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The BOSS Online Submission and Assessment

System

Mike Joy, Nathan Griffiths and Russell Boyatt

University of Warwick
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Computer programming lends itself to automated assessment. With appropriate software tools
program correctness can be measured, along with an indication of quality according to a set of
metrics. Furthermore, the regularity of program code allows plagiarism detection to be an integral
part of the tools that support assessment. In this paper, we describe a submission and assess-
ment system, called BOSS, that supports coursework assessment through collecting submissions,
performing automatic tests for correctness and quality, checking for plagiarism, and providing an
interface for marking and delivering feedback. We describe how automated assessment is incor-
porated into BOSS such that it supports, rather than constrains, assessment. The pedagogic and
administrative issues that are affected by the assessment process are also discussed.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer Uses in
Education—Computer Managed Instruction

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Online submission, programming languages, automated as-
sessment

1. INTRODUCTION

The number of students enrolling in degree courses in UK universities has increased
substantially over the past few years, leading to large class sizes and increased
student-staff ratios. A specific problem arising from this concerns the substantial
resources required to manage the assessment of practical exercises, so that students
receive accurate and timely feedback which will benefit their progress.
Automation of the assessment process is a potential solution, facilitated by the

ubiquity of Internet access and the relative affordability of computing equipment.
There has been a rapid expansion of tools, both commercial (such as WebCT [We-
bCT 2004] and Questionmark Perception [Questionmark 2004]) and within the
academic community (for example, the CASTLE Toolkit at the University of Le-
icester [Leicester University 2004] and TRIADS at Derby University [CIAD 2004]).
Most such products include assignment submission and automated assessment as
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part of the software functionality, and deal effectively with assessments which can
be formulated as simple questions (such as “multiple-choice” or “text entry”). This
is appropriate for “shallow” or “surface” learning, where knowledge and compre-
hension are being tested, at the lower levels of Bloom’s Taxonomy [Bloom and
Krathwohl 1956].
Computer programming is a creative skill, requiring “deep” learning, and one

which the student must practice in order to master. Existing generic tools do
not address such skills, and although there is substantial literature defining best-
practice for the use of such tools [Bull and McKenna 2001], it has been argued that
simple questions cannot be used to measure deep learning [Entwistle 2001].
Computer programs are, in principle, ideal subjects for automated assessment.

Not only can the correctness of a program be measured, but also its quality, by
the application of metrics. Furthermore, due to the regularity of program code,
techniques for plagiarism detection can be easily incorporated into the automated
process. A system is needed to support academics in the assessment of student
submissions through collecting submissions, performing automatic tests on them,
checking for plagiarism, and providing an interface for marking and delivering feed-
back.
The “BOSS” Online Submission System has been developed over a number of

years, as a tool to facilitate the online submission and subsequent processing of
programming assignments [Luck and Joy 1999; BOSS 2004]. In this paper we
discuss the recent development of BOSS as a Web-based tool which supports the
whole of the assessment process, based on the application of engineering principles
to the automation of the process, together with a pedagogic foundation which does
not constrain the teacher to present or deliver their assessment material in any given
style. We cover new support for software metrics and for unit testing, which allows
for a rigorous software engineering based approach, together with the incorporation
of novel technologies for supporting the complex administrative components of the
process.

2. AUTOMATIC ASSESSMENT

There is no single correct approach to the problem of assessing programming as-
signments. Different practitioners may adopt different strategies, depending on the
specific aims and objectives of the course they are teaching, and on their own style
and preferences.
BOSS is a tool for the assessment of programming assignments, which supports a

variety of assessment styles and strategies, and provides maximum support to both
teachers and students. Within this framework, the teacher has access to automatic
tools to assist in the assessment process, which can be used as much (or as little)
as the teacher deems appropriate.

2.1 The assessment process

The process of marking a programming assignment includes three principle com-
ponents, as illustrated in Figure 1.
The first component, correctness, relates to the extent to which a program’s func-

tionality matches that of its specification. The second, which we refer to as style,
describes those attributes of a program that a student’s submission is expected to
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Fig. 1. The Assessment Process

display, but which are unlikely to be explicit in the program specification, and allow
for a limited amount of interpretation. The final component, authenticity, covers
administrative tasks including verification of the student’s identity and checks for
plagiarism.
These components are conceptual rather than definitive. There are categories for

marking which can be included in the program specification, or can be regarded
as stylistic. For example, the performance characteristics of a program may be
formally specified, and can thus be checked for correctness, but may alternatively
be considered as optional (but desirable) program attributes.

