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THE BOOTSTRAP METHOD FOR ASSESSING 

ST ATISTICAL ACCURACY 

Bradley Efron* and Robert Tibshirani* 

This is an invited review of bootstrap methods, It begins with an exposition of the 
bootstrap estimate of standard error for one-sample situations. Several examples. some involv­
ing quite complicated statistical procedures, are given, The bootstrap is then extended to other 
measures of statistical accuracy, like bias and prediction error, and to complicated data struc­
tures such as time series, censored data, and regression models_ Several more examples are 
presented illustrating these ideas, The last third of the paper deals mainly with bootstrap 
confidence intervals, The paper ends with a FORTRAN program for bootstrap standard errors_ 

1. Introduction 

A typical problem in applied statistics is the estimation of an unknown parameter e. 
The two main quest ions asked are (1) what estimator ij should be used? And (2) having 

chosen to use a particular 0, how accurate is it as an estimator of e ? The bootstrap is a 

general methodology for answering the second question. It is a computer-based method, 

which substitutes considerable amounts of computation in place of theoretical analysis. 

As we shall see, the bootstrap can routinely answer questions which are far too compli­

cated for traditional statistical analysis. Even for relatively simple problems computer­

intensive methods like the bootstrap are an increasingly good data-analytic bargain in an 

era of exponentially declining computational costs. 

This paper describes the basis of the bootstrap theory, which is very simple, gives 

several examples of its use, and ends with a bootstrap computer program, also very simple. 

Related ideas like the jackknife, the delta method, and Fisher's information bound are also 

discussed. Most of the proofs and technical details are omitted. These can be found in 

the references given, particularly Efron (1982). Some of the discussion here is abridged 

from Efron and Gong (1983), and also from Efron (1984B). 

Before beginning the main exposition, we will describe how the bootstrap works in 

terms of a problem where it is not needed, assessing the aeeuracy of the sam pie mean_ 

Suppose that our data consists of a random sampie from an unknown probability distribu­

tion F on the real line, 

(1.1) 

Having observed X1=Xl, Xz=xz, "', Xn=X n . We eompute the sampIe mean Xnl 
1 

n, and wonder how ace urate it is as an estimate of the true me an e = E p {X}. 

If the second central moment of Fis f-lz(F)=-EFX 2 -(Ep XY, then the standard error 

o( F; n. x), that is the standard deviation of x for a sampie of size n from distribution 

F. is 

(1.2) 
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2 B. Efron and R. Tibshirani 

(The shortened notation o( F) =' a( F; n, x) is allowable because the sampIe size n and 

statistic of interest x are known, only F being unknown.) This is the traditianal measure 

oi x' s accuracy. Unfortunately we can't actually use (1.2) to assess the accuracy of x, 
since we don't know /1z(F), but we can use the estimated standard error 

a = [tlzln]'!Z, (1.3) 
n 

where tlz = 2:: Cl: i-X )Z/ (n -1), the unbiased estimate of /1z( F). 
i=l 

There is a more obvious way to estimate o(F). Let F indicate the empirical 

propability distribution, 

F: probability mass l/n on XI, X2, "', Xn. 0.4 ) 
Then we can simply replace F by F in 0.2), obtaining 

i3 ='(J(F)= [/1z(F)/n]112, 0.5 ) 
as the estimated standard error for X. This is the bootstrap estimate. The reason for the 

name "bootstrap" will be apparent in Section 2, when we evaluate a(F) for statistics more 

complicated than X. Since 
n ( -)2 

{iz='/1z(F)=2:: x;-x , (1.6) 
n 

i3 is not quite the same as a, but the difference is too small to be important in most 

applications. 

Of course we don't really need an alternative formula to 0.3) in this case. The 

trouble begins when we want a standard errar far estimators more complicated than x, for 

example a median or a correlation or a slope coefficient from a robust regression. In most 

cases there is no equivalent to formula (1.2), which expresses the standard errar (J(Fl as 

a simple function of the sampling distribution F. As a result, formulas like (1.3) do not 

ex ist for most statistics. 

This is where the computer comes in. It turns out that we can always numerically 

evaluate the bootstrap estimate a = a(ß'), even without knowing a simple expression for 

o(F). The evaluation of (j is a straightforward Monte Carlo exercise, described in the 

next section. 

Standard errors are crude but useful measures of statistical accuracy. They are 

frequently used to give approximate confidence intervals far an unknown parameter e, 
(}EB± (Jz(al, 0.7) 

where z(a) is the 100· a percentile point of a standard normal variate, e.g. Z(·95)=1.645. 

Interval (l. 7) is sometimes good, and sometimes not so good. Seetions 7 and 8 discuss a 

more sophisticated use of the bootstrap, which gives bett er approximate confidence inter­

vals than (Ln. 

The standard interval (1.7) is based on taking literally the large-sample normal 

approximation (B - ())/ i3 N C 0, 1). Applied statisticians use a variety of tricks to 

improve this approximation. For instance if e is the correlation coefficient, and B the 

sampIe correlation, then the transformation ifl=tanh- ' ((}), J=tanh-1CB) greatly improves 

the normal approximation, at least in those cases where the underlying sampling distribu· 

tion is bivariate normal. The correct tactic then is to transform, compute the interval 

0.7) for ifl, and transform this interval back to the 0 scale. 

We will see that bootstrap confidence intervals can automatically incorporate tricks 
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like this, without requiring the data analyst to produce special techniques, like the tanh- l 

transformation, for each new situation. An important theme of what follows is the 

substitution of raw computing power for theoretical analysis. This is not an argument 

against theory, of course, only against unnecessary theory. Most common statistical 

methods were developed in the 1920's and 1930's, when computation was slow and expen· 

sive. N ow that computation is fast and cheap we can hope for and expect changes in 

statistical methodology. This paper discusses one such potential change, Efron (1979B) 
discusses several others. 

2. Tbe bootstrap estimate of standard error 

This section presents a more careful description of the bootstrap estimate of standard 

erroT. For now we will assurne that the observed data Y = (Xl, X2, "', XI!) consists of 

independent and identically distributed (i.i.d.) observations Xl, X 2 , "', X ,/!!. F, as in (1.1). 

Here F represents an unknown probability distribution on r, the common sam pIe space of 

the observations. We have a statistic of interest, say (j(y), to which we wish to assign an 
estimated standard error. 

Figure 1 shows an example. The sam pIe space r is R 2+, the positive quadrant of the 

plane. Wehave observed n = 15 bivariate data points, each corresponding to an American 

law school. Each point Xi consists of two summary statistics for the 1973 entering dass 

at law school i, 

x;=(LSA T" GPA.); (2.1 ) 

LSA Ti is the dass' average score on a nationwide exam called "LSA T"; GPA i is the 

dass' average undergraduate grades. The observed Pearson correlation coefficient for 

these 15 points is (j = .776. We wish to assign a standard error to this estimate. 

Let o(F) indicate the standard error of (j, as a function of the unknown sampling 
distribution F, 

I1(F)= [VarF{8(y )}Pi2. (2.2) 

Of course o(F) is also a function of the sampIe size n and the form of the statistic 8(y), 

but since both of these are known they needn't be indicated in the notation. The bootstrap 
estimate of standard error is 

(j = 11<F;), 

3.50 
.s·s 

.1 .9 

3.30 .2 

...: 010 .n 3.10 .6 
.7 ·4 

.15 
2.90 .u 

.3 

2.70 
.13 .12 

540 560 580 600 620 640 660 680 

LSAT 

Fig.1 The law school data (Efron. 1979B). The data points, beginning with School 
#1, are (576, 3.39), (635, 3.30). (558, 2.81), (578, 3.03), (666. 3.44), (580, 3.07), (555, 
3.00), (661, 3.43), (651, 3.36), (605, 3.13), (653, 3.12), (575, 2.74), (545, 2.76), (572, 
2.88), (594, 2.96). 

(2.3) 
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where F is the empirical distribution (1.4), putting probability I/non each observed data 

point Xi. In the law school example, Fis the distribution putting mass 1/15 on each point 

in Figure 1, and 8 is the standard deviation of the correlation coefficient for 15 i.i.d. points 

drawn from F. 
In most cases, including that of the correlation coefficient, there is no simple expression 

for the function (J(F) in (2.2). Nevertheless it is easy to numerically evaluate 8:::: t1(F) by 
means of a Monte Carlo algorithm which depends on the following notation: y.:::: x;, 

"', indicates n independent draws from F, called a bootstrap sampie. Because Fis the 
empirical distribution of the data, a bootstrap sampie turns out to be the same as a random 

sampie of size n drawn with replacement from the actual sampie {Xl, X2, "', Xn}. 

The Monte Carlo algorithm proceeds in three steps. 

(i) Using a random number generator, independently draw a large number of boot· 

strap sampies, say y*(l), yO(2), "', y*(B). 

(ii) For each bootstrap sam pIe y*(b), evaluate the statistic of interest, say O*(b)= 

{j(y*(b», b=l, 2, "', B. 
(iii) Calculate the sampie standard deviation of the O*(b) values, 

_ -l tl {O"(b)- 0*( . W ]li2 O*(b) 
t1B- B-1 0*(') B (2.4 ) 

It is easy to see that as B -HXJ. 8 B will approach 8 = t1( F), the bootstrap estimate of 

standard error. All we are doing is evaluating a standard deviation by Monte Carlo 

sampling. Later, in Section 9, we will discuss how large B need be taken. For most 
situations B in the range 50 to 200 is quite adequate. In what follows we will usually 

ignore the difference between aB and a, calling both simply "a". 
Figure 2 shows the histogram of B = 1000 bootstrap replications of the correlation 

coefficient, from the law school data. For convenient reference the abscissa is plotted in 

terms of 0"-0=0°-.776. Formula (2.4) gives 8=.127 as the bootstrap estimate of 

standard error. This can be compared with the usual normal theory estimate of standard 

error for 0, 
1-02 

t1NOR:.I = (n _ 3 )'12 .115, (2.5) 

lohnsan and Kotz (1970, p.229). 

There is another way to describe the bootstrap standard error: F is the nonpara-

Normal theory d.nsi ty __ Histogram 

.--,.--\--o,.f---H i stogram 
percenti les 

Fig.2 Histogram of B == 1000 bootstrap replications of O' for the law school data. 
The nomal theory density curve has a similar shape. but falls off more quickly 
at the upper tail. 
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metric maximum likelihood estimate (MLE) of the unknown distribution F, Kiefer and 
Wolfowitz (1956). This means that the bootstrap estimate jj=a(F) is the nonparametrie 

MLE of a( F), the true standard error. 
In fact there is nothing which says that the bootstrap must be carried out nonpara­

metrically. Suppose for instance that in the law school example we believed the true 

sampling distribution F must be bivariate normal. Then we could estimate F with its 

par ametrie MLE f"'ORM, the bivariate normal distribution having the same mean vector and 

covariance matrix as the data. The bootstrap sampies at step (i) of the algorithm could 

then be drawn from FNORM instead of F, and steps (ii) and (iii) carried out as before. 

