this section we will focus on multiple S = 1 particles which we take to come in
multiplets and therefore carry an additional colour index, a = 1, 2, . . . , N . Our goal is to
constrain the interactions between these particles in a boost-breaking theory. Recall that
for a single particle (N = 1), the (±1,±1,∓1) amplitudes are excluded by the four-particle
test, whereas boost-breaking (±1,±1,±1) amplitudes are allowed (as long as gravity is
decoupled).

The lowest mass dimension three-particle amplitudes are

A3(1+1
a 2+1

b 3−1
c ) =

[12]3

[23][31]
FAH

abc (E1, E2), (4.82)

A3(1−1
a 2−1

b 3+1
c ) =

〈12〉3

〈23〉〈31〉F
H
abc(E1, E2), (4.83)

where we have eliminated E3 by energy conservation and have dropped the helicity sub-
scripts on FH/AH in favour of the colour indices. The relationship between FH and FAH

is30

FH
abc(E1, E2) = ±FAH

abc (E1, E2), (4.84)

with the −/+ sign corresponding to parity even/parity odd amplitudes respectively,
by (3.23). In addition, Bose symmetry constrains the functions to satisfy

FH
abc(E1, E2) = −FH

bac(E2, E1), (4.85)

FAH
abc (E1, E2) = −FAH

bac (E2, E1). (4.86)

Now consider the amplitude A4(1−1
a 2+1

b 3−1
c 4+1

d ) with S = 1 exchange in each channel.
If the amplitude has mass dimension 2, then there are two choices for the helicity in the s
and u channels, and a unique choice for the t-channel. Remembering to take proper care
of the ordering of indices and energies, we find the two residues to be

R+−
s =

∑

e

〈13〉2[24]2

t
FAH

bea (E2,−E1 − E2)FH
ecd(−E3 − E4, E3), (4.87)

R−+
s =

∑

e

〈13〉2[24]2

t
FH

eab(−E1 − E2, E1)FAH
dec (E4,−E3 − E4), (4.88)

30We assume that the parity transformation commutes with the internal symmetry group, so that particle

a is mapped to particle a under P .
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summing over the exchanged particle colour e. Matching these two residues yields our first
constraint on the three-particle amplitudes:

∑

e

FAH
bea (E2,−E1 − E2)FH

ecd(−E3 − E4, E3)

=
∑

e

FH
eab(−E1 − E2, E1)FAH

dec (E4,−E3 − E4). (4.89)

Next consider the u-channel. The two residues are

R+−
u = −

∑

e

〈13〉2[24]2

s
FAH

dea (E4,−E1 − E4), FH
ecb(−E3 − E2, E3) (4.90)

R−+
u = −

∑

e

〈13〉2[24]2

s
FH

ead(−E1 − E4, E1)FAH
bec (E2,−E2 − E3), (4.91)

and these are equivalent thanks to (4.89). Finally, the t-channel residue is

Rt = −
∑

e

〈13〉2[24]2

u
FH

ace(E1, E3)FAH
bde (E2, E4). (4.92)

The full amplitude must therefore take the form

A4(1−1
a , 2+1

b , 3−1
c , 4+1

d ) = 〈13〉2[24]2
(

Aabcd

st
+
Babcd

su
+
Cabcd

tu

)

, (4.93)

with consistent factorisation fixing

Aabcd −Babcd =
∑

e

FAH
bea (E2,−E1 − E2)FH

ecd(−E3 − E4, E3),

Cabcd −Aabcd = −
∑

e

FH
ace(E1, E3)FAH

bde (E2, E4),

Babcd − Cabcd = −
∑

e

FAH
dea (E4,−E1 − E4)FH

ecb(−E3 − E2, E3). (4.94)

Taking the sum of these equations yields

∑

e

FAH
bea (E2,−E1 − E2)FH

ecd(−E3 − E4, E3)

−
∑

e

FH
ace(E1, E3)FAH

bde (E2, E4) (4.95)

−
∑

e

FAH
dea (E4,−E1 − E4)FH

ecb(−E2 − E3, E3) = 0, (4.96)

which is our main factorisation constraint and must be satisfied with (4.89) subject to
E1 + E2 + E3 + E4 = 0.

Now in the boost-invariant limit we have FH
abc = fabc = const, FAH

abc = ∓fabc = const.
Under the assumption of complete antisymmetry of fabc, matching the residues is trivial,
but the primary factorisation constraint yields

∑

e

fabefecd +
∑

e

facefedb +
∑

e

fadefebc = 0. (4.97)
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The amplitudes in this case are those of Yang-Mills and we see that consistent factorisation
of the four-particle amplitude forces the coupling constants to satisfy the familiar Jacobi
identity. Note that we have made no reference to an underlying Lie-algebra; this result
follows from the basic physical principles of unitarity and locality.

Coming back to the boost-breaking case, the system of equations is very difficult to
solve in general. To make progress, we make the assumption that FH

abc = fabcF (E1, E2),
FAH

abc = ∓fabcF (E1, E2) with fabc the usual couplings of Yang-Mills theory. Our three-
particle amplitudes are therefore of the Yang-Mills form multiplied by a function of the
energies. Bose symmetry requires these functions to be symmetric in the exchange of
their two arguments, since fabc are fully antisymmetric. Our factorisation constraint now
becomes

∑

e

fbeafecdF (E2,−E1 − E2)F (−E3 − E4, E3)

−
∑

e

facefbdeF (E1, E3)F (E2, E4)

−
∑

e

fdeafecbF (E4,−E1 − E4)F (−E2 − E3, E3) = 0. (4.98)

Now if we don’t want to impose additional constraints on fabc, consistent factorisation
requires

F (E1, E3)F (E4, E2) (4.99)

=F (E2,−E1 − E2)F (−E3 − E4, E3) (4.100)

=F (E4,−E1 − E4)F (E3,−E2 − E3). (4.101)

Upon using (4.89), we see that this constraint is exactly the same as the constraint on
the graviton three-particle amplitude (4.33). As shown in appendix B, the only solution
is F = const and therefore consistent factorisation requires the three-particle amplitudes
to take their boost-invariant, Yang-Mills form. One may have expected the constraints for
multiple S = 1 particles to be equivalent to a single S = 2 particle due to the kinematic-
colour duality relating these amplitudes [77].