2.2 Support assessment, not constrain

Our original motivation was for a tool which would support computer programming
modules, but it was also clear that an effective tool would — with minor adjust-
ments — also be supportive of other types of material. The package therefore
separates the purely administrative operations (the online submission functionality
and data management) from the programming-specific features (automatic testing
and marking of students’ programs).

2.3 Pedagogic foundation

There appears to be no agreed set of criteria which measure a “good” program,
and different academics and software practitioners stress different aspects of the
process. However, we can identify the following as criteria which are commonly
applied:

Comments in code. Best practice dictates that programs should be well docu-
mented within the code itself, in order to ensure that the program is understand-
able and maintainable by third parties (and indeed the programmer themselves in
the case of large projects).

Code style. Best practice also dictates that programs should have a clear lay-
out, with meaningful choices of identifiers, and method names. Again, students’
programs should have a code style appropriate to the assessment task. In general,
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programs should be clear to read, although programs written for specific appli-
cations, such as those designed to take up minimal disk space and have minimal
memory overhead, may trade clarity for efficiency.

Correctness of code. Programs should be correct, both through adhering to the
syntax and semantics of the language used, and by having the required functionality.

Code structure. There are typically many alternative ways of writing a program
for a particular task. Students should make use of appropriate language constructs
in their code, and should structure their code into appropriate modules or classes.

Code testing. Programs should be rigorously and methodically tested using a
suitable testing regime.

Use of external libraries. Many programming languages have external libraries
of functions for achieving particular tasks. Students should where permitted make
effective use of these libraries.

Documentation. Programs should have supporting design, user, and system doc-
umentation.

Choice and efficiency of algorithm. There are typically many alternative meth-
ods to program a solution to a particular task. Programs should use appropriate
and efficient algorithms.

Efficiency of code. The implementation of the chosen algorithm should be effi-
cient, and appropriate language constructs should be used.

These are broadly-specified attributes, and not necessarily straightforward to
define. Not all are applicable to all programs, and stylistic criteria in particular
are subject to individual preference and interpretation. It is therefore important to
incorporate tools to support criteria which can be automatically measured (such as
test harnesses to evaluate program correctness), leaving others in the hands of the
teacher, and providing tools to aid the academic judgement where possible.

2.4 Automatic testing

Code correctness is a marking criterion which is often perceived by students as of
primary importance (“Does my program work?”), in contrast to the arguably more
subtle requirements for stylistic or algorithmic detail. It is also fundamental to the
software engineering process — an incorrect program is seldom useful.
Correctness may be defined by specifying the expected output of a program (or

part of a program) for a given input. Precisely how the input and output should be
described is dependent on the type of program, and may take the form of text or
data files, or of data values within the program itself. BOSS evaluates correctness
by the application of automatic tests, and two paradigms are currently employed,
although the software is structured to allow the incorporation of further testing
paradigms in the future.
The first paradigm defines input and output as data files, and a test is constructed

by specifying the content of the expected output file (or files) for given input data
files. A script (such as a UNIX shell script) may be incorporated to post-process the
output generated after a test. Although this is a simple “black box” technique which
is common for test harnesses, and is used in other systems such as CourseMarker
[Higgins et al. 2003], it has the advantage that (almost) any automatic test can
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be specified in this manner. Furthermore, if the data files are assumed to be text,
then each test can be described clearly and concisely, and hence made accessible to
students.
The second approach (which only applies when Java is the language used) uses

JUnit tests [Lane 2004]. In this case, input and output are specified as Java objects,
and a test is constructed by specifying a method to be run taking the input object
as argument, and returning the expected output object. This paradigm has the
advantage of compatibility with development environments which support JUnit
testing, and consistency with both classical and agile development methodologies.
Since the automatic tests will run code written by students, there is a danger that

a student’s program may (accidentally or otherwise) perform an unsafe operation,
potentially damaging the system on which the test is run. The test harness used
by BOSS protects the system against unsafe or malicious code, using a variety
of security techniques. BOSS delivers these paradigms of testing in two modes.
The first mode is available to students at submission time to enable them to gain
immediate feedback (and allow them to re-submit in the light of this feedback if they
wish). The second mode is post-submission and allows the course manager to run a
batch job of tests after the final submission deadline. This second mode is typically
linked to marking categories and creates the starting point for the marking process.
The availability of automatic tests both to students, and securely to staff, allows
their use either as a formative resource, or for summative evaluation purposes, or
as a combination of both.