The smooth curve in Figure 2 shows the results of carrying out this "normal theory 

bootstrap" on the law school data. Actually there is no need to do the bootstrap sampling 

in this case, because of Fisher's formula for the sampling density of a correlation coefficient 

in the bivariate normal situation, see Chapter 32 of Johnson and Kotz (1970). This density 

can be thought of as the bootstrap distribution, for B = 00. Expression (2.5) is a elose 

approximation to jjNORM= a(FNORM), the parametric bootstrap estimate of standard error. 
In considering the merits or demerits of the bootstrap, it is worth remembering that all 

of the usual formulas for estimating standard error, like one over the square root of the 

observed Fisher information, are essentially bootstrap estimates carried out in a para­

metric framework. This point is carefully explained in Section 5 of Efron (1981B). The 
straightforward nonparametric algorithm (i)-(Hi) has the virtues of avoiding all para­

metric assumptions, all approximations (such as those involved with the Fisher information 

expression for the standard error of an MLE), and in fact all analytic difficulties of any 

kind. The data analyst is free to obtain standard errors for enormously complicated 

estimators, subject only to the constraints of computer time. Sections 3 and 6 discuss 

some interesting applied problems which are far too complicated for standard analyses. 

How weil does the bootstrap work? Table 1 shows the answer in one situation. 

Here Jr is the realline, n = 15, and the statistic fJ of interest is the 25% trimmed mean. If 

the true sampling distribution F is N(O, 1), then the true standard error is a(F)=.286. 

The bootstrap estimate jj is nearly unbiased, averaging .287 in a large sampling experi­

ment. The standard deviation of the bootstrap estimate ä is itself .071 in this case, with 

coefficient of variation .071/.287 = .25. (Notice that there are two levels of Monte CarIo 

involved in Table 1 : first drawing the actual sampies y = (Xl, X2, "', XIS) from F, and then 
drawing bootstrap sampies (xi, x;, "', xts) with y held fixed. The bootstrap sampies 

evaluate jj for a fixed value of y. The standard deviation .071 refers to the variability of 

ä due to the random choice of y.) 

The jackknife is another common method of assigning nonparametric standard errors, 

discussed in Section 10. The jackknife estimate äl is also nearIy unbiased for a(F), but 
has higher coefficient of variation (CV). The minimum possible CV for a sc ale-invariant 

estimate of a(F), assuming fuB knowledge of the parametric model, is shown in brackets. 

The nonparametric bootstrap is seen to be moderately efficient in both cases considered in 
Table 1. 

Table 2 returns to the case of fJ the correlation coefficient. Instead of real data we 

have a sampling experiment in which the true F is bivariate normal, true correlation e 
= .50, sampie size n = 14. Table 2 is abstracted from a larger table in Efron (1981C), in 
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Table 1 
A Sampling Experiment Comparing the Bootstrap and lackknife Estimates of 

Standard Error for the 25% Trimmed Mean, SampIe Size n = 15 

F Standard N orrnal F Negative Exponential 

Ave Sd Coeff 
Ave Sd Coeff 

Var Var 

Bootstrap a-: (B = 200) .287 .071 .25 .242 .078 .32 
lackknife 0") ; .280 .084 .30 .224 .085 .38 
True; [Minimum C.V.J .286 [ .19] .232 [ .27J 

which some of the methods for estimating a standard error required the sam pIe size to be 

even. 

The left side of Table 2 refers to 11, while the right side refers to iJ =tanh- 1(I1)=.510g 
(1 + 0)1 (1- 0). For each estimator of standard error, the root mean squared error of 
estimation [E( 6 - (J )2]1/2 is given in the column headed ; MSE . 

The bootstrap was run with B = 128 and also with B = 512, the latter value yielding only 

slightly better estimates in accordance with the results of Seetion 9. Further increasing B 
would be pointless. It can be shown that B = 00 gives ; MSE = .063 for iJ, only.OOlless than 
B=512. The normal theory estimate (2.5), which we know to be ideal for this sampling 

experiment, has ; MSE = .056. 

We can compromise between the totally nonparametrie bootstrap estimate 6 and the 

totally parametrie bootstrap estimate 6NORM. This is done in lines 3, 4 and 5 of Table 2. 

Let I=:i: (Xi- X)(Xi- X)' In be the sampie covariance matrix of the observed data. The 
z=l 

Table 2 
Estimates of Standard Error for the Correlation Coefficient 0 and for J,=tanh-10; 

Sample Size n=14. 
Distribution F Bivariate Normal With True 

Correlation p = .5. From a Larger Table in Efron (l981C) 

Summary Statistics /or 200 Trials 

Standard Error Estinwtes /or (j Standard Error Estimates /or f, 

Ave .'ltd Deli CV /MSE Ave Std Dev CV ./MSE 

1. Bootstrap B=128 .206 .066 .32 .067 .301 .065 .22 .065 

2. Boots/rap B=512 .206 .063 .31 .064 .301 .062 .21 .062 

3. Normal Smoothed Bootstrap .200 .060 .30 .063 .296 .041 .14 .041 
B=128 

4. Uniform Smoo/lled Boots/rap .205 .061 .30 .062 .298 .058 .19 .058 
B=128 

5. Uniform Smoolhed Bootstrap .205 .059 .29 .060 .296 .052 .18 .052 
B=512 

6. Jackkni/e .223 .085 .38 .085 .314 .090 .29 .091 

7. Delta Met/IOd .175 .058 .33 .072 .244 .052 .21 .076 
(Infinitesimal Jackkmfe) 

8. Normal TheOlY .217 .056 .26 .056 .302 0 0 .003 

True Standard Errol" .218 .299 
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normal smoothed bootstrap draws the bootstrap sampie from F(fJN2(0, .25t), ffi indicating 

convolution. This amounts to estimating F by an equal mixture of the n distributions 

N2(X., .25t), that is by anormal window estimate. Each point x1 in a smoothed bootstrap 

sam pie is the sum of a randomly selected original data point Xi> plus an independent 

bivariate normal point N2(0, .25t). Smoothing makes !ittle difference on the left side 

of the table, but is spectacularly effective in the rj; case. The latter result is suspect since 

the true sampling distribution is bivariate normal, and the function =tanh-10 is 

specifically chosen to have nearly constant standard error in the bivariate-normal family. 

The uni/arm smoothed bootstrap sampies from Fffi .25t), where .25t) is the 

uniform distribution on a rhombus selected so ;v has mean vector 0 and covariance matrix 

.25t. It yields moderate reductions in .; MSE for both sides of the table. 

Line 6 of Table 2 refers to the delta method, which is the most common method of 

assigning nonparametric standard error. Surprisingly enough, it is badly biased down­

wards on both sides of the table. The delta method. also known as the method of 

statistical differentials, the Taylor series method, and the infinitesimal jackknife. is 

discussed in Section 10. 

3. Examples 

Example 1: Cox's proportional hazards model 

In this section we apply bootstrap standard error estimation to some complicated 

statistics. 

The data for this example come from a study of leukemia remission times in mice, 

taken from Cox (1972). They consist of measurements of remission time (y) in weeks for 

two groups, treatment (x =0) and control (x = 1 J, and a 0-1 variable (0 i) indicating whether 

or not the remission time is censored (0) or complete (I). There are 21 mice in each group. 

The standard regression model for censored data is Cox's proportional hazards model 

(Cox, 1972). It assumes that the hazard function h( t I x), the probability of going into 

remission in next instant given no remission up to time t for a mouse with covariate x. is 

of the form 

(3.1 ) 

Here hot t) is an arbitrary unspecified function. Since X here is a group indicator, this 

means simply that the hazard for the control group is e iJ times the hazard for the treatment 

group. The regression parameter ß is estimated independently of hoU) through maxim: 

ization of the so called "partial likelihood" 

PL= rr PXj 
iED e 

(3.2) 
jER, 

where D is the set of indices of the failure times and R i is the set of indices of those at risk 

at time Yi' This maximization requires an iterative computer search. 

The estimate ß for these data turns out to be 1.51. Taken Iiterally, this says that the 

hazard rate is e 1.51 = 4.33 times higher in the control group than in the treatment group, so 

the treatment is very effective. What's the standard error of ß? The usual asymptotic 

maximum likelihood theory, one over the square root of the observed Fisher information, 

gives an estimate of.41. Despite the complicated nature of the estimation procedure, we 
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1.5 

Fig. 3 Histogram of 1000 bootstrap replications for the mouse leukemia data 

ean also estimate the standard error using the bootstrap. We sampIe with replaeement 

from the tripIes {(Yl, Xl, (1), "', (Y42, X42, (42)}. For eaeh bootstrap sam pie on, 
''', (Y:2, Xt2, Ot2)} we form the partial likelihood and numerieally maximize it to produce 

the bootstrap estimate g.. A histogram of 1000 bootstrap values is shown in Figure 3. 

The bootstrap estimate of the standard error of fj based on these 1000 numbers is .42. 

Although the bootstrap and standard estimates agree, it is interesting to note that the 

bootstrap distribution is skewed to the right. This leads us to ask: is there other informa· 

tion that we ean extraet from the bootstrap distribution other than a standard er rar 

estimate? The answer is yes-in particular, the bootstrap distribution ean be used to 

form a eonfidenee interval for ß, as we will see in Section 9. The shape of the bootstrap 

distribution will help determine the shape of the eonfidenee interval. 

In this example our resampling unit was the tripie (Yi, Xi, 0;), and we ignored the 

unique elements of the problem, i.e., the censoring, and the particular model being used. In 

fact, there are other ways to bootstrap this problem. We'll see this when we diseuss 

bootstrapping censored data in Seetion 5. 

Example 2: Linear and projection pursuit regression 

We illustrate an applieation of the bootstrap to standard linear least squares regres· 

sion as weIl as to a non-parametric regression technique. 

Consider the standard regression setup. Wehave n observations on a response Y and 

covariates (Xl, Xz, · .. ,Xp ). Denote the ith observed vector of eovariates by X;=(Xil, X;2, 

"', x;p)'. The usuallinear regression model assumes 
p 

E( Y;)=a+ ßiX;j (3.3) 
j=l 

Friedman and Stuetzle (1981) introduced a more general model, the projection pursuit 

regression model 

(3.4 ) 

The p-veetors aj are unit veetors ("directions"), and the funetions sA . ) are unspeeified. 

Estimation of {al, Sl( • )}, "',{am, Sm( • )} is performed in a forward stepwise manner 
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as follows. Consider {al. SI(' )}. Given a direction al. SI (. ) is estimated by a non­

parametric smoother (e.g., running mean) of Y on al • x. The projection pursuit regres­

sion algorithm searches over all unit directions to find the direction iil and associated 
n 

function SI( • ) that minimize 2:(Y;- sl(ii . X;)2. Then residuals are taken and the next 
I 

direction and function are determined. This process is continued until no additional term 

significantly reduces the residual sum of squares. 