5 Mind the gap: amplitudes and the flat-space limit of cosmology

In this section, we discuss the connection of our results to cosmology. Instead of considering
the most general scenario, for concreteness we focus on theories of a single scalar field
minimally coupled to gravity, as they are both simple and relevant for models of inflation
and dark energy. For so-called P (X)-theories, to be defined below, we will confirm our
findings that in Minkowski all interactions must be Lorentz invariant if we impose that
the scalar speed of propagation cs is the same as that of the graviton, c = 1. Then,
we consider the case in which the background is an FLRW spacetime with non-vanishing
Hubble parameter, H 6= 0, and we study the sub-Hubble limit, i.e. we imagine performing
a scattering experiment in a small laboratory of size L ≪ H−1, and describe the results
in terms of flat-space amplitudes. Our main observation is that for arbitrarily small but
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non-vanishing H, it is always possible to find amplitudes that break boosts by any amount,
within the validity of the Effective Field Theory (EFT), and no violations of unitarity or
locality seem to arise. We argue that, despite the appearance, this observation does not
imply any pesky physical discontinuity. Rather, we interpret this finding as the fact that
the constraining power of unitarity and locality through consistent factorization for massless
theories is extremely fragile to IR modifications. An analogous principle has already been
established in Lorentz invariant contexts, where many interactions prohibited in flat space
have consistent counterparts in AdS, regardless of the AdS radius - see [80] and references
therein. Nonetheless, we decided to illuminate this issue further by discussing FLRW
backgrounds which are more closely related to cosmology.

Sensitivity to IR modifications in cosmological scenarios is to be expected on the
following grounds. Factorization happens when s, t or u go to zero and that’s where all
the constraining power of the four-particle test comes from. But this regime cannot be
reached within the validity of the sub-Hubble limit. Indeed, for a flat-space approximation
of FLRW spacetime to make sense, we need to require that the quantum uncertainty
∆x on the spacetime position of the scattering particles is well within a Hubble volume
∆x ≪ H−1. But then by the uncertainty principle

∆p ≥ 1

2∆x
≫ H ⇒ ∆s,∆t,∆u ≫ H2 , (5.1)

and therefore we always have an uncertainty in the Mandelstam variables of order H2.
In FLRW spacetime, we cannot meaningfully distinguish, say, a pole at s = 0 from one
at s = H2. In more physical terms, as long as H 6= 0, we cannot experimentally reach
the poles corresponding to massless on-shell particles while neglecting the expansion of the
universe. Our finding that in the presence of an interacting spin-2 particle boost-breaking
interactions cannot satisfy consistent factorization on s, t, u = 0, respectively, does not
seem to matter in FLRW spacetime where this kinematic regime cannot be reached in the
flat-space limit.

The suspicious reader might complain that our results suggest the presence of an
unphysical discontinuity as H → 0, but this is not the case. In the deep IR of the theory,
a background with H 6= 0 is always very different from one with H = 0 because of the
presence of a Hubble “horizon”. So it is to be expected that any IR property of the
theory for H → 0 might be different from the corresponding one at H = 0. In other
words, one cannot engineer a continuous series of physical thought experiments that give
a discontinuous set of results and so there is no problem with our claims in this section.

Before proceeding, let’s stress that there might be other obstructions to Lorentz break-
ing interactions when cs = 1, which we don’t capture in our analysis. For example, [79] con-
jectured that for the theory to have a local and unitary Lorentz invariant UV-completion,
all Lorentz-breaking interactions for a single scalar with non-linear boosts must vanish as
cs → 1. Also, recently [81] found some related obstructions considering perturbative uni-
tarity in the sub-Hubble limit, where they showed that the window of validity of an EFT
description for amplitudes shrinks to zero when cs → 1 in the presence of φ̇3 interactions.
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5.1 The absence of boost-breaking interactions in Minkowski

For concreteness, consider so-called P (X) theories minimally coupled to gravity with action

S = −
∫

d4x
√−g

[

M2
Pl

2
R+ P (X)

]

, X ≡ 1

2
gµν∂µφ∂νφ , (5.2)

which is a good toy model to study the spontaneous breaking of boosts while preserving
time translations. The homogeneous equations of motion for the background φ(t) and the
scale factor a(t) are

3M2
PlH

2 − 2XPX + P = 0, −M2
PlḢ = XPX , φ̈ (PX + 2XPXX) + 3Hφ̇PX = 0 . (5.3)

The Lagrangian for perturbations ϕ(t, ~x) is

L =
1

2
(PX + 2XPXX)ϕ̇2 − 1

2
PX∂iϕ∂

iϕ+
1

6
PXXX φ̇

3ϕ̇3 + . . . , (5.4)

where the dots stand for higher derivatives of P (X) with respect of X, which will not be
relevant for this discussion (they could be chosen to vanish if desired). The speed of sound
is found to be

c2
s =

PX

PX + 2XPXX
. (5.5)

In this class of theories, it is only possible to have a well-defined solution in Minkowski
spacetime with cs = 1 if X = 0, in which case all interactions are Lorentz invariant. To see
why, note that the following three assumptions cannot all be satisfied at the same time:

• Spontaneously broken boosts: this implies X 6= 0. From the equations of motion,
setting H = 0 and PX = 0 as appropriate for Minkowski, we get

φ̈ (PX + 2XPXX) = 0 ⇒ φ̈ = 0 or PX + 2XPXX = 0 . (5.6)

The second option is the cuscuton [82], which is non-dynamical and so not relevant
for the present discussion. From φ̈ = 0 we deduce that X is constant, and so if it is
non-vanishing it remains so for all times.

• Luminal propagation: this implies cs = 1 and so

c2
s =

PX

PX + 2XPXX

!
= 1 ⇒ PX 6= 0 & (PXX = 0 or X = 0) . (5.7)

• Minkowski spacetime with dynamical gravity: this implies gµν = ηµν and so







3M2
PlH

2 = 2XPX − P
!

= 0

−M2
PlḢ = XPX

!
= 0

⇒ P = 0 & (PX = 0 or X = 0) . (5.8)
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Combining the above requirements we arrive at a contradiction: if we insist that X 6= 0,
so that a Lorentz violation is in principle possible, then the luminality and Minkowski
requirements are incompatible because the former leads to PX 6= 0, while the latter entails
PX = 0. While we don’t discuss it here in detail, the above result also applies to theories
with higher derivatives. Intuitively, this stems from the fact that the higher derivative
terms vanish when evaluated on the linearly time-dependent background we considered
above.

This discussion confirms and complements our result that coupling to gravity in
Minkowski enforces Lorentz invariance. On the one hand, our amplitude discussion is more
general as it does not assume a P (X) Lagrangian. On the other hand, the above discussion
generalized our findings in that it shows, for P (X) theories, that all n-particle amplitudes
must be Lorentz invariant if the scalar propagates at the same speed as the graviton. In
appendix E, we provide further clarifications on why a simple φ̇3 theory coupled to gravity
is inconsistent in Minkowski space.