2.5 Automatic measurement

Assessing a program requires an evaluation of some, or all, of the attributes de-
scribed earlier in this section. Many of these are subjective and cannot easily be
assessed automatically. For example, how well a student has structured and com-
mented their software, or whether they have used appropriate language constructs
is better assessed manually by a human marker. We can, however, perform a lim-
ited automated assessment of a program to aid the marker in this process. BOSS
provides a set of simple program metrics, such as number of comments, percentage
of methods declared abstract, etc., which can support the marker in assessing the
subjective attributes of a program. The software is extensible, and inclusion of
other metrics is straightforward.

2.6 Submission and authentication

A primary administrative function of BOSS is the online collection and storage of
work submitted by students. This part of the process requires security features,
including the following.

—The identity of a student using the software is verified.

—Integrity of files submitted by a student are assured.

—Transmission of data between student and the system, and the data stored on
the system, is protected from unauthorised access.

—Appropriate audit trails are in place so that all parts of the process can be
checked.
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Source code plagiarism has become a serious problem. Assessed assignments
in larger modules may consist of hundreds of submissions which makes manual
comparison, for evidence of plagiarism, of all possible assignment combinations
impracticable. BOSS incorporates novel plagiarism detection software [Joy and
Luck 1999; White and Joy 2005], which compares submissions automatically to
seek for evidence of plagiarism and, if evidence is found, to present the offending
submissions to the teacher for manual comparison.

2.7 Administrative support

An important, but essential, part of the process is its incorporation into the wider
institutional processes. Tasks such as the provision of accurate lists of students are
central to the smooth operation of software such as BOSS. This has been facilitated
by the incorporation of the new “Coresoft” database schema [Joy et al. 2002], which
provides an abstract view of the software, and which allows the import of data
from, and export to, other databases and data repositories, with minimal software
development.
The online marking process is simplified as much as possible, minimizing the num-

ber of key-strokes required. Dialogues contain all the information required by the
teacher, containing the results of any automatic tests applied, access to the original
source code, and (where appropriate) the metrics applied to the submissions.
These features allow the teacher to concentrate on the assessment without the

necessity of significant time spent on peripheral administration.
Marks are assigned to a student’s work during the marking and moderation pro-

cesses. However, it is desirable for students to receive an explanatory result rather
than just a number. Therefore we allow markers to attach written feedback to each
submission. After the marking and moderation procedures have been completed,
the module manager may publish the results of the assignment. Students’ results
are dispatched to them through email, consisting of their final moderated mark
and any comments that have been attached by the markers. Since there is a delay
between the students submitting their work, and the final marks being published,
it is important to verify that each student receives appropriate feedback. By choos-
ing to return marks and feedback using email, there is a high degree of confidence
that each student will receive and read their feedback, and it is for this reason that
email, rather than a web solution, is adopted.

2.8 Platform independence

The authors’ department, in common with many Computer Science departments,
has adopted widespread use of Linux and UNIX operating systems, whereas the
University provides Windows-based solutions to students. It was therefore a ne-
cessity that BOSS be platform-independent. Java was chosen to form the basis
of a complete re-write of the system, not only because it would run on all ma-
jor operating systems, but because its object-oriented paradigm together with a
wide selection of supported APIs were seen to be supportive of rapid and accurate
coding.
Two possible solutions to platform independence were considered. The first would

involve Java clients and servers (so that BOSS would become an application which
would run on student/staff computers), and the second a web-based solution ac-
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cessible through web browsers. Since there are compelling arguments in favour of
each solution, both have been implemented and are currently supported.

3. USER VIEW

Two strategic decisions were taken relating to the architecture of BOSS. Firstly,
there should be an overall model for the structure of an assignment, which we
refer to as the component model, which is designed to support arbitrarily complex
rubrics which might accompany an assessed piece of work. Secondly, the users of
the system (students, module managers, administrators, markers and moderators)
should have clearly-defined roles.
The software uses a client-server architecture with separate clients for students

and for authorized staff (for security reasons). Each client is provided both as a
secure web client and as a stand-alone application, so maximizing the flexibility
of the system in terms of a user’s working environment. There are consequently
two distinct views of the software, according to whether the user is a student or a
member of staff.