Notice the relation of the projection pursuit regression model to the standard linear 

regression model. When the function SI( • ) is forced to be linear. and is estimated by the 

usual least squares method. a one term projection pursuit model is exactly the same as the 

standard linear regression model. That is to say, the fitted model sl(iil . Xi) exactly 
p -

equals the least squares fit ii + 2: ßjXij. This is because the least squares fit, by definition, 
j-,::l 

finds the best direction and the best linear function of that direction. Note also that adding 

another linear term s2(ii2' X2) would not change the fitted model since the sum of two 

linear functions is another linear function. 

Hastie and Tibshirani (1984) applied the bootstrap to the linear and projection pursuit 

regression models to assess the variability of the coefficients in each. The data they 
considered are taken from Breiman and Frierlman (1984). The response Y is Upland 

atmospheric ozone concentration (pprn); the covariates Xl-Sandburg Air Force base 

temperature (CO). X 2 - inversion base height (ft.), X 3-Daggot pressure gradient (mmhg). 

Xcvisibility (mHes). and of the year. There are 330 observations. The number 

of terms (m) in the model (3.4) is taken to be two. The projection pursuit algorithm chose 

directions iil=(.80. -.38, .37. -.24. -.14)' and ii2 = (.07 .. 16 •. 04. -.05. -.98)'. These 

directions consist mostly of Sandburg Air Force temperature and day of the year respec· 

tively. (We don't show graphs of the estimated functions S 1 ( • ) and S 2( • ) although in a fun 

analysis of the data they would also be of interest.) Forcing SI ( • ) to be linear results the 

direction ii l =(.90. -.37 •. 03. -.l4. -.l9)'. These are just the usualleast squares estimates 
- - P 

ßl ..... ßp scaled so that 
I 

To assess the variability of the directions, a bootstrap sampie is drawn with replace· 

ment from (YI. XIl, .... XIS). "', (Y330h X3301! ''', X330S) and the projection pursuit algorithm is 

applied. Figures 4 aod 5 show histograms of the directioos Ci! aod ii! for 200 bootstrap 

replications. Also shown in Figure 4 (broken histogram) are the bootstrap replications of 

al with SI( • ) forced to be linear. 

The first direction of the projection pursuit model is quite stable and only slightly more 

variable than the corresponding linear regression direction. But the second direction is 

extremely unstable! It is clearly unwise to put any faith in the second direetion of the 

original projection pursuit model. 

Example 3: Cox's model and loeal likelihood estimation 

In this example. we return to Cox's proportional hazards model described in Example 

1, but with a few added twists. 

The data that we'll diseuss come from the Stanford heart transplant program and are 
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Fig.4 Smoothed histograms of the bootstrapped coefficients for the first term in the 
projection pursuit regres.-;ion model. Solid histograms are for the usual 
projection pursuit model; the dotted histograms are for linear s ('). 

a, - --..... 

a3 ........ 

-

a, -
0.5 o 0.5 

bootstrapped coefficients 

Fig.5 Smoothed histograms oi the bootstrapped coefficients for the second term in 
the projection pursuit model. 

given in Miller and Halpern (1982). The response y is survival time in weeks after a he art 

transplant, the covariate x is age at transplant, and the 0-1 variable 0 indicates whether 

the survival time is censored (0) or complete (1). There are measurements on 157 patients. 

A proportional hazards model was fit to these data, with a quadratic term i. e., h( t I x) = 
haU )eß,Hß,X'. Both ßI and ß2 are highly significant; the broken curve in Figure 6 is ßIX 

+ ß2X2 as a function of x. 
For eomparison, Figure 6 shows (solid \ine) another estimate. This was eomputed 

using ioeal likelihood estimation (Tibshirani and Hastie, 1984). Given a general propor­

tional hazards model of the form h(t I X)= haU )eS(x), the loeal likelihood technique 
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asswnes nothing about the parametric form of s(x); instead it estimates s(x) non-para­
metrically using a kind a loeal averaging. The algorithm is very eomputationally inten­

sive. and standard maximum likelihood theory cannot be applied. 

A comparison of the two functions reveals an important qualitative difference: the 
parametric estimate suggests that the hazard deereases sharply up to age 34. then rises ; 

the locallikelihood estimate stays approximately constant up to age 45 then rises. Has 

the forced fitting of a quadratic function produced a misleading result? To answer this 

question. we can bootstrap the loeal likelihood estimate. We sam pIe with replaeement 

from the tripies {(YJ, Xl. OI).···,(YJ57, X 151. 0157)} and apply the locallikelihood algorithm 
to each bootstrap sampie. Figure 7 shows estimated curves from 20 bootstrap sampies. 

Some of the eurves are ftat up to age 45. others are decreasing. Henee the original 
Ioeal likelihood estimate is highly variable in this region and on the basis of these data we 

ean't determine the true behaviour of the funetion there. A look back at the original data 

2 

i 1 

o " " 

age 

Fig.6 Estimates of log relative risk for the Stanford heart transplant data_ Broken 
eurve: parametric estimate. Solid eurve: loeal likelihood estimate. 

4 

3 

10 20 30 40 50 60 
age 

Fig. 7 20 Bootstraps of the loeal likelihood estimate, for the Stanford heart trans­
plant data. 



12 B. Efron and R. Tibshirani 

shows that while half of the patients were under 45, only 13% of the patients were under 

30. Figure 7 also shows that the estimate is stable near the middle ages but unstable for 

the older patients. 

4. Other measures of statistical error 

So far we have discussed statistical error, or accuracy, in terms of the standard error. 

It is easy to assess other measures of statistical error, such as bias or prediction error, 

using the bootstrap. 

Consider the estimation of bias. For a given statistic O(y), and a given parameter 

f..l(F), let 
R(y, F)= O(y)- f..l(F). (4.1) 

(It will help keep our notation c1ear to call the parameter of interest f..l rather than B.) For 

example f..l might be the mean of the distribution F, assuming the sampie space r is the 

real line, and fJ the 25% trimmed mean. The bias of 0 for estimating /1 is 

ß(F)=EFR(y, F)=EF{O(y )}- /1(F). (4.2) 

The notation E F indicates expectation with respect to the probability mechanism appropri· 

ate to F, in this case y = (Xl, Xz, .... Xn) a random sampIe from F. 

The bootstrap estimate of bias is 

ß=ß(F)=EiR(y·. F)=EF{O(Y·)}-f..l(F). (4.3) 

As in Section 2, y* denotes a random sam pIe (xt, x:, ''', x:) from F, i.e., a bootstrap 

sampIe. To numerically evaluate 13, all we do is change step (iii) of the bootstrap 

algorithm in Section 2 to 
B • 

B B*(b) 
ßB=1.. R(y·(b). F)= b=l /1(F). 

Bb-l B (4.4 ) 

=0*(' )-li(F). 

As B ..... oo, ßB goes to 13, (4.3). 

As an example consider the blood serum data of Table 3. Suppose we wish to 

estimate the true mean f..l=EF{X} of this population using 0, the 25% trimmed mean. We 

calculate ji = /1(F)=2.39, the sampIe me an of the 54 observations, and 0=2.24, the trimmed 

mean. The trimmed mean is lower because it discounts the effect of the large observa· 

tions 6.4 and 9.4. It looks like the trimmed me an might be more robust for this type of 

data, and as a matter of fact a bootstrap analysis, B = 1000, gave estimated standard error 

(j =.16 for (), compared to .21 for the sampie mean. But what about bias? 

0.1, 0.1. 

1. 7. 1. 7. 

2.4. 2.5. 

3.3, 3.5, 

Table3 
BHCG blood serum levels for 54 patients having metasticized 

breast cancer. presented in ascending order 

0.2. 0.4, 0.4. 0.6. (j.8. 0.8, 0.9. 0.9, 1.3, 1.3. 1.4, 1.5. 

1. 7. 1.8, 2.0. 2.0. 2.2. 2.2, 2.2. 2,3, 2.3. 2.4. 2.4. 2.4, 

2.5. 2.5. 2.7. 2.7. 2.8, 2.9, 2.9. 2.9, 3.0. 3.1, 3.1, 3.2, 

4.4, 4.5, 6.4. 9.4 

1.6, 1.6. 
2.4, 2.4. 

3.2, 3.3, 

The same 1000 bootstrap replications which gave (j=.16 also gave 8*(' )=2.29, so 
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ß=2.29-2.39= -0.10 (4.5) 

aeeording to (4.4). (The estimated standard deviation of ßH-ß due to the !imitations of 

having B = 1000 bootstraps is only 0.005 in this case, so we can ignore the difference 

between ßH and ß.) Whether or not a bias of magnitude -0.10 is too large depends on the 

eontext of the problem. If we attempt to remove the bias by subtraction, we get iJ - ß = 
2.24 - ( - 0.10) = 2.34, which is elose to the sarnple mean 2.39. Removing bias in this way is 

frequently a bad idea, see Hinkley (1978), but at least the bootstrap analysis has given us 

a reasonable picture of the bias and standard error of iJ. 

Here is another rneasure of statistical aceuracy, different than either bias or standard 
error. Let iJ(y) be the 25% trimmed rnean and p(F) be the mean of F, as in the serum 

example, and also let [( y) be the interquartile range, the distance between the 25th and 

75th percentiles of the sampie y=(XI, X2, ...• X,.). Define 

iJ(y)- p(F) 
R(y. F)=--T(yT-' (4.6) 

R is like a Student's t statistic. except that we have substituted the 25% trimrned mean for 
the sampie mean. and the interquartile range for the standard deviation. 

Suppose we know the 5th and 95th pereentiles of R(y, F), say p(.oSJ(F) and p(.96J(F). 

where the definition of p(.oSI(F) is 

ProbF{R(y. F)<p(·OSI(F)}=.05, (4.7) 

and similarly for p(.9SI(F). The relationship eornbines with 

definition (4.6) to give a central 90% "t interval" for the mean p(F), 

pE [iJ- ip<·9S). 8- [p<.OS)]. (4.8) 

Of course we don't know p(.oS'(F) and p<.9Sl(F). but we can approximate them by their 
bootstrap estimates p(.oS)(F) and p(.9SI(F). A bootstrap sampie y* gives a bootstrap value 

of (4.6). R(y·. F)=(8(y·)-p(F»!{(y·). where {(y.) is the interquartile range of the 

bootstrap data x: . .... For any fixed number P. the bootstrap estirnate of ProbF{R 

< p} based on B bootstrap sampies is 

#{R(y*(b). F)<p}!B. (4.9) 

By keeping track of the empirie al distribution of R(y·(b). F). we can pick off the values 
of p wh ich rnake (4.9) equal .05 and .95. These approach p(.oS)(F) and p<.9S)(F) as B --> 00. 