5.2 Boost-breaking interactions in the sub-Hubble limit

The attentive reader will have noticed that when PX = 0 = PXX , the speed of sound is ill
defined, cs

?
= 0/0. In particular, the order of taking the limits matters: if we first impose

Minkowski by setting PX = 0, then cs = 0 for any finite PXX ; while if we first impose cs = 1

by setting PXX = 0, then we can take the Minkowski limit of FLRW, PX → 0, without
changing the value of cs. In this section, we discuss in detail this second possibility and find
that in this case, Lorentz-breaking interactions are allowed within the regime of validity of
the EFT. Let us now study how the Minkowski and c2

s = 1 solutions are approached from
an FLRW solution.

Let us first assume the value X̄ of X(t) at some time is such that

PXX(X̄) = 0 but PX(X̄) 6= 0 . (5.9)

Expanding around it, we find

PXX(X) = PXX(X̄) + (X − X̄)PXXX(X̄) + O((X − X̄)2) , (5.10)

= (X − X̄)PXXX(X̄) + O((X − X̄)2) . (5.11)

The background equations of motion to zeroth order in X − X̄ are

PX(X̄)
(

φ̈+ 3Hφ̇
)

+ O
(

X − X̄
)

= 0 , (5.12)

φ̇
(

φ̈+ 3Hφ̇
)

≃ O
(

X − X̄
)

, (5.13)

Ẋ + 6HX ≃ O
(

X − X̄
)

, (5.14)

and so are solved by X ∝ a−6. More usefully, for a small time interval ∆t ≪ H−1, we can
write

X = X̄ + ˙̄X∆t+ O((X − X̄)2) (5.15)

⇒ X − X̄

X̄
≃ −6H∆t+ O

(

(

X − X̄
)2
)

. (5.16)
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So we find that, unlike in Minkowski where a constant X is always a solution, in FLRW
we have to take into account that X evolves with time at some rate set by H.

Consider now the theory of perturbations in (5.4). Since X depends on time and we
don’t want to assume P (X) is just linear in X, which corresponds to the free theory, we
cannot set c2

s = 1 at all times, but only at the time corresponding to X = X̄ where PXX

happens to vanish. We can Taylor expand around cs − 1 → 0 and re-write cs as

c2
s =

PX

PX + 2XPXX
(5.17)

= 1 − 2XPXX

PX
+ O

(

(

2XPXX

PX

)2
)

(5.18)

= 1 − 2X̄(X − X̄)PXXX(X̄)

PX(X̄)
+ O

(

(

X − X̄
)2
)

. (5.19)

Using (5.16) for the time evolution of X, this becomes

1 − c2
s = −12H∆tX̄2PXXX(X̄)

PX(X̄)
+ O

(

(

X − X̄
)2
)

. (5.20)

Now we want to ask whether we can keep 1 − c2
s arbitrary small while performing a sub-

Hubble scattering experiment in which some ϕ particles interact via the (spontaneously)
boost-breaking coupling ϕ̇3 in the Lagrangian (5.4). We canonically normalize ϕ to ϕc and
extract the cutoff scale Λ of the ϕ̇3

c operator

L2 =
1

2

[

1

c2
s

ϕ̇2
c − 1

2
∂iϕc∂

iϕc

]

+

√
2

3

X3PXXX

(XPX)3/2
ϕ̇3

c (5.21)

≡ 1

2

[

1

c2
s

ϕ̇2
c − 1

2
∂iϕc∂

iϕc

]

+
ϕ̇3

c

Λ2
. (5.22)

Since we rescaled by PX , which is time dependent, we also pick up additional terms pro-
portional to ∂tPX , such as a mass term. We have neglected writing these terms because,
around X = X̄,

∂tPX(X) = PXX(X)Ẋ (5.23)

≃ −6H∆tX̄(X − X̄)PXXX(X̄) + . . . , (5.24)

≃ 36 (H∆t)2 X̄2PXXX(X̄) + . . . , (5.25)

which is suppressed by at least two powers of H∆t. As long as we can neglect the expansion
of the universe for some time ∆t ≪ H−1, we can also neglect these additional terms.

Since PXXX sets both the scale for the time evolution of 1 − c2
s and the strength of

the interaction we re-write

1 − c2
s = − 36√

2

H∆t
√
XPX

Λ2
+ O

(

(

X − X̄
)2
)

(5.26)

= − 36√
2

(

E2

Λ2

)





√

−ḢM2
Pl

E2



 (H∆t) + O
(

(

X − X̄
)2
)

, (5.27)
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where we introduced the dummy factor E to represent the energy scale of the scattering
process. For the scattering to happen effectively in flat space we need E2 ≫ H2, |Ḣ|.
To resolve energies of order E while being able to neglect the expansion of the universe
during the experiment, we need the experiment to last a time H−1 ≫ ∆t ≫ E−1. Finally,
perturbativity requires E ≪ Λ. Then

1 − c2
s ≫ − 36√

2

(

E

Λ

)2
(√

−Ḣ
E

)

(

H

E

)(

MPl

E

)

+ O
(

(

X − X̄
)2
)

. (5.28)

The first three factors must be much smaller than one while MPl/E must be much larger
than one. Summarizing, we want the hierarchy of scales

H,

√

−Ḣ ≪ E ≪ Λ ≪ MPl , (5.29)

while keeping 1−c2
s arbitrary small. This is always possible to achieve for any desired E/Λ,

which parameterizes the strength of the cubic interaction), and Λ/MPl simply by taking
H,
√

−Ḣ sufficiently small.
The upshot of this discussion is that we can find solutions for which a scattering

experiment in a small lab in an FLRW spacetime gives Lorentz-breaking amplitudes for
massless particles that all move at the same speed to arbitrary but finite precision. Our
result showed that if this happened in Minkowski spacetime, there would be a violation of
unitarity and/or locality for the amplitudes. But in FLRW those configurations cannot be
reached while still neglecting corrections due to the expansion of the universe.

6 Discussion and conclusion

In this paper we studied scattering amplitudes for massless, luminal, relativistic particles
of any spin without demanding Lorentz invariance of the interactions. This is relevant
for many systems that break Lorentz boosts spontaneously, as in cosmology or condensed
matter physics. We focussed exclusively on on-shell particles and discussed (analytically
continued) amplitudes without reference to unphysical structures such as gauge invariance
or off-shell particles. The on-shell approach considerably simplifies the treatment of spin-
ning particles, and our conclusions are independent of perturbative field redefinitions as
well as of any assumption about gauge symmetry or diffeomorphism invariance.