3.1 Component model

Assessments take a wide variety of forms, including single tasks (such as essays)
or potentially complex entities (such as examinations). It is not uncommon to
encounter a rubric such as, “Attempt question 1, question 2, any three questions

from section B, and one question from section C”.

The data model used by BOSS, i.e. the component model, is intended to support
arbitrarily complex assessment structures. The model is simple, straightforward to
store in a relational database, and able to cope with any rubric.
A complex assignment (in terms of choices and paths through the tasks to be

completed) may be desirable as a component of an adaptive and individualised
learning and teaching strategy. Our purpose in introducing the component model
is to free the teacher from restrictions on the structure of an assessment, allowing
a complex assessment model to be deployed.
The component model is a description of the structure of an assessed piece of

work. It is intended to cover all possible assignments given to students, including
continuously assessed work, examinations, and tests. The component model is
based on the following four fundamental notions.

—A problem is a single task (such as a multiple-choice question, or an essay) which
is not divisible into sub-problems, and has a maximum mark as an attribute.

—A multi-component is a triple (C, AC , MC), where C is a non-empty set {c1, c2,
..., cn} of components, AC is an integer in the range 0..|C|, andMC is an integer in
the range 0..100. AC represents the number of components a student is expected
to attempt. MC is the maximum mark for the whole multi-component. If AC=0,
then a student is expected to attempt all sub-components. The maximum marks
for the sub-components are used to determine the relative weightings of those
components.

—A component is either a problem or a multi-component.

—An assessment is a multi-component.
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The component model is perhaps best demonstrated with an example. Suppose
that an assessment has the rubric, “Attempt question 1, question 2, any three ques-

tions from the five in section B, and one question from the three in section C.

Question 1 is worth 20 marks, question 2 is worth 30 marks, section B is worth 30

marks, and section C is worth 20”. Using the obvious shorthand, the assessment
decomposes as follows:

component type attributes
A multi-component ({Q1,Q2,SB,SC},0,100)
Q1 problem 20
Q2 problem 30
SB multi-component ({B1,B2,B3,B4,B5},3,30)
SC multi-component ({C1,C2,C3},1,20)
B1 problem 10
B2 problem 10
B3 problem 10
B4 problem 10
B5 problem 10
C1 problem 20
C2 problem 20
C3 problem 20

The intention is that, where the sum of the “maximum marks” of the components
within a multi-component is different to the maximummark of the multi-component
itself, appropriate scaling will take place.
The model will also handle unusual cases. For example, if the rubric for an exam

(with maximum mark 50) is “Attempt any two out of the following three questions”,
and the three questions have been coded with different maximum marks (say 20,
30 and 40 respectively), then the components would be as follows:

component type attributes
Exam multi-component ({Q1,Q2,Q3},2,50)
Q1 problem 20
Q2 problem 30
Q3 problem 40

If a student obtains marks m1, m3 from problems Q1 and Q3 respectively then
their total mark is then calculated as: (m1+m3

20+40
)*50

3.2 Student view

The BOSS software permits students to perform two principle tasks.

(1) Students submit their (programming) assignments online (a typical dialogue is
illustrated in Figure 2.
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Fig. 2. Student dialogue screenshot

(2) Students are able to run automatic tests on their programs prior to submission
(and afterwards if they wish to re-submit within the prescribed deadline).

3.3 Staff view

The BOSS software permits staff to perform five principle tasks.

(1) Automatic tests can be run on the set of student submissions, and as part of the
marking process. These tests may be a superset of those that a student can run,
or they may be separate. For example, students may be given a (small) set of
automatic tests to run on their programs prior to submission, for the purposes
of ensuring that they have met minimum requirements for the assignments.
Further tests available to staff alone might then be used to assess how well
each student has met the full set of requirements.

(2) Plagiarism detection software assists in the identification of potential intracor-
pal source-code plagiarism.

(3) Submissions can be marked online by viewing the results of the automatic tests,
running the submitted program, and viewing the submitted source code.

(4) Staff authorised by the module organiser can moderate the marks given to
students’ work by other markers.

(5) Feedback can be given on each submission, and BOSS collates the feedback
from the set of markers of a given submission and provides a mechanism for
communicating this back to the student.

In order to deliver these tasks in a manner which ensures data privacy (staff can
only perform appropriate tasks) and allows for multiple marking of an item of work
to be performed “blind”, there are four staff roles, as follows.