For the serum data, B=1000 bootstrap rep!ications gave p,.oS)(F)=-.303 and 

p(95)(F)= .078. Substituting these values into (4.9). and using the observed estimates iJ= 

2.24, [= 1.40, gives 

pE [2.13. 2.66] (4.10 ) 
as a central 90% "bootstrap t interval" for the true mean p(F). This compares with the 

standard t interval based on 53 degrees of freedom x ± 1.67 a = [2.04. 2.74]. Here a = .21 
is the usual estimate of standard errar (1.3). 

It is interesting to notice that if we discard the 54th observation 9.4, then a decreases 

to .16, and the Student's t interval x ± 1.67 a equals [2.12. 2.66] which is almost exactly the 

same as (4.10)! Baotstrap confidenee intervals are discussed further in Seetions 7 and 8. 
They require more bootstrap replications than does jj. on the order of B = 1000 rather than 

B == 50 or 100. This point is discussed briefty in Section 9. 

By now it should be elear that we can use any randorn variable R(y. F) to measure 

aceuracy. not just (4.1) or (4.6). and then estimate EF{R(y. F)} by its bootstrap value 
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_ B _ 

Ei{R(y', F)}":' F)/B. Similarly we can estimate EFR(y, F)2 by EiR(y*, 
b'-l 

F)2, ete. Efron (1983) considers the prediction problem, in wh ich a training set of data is 

used to construct a prediction rule. A naive estimate of the prediction rule's accuracy is 

the proportion of eorrect guesses it makes on its own training set, but this can be greatly 

overoptimistic since the prediction rule is explicitly constructed to minimize errors on the 

training set. In this case, a natural choice of R(y, F) is the overoptimism, the difference 

between the naive estimate and the actual success rate of the prediction rule for new data. 

Efron (1983) gives the bootstrap estimate of overoptimism, and shows that it is closely 

related to cross-validation, the usual method of estimating overoptimism. The paper go es 

on to show that some modifications of the bootstrap estimate greatly outperform both 

cross-validation and the bootstrap. 

5. More complicated data sets 

The bootstrap is not restrieted to situations where the data is a simple random sam pIe 

from a single distribution. Suppose for instance that the data consists of two independent 

random sampIes, 

Ui, U2, "', and Vi, V2 , ... , (5.1) 

where Fand C are possibly different distributions on the real !ine. Suppose also that the 

statistic of interest is the Hodges-Lehmann shift estimate 

O=median{ VJ - U i i = 1,2, "', m, j= 1, 2, "', n}. (5.2) 

Having observed UI= UI, U2= U2, ... , Vn=Vn, we desire an estimate for o(F, C), the 

standard error of (j. 

The bootstrap estimate of o(F, C) is (J = (Jet, G), where f is the empirical distribu­

tion of UI, U2, "', Um, and G is the empirical distribution of VI, V2, "', Vn. It is easy to 

modify the Monte Carlo algorithm of Section 2 to numerically evaluate B. Let y = (Ul, 

uz, ... , Vn) be the observed data vector. A bootstrap sampie y' = (ur, u;, ... , vi, 
"', consists of a random sampIe ut, ''', from fand an independent random sampIe 

Vt', "', V: from G. With only this modification, steps (i) through (iii) of the Monte Carlo 

algorithm produce (JB, (2.4), approaching (J as B-HXJ. 

Table 4 re ports on a simulation experiment investigating how weIl the bootstrap 

works on this problem. 100 trials of situation (5.l) were run, with m = 6, n = 9, Fand C 

both Uniform [0, 1]. For each trial, both B = 100 and B = 200 bootstrap replications were 

Table 4 
Bootstrap estimate of Standard Error for the Hodges-Lehmann 

two-sample shift estimate; m=6. 11=9; true distributions 
Fand G both Uniform [O,lJ. The table shows summary 

statistics für OB, üver 100 trials üf this situation 

Summary Statistics Für (jB 

Average 
I 

Sl. Dev. C.V. 

B=100: .165 

I 

.030 .18 

B=200: 

I 

.166 .031 .19 
True (1 : .167 
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Fig.8 A schematic illustration of the bootstrap process for a general probability model P. The 
expectation of R (y, Pl is estimated by the bootstrap expectation of P (y'. Pl. The 
double arrow indicates the crucial step in applying the bootstrap. 

generated, The bootstrap estimate i3 B was nearly unbiased for the true standard error 

a(F, G) = .167 for either B = 100 or B = 200, with a quite sm a11 standard deviation from trial 

to trial. The improvement in going from B = 100 to B = 200 is too small to show up in this 

experiment. 

In practice, statisticians must often consider quite complicated data structures: time 

series models, multi-factor layouts. sequential sampling, censored and missing data, etc. 

Figure 8 illustrates how the bootstrap estimation process proceeds in a general situation. 

The actual probability mechanism P which generates the observed data y belongs to some 

familY.9 of possible probability mechanism. In the Hodges-Lehmann example, P= (F, 

e), a pair of distributions on the real line, :J' equals the family of a11 such pairs, and y = 

(UI, Uz, "', Um, VI, V2, ''', Vn ) is generated by random sampling m times from Fand n 

times from e. 
Wehave a random variable of interest R (y, P), wh ich depends on both y and the 

unknown model P, and we wish to estimate so me aspect of the distribution of R. In the 

Hodges-Lehmann example, R(y, P)= (j(y)- Ep{(j}, and we estimated a(P)=EpR(y, P)2, 

the standard error of e. As before, the notation E p indicates expectation when y is 

generated according to mechanism P. 

We assume that we have some way of estimating the entire probability model P from 

the data y, producing the estimate called P in Figure 8. (In the two·sample problem, P 
= (F, G), the pair of empirical distributions.) This is the crucial step tor the bootstrap , It 

ean be carried out either parametrically or nonparametrically, by maximum likelihood or 

by some other estimation technique. 

Onee we have p, we can use Monte Carlo methods to generate bootstrap data sets y', 

according to the same rules by wh ich y is generated from P, The bootstrap random 

variable R(y·, p) is observable, since we know P as weil as y', so the distribution of 

R{y·, p) can be found by Monte Carlo sampling. The bootstrap estimate of EpR{y, p) 

is then E pR(y', p), and likewise for estimating any other aspect of R(y, P )'s distribution. 

A regression model is a familiar example of a complicated data structure. We 

observe y = (YJ, Y2, "', y,,), where 

y,=g(ß, t,HE, i=l, 2, "', n. (5.3) 

Here ß is a vector of unknown parameters we wish to estimate; for each i, t, is an 

observed veetor of eovariates; and g is a known function of ß and {" for instance eß'li. 

The E, are an i.i.d. sam pIe from some unknown distribution F on the real line, 
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(5.4 ) 

where F is usually asslUTIed to be centered at 0 in some sense, perhaps E{e}=O or Prob{c 

<O}=.5. The probability model is P=(ß, F); (5.3) and (5.4) describe the step in 

Figure 8. The covariates t 1 , t 2 , "', tn, like the sampie size n in the simple problem (1.1), 

are considered fixed at their observed values. 

For every choice of ß we have a vector g(ß)=(g(ß, tl), g(ß, t2), "', g(ß, tn» of 

predicted values for y. Having observed y, we estimate ß by minimizing some measure 

of distance between g(ß) and y, 

;3: min D(y, g(ß». (5.5) 
p 

n 

The most eommon choice of Dis D(y, g)= {Yi-g(ß, tJ}2. 
i::::l 

How accurate is ;3 as an estimate of ß? Let R(y, P) equal the vector ;3-ß. A 

familiar measure of accuracy is the mean square error matrix 

(5.6) 

The bootstrap estimate of accuracy t = x( P) is obtained by following through Figure 8. 

There is an obvious choice for P = (;3, F) in this case. The estimate ;3 is obtained 

from (5.5). Then F is the empirical distribution of the residuals, 

1 -
F: mass-on ['=Yi-g(ß, ti), i=l, ''', n. (5.7) 

n 
A bootstrap sampie y* is obtained by following rules (5.3), (5.4). 

y;=g(;3, i=l, 2, ''', n, (5.8) 

where e-L d, is an Li.d. sampie from F. [Notice that the are independent 

bootstrap variates, even though the [i are not independent variates in the usual sense.] 

Each bootstrap sampie y*(b) gives a bootstrap value ;3*(b), 

;3*(b): min D(y*(b), g(ß», (5.9) 
p 

as in (5.5). The estimate 
B _ _ _ _ 

{ß*Cb)-ß*(· )}{ß*(b)-ß*(·»)' 
... 

B 
(5.10 ) 

approaches the bootstrap estimate t as B .... 00. rN e could just as weH divide by B -1 in 

(5.10) ) 

In the case of ordinary least squares regression, where g(ß, t,l=ß'f, and D(y, g)= 

f(Yi-gi)2, Section 7 of Efron (1979) shows that the bootstrap estimate, B=oo, can be 
i=l 

calculated without Münte Carlo sampling, and is 

(5.11 ) 

This is the usual Gauss-Markov answer, except for the divisor n in the definition of 0 2• 

There is anüther, simpler way to bootstrap a regression problem. We can consider 

each covariate-response pair Xi=(t" Y,} to be a single data point obtained by simple 

random sampling from a distribution F. If the covariate vector t i is P -dimensional, F is 

a distribution on p + 1 dimensions. Then we apply the bootstrap as described originally in 

Seetion 2 to the data set XI, Xz, "', Xn0! F. 
The two bootstrap methods for the regression problem are asymptotically equivalent, 

but can perform quite differently in small-sample situations. The class of possible 
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probability models P is different for the two methods. The simple method, described last, 

takes less advantage of the special structure of the regression problem. It does not give 

answer (5.11) in the case of ordinary least squares. On the other hand the simple method 

gives a trustworthy estimates of !/ s variability even ij the regression model (5.3) is not 

correct. The bootstrap, as outlined in Figure 8, is very general, but because of this 

generality there will often be more than one bootstrap solution for a given problem. 

As the final example of this Section, we disClISS censored data. The ages of 97 men at 

a California retirement center, Channing House, were observed either at death (an uncen· 

sored observation) or at the time the study ended (a censored observation). The data set 

Y={(Xl, dl), (xz, dz), (X97, d97)}' where Xi was the age of the i-th man observed, and 

1
1 Xi uncensored 

d i = if 

o Xi censored. 

(5.11 ) 

Thus (777, 1) represents a Channing House man observed to die at age 777 months, while 

(843, 0) represents a man 843 months old when the study ended. His observation could be 

written as "843 +", and in fact di is just an indicator for the absence or presence of "+". 
A typical data point (Xi, D i ) can be thought of as generated in the foJlowing way: a 

real lifetime X? is selected randomly according to a survival curve 

(O:o:;;t<oo) (5.12) 

and a censoring time W i is independently selected according to another survival curve 

R(!)= Prob { W i > t}, (O:s t < (0). (5.l3) 

The statistician gets to observe 

and 

Xi=min{X?, W.} (5.14) 

1
1 X.=X? 