We systematically derived all possible massless three-particle amplitudes consistent
with spacetime translations and rotations and constrained them using unitarity and causal-
ity via the requirement that four-particle amplitudes consistently factorize on simple poles
into the product of two three-particle amplitudes, a.k.a. the four-particle test [59]. We
found that a large number of three-particle amplitudes fail the test and therefore cannot
arise in any local, unitary perturbative theory around Minkowski spacetime. One result
that stands out is that the existence of an interacting graviton, namely a massless spin-2
particle, enforces all cubic interactions involving particles coupled to it to be Lorentz invari-
ant, including those interactions that do not involve the graviton. This is quite remarkable
because, in the absence of a graviton, there could be infinitely many Lorentz-breaking in-
teractions. As a concrete and simple example, consider the theory of a single scalar, for
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which we can write down infinitely many local interactions of the form (∂n1
t φ)(∂n2

t φ)(∂n3
t φ)

for any positive integers n1,2,3. These interactions are not equivalent on-shell, generically
giving different amplitudes, yet they are all allowed by the four-particle test. Our results
show that in Minkowski, none of these Lorentz-breaking interactions can be consistently
coupled to gravity!

Finally, we have discussed the relation of our analysis to cosmological models, in which
spacetime can be approximated as flat only locally, but is never flat asymptotically. We
found that, contrary to what happens in Minkowski, one can find models of a massless lu-
minal scalar coupled to dynamical gravity in which sub-Hubble scattering is boost-breaking
while no violations of unitarity and locality arise in the IR within the validity of the re-
quired approximations. We interpreted this as the observation that the four-particle test is
IR-sensitive and the expansion of the universe provides an IR modification of the on-shell
conditions. This finding mirrors the analogous findings for Lorentz invariant theories, where
the four-particle test is not applicable if one deviates ever so slightly from asymptotically
flat space [80].

One of our main motivations for studying boostless amplitudes was to use the results to
constrain and perhaps fully bootstrap cosmological correlators when de Sitter boosts are not
a symmetry of the theory. Our findings shows yet another reason why several clarifications
need to be added to the simplistic slogan that the residue of the kT pole of cosmological
correlators is the Minkowski amplitude. In particular, we have shown that consistent
factorization (Theorem 2.1) imposes severe constraints on Minkowski amplitudes, but these
constraints don’t necessary apply to the residue of the total-energy pole of correlators
in (1.2). This issue will be discussed in detail elsewhere.

There are several ways in which our results could be extended.

• We used the consistent factorization of four-particle amplitudes to constrain three-
particle amplitudes. It would be desirable to extend our analysis to higher n-particle
amplitudes. For example, we expect that the coupling to a massless graviton will
enforce all interactions to be Lorentz invariant. While the pedestrian methods we
used in this paper are probably ill-suited to prove this more general result, one would
probably want to harvest the power of on-shell recursion relations.

• It would be interesting to study how unitarity and locality constrains scattering
experiments in the sub-Hubble limit of FLRW spacetime. This requires modification
of the standard on-shell methods and an analysis will appear elsewhere.

• It would be interesting to extend our analysis to more general on-shell conditions
where different particles can have different speeds. In this work we have seen that the
Framid EFT does not pass the test when the speeds of the transverse and longitudinal
modes are equal. We plan to investigate if this result is robust against allowing for
different speeds and to study other EFTs discussed in [13], especially the effective
theory of solids.
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A Spinor variables and discrete transformations

In this appendix we prove two important results for spinor representations of lightlike
momenta, namely their transformation law under spatial reflection and the prescription
for transforming the spinors so as to flip the sign of the exchanged particle’s energy and
momentum, which is necessary to compute the residues correctly.

Spatial reflection. Under the spatial reflection with respect to the origin, lightlike mo-
mentum pµ tranforms as

(E,p) 7→ (E,−p). (A.1)

To the original momentum pµ we associate a pair of spinors (λα, λ̃α̇). One choice is

λ =

(

√

p0 + p3,
p1 + ip2

√

p0 + p3

)T

, λ̃ =

(

√

p0 + p3,
p1 − ip2

√

p0 + p3

)

. (A.2)

Spinor helicity variables corresponding to the new momentum must be of the form

λ′
α = aǫ β̇

α λ̃β̇ , λ̃
′
α̇ = a−1ǫ β

α̇ , λβ (A.3)

i.e.
λ′ = a(λ̃2,−λ̃1)T , λ̃′ = a−1(λ2,−λ1). (A.4)

It is easy to check that these new variables do indeed give p′µ = (E,−p). Now we must fix
the coefficient a. To do this, we have to take a look at polarization tensors.

Consider an exchange diagram with an exchanged particle of spin-1. Suppose at the
left-hand side vertex, there is an outgoing particle of helicity +1 (equivalent to an incoming
antiparticle of helicity −1). Then the same particle (with helicity +1) is incoming at the
right-hand side vertex. The +1 polarization vector ξ+ of the exchanged particle is mapped
to Pξ+ under spatial reflection P . But we also require, for consistency, that it be mapped to
the −1 polarization vector of the particle with reversed momentum. The spatial reflection
of ξ+ is, in terms of spinor variables,

Pξ+
αα̇(p) =

ǫ β̇
α ǫ

β
α̇ µβλ̃β̇

〈µ, λ〉 , (A.5)

where we used (A.3), and µ is a reference spinor. Now, the −1 polarization vector relative
to −p momentum is

ξ−
αα̇(−p) =

λ′
αζ̃

′
α̇

[λ̃′, ζ̃ ′]
= −a2

ǫ β̇
α ǫ

β
α̇ ζβλ̃β̇

〈ζ, λ〉 . (A.6)
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Setting ζ = µ and comparing the two expressions, we conclude that a2 = −1, i.e. a = ±i.
Thus, the prescription for mapping (E,p) 7→ (E,−p) is (for example),

λ′ = (−iλ̃2, iλ̃1)T , λ̃′ = (iλ2,−iλ1). (A.7)

Under spatial reflection, the two inner products then transform as, e.g,

[12] 7→ [1′2′] = 〈21〉 = −〈12〉, (A.8)

〈12〉 7→ 〈1′2′〉 = [21] = −[12]. (A.9)

This transformation law leads to consistent results for various 3p amplitudes - see, for
example, appendix C.

The pI 7→ −pI prescription. Consider again a diagram in which a particle with helicity
+1 is being exchanged. Let’s transform this diagram under TP . Then the polarization
4-vector of the intermediate particle flips its sign: ξµ 7→ −ξµ. On the other hand, this
new 4-vector must be precisely the +1 polarization vector relative to −pI (helicity of the
exchanged particle doesn’t change under TP ). Schematically, the ±1 polarization vector

is proportional to
(

λ̃/λ
)±1

. Thus, if pI ↔ (λ, λ̃), then we must have −pI ↔ (λ,−λ̃) (or

(−λ, λ̃)) to give consistent polarization vectors. We extrapolate this conclusion to spins
other than 1. This convention produces the correct relative signs in the amplitudes - see,
for example, the discussion in section 4.3.

B Solutions to constraints on F (Ei)

In this appendix we provide proofs that the only rational functions of the form

F (x, y) =
f(x, y)

xnym(x+ y)k
(B.1)

that solve (4.25) and (4.33) are F = 0 and F = const respectively.

Photon constraint. We begin with the constraint (4.25). We allow F to take the
form (B.1) and we have already shown that the antisymmetry in the first two arguments
of F requires n = m. Thus F (x, y) = (xy)−m(x+ y)−kf(x, y), where the function f must
be alternating in its two variables. We therefore write f(x, y) = (x− y)P [x+ y, xy] where
P is another polynomial. Our factorisation constraint (4.25) is then

(−1)k (E1 − E3)(E2 − E4)

Em
1 E

m
2 E

m
4 (E1 + E3)2k

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

+(−1)m (E1 + 2E2)(2E3 + E4)

Ek
1E

m
2 E

k
4 (E1 + E2)2m

P [−E1,−E2(E1 + E2)]P [−E4,−E3(E3 + E4)]

−(−1)m (E1 + 2E4)(E2 + 2E3)

Ek
1E

k
2E

m
4 (E1 + E4)2m

P [−E1,−E4(E1 + E4)]P [−E2,−E3(E2 + E3)] = 0,

(B.2)

First, we are going to assume that P is non-zero and, by examining the singularities, deduce
that m = k = 0. By assumption, P [x, y] is not divisible by x or y, so the first term in (B.2)
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is singular at E1 +E3 = 0 for k > 0 while neither the second nor the third term are singular
there. Thus, we must have k = 0. By a similar argument, we also have m = 0. Our main
equation thus simplifies to

(E1 − E3)(E2 − E4)P [E1 + E3, E1E3]P [E2 + E4, E2E4]

+(E1 + 2E2)(2E3 + E4)P [−E1,−E2(E1 + E2)]P [−E4,−E3(E3 + E4)]

−(E1 + 2E4)(E2 + 2E3)P [−E1,−E4(E1 + E4)]P [−E2,−E3(E2 + E3)] = 0,

(B.3)

and this equation must be satisfied for all energies subject to E1 +E2 +E3 +E4 = 0. Now
we will aim to show
(

P

[

x,
(3 · 2n+1 − 2)

(3 · 2n+1 − 1)2
x2

]

= 0 ∀x OR P

[

x, 3 · 2n · 3 · 2n − 1

(3 · 2n+1 − 1)2
x2
]

= 0 ∀x
)

,

(B.4)

∀n ∈ Z≥0, which entails P ≡ 0. The reason for this is that P would have to satisfy
infinitely many distinct constraints of the form P [x, akx

2] = 0 ∀x (it is easy to check that
ak are indeed distinct) and thus we would need (akx

2 − y) | P [x, y] for all the ak, which is
impossible if P is a nonzero polynomial.

To prove (B.4), let

E
(n)
1 = (3 · 2n+1 − 2)x,

E
(n)
2 = −(3 · 2n)x,

E
(n)
3 = x,

E
(n)
4 = −(3 · 2n − 1)x, (B.5)

for n = 0, 1, 2, . . .. Note that E1 = −2E4 for any n, in which case the third term in (B.3)
vanishes and the main equation becomes

(E3 + 2E4)P [E3 − 2E4,−2E3E4]P [E2 + E4, E2E4]

= 2(2E3 + E4)P [2E4,−E2(E2 − 2E4)]P [−E4,−E3(E3 + E4)]. (B.6)

Taking n = 0, we get
− 3xP [5x, 4x2]P [−5x, 6x2] = 0, (B.7)

so
P [5x, 4x2] = 0 ∀x OR P [−5x, 6x2] = 0 ∀x, (B.8)

or equivalently,

P [x,
4

25
x2] = 0 ∀x OR P

[

−x, 6

25
x2
]

= 0 ∀x, (B.9)

which is precisely the condition from (B.4) for n = 0. Now we will prove (B.4) for any
n > 0 by induction. Suppose (B.4) is true for some n − 1. Then set Ei to the values
specified in (B.5). We get

(3 − 3 · 2n+1)xP [(3 · 2n+1 − 1)x, (3 · 2n+1 − 2)x2]P [−(3 · 2n+1 − 1)x, 3 · 2n(3 · 2n − 1)x2] =

= 2(3 − 3 · 2n)xP [(3 · 2n − 1)x, (3 · 2n − 2)x2]P [−(3 · 2n+1 − 2)x, 3 · 2n · (3 · 2n − 2)x2].

(B.10)
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The right hand side is zero by virtue of the previous induction step. Thus, the left hand
side is also zero, which entails

P [x,
(3 · 2n+1 − 2)

(3 · 2n+1 − 1)2
x2] = 0 ∀x OR P [x, 3 · 2n · 3 · 2n − 1

(3 · 2n+1 − 1)2
x2] = 0 ∀x, (B.11)

thereby completing the proof. This proves that there are no consistent (+1,−1 ± 1) am-
plitudes.

Graviton constraint. We now show that the only solution to the system of equations31

(4.33) is F = const thereby reducing the (+2,−2,±2) amplitudes to their boost-invariant
limits.

Here F must be of the form

F (x, y) =
f(x, y)

xmym(x+ y)k
(B.12)

where f is a symmetric polynomial, so f(x, y) = P [x + y, xy] for some polynomial P .
Thus (4.33) takes the form

(−1)k+m

Em
2 E

m
3 E

m
4 (E1 + E3)2k

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

=
1

Ek
2E

k
3E

m
4 (E1 + E2)2m

P [−E2,−E1(E1 + E2)]P [−E3,−E4(E3 + E4)]

=
1

Em
2 E

k
3E

k
4 (E1 + E4)2m

P [−E4,−E1(E1 + E4)]P [−E3,−E2(E2 + E3)]. (B.13)

As in the case of the photon, we see that singularities generally don’t match. If k > 0, then
the first line contains a singularity at E1 +E3 = 0 which does not appear in the other two
expressions. If m > 0, then the second line has a singularity at E1 +E2 = 0 which does not
correspond to the behaviour of the other two functions. Thus, we must have m = k = 0

and the equations become

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

= P [−E2,−E1(E1 + E2)]P [−E3,−E4(E3 + E4)]

= P [−E4,−E1(E1 + E4)]P [−E3,−E2(E2 + E3)]. (B.14)

This must hold for any Ei that satisfy
∑

iEi = 0. Now if we let E1 = E2 = 0, E3 = −E4 =

E, our constraint becomes

P [E, 0]P [−E, 0] = P [0, 0]P [−E, 0] = P [E, 0]P [−E, 0], (B.15)

and so P [−E, 0](P [E, 0] − P [0, 0]) = 0. This implies that P [−E, 0] = 0 for all E or
P [E, 0] = P [0, 0] for all E. But the first alternative entails the latter, so we can just
assume

P [E, 0] = P [0, 0] := P0 ∀E. (B.16)

31In fact, we need only 2 equations - those relating the second, third and fifth expression in (4.33) - and

we can drop the condition that the residue must be the same regardless of how the pole is approached.