D.= if 

o X,=W, 

(5.15) 

Note: 1- 5'( t) and 1- R( t) are the cumulative distribution functions for and W. respectively; 
with censored data it is more convenient to consider survival curves than c.dJ.'s. 

Under assumptions (5.12 )-(5.15) there is a simple formula for the nonparametric MLE 

of SOU), called the Kaplan- Meier estimator, Kaplan and Meier (1958). For convenience 

suppose XI<X2<X3'''<Xn, n=97. Then the Kaplan-Meier estimate is 

§o(t)=IT ( 
n-z (5.16 ) 

where k t is the value of k such that tE [Xk, Xk+l]. In the case of no censoring, SOU) is 

equivalent to the observed empirical distribution of XI, X2, ... , X n , but otherwise (5.16) 

corrects the empirical distribution to account for censoring. Likewise 

R(t)=n ( n--:-!l)l-d, 
i-I n- z 

(5.17) 

is the Kaplan-Meier estimate of the censoring curve R( t). 

Figure 9 shows §OU) for the Channing House men. It crosses the 50% survivallevel 

at e = 1044 months. Call this value the observed median lifetime. We can use the 

bootstrap to assign a standard error to the observed median. 

The probability mechanism is P=(SO, R); P produces (X?, D i ) according to (5.12)-
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Fig.g Kaplan-Meier Estimated Survival Curve for the Channing House Men; t = Age in 
Months. The Median Survival Age is estimated to be 1,044 Months (87 years) 

(5.15), and y = {(Xl, d l 1, ... , (Xn, dn)} by n = 97 independent repetitions of this process. An 

obvious choice of the estimate P in Figure 8 is (S°, ih (5.14), (5.15). The rest of the 

bootstrap process is automatie: S° and R replace S° and R in (5.12), (5.13); n pairs (X7, 
are independently generated according to rules (5.12 )-(5.15), giving the bootstrap data 

set y*={(xt. dt), ... , and finally the bootstrap Kaplan-Meier curve 5°* is 

constructed according to formula (5.16), and the bootstrap observed median e* calculated. 

For the Channing House data, B = 1600 bootstrap replications of 8* gave estimated 

standard error (j = 14.0 months for e. An estimated bias of 4.1 months was calculated as 

at (4.4). Efron (1981C) gives a fuller description. 

Once again there is a simpler way to apply the bootstrap. Consider each pair y, = (x" 

d,) as an observed point obtained by simple random sampling from a bivariate distribution 

F, and apply the bootstrap as described in Section 2 to the data set Yl, Y2, ••. , F. This 

method makes no use of the special structure (5.12)-(5.15). Surprisingly, it gives exactly 

the same answers as the more complicated bootstrap method described earlier, Efron 
(l981A). 

6. Examples with more complicated data structures 

Example 1 : Autoregressive time series model 

This example illustrates an application of the bootstrap to a famous time series. 

The data are the W olfer annual sunspot numbers for the years 1770-1889 (taken from 

Anderson, 1976). Let the count for the i-th year be Zi. After centering the data, (replac­

ing z, by Z,- z,) we fit a first order autoregressive model 

Zi=<f;Z'-I+Ei (6.1) 

where E,-i.i.d. N(O, Q'2). The estimate f turned out to be .815 with an estimated 

standard error, one over the square root of the Fisher information, of .053. 

A bootstrap estimate of the standard error of (f can be obtained as follows. Define the 

residuals Ei=zi- fZ'-1 for i=2, 3, ,,,120. A bootstrap sam pIe zi, Z;"'Z;'20 is created by 

sampling E'!, f! ... Eizo with replacement from the residuals, then letting zi = Zl, and z7 = 
(fZ;-I+[1, i=2, '''120. Finally, after centering the time series zJ, '''Zi20, (f* is the 

estimate of the autoregressive parameter far this new time series. (We cauld, if we 
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Fig.lO Bootstrap histogram of if;* .. .. ·1>',.0. for the Wolfer sunspot data, model (6.1). 
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Fig. 11 Bootstrap histogram of a', ... a "000 for the Wolfer sunspot data, model (6.2). 

wished, sampIe the Er from a fitted normal distribution.) 

A histogram of 1000 such bootstrap values (M, r/J;, "'r/Jiooo is shown in Figure 10. 

The bootstrap estimate of standard errar was .055, agreeing nicely with the usual 

formula. Note however that the distribution is skewed to the left, so a confidence interval 

for r/J might be asymmetrie about i, as discussed in Sections 8 and 9. 

In bootstrapping the residuals, we have assumed that the first order autoregressive 

model is correet. (Recall the discussion of regression models in Section 5). In fact, the 

first order autoregressive model is far trom adequate for this data. A fit of second-order 

autoregressive model 

Z,=aZi l+eZ i - 2+Ei (6.2) 

gave estimates Ci = l.37, rJ = - .677, both with an estimated standard error of .067, based on 

Fisher information calculations. We applied the bootstrap to this model, producing the 

histograms for ai, "'aiooo and ei, "'Oiooo shown in Figures 11 and 12 respectively. 
The bootstrap standard errors were .070 and .068 respectively, both elose to the usual 

value. Note that the additional term has redueed the skewness of the first coefficient. 
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Fig.12 Bootstrap histogram of 0*, ···0·'000 for the Wolfer sunspot data, model (6.2). 

Example 2 : Estimating a response transformation in regression 

Box and Cox (1964) introduced a parametric family for estimating a transformation of 

the response in a regression. Given regression data {(XI, YI), "'(Xn, Yn)}, their model takes 

the form 
(6.3) 

where Zi(;\)= (yf-ll/;\ for kt=O and log Yi for ;\ =0, and Ei - i.i.d N(O, (l"Z). Estimates of 

;\ and ß are found by minimizing Z i-X i • ß)2. 

Breiman and Friedman (1984) proposed a non-parametric solution for this problem. 

Their so-called ACE ("Alternating Conditional Expectation") model generalizes (6.3) to 

S(Yi )=Xi'ß+Ci (6.4) 

where s(' ) is an unspecified smooth function. (In its most general form, ACE allows for 

transformations of the covariates as weIl). The function s(·) and parameter ß are 

estimated in an alternating fashion, utilizing a non-parametric smoother to estimate s(' ). 

In the following example, taken from Friedman and Tibshirani (1984), we compare the 

y 

Fig. 13 Estimated transformation from ACE and the log function, for Box and Cox example. 
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Box and Cox procedure to ACE and use the bootstrap to assess the variability of ACE. 
The data, from Box and Cox (1964), consist of a 3 X 3 X 3 experiment on the strength 

of yarns, the response Y being ntlDlber of cycles to failure, and the factors leng1h of test 

specimen (XI) (250,300 or 350 mm), amplitude of loading cycle (X2) (8,9, or 10 mm), and 

load (X3) (40,45 or 50 gm). As in Box and Cox, we treat the factors as quantitative and 

allow only a linear term for each. Box and Cox found that a logarithmic transformation 

was appropriate, with their procedure producing a value of - .06 for X with an estimated 

95 percent confidence interval of (- .18, .06). 
Figure 13 shows the transformation selected by the ACE algorithm. For comparison, 

the log function is plotted (normalized) on the same figure. 

The similarity is truly remarkable! In order to assess the variability of the ACE 

curve, we can apply the bootstrap. Since the X matrix in this problem is fixed by design, 

we resampled from the residuals instead of from the (Xi, Yi) pairs. The bootstrap 

procedure was the following: Calculate residuals [, = S(Yi)- Xi .g, i = 1, 2, ... n 

Repeat B times 

Choose a sampie €r, ... with replacement from € I, ••• f n 

Calculate S-I(Xi'ß+fn, i=l, 2, "'n 

Compute 5*(') = result of ACE algorithm applied to (XI, yn, ... (XIl, 

End 
The number of bootstrap replications B was 20. Note that the residuals are computed 

on the s(' ) scale, not the Y scale, because it is on the sC, ) scale that the true residuals are 

assumed to be approximately i. i.d.. The 20 estimated transformations, sr(·), ... s;o(' ) 
are shown in Figure 14. 

The tight clustering of the smooths indicates that the original estimate SC·) has low 

variability, especially for smaller values of Y. This agrees qualitatively with the short 

confidence interval for il in the Box and Cox analysis. 

y 

Fig. 14 Bootstrap replications oi ACE transformations for Box and Cox example. 

7. Bootstrap confidence intervals 

This section presents three closely related methods of using the bootstrap to set 
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confidence intervals. The discussion is in terms of simple parametrie models where the 

logical basis of the bootstrap methods is easiest to see. Section 8 extends the methods to 

multiparameter and nonparametric models. 

We have discussed obtaining Ö, the estimated standard error of an estimator {j. In 

practice, IJ and Ö are usually used together to form the approximate confidence interval 

e E (j ± az(al, (1.7), where zlal is the 100· a percentile point of a standard normal distribu· 

tion. The interval (1.7) is claimed to have approximate coverage probability 1 For 

the law school example of Section 2, the values IJ ===.776, Ö === .115, z(OS) === -l.645, give e E 

[.587, .965] as an approximate 90% central interval for the true eorrelation coefficient. 

We will eaU (l.7) the standard interval for e. When working within parametrie 

families like the bivariate normal, Ö in (1.7) is usually obtained by differentiating the log 

likelihood function, see Section 5a of Rao (1973), though in the context of this paper we 

might prefer to use the parametrie bootstrap estimate of G, e.g., aNORM in Section 2. 

The standard intervals are an immensely useful statistical tool. They have the great 

virtue oi being automatie: a computer program can be written which pro duces (1.7) 

directly from the data y and the form of the density function for y, with no further input 

required from the statistician. N evertheless the standard intervals can be quite inaccu­

rate, as Table 5 shows. The standard interval (1.7), using ÖNORM, (2.5), is strikingly 

different than the exact interval based on the assumption of a bivariate 

normal sampling distribution F. 

In this case it is that it is better to make the transformation (j === 

tanh 1 ( IJ J, = tanh 1 (8), apply (1. 7) on the rf; scale, and then transform back to the e scale. 

The resulting interval, line 3 of Table 5, is moved closer to the exact interval. However 

there is nothing automatie about the tanh I transformation. For a different statistic than 

the correlation coefficient or a different distributional family than the bivariate normal, we 

might very well need other tricks to make (1.7) perform satisfactorily. 

The bootstrap can be used to produce approximate confidence intervals in an auto­

matie way. The following discussion is abridged from Efron (1984A and B) and Efron 

(1982, Chapter 10). Line 4 of Table :5 shows that the parametric bootstrap interval for the 

correlation coefficient eis nearly identical to the exact interval. "Parametric" in this case 

means that the bootstrap algorithm begins from the bivariate normal MLE FNORM, as for 

the normal theory curve of Figure 2. This good performance is no accident. The boot­

strap method used on line 4 in effect transforms iJ to the best (most normal) sc ale, finds the 

Table 5 
Exact and approximate central 90% confidence intervals for g, the true correlation 

coefficient. from the law school data of Figure 1. R/L = ratio of right side of 
interval. measured from 0=.776. to left side. The exact interval is 

strikingly asymmetrie about rJ. Section 8 diseusses 
the nonparametrie method of line ;) 

1. Exaet (Normal Theory): [.496, .898: RjL= .44 

2. Standard 0.7): [.587, .965J RjL=1.00 

3. Transformed Standard: [.508. .907J RjL= .49 

4. Parametrie Bootstrap (BC) : [.488, .90üJ R/L= .43 

5. Nonparametrie Bootstrap (BCG ) : [.43. .92 J R/L= .42 
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appropriate interval, and transforms this interval back to the 0 scale. All of this is done 

automatically by the bootstrap algorithm, without requiring special intervention from the 
statistician. The price paid is a large amount of computing, perhaps B = 1000 bootstrap 

replications, as discussed in Section 10. 

Define e(s) to be the parametric bootstrap c.d.!. of {f*, 
e(s )=Prob.{{f*< s}, (7.1) 

where Prob. indicates prob ability computed according to the boots trap distribution of fj •. 

In Figure 2 e(s) is obtained by integrating the normal theory curve. We will present 

three different kinds of bootstrap confidence intervals, in order of increasing generality. 

All three methods use percentiles of G to define the confidence interval. They differ in 

wh ich percentiles are used. 
The simplest method is to take eE [e-1(a), e- 1(l-a)] as an approximate 1-2a 

central interval for O. This is ca lied the percentile method in Seetion 10.4 of Efron (1982). 
The percentile method interval is just the interval between the 100· a and 100· (1- a ) 

percentiies of the bootstrap distribution of (f*. 
We will use the notation O[a] for the a-level endpoint of an approximate confidence 

interval for e, so 0 E [e[a], 8[1- a]] is the central 1-2a interval. Subscripts will be used 

to indicate the various different methods. The percentile interval has endpoints 

8p[a] == C-'(a). (7.2) 
This compares with the standard interval, 

8s[a]= (f + az(QI. (7.3) 

Suppose the bootstrap c.d,f. G is perfectly normal, say 

G(s)= l1>e (f), (7.4 ) 

where l1>(s)= 1: (2Jr) li2 e t212dt,the standard normal c.dJ. Inotherwords,supposethat 

{f* has bootstrap distribution N ({f, ( 2 ). In this case the standard method and the 

percentile method agree, Bs[a]=Bp[a]. In situations like that of Figure2, where G is 

markedly nonnormal, the standard interval is quite different from (7.2). Which is bett er ? 

To answer this question, consider the simplest possible situation, where for aB 8 

(j2). (7.5) 

That is, we have a single unknown parameter e with no nuisance parameters, and a single 
summary statistic tf normally distributed about B with constant standard errar G. In this 

case the parametric bootstrap c.d,f. is given by (7.4), so Bs[a]=Bp[a]. (The bootstrap 

estimate (j equals a.) 

Suppose though that instead of (7.5) we have. for all 8. 

,2), (7.6) 

for so me monotone transformation = g( (j). I/; = g( B), where , is a constant. In the 

carrelation coefficient example the function g was tanh-'. The standard limits (7.2) can 

now be grossly inaccurate. However it is easy to verify that the percentile limits (7.2) are 

still correct. "Correct" here means that (7.2) is the mapping of the obvious interval for 1/;, 

back to the B scale. It is also correct in the sense of 

having exactly the claimed coverage probability 1-2a. 

Another way to state things is that the percentile intervals are transformation invar-
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iant, 

(7.7) 

for any monotone transformation g. This implies that if the percentile intervals are 

correct on some transformed scale ifJ = g( 8), then they must also be eorreet on the original 
scale 8. The statistician doesn't need to know the normalizing transformation g, only that 

it exists. Definition (7.2) automatically takes care of the bookkeeping involved in the use 
of normalizing transformations for eonfidenee intervals. 

Fisher's theory of maximum likelihood estimation says that we are always in situation 

(7.5) to a first order of asymptotie approximation. However we are also in situation (7.6) 

for any ehoice of g to the same order of approximation. Efron (1984A and B) uses higher 
order asymptotic theory to differentiate between the standard and bootstrap intervals. It 

is the higher order asymptotie terms which often make exact intervals strongly asym· 

metrie about the MLE 8, as in Table 5. The bootstrap intervals are effeetive at eapturing 

this asymmetry. 

The pereentile method automatically ineorporates normalizing transformations, as in 

going from (7.5) to (7.6). It turns out that there are two other important ways that 

assumption (7.5) ean be misleading, the first of which relates to possible bias in 8. For 

example consider fo( 8), the family of densities for the observed correlation eoefficient (j 
when sampling n = 15 times from a bivariate normal distribution with true correlation 8. 

In fact it is easy to see that no monotone mapping iJ = g( 8), rp = g( 8) transforms this 

family to iJ-N(ifJ, r 2 ), as in (7.6). If there were sueh a g, then Probo{Ö<8}=Prob,t{j) 
< ifJ}= .50, but for 8=.776 integrating the density function Im( Ö) gives Prob'-.776{ [j< 8} 

= .43l. 
The bias-corrected percentile method (BC method) makes an adjustment for this type 

of bias. Let 
(7.8) 

where (/)-1 is the inverse function of the. standard normal c.d./. The Be method has a­

level endpoint 
(7.9) 

Note: if C( 8")= .50, that is if half of the bootstrap distribution of 0- is less than the observed value 
0, then zo=O and 8Bc[al=8p[al. Otherwise definition (7.9) makes a bias correction. 

Section 10.7 of Efron (1982) shows that the Be interval for () is exaetly correet if 

iJ -N(r/J-zor,r 2 ) (7.10) 

for some monotone transformation iJ =g( 8), cp =g«() and some constant zoo It doesn't 

look Iike (7.10) is much more general than (7.6), but in faet the bias eorrection is often 

important. 
In the example of Table 5, the percentile method (7.2) gives central 90% interval 

[.536, .911] compared to the BC interval [.488, .900]. By definition the endpoints .496 

and .898 of the exact interval satisfy 

< .776). (7.11) 

The corresponding quantities for the BC endpoints are 

8> .776}= .0465, .• oo{8 < .776} = .0475, (7.12) 

compared to 
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{B >. 776} = .0725, {tl< .776}= .0293. (7.13 ) 

for the percentile endpoints. The bias correction is quite important in equalizing the error 

probabilities at the two endpoints. If zo can be approximated accurately (as mentioned in 

Section 9), then it is preferrable to use the BC intervals. 

Table 6 shows a simple example where the BC method is less successfuL The data 

consists of the single observation B 8(xM 19), the notation indicating an unknown scale 

parameter () times a random variable with distribution xf91 19. (This definition makes B 
unbiased for ().) A confidence interval is desired for the scale parameter (). In this case 

the BC interval based on B is adefinite improvement over the standard interval (1. 7), but 

goes only about half as far as it should toward achieving the asymmetry of the exact 

intervaL 

It turns out that the parametric family B ()( X f91 19) cannot be transformed into 

(7.10), not even approximately. The results of Efron (l982A) show that there does exist a 

monotone transformation g such that <i=g(B), rp=g({) satisfy to a high degree of 

approximation 

d) 
The constants in (7.14) are zo=.1082, a=.1077. 

Table 6 
Central 90% confidence intervals for (], having observed 

1. 

2. 

3. 

4. 

5. 

The exact interval is sharply skewed to the right of Ö. 
The BC method is only a partial improvement over 
the standard interval. The BCa interval, a = .l08, 

agrees alm ost perfectly with the exact interval 

Exact [.631'8, 1.88·8J R/L=2.38 

Standard (1.7) [.466,8, 1.53·8J R/L=l.OO 

Be (7.9) [.580. 0, 1.69· &J R/L=1.64 

BCa (7.l5) [,630· 8, 1.88· 8J 

N onparametric Bea [.640· Ö. 1.68· eJ R/L= 1.88 

(7.14) 

The BCa method, Efron (1984B), is a method of assigning bootstrap confidence inter· 

vals which are exactly right for problems which can be mapped into form (7.14). This 

method has a-Ievel endpoint 

(7.15) 

If a=O then {)BCa[a] = {)Bc[a], but otherwise the BCa intervals can be a substantial improve­

ment over the BC method, as shown in Table 6. 

The constant Zo in (7.15) is given by zo=cP-1{C(Bl}, (7.8), and so can be computed 

directly from the bootstrap distribution. How do we know a? It turns out that in one­

parameter families 10 ( B), a good approximation is 

. 
a= 6 . (7.16 ) 

where SKEWo-;;( io(t» is the skewness at parameter value 8 = B of the score statistic 
. a 
loU )=J1jlog loU). For () - {)(xf91 19) this gives a= .1081, compared to the actual value 
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a=.1077 derived in Efron (1984B). For the normal theory eorrelation family of Table 5 

which explains why the BC method, whieh takes a=O, works so well there. 

The advantage of formula (7.18) is that we needn't know the transformation g leading 

to (7.14) in order to approximate a. In fact 8nc a [al. like 8Bc[a] and 8p[al is transforma­

tion invariant, as in (7.7). Like the bootstrap methods, the BCa intervals are eomputed 

direetly trom the form of the density function fo(·). for 8 near ii. 
Formula (7.16) applies to the ease where 8 is the only parameter. Section 8 briefly 

discusses the more ehallenging problem of setting eonfidenee intervals for a parameter 8 

in a multiparameter family, and also in nonparametrie situations where the number of 

nuisanee parameters is effeetively infinite. 

To summarize this section, the progression trom the standard intervals to the BCa 

method is based on aseries of increasingly less restrictive assumptions, (7.5), (7.6), (7.10), 

and fina11y (7.14). Eaeh step requires the statistician to do a greater amount of computa­

tion, first the bootstrap distribution G, then the bias-eorreetion constant Zo, and finally the 

constant a. However a11 of these eomputations are algorithmie in eharaeter, and ean be 

earried out in an automatie fashion. 

Chapter 10 of Efron (1982) discusses several other ways of using the bootstrap to 

eonstruct approximate eonfidence intervals, wh ich will not be presented here. One of 

these methods, the "bootstrap t", was used in the blood serum example of Seetion 4. 