– 54 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
8

Now let E1 + E2 = E3 + E4 = 0. Our factorisation constraint is then

P [E1 + E3, E1E3]P [−(E1 + E3), E1E3] (B.17)

=P [E1, 0]P [−E3, 0] (B.18)

=P [E3,−E1(E1 − E3)]P [−E3,−E1(E1 − E3)]. (B.19)

Because E1 and E3 are effectively independent variables, we can write x = E1 + E3,
y = E1E3 and find that the following equation must hold for all x, y:

P [x, y]P [−x, y] = P 2
0 . (B.20)

It is then easy to show (e.g. by observing that any zero of P [x, y] would correspond to a
singularity of P [−x, y], which a polynomial cannot have) that the only polynomial solution
to this equation is P [x, y] = P0.

C Tree level amplitudes for broken Maxwell theory

Maxwell theory of electromagnetism is a Lorentz invariant theory of a massless spin-1
particle, with just two degrees of freedom corresponding to the two helicities ±1 of the
photon. The quadratic Lagrangian is

L2 =
1

4
FµνF

µν , (C.1)

where Fµν = ∂µAν − ∂νAµ. By counting first class and second class constraints, one can
show that the free theory indeed has two degrees of freedom. This is because A0 is non-
dynamical and we also have one-dimensional gauge freedom. In the boost-invariant theory,
there are no cubic interactions, as we have shown in section 3. Interactions can only start
at quartic order in the fields.

As for the boost-breaking amplitudes in a theory of a single photon, we have shown
that they are allowed: they are the (±1,±1,±1) amplitudes with at least three powers of
energy as dictated by Bose symmetry. The simplest such amplitudes are

A3(1−12−13−1) = g〈12〉〈23〉〈31〉(E1 − E2)(E2 − E3)(E1 − E3), (C.2)

A3(1+12+13+1) = ±g[12][23][31](E1 − E2)(E2 − E3)(E1 − E3), (C.3)

and in section 4.1 we suggested that such amplitudes arise from

F̈µ
νḞ

ν
ρF

ρ
µ, ǫµνρσF̈µνḞρκFσ

κ, (C.4)

operators in the Lagrangian. In this appendix we consider the second of these operators
showing that it does indeed give rise to the parity-odd form of the above amplitudes.
Extending the following to the first of these operators is straightforward and yields the
parity-even form of the above amplitudes.

We will use the following, elegant identity:

ǫµνρσp1
µp

2
νp

3
ρp

4
σ = −4i (〈12〉[23]〈34〉[41] − [12]〈23〉[34]〈41〉) , (C.5)
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which is valid for any four, null 4-momenta (not necessarily conserved). The identity
can be proven efficiently using symbolic manipulation in Mathematica. The tree-level,
(+1,+1,+1), S-matrix element S+

3→0 due to ǫµνρσF̈µνḞρκFσ
κ is

S+
3→0 = 〈0|(−i)

∫

d3xdtHint(x, t)

[

3
∏

i=1

√

2Eia
+†
pi

]

|0〉 =

= ig′

∫

d3q1d
3q2d

3q3δ
(4)
(

∑

qµ
i

)

×
∑

Λ1,2,3

ǫµνρσE
2
q1

(

qµ
1 ξ

Λ1,ν
1 − qν

1ξ
Λ1,µ
1

)

Eq2

(

qρ
2ξ

Λ2,α
2 − qα

2 ξ
Λ2,ρ
2

) (

qσ
3 ξ

Λ3
3,α − q3,αξ

Λ3,σ
3

)

×
∑

σ∈S3

(

δ(pσ(1) − q1)δ(pσ(2) − q2)δ(pσ(3) − q3)δ+,Λ1
δ+,Λ2

δ+,Λ3

)

= ig′δ(4)
(

∑

pµ
i

)

ǫµνρσE
2
1E2

×
(

pµ
1ξ

+,ν
1 − pν

1ξ
+,µ
1

) (

pρ
2ξ

+,α
2 − pα

2 ξ
+,ρ
2

) (

pσ
3ξ

+
3,α − p3,αξ

+,σ
3

)

+ 5 permutations

= 2ig′δ(4)
(

∑

pµ
i

)

ǫµνρσE
2
1E2p

µ
1ξ

+,ν
1

(

pρ
2ξ

+,α
2 − pα

2 ξ
+,ρ
2

) (

pσ
3ξ

+
3,α − p3,αξ

+,σ
3

)

+5perm-s.

Once we expand the product of two brackets into a sum, each permutation seems to
include four terms, but one of these trivially vanishes as it involves a factor p2 · p3 = 0. We
have

S+
3→0 = 2ig′δ(4)

(

∑

pµ
i

)

ǫµνρσE
2
1E2p

µ
1ξ

+,ν
1

×
(

pρ
2p

σ
3 (ξ+

2 · ξ+
3 ) − ξ+,ρ

2 pσ
3 (p2 · ξ+

3 ) − pρ
2ξ

+,σ
3 (p3 · ξ+

2 )
)

+ 5 perm-s.

Using (C.5), we get

S+
3→0 = 2ig′δ(4)

(

∑

pµ
i

)

(−4i)E2
1E2

{

(〈1ξ1〉[ξ12]〈23〉[31] − [1ξ1]〈ξ12〉[23]〈31〉) (ξ+
2 · ξ+

3 )

− (〈1ξ1〉[ξ1ξ2]〈ξ23〉[31] − [1ξ1]〈ξ1ξ2〉[ξ23]〈31〉) (p2 · ξ+
3 )

− (〈1ξ1〉[ξ12]〈2ξ3〉[ξ31] − [1ξ1]〈ξ12〉[2ξ3]〈ξ31〉) (p3 · ξ+
2 )
}

+ 5 perm-s.

(Spinors constructed from the momenta are written as numbers 1, 2, 3; spinors constructed
from the polarization vectors are written as ξi.) Recall that for three-particle, on-shell
interactions, we have 〈ij〉 = 0 for all i, j or [ij] = 0 for all i, j; so the first line vanishes.
We also have [1ξ1] = 0, so all terms involving this factor vanish as well. Thus,

S3→0 = −8g′δ(4)
(

∑

pµ
i

)

E2
1E2

{

(〈1ξ1〉[ξ1ξ2]〈ξ23〉[31]) (p2 · ξ+
3 ) (C.6)

+ (〈1ξ1〉[ξ12]〈2ξ3〉[ξ31]) (p3 · ξ+
2 )
}

+ 5 perm-s.

To make further progress, we have to choose a concrete spinor representation of the
polarization vectors ξi. Recall that

ξ+
aȧ(p) =

ηaλ̃ȧ

〈η, λ〉 ,
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with an almost arbitrary reference spinor η. At this point, we are free to make a choice
that breaks the Lorentz symmetry and we do so such that

ξ+
1 =

(ǫ.λ̃T
2 )λ̃1

(1, 2)
,

ξ+
2 =

(ǫ.λ̃T
3 )λ̃2

(2, 3)
,

ξ+
3 =

(ǫ.λ̃T
1 )λ̃3

(3, 1)
.

So, for example, η1,1 = λ̃2,2, η1,2 = −λ̃2,1. Then, we have the following set of identities,
which we write in matrix form for convenience:

〈iξj〉 = −







(12) (13) (11)

(22) (23) (21)

(32) (33) (31)






, [iξj ] =







0 [12]/(23) [13]/(31)

[21]/(12) 0 [23]/(31)

[31]/(12) [32]/(23) 0






. (C.7)

We will also need

[ξi, ξj ] =
[ij]

(i, i+ 1)(j, j + 1)
,

where 3 + 1 ≡ 1. Finally, we can compute pi · ξ+
j :

pi · ξj =
1

2
〈iξj〉[iξj ] = −1

2

(i, j + 1)[ij]

(j, j + 1)
.

Having all of this, we can simplify (C.6). The first line (summed over all permutations and
dropping the prefactor −8g′δ) gives:

∑

cyc

E2
1

(

E2〈1ξ1〉[ξ1ξ2]〈ξ23〉[31](p2 · ξ+
3 ) + E3〈1ξ1〉[ξ1ξ3]〈ξ32〉[21](p3 · ξ+

2 )
)

= −1

2

∑

cyc

E2
1

(

E2(−(12))
[12]

(12)(23)
(33)[31]

(21)[23]

(31)
+ E3(−(12))

[13]

(12)(31)
(21)[21]

(33)[32]

(23)

)

=
1

2

∑

cyc

E2
1

(

E2[12][23][31]

(

(21)(33)

(23)(31)

)

+ E3[21][32][13]

(

(21)(33)

(23)(31)

))

= −1

2

∑

cyc

(33)E2
1

[12][23][31]

(11) + (22)
(E2 − E3)

= −1

2
[12][23][31]

∑

cyc

2E3E
2
1

1

2(E1 + E2)
(E2 − E3)

=
1

2
[12][23][31]

∑

cyc

E2
1 (E2 − E3) .
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Meanwhile, the second line of (C.6) (summed over all permutations and dropping the
prefactor −8g′δ) gives:

∑

cyc

E2
1

(

E2〈1ξ1〉[ξ12]〈2ξ3〉[ξ31](p3 · ξ+
2 ) + E3〈1ξ1〉[ξ13]〈3ξ2〉[ξ21](p2 · ξ+

3 )
)

= −1

2

∑

cyc

E2
1

(

E2(−(12))
[12]

(12)
(−(21))

(

− [13]

(31)

)(

(33)[32]

(23)

)

+E3(−(12))

(

[13]

(12)

)

(−(33))

(−[12]

(23)

)(

(21)[23]

(31)

))

=
1

2
[12][23][31]

(21)(33)

(23)(31)

∑

cyc

E2
1 (E2 − E3)

=
1

2
[12][23][31]

(21)(33)

−((11) + (22))(21)

∑

cyc

E2
1 (E2 − E3)

=
1

2
[12][23][31]

∑

cyc

E2
1 (E2 − E3) .

We see that the two contributions are exactly the same. In conclusion, we get

S+
3→0 = −8g′δ(4)

(

∑

pµ
i

)

[12][23][31]
∑

cyc

E2
1 (E2 − E3) (C.8)

= 8g′δ(4)
(

∑

pµ
i

)

[12][23][31](E1 − E2)(E2 − E3)(E3 − E1). (C.9)

The analogue of (C.6) for all-minus helicities is

S−
3→0 = 8g′δ(4)

(

∑

pµ
i

)

E2
1E2

{

([1ξ1]〈ξ1ξ2〉[ξ23]〈31〉) (p2 · ξ−
3 ) (C.10)

+ ([1ξ1]〈ξ12〉[2ξ3]〈ξ31〉) (p3 · ξ−
2 )
}

+ 5 perm-s.

We choose reference spinors such that

ξ−
1 = −λ1(ǫ.λT

2 )

(2, 1)
,

ξ−
2 = −λ2(ǫ.λT

3 )

(3, 2)
,

ξ−
3 = −λ3(ǫ.λT

1 )

(1, 3)
.

Then

〈iξj〉 = 〈ij〉, [iξj ] =







1 (31)/(32) (11)/(13)

(22)/(21) 1 (12)/(13)

(23)/(21) (33)/(32) 1






. (C.11)

We will also need

〈ξi, ξj〉 = 〈ij〉.
Finally, we can compute pi · ξ−

j :

pi · ξj =
1

2
〈iξj〉[iξj ] =

1

2

(j + 1, i)〈ij〉
(j + 1, j)

,

where 3 + 1 ≡ 1.

– 58 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
8

The first line of (C.10), after dropping the prefactor 8g′δ, gives

1

2

∑

cyc

E2
1

(

E2〈12〉
(

−(33)

(32)

)

〈31〉〈23〉(12)

(13)
+ E3〈13〉

(

−(12)

(13)

)

〈21〉〈32〉(33)

(32)

)

=

= −1

2
〈12〉〈23〉〈31〉

∑

cyc

E2
1(E2 − E3).

The second line of (C.10) yields

1

2

∑

cyc

E2
1

(

E2〈12〉
(

(12)

(13)

)

〈31〉〈32〉(33)

(32)
+ E3〈13〉(13)

(12)
〈21〉〈23〉(12)

(13)

)

=

= −1

2
〈12〉〈23〉〈31〉

∑

cyc

E2
1(E2 − E3).

So

S−
3→0 = −8g′δ(4)

(

∑

pµ
i

)

〈12〉〈23〉〈31〉
∑

cyc

E2
1(E2 − E3) (C.12)

= 8g′δ(4)
(

∑

pµ
i

)

〈12〉〈23〉〈31〉(E1 − E2)(E2 − E3)(E3 − E1). (C.13)

Comparing (C.6) and (C.10) with (3.23), we see that the amplitude due to
ǫµνρσF̈µνḞραF

α
σ is parity-odd, as expected from the presence of the ǫ tensor.