8. Nonparametrie and multiparameter confidence intervaIs 

Seetion 7 focused on the simple case (j - f., where we have only a real-valued 

parameter 8 and a real-valued summary statistie (j from which we are trying to eonstruet 

a eonfidence interval for 8. Various favorable properties of the bootstrap confidence 

intervals were demonstrated in the simple case, but of course the simple case is where we 

least need a general method like the bootstrap. 

N ow we will discuss the more eommon situation where there are nuisance parameters 

besides the parameter of interest 0; or even more generally the nonparametric case, where 

the number of nuisance parameters is effectively infinite. The discussion is limited to a 

few brief examples. Efron (1984A and B) develops the theoretical basis of bootstrap 

confidence intervals for complicated situations, and gives many more examples. 

Example l. Ratio estimation 

The data consists of Y = (Yl, Y2), assumed to come tram a bivariate normal distribution 

with unknown mean vector 1) and covariance matrix the identity, 

y- N Z(1), n (8.1 ) 

The parameter of interest, for which we desire a confidenee interval, is the ratio 

8=1l2/111. (8.2) 

Fieller (1954) provided well- known exact intervals for e in this case. The Fieller intervals 

are based on a clever trick, which seems very special to situations (8.1), (8.2). 

Table 7 shows Fieller's central 90% interval for 8 having observed y = (8, 4). Also 

shown is the Fieller interval for ,p= 1/8= 1l1/1l2, which equals [.76-', .29 lJ. the obvious 

transformation oi the interval for 8. The standard interval (1, 7) is satisfactory for 8, but 

not for,p. Notice that the standard interval does not transform correctly from e to ,p. 
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Table 7 
Central 90% confidence intervals for () = ""/77' and for '" = 11 (). 

having observed (y,.y.,)=(8. 4) from a bivariate nonnal 
distribution y - Nb), J). The Be intervals, !ine 2, 

are based on the parametrie bootstrap 
distribution of fJ = y.,/ y, 

for 8 

Exact (Fieller) : [.29, .76J 
Pararnetric Boot (BC) : [.29 . . 76J 
Standard (1.7) : [.27 . . 73J 

MLE IJ= .5 

for </J 

[1. 32. 3. 50J 

[1. 32. 3. 50J 

[1.08.2.92J 

<$=2 

27 

Line2 shows the BC intervals based on applying definitions (7.8), (7.9) to the para· 

metric bootstrap distribution of {j = Y2/Y' (or iJ = Y, /Y2). This is the distribution of {j* = 
y:/yf when sampling y. = (yt, y;) from FNORM - N 2 ( (Yl. Y2), 1). The bootstrap intervals 
transform correctiy, and in this case they agree with the exact interval to three decimal 

places. 

Example 2. Product of normal means 
For most multiparameter situations, there do not exist exact confidence intervals for 

a single parameter of interest. Suppose for instance that (8.2) is changed to 

e = 7M2 (8.3) 

still assuming (8.n Table 8 shows approximate intervals for e, and also for f/> = 82 , 

having observed y = (2, 4). The "almost exact" intervals are based on an analogue of 

Fieller's argument, Efron (1984A), which with suitable care can be carried through to a high 

degree of accuracy. Onee again, the parametric BC intervals are a elose match to !ine 1. 

The fact that the standard intervals do not transfonn correctly is particularly obvious here. 
The good performance of the parametric BC intervals is not accidental. The theory 

developed in Efron (1984A) shows that the BC intervals, based on bootstrapping the MLE 

{j, agree to high order with the almost exact intervals in the following dass of problems: 

the data y comes from a multiparameter family of densities f71(y), both y and 71 k­
dimensional vectors; the real-valued parameter of interest e is a smooth function of 71, e 
= t( Y); and the family fY)(y) can be transformed to multivariate normality, say 

g(y)- N k( h( 7J), 1), (8.4) 

Table 8 
Central 90% confidence intervals for () = l1,1J2 and '" = 82 having observed 

y = (2.4). where y - N,(7). 1). The almost exact intervals 
are based on the high order approximation theory of Efron (1984A). 

1. 

2. 

3. 

The Be intervals of line 2 are based on the parametrie 
bootstrap distribution of {j = y,y., 

for () for '" 

Almost Exact : [1.77. 17.03J [ 3.1. 290.0J 
Parametric Boot (Be) : [1.77. 17.12J [ 3.1. 293.1J 
Standard (1.7) : [0.64. 15.36J [-53.7. 181.7J 

MLE 8""8 r$ =64 



28 B. Efron and R. Tibshirani 

by some one-to-one transformations g and h. 

J ust as in Seetion 7, it is not neeessary for the statistician to know the normalizing 

transformations g and h, only that they exist. The BG intervals are obtained direet1y 
from the original densities we find ij = ij(y), the MLE of ij ; sampIe y. - h; eompute 

fj*. the bootstrap MLE of e; ealculate G. the bootstrap c.d./. of fj •. usually by Monte 

Carlo sampling, and finally apply definitions (7.8). (7.9). This proeess gives the same 

interval for () whether 01" not the transformation to form (S.4) has been made. 

Not a11 problems ean be transformed as in (S.4) to a normal distribution with eon· 

stant eovarianee. The ease eonsidered in Table 6 is a one-dimensional eounter-example. 

As a result the BG intervals do not always work as weB as in Tables 7 and 8, though they 

usually improve on the standard method. However in order to take advantage of the BGa 

method. whieh is based on more general assumptions, we need to be able to ealculate the 

eonstant a. 

Efron (1984B) gives expressions for" a" generalizing (7.16) to multiparameter families, 

and also to nonparametrie situations. If (8.4) holds, then "a" will have value zero. and the 
BCa method reduees to the BC ease. Otherwise the two intervals differ. 

Here we will diseuss only the nonparametric situation: the observed data y = (Xl. X2 • 

.... Xn) eonsists of i.i.d. observations Xl. X 2 • .... Xn-F. where F ean be any distribution 

on the sampie spaee &'" ; we want a eonfidenee interval for e= HF), some real-valued 

funetional of F; and the bootstrap interval are based on bootstrapping fj = t(F), whieh is 

the nonparametric MLE of e. In this ease a good approximation to the eonstant ais given 
in terms of the empirical inftuenee funetion U,O, defined in Seetion 10 at (10.11). 

(8.5) 

This is a convenient formula, since it is easy to numerically evaluate the ur by simply 

substituting a small value of e into (10.11). 

Example 3. The law school data 

For 8 the eorrelation eoefficient, the values of ur eorresponding to the 15 data points 

shown in Figure 1 are -1.507 •. 16S, .273, .004, .525, -.049, -.100, .477 •. 310 •. 004, -.526. 

- .091 • .434 •. 125, - .048. (N otiee how infiuential law school 1 is.) Formula (S.5) gives a 

- .0817. B = 100.000 bootstrap replications, about 100 times more than was actually 

neeessary. see Seetion 10. gave Zo = - .0927, and the eentral 90% interval 8 E [.43, .92] 

shown in Table 5. The nonparametric BCa interval is quite reasonable in this example, 

partieularly eonsidering that there is no guarantee that the true law school distribution F 
is anywhere near bivariate normal. 

Example 4. Mouse Leukemia data (the first example in Seetion 3) 

The standard eentral 90% interval for ß in formula (3.1) is [.835, 2.18]. The bias­

eorreetion constant zo .0275. giving BC interval [1.00. 2.39]. This is shifted far right of 
the standard interval. refieeting the long right tail of the bootstrap histogram seen in Figure 

3. We ean ealculate "a" from (8.5). eonsidering eaeh ofthe n = 42 data points to be a tripie 
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(Yi, x" (; i): a'= - .152. Because a is negative, the BCa interval is shifted back to the left, 

equaling [.788, 2.10]. This contrasts with the law school example, where a, Zo, and the 

skewness of the bootstrap distribution added to each other rather than cancelling out, 

resulting in a BCa interval much different than the standard interval. 

Efron (1984B)provides some theoretical support for the nonparametric BCa method. 

However the problem of setting approximate nonparametric confidence intervals is still far 

from weIl understood, and all methods should be interpreted with some caution. We end 

this section with a cautionary example. 

Example 5. The Variance 

Suppose X is the realline, and e = VarFX, the variance. Line 5 of Table 2 shows the 

result of applying the nonparametric BCa method to data sets X" X2, "', X20 which were 

actually i. i. d. sampies from a N (0, 1) distribution. The number .640 for example is the 

average of BBCa[.05]/ § over 40 such data sets, B = 4000 bootstrap replications per data set. 

The upper limit 1.68- § is noticeably smalI, as pointed out by Schenker (1983). The reason 

is simple: the nonparametrie bootstrap distribution of §* has a short upper tail ; compar­

ed to the parametric bootstrap distribution which is a scaled xi9 random variable. The 

results of Beran (1984), Bickel and Friedman (1981), and Singh (1981) show that the 

nonparametric bootstrap distribution is highly accurate asymptotically, but of course that 

isn't a guarantee of good small-sample behavior. Bootstrapping from a smoothed version 

of F, as in lines 3,4, and 5 of Table 2 alleviates the problem in this particular example. 

9. Bootstrap sam pie sizes 

How many bootstrap replications must we take? Consider the standard error esti­

mate aB based on B bootstrap replications, (2.4). As B-oo, aB approaches a, the 

bootstrap estimate of standard error as originally defined in (2.3). Because F does not 

estimate F perfectly, a=o(F) will have a non-zero coefficient of variation (CV) for 

estimating the true standard error 0= o(F); (jB will have a larger CV because of the 

randomness added by the Monte Carlo bootstrap sampling. 

It is easy to derive the following approximation, 

Table 9 
Coefficient of variation of OB, the bootstrap estimate of standard 

error based on B Monte Carlo replications, as a function of 
Band CV(8), the limiting eVas B-KÄ). 

Based on (9, 1), assuming E {cf 1= 0 

25 50 100 200 00 

CV(8) .25 .29 27 .26 .25 .25 

1 .20 .24 .22 .21 .21 .20 

.15 .21 .18 .17 .16 .15 

.10 .17 .14 12 .11 .10 

.05 .15 .11 .09 .07 .05 

0 .14 .10 .07 .0.') 0 
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(9.1 ) 

where i is the kurtosis of the bootstrap distribution of (j*, given the data y, and E{cf} its 

expected value averaged over y. For typical situations, CV( ä) lies between .10 and .30. 

For example if (j = X, n=20, N{O, 1), then CV( ä 
Table9 shows CV(äB ) for various values of Band CV(ä), assuming E{8}=0 in 

(9.I). For values of CV( ä) > .10, there is littie improvement past B = 100. In fact B as 

small as 25 gives reasonable results. Even smaller va lues of B can be quite informative, 

as we saw in the Stanford Heart Transplant Data, Figure 7 of Section 3. 