D Boost-breaking massless QED

In this appendix we provide Lagrangians for the boost-breaking versions of massless QED
we derived using the four-particle test in section 4.2. In the boost-invariant limit massless
scalar QED is described by the Lagrangian

L =
1

4
F 2

µν +
1

2
DµφDµφ

∗ (D.1)

where the covariant derivative is as usual Dµφ = ∂µφ − ieφAµ. This gives rise to the
standard kinetic terms plus cubic and quartic vertices. The Lagrangian is invariant under
the gauge symmetry

φ → eieα(x)φ, Aµ → Aµ + ∂µα(x). (D.2)

By choosing the basis φ = φ1 + iφ2 the anti-symmetric nature of the cubic vertices is
manifest and the three-particle amplitude has Fab = ǫab in (4.42) and (4.43). Now to realise
the function of energy in the amplitude we need to add time derivatives to (D.1). We saw
that in the boost-breaking case we have Fab = ǫabF (E1 + E2) and since E1 + E2 = −E3

we can add time derivatives to the vector only, and we find that the correct Lagrangian is
given by

L =
1

4
F 2

µν +
1

2
D̂µφD̂µφ

∗ (D.3)
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where we have defined the new boost-breaking covariant derivative

D̂µφ = ∂µφ− ieφ∂̂tAµ, (D.4)

in terms of the derivative operator

∂̂t = a1∂t + a2∂
2
t + a3∂

3
t + . . . . (D.5)

In comparison to the boost-invariant theory, this theory also has a gauge symmetry given by

φ → eie∂̂tβ(x)φ, Aµ → Aµ + ∂µβ(x). (D.6)

If we again write φ = φ1 + iφ2 we see that

L ⊃ ieǫabφ
a∂µφb∂̂tAµ, (D.7)

and these cubic vertices give rise to our three-particle amplitudes. We therefore have a
consistent boost-breaking theory of massless scalar QED.

For S = 1/2 the story is a simple generalisation of the above discussion. In the boost-
invariant limit, massless fermionic QED is described by the Lagrangian

L =
1

4
FµνF

µν + iψ̄γµDµψ, (D.8)

where ψ is a four-component Dirac spinor,32 γµ are the gamma matrices and Dµ = ∂µ +

ieAµ. This Lagrangian is invariant under the U(1) gauge symmetry

ψ → e−ieα(x)ψ, Aµ → Aµ + ∂µα(x). (D.9)

Guided by the scalar case, we can instead define a new covariant derivative as

D̂µ = ∂µ + ie∂̂tAµ, (D.10)

and if we replace Dµ by D̂µ in (D.8) then we find a consistent boost-breaking theory of
massless fermionic QED invariant under the gauge symmetry

ψ → e−ie∂̂tβ(x)ψ, Aµ → Aµ + ∂µβ(x). (D.11)

Again this theory gives rise to our boost-breaking amplitudes derived in section 4.2.

E More details on the inconsistency of φ̇3 coupled to gravity

In this appendix we consider a self-interacting scalar minimally coupled to gravity in
Minkowski space and directly compute the A4(10, 20, 30, 4+2) amplitude due to scalar ex-
change, showing that the final result is gauge invariant only in the absence of Lorentz-
violating interactions. Thus the aim is to provide further clarity on why an interaction of

32Recall that a Dirac spinor is not a irreducible respresentation of the Lorentz group. It is really comprised

of two 2-component spinors reflecting the fact that we need two S = 1/2 particles each with ±1/2 helicities.
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the form φ̇3 is inconsistent. We take the graviton self-interactions and the minimal coupling
between the scalar and the graviton to be Poincaré invariant and consider a Lagrangian of
the form

L = LEH +
1

2
(∂φ)2 − 1√

2Mpl

hµν∂µφ∂νφ+ Lφ, (E.1)

where LEH contains the quadratic and cubic terms in the canonically normalised graviton
fluctuation hµν arising from expanding

√−gR around Minkowski space and Lφ contains
cubic self-interactions for the scalar with an unspecified number of time derivatives (all
Lorentzian derivatives can be removed by field redefinitions). The results of this appendix
will therefore capture φ̇3 but also a more general class of self-interactions where the on-shell
three-scalar amplitude is A3(10, 20, 30) = F (E1, E2, E3) where F is a symmetric polynomial.

First consider the s-channel of the A4(10, 20, 30, 4+2) amplitude. Up to unimportant
O(1) factors and inverse powers of Mpl, we have

As
4(10, 20, 30, 4+2) =

F (E1, E2)

s
ǫ+µν(p4)pµ

3 (pν
3 + pν

4) =
F (E1, E2)

s
ǫ+µν(p4)pµ

3p
ν
3 , (E.2)

where we have used the fact that the graviton’s on-shell polarisation tensor is transverse
and have used energy conservation to eliminate the energy of the exchanged scalar particle.
The t and u channel expressions are

As
4(10, 20, 30, 4+2) =

F (E1, E3)

t
ǫ+µν(p4)pµ

2p
ν
2 , (E.3)

As
4(10, 20, 30, 4+2) =

F (E2, E3)

u
ǫ+µν(p4)pµ

1p
ν
1 . (E.4)

Now we can write these expressions in the spinor helicity formalism using

4ǫ+µν(p4)pµ
i p

µ
i = e+

αα̇(p4)e+
ββ̇

(p4)λα
i λ̃

α̇
i λ

β
i α̃

β̇
i =

(〈ηi〉[4i]
〈η4〉

)2

. (E.5)

Now we have infinitely many choices for the reference spinor η, but it is sufficient to consider
only three options, η = 1, 2, 3, so that η corresponds to a spinor of one of the particles other
than the graviton. The three choices for each channel yield (again dropping unimportant
common factors)

As
4(10, 20, 30, 4+2) = F12 (〈12〉[14][24])2 ×



















1
su2 η = 1

1
st2 η = 2

0 η = 3

(E.6)

At
4(10, 20, 30, 4+2) = F13 (〈12〉[14][24])2 ×



















1
tu2 η = 1

0 η = 2

1
ts2 η = 3

(E.7)

Au
4(10, 20, 30, 4+2) = F23 (〈12〉[14][24])2 ×



















0 η = 1

1
ut2 η = 2

1
us2 η = 3

(E.8)
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where we have introduced the shorthand F (Ei, Ej) = Fij . Using s + t + u = 0, we can
therefore write the full amplitude as

A4(10, 20, 30, 4+2) = − (〈12〉[14][24])2 ×



















F12
stu + F12−F13

tu2 η = 1

F23
stu + F23−F12

st2 η = 2

F13
stu + F13−F23

us2 η = 3.

(E.9)

For general boost-breaking scalar self-interactions, F12 6= F13 and so on. Hence we see that
the above amplitude could change as different choices for the unphysical reference spinor
are made. This certainly indicates an inconsistency. Demanding that the amplitude is the
same for each choice of reference spinor leads to the constraints

F12 = F13 = F23 . (E.10)

This is only solved by F = constant for generic energies, and so the three-particle amplitude
for a scalar coupled to gravity must be Poincaré invariant.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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