The situation is quite different for setting bootstrap confidence intervals. The calcu· 

lations of Efron (19848), Section 8, show that B = 1000 is a rough minimum for the number 

of Monte Carlo bootstraps necessary to compute the BC or BCa intervais. Somewhat 

smaller values, say B = 250, can give a useful percentile interval, the difference being that 

then the constant Zu need not be computed. Confidence intervals are a fundamentally 
more ambitious measure of statistical accuracy than standard errors, so it is not surprising 

that they require more computational effort. 

10. The jackknüe and the delta method 

This section returns to the simple case of assigning astandard error to (j (y) where y 

=(XI, "', Xn) is obtained by random sampling from a single unknown distribution, Xl, "', 

X" F. We will give another description of the bootstrap estimate ä, wh ich illustrates 
the bootstrap's relationship to oider techniques of assigning standard errors, like the 

jackknife and the delta method. 
For a given bootstrap sampie y* = "', as described in step (i ) of the algorithm 

in Section 2, let p'; indicate the proportion of the bootstrap sampie equal to Xi, 

#{x1=x;} . 1 2 n 2= , ,"', n, (10.1) 

p*=(M, pt, "', The vector p' has a rescaled multinomial distribution 

p*-Multn(n, pOlin (po=(l/n, l/n, "', l/n)), 00.2) 

where the notation indicates the proportions observed from n random draws on n cate· 

. 
1/9 2/9 1/9 

%, 1/27 1/9 1/9 1/21 %, 

Fig. 15 The bootstrap and iackknite sampling points in the 
case 11" 3. The bootstrap points (.) are shown with 
their probabilities. 
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gories, each with probability I/tl. 

For n = 3 there are 10 possible bootstrap vectors pO. These are indicated in Figure 15 

along with their multinomial probabilities, from 00.2). For example, p* = 0/ 3, 0, 2/3), 

corresponding to x· = (Xl, X3, X3) or any permutation of these values, has bootstrap 

probability 1/ 9. 

To make our discussion easier, suppose that the statistic of interest iJ is of functional 

form: iJ = e(F), where elF) is a functional assigning areal number to any distribution F 

on the sam pie space 2'. The mean, the correlation coefficient, and the trimmed mean are 

all of functional form. Statistics of functional form have the same value as a function of 

F, no matter what the sampIe size n may be, which is convenient for discussing the 

jackknife and delta method. 

For any vector P=(P" P2, "', Pn) having non-negative weights summing to 1, define 

the weighted empirical distribution 

F(p): probability p, on x. i = I, ... , n. 

For p = pO = I/n, the weighted empirical distribution equals F, 0.4). 

Corresponding to p is a resampled value of iJ, 
8(p)= fJ(F(p)). 

00.3) 

(10.4) 

The shortened notation 8(p) assurnes that the data (Xl, X2, "', X n ) is considered fixed. 

N otice that e-(pO) = fJ(F) is the observed value of the statistic of interest. The bootstrap 

estimate iJ, (2.3), can then be written 

iJ = [var. [j(p' )]J2, (10.5) 

where var. indicates variance with respect to distribution 00.2). In terms of Figure 15, a 
is the standard deviation of the ten possible bootstrap values [j(p'), weighted as shown. 

It looks like we could always caIculate iJ simply by doing a finite sumo Unfortunately 

the number of bootstrap points is en;l), 77,558,710 for n=15, so straightforward 

caIculation oi a is usually impractical. That is why we have emphasized Monte Carlo 

. approximations to a. Therneau (1983) considers the question of methods more effident 

than pure Monte Carlo, but at present there is no generally better method available. 

However there is another approach to approximating 00.5): we can replace the 

usually complicated function if (p) by an approximation linear in p, and then use the well­

known formula for the multinomial variance of a linear function. The jackknife approxi· 

mation [j;(p) is the linear function of p which matches [j (p), 00.4), at the n points 

corresponding to the deletion of a single Xi from the observed data set X" Xz, ... , X n, 

1 
p!,)= n-l (1 1 "',1,0, I, ''', 1) (10.6) 

i = I, 2, ... , n. Figure 15 indicates the jackknife points for n = 3 ; because [j is the functional 

form, (10.4), it doesn't matter that the jackknife points correspond to sampie size n-l 

rather than n. 

The linear function 8;(p) is calculated to be 

8;(p)= 8 In +(p-pO). U (10.7) 

where in terms of [jU)= [j(P!i)), [j(.)= i: [jen/n, and U is the vector with i-th coordinate 
f...;...l 

00.8) 
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The jackknife estimate of standard error, Tukey (1958), Miller (1974), is 

(10.9 ) 

A standard multinomial calculation gives the following theorem (Efron, 1982). 

THEOREM. The jackknife estimate of standard error equals [ni (n-l)]1/2 times the 

bootstrap estimate of standard error for ff j , 

81=[ var.OAp*)r z
. (10.10 ) 

In other words, the jackknife estimate is itself alm ost a bootstrap estimate, applied to a 

linear approximation of ff. The factor [ni (n-l)]1/2 in (10.10) makes 8} unbiased for (12 

in the case where ff = x, the sampIe mean. We could multiply the bootstrap estimate a 
by this same factor, and achieve the same unbiasedness, but there doesn't seem to be any 

consistent advantage to doing so. The jackknife requires n, rather than B = 50 to 200 

resamples, at the expense of adding a linear approximation to the standard error estimate. 

Tables 1 and 2 indicate that there is some estimating efficiency lost in making this 

approximation. For statistics like the sam pie median which are difficult to approximate 

linearly, the jackknife is useless, see Section 3.4 of Efron (1982). 

There is a more obvious linear approximation to ff(p) than ffAp). Why not use the 
first-order Taylor series expansion for ff (p) about the point p = pO ? This is the idea of 

J aeckel's infinitesimal jackkni/e (1972). The Taylor series approximation turns out to be 

ffr(P)= ff(pO)+(p-poy uo 

where 

UF=lim ffJJ1-:-c}p_o+c8.}-ff(pO) (10.11) 
E-O C 

8; being the i-th coordinate vector. This suggests the infinitesimal jackknife estimate of 

standard error 

all =- [var. Or(p*»)'i2= [2: U?2/n 2]1'2 (10.12) 

with var. still indicating variance under (10.2). The ordinary jackknife can be thought of 

as taking c = -li (n -1) in the definition of ur, while the infinitesimal jackknife lets c-+ 

0, thereby earning the name. 

The Ur' are values of what Mallows (1974) calls the empirical influence function. 

Their definition is a nonparametric estimate of the true influence function 

IF(x )=lim 8((1-e )F+eox)- 8(F), 
.-0 e 

0" being the degenerate distribution putting mass 1 on x. The right side of 00.12) is then 

the obvious estimate of the inftuence function approximation to the standard error of ff 

(Hampei, 1974), [f JF2(X )dF(x )lnp:2. The empirical inftuence function method 

and the infinitesimal jackknife give identical estimates of standard error. 

How have statisticians gotten along for so many years without methods like the 

jackknife and the bootstrap ? The answer is the delta method, which is still the most 

commonly used device for approximating standard errors. The method applies to statis· 

tics of the form t( Q 1, Qz, ... Q A), where t ( " " ''', .) is a known function and each Q a is 

an observed average, Qa = Qa(Xi )In. For example the correlation ff is a function of 
t=] 
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A = 5 such averages; the average of the first coordinate values, the second coordinates, the 

first coordinates squared, the second coordinates squared, and the cross-products. 

In its nonparametric formulation, the delta method works by (a) expanding t in a 

linear Taylor series about the expectations of the Qa ; (b) evaluating the standard error of 

the Taylor se ries using the usual expressions for variances and covariances of averages; 

and (c) substituting 7(t) for any unknown quantity r(F) occurring in (b). For example, 

the nonparametric delta method estimates the standard error of the correlation 8 by 

{ 82 [fi40 + fi04 + 2fi22 _. 4fi31 _ 4fi13 ]}li2 
4n m, fi20J102 ml fillfio2 fillfio2 

where, in terms of x;=(y" Zi), (Cramer 1946, p.359). 

THEOREM. For statistics of the form 8= t( QI, "', QA), the nonparametrie delta 

method and the infinitesimal jackknife give the same estimate of standard error (Efron, 

1981B). 

The infinitesimal jackknife, the delta method, and the empirical influence function 

approach are three names for the same method. Notice that the results reported in Line 

7 oi Table 2 show a severe downward bias. Efron and Stein (1981) show that the ordinary 

jackknife is always biased upwards, in a sense made precise in that paper. In the authors' 

opinion the ordinary jackknife is the method of choice if one does not want to do the 

bootstrap computations. 

Appendix 

Bootstrap Program 

The following FORTRAN program bootstraps the statistic defined by the user­

specified function THETA. Comments in itaJics are not part oi the FORTRAN code. 

Note that the random number subroutines IRAND and RAND will be installation depen­

dent. 

REAL Y(lOO), YSTAR(lOO), THST AR(lOOO) 

EXTERN AL THETA 

N = 100 sampie size 

NBOOT=1000 number 01 bootstraps 

DO 101=1, N 

READ(5, *) y(n read in data 

10 CONTINUE 

TEMP=THETA (N, Y) 

WRITE(6,l00) TEMP write out va[ue 0/ theta /or original sample 

100 FORMAT (' THETA= " f13.5) 

READ(5, *) ISEED read in seed lor random number generator 

CALL IRAND(ISEED) initialize random number generator 

IX) 20 1=1, NBOOT 

0030 J=l, N 
U = RAND ( ) gel a random number between 0 and 1 

II = INT(U * N) + 1 convert it to a random integer between 1 and N iI,f 

YST AR(]) = Y(II) assign the jth element 0/ bootstrap sampIe 
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30 CONTINUE 
THSTAR(I)=THETA(N, YSTAR) compute bootstrap value 

20 CONTINUE 

THBAR=O 

DO 40 1=1, NBOOT 

THBAR=THBAR+THSTAR(I)/NBOOT compute bootstrap mean 

40 CONTINUE 

THVAR=O 

DO 50 1=1, NBOOT 

THV AR = THV AR + (THST AR(I) - THBAR) * * 2 compute bootstrap variance 

50 CONTINUE 

SDBOOT = SQRT(THV AR/(NBOOT -1) compute bootstrap estimate 01 standard 

error 

WRITE(6,102) SDBOOT 

102 FORMAT(' BOOTSTRAP ESTIMATE OF STANDARD ERROR= ',fl3.5) 

WRITE(6,*) 

WRITE(6,103) 

103 FORMAT( , BOOTS TRAP V ALUES OF THETA: ') 

DO 60 1=1, NBOOT 

WRITE(6, *) THST AR(I) write out bootstrap va lues /or lurther analysis 

60 CONTINUE 

STOP 

END 

REAL FUNCTION THETA(N,Y) 

REAL yeN) 

compute statistic 0/ interest lor the sampIe y(1), y(2)· ··y(n) 

RETURN 

END 
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