Administrator. The administrator may create modules and allocate managers to
individual modules. This role is not a “super user” one, and the administrator’s
view of the data is strictly limited.
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Fig. 3. Manager dialogue screenshot

Manager. Each module is allocated one (or more) managers, who can edit all
properties of that module, including assignment details, marking criteria, and allo-
cation of markers and moderators. An example of the manager’s view of the system
is illustrated in Figure 3.

Marker. Each problem contained within an assignment is allocated one or more
markers by the module manager. Each marker is allocated submissions to mark,
and will mark online according to the marking criteria authored by the manager.
An example of a marker’s view of BOSS is illustrated in Figure 4. Weightings of
individual marking categories, and the identity of the student, are hidden from the
marker in order to ensure fairness and transparency of the marking process.

The markers have the opportunity to write feedback on the work marked, and it
is expected that the manager will issue the markers with guidance as to what type
of feedback is appropriate for that particular problem.

Moderator. Once a problem has been marked by all markers allocated to it, a
moderator is required to review the marks awarded and the feedback given. If
multiple markers have been allocated to each student, the moderator’s view will
contain all the marks awarded, and a “suggested” moderated mark for each marking
category, which the moderator is free to alter. The weightings for the individual
marking criteria are available to the moderator, but the student’s identity is not.
Only when a student’s work has been moderated are the final results available to
the manager.

The ideal model, if resources are available, is for each piece of work to be double
marked, moderated by a third person, who may or may not be the module manager.
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Fig. 4. Marker dialogue screenshot

However single marking is permitted by BOSS, in which case the role of moderator
becomes one of checking the consistency and accuracy of the marker.

4. ARCHITECTURE

An overview of the system architecture can be seen in Figure 5, showing its primary
components. There are four data repositories (represented by grey rounded boxes),
which store marks, information about students and their submissions, results of
automated tests, the results of plagiarism detection, and other necessary data.
Staff and student servers provide appropriate functions and data access to staff

and students respectively. Both the staff and student servers have a web-based inter-
face and a standalone Java application interface. The web interfaces communicate
with the other system components via a secure web-server using SSL. The staff
interface also provides access to the plagiarism detection software (called Sherlock)
which analyses the stored submissions and stores various metrics for assessment by
teaching staff [Joy and Luck 1999; White and Joy 2005]. An “automatic test server”
is responsible for performing tests on students’ submissions and storing the results
(or passing feedback to the student if the test is being run prior to submission).
A client-server architecture using RMI (Remote Method Invocation) for data

transport forms the basis of the current system. At an early stage in the devel-
opment of the Java code, we decided that any maintainable and robust solution
required a modular approach. Both CORBA and RMI were considered, the latter
chosen on account of its Java base and consequent ease of coding. The use of Ap-
plets was ruled out, since correct functioning of Applet-based clients is dependent
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Fig. 5. The BOSS architecture

on the browser support for Java, and the power of the client machine. Not only do
some proprietary browsers not support Java fully (and this has been the subject
of litigation both in the US and the EU), but at the time of the decision students’
personal machines were unable to run complex Applets acceptably fast.

4.1 Client-server

The BOSS system consists of three servers: student server, staff server and the test-
ing (or slave) server. These are actually three separate Java processes which are
usually run on the same machine but can, if so desired, execute on three physically
separate machines. The primary function of the student server is to authenticate
students and receive their coursework submission for appropriate storage and log-
ging. Additionally, the student server is capable of communication with the testing
server if the automatic code tests are available to the student before they make
their final submission. The staff server, to which access is only permitted to fully
authenticated members of staff, provides testing, marking and moderation func-
tionality to the client software. The testing server is not directly accessible — the
staff and student servers communicate with it to request the automatic testing of
student submissions.
Each server executes as a process without administrative (superuser) privileges

to prevent the compromise of the entire machine should one server be maliciously
attacked and compromised, an event which has not yet happened in the lifetime
of the project. Filesystem and database privileges are carefully allocated for each
server.
The BOSS system currently offers two clients, the web-based and Java application

clients, of which further details can found in Section 4.5. The development of
two separate interfaces has been possible due to careful design of the client-server
interface. Where possible we have placed functionality in the servers to allow clients
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to be kept “lightweight”, and also to prevent large amounts of sensitive student data
being transmitted data over the network unnecessarily.

4.2 Automatic Test Server

In addition to the student and staff servers the third part of the BOSS system,
namely the test server, is used to run submissions through a series of fully auto-
matic tests. The testing system is functionally separate from the core BOSS system
allowing some flexibility in the deployment of a testing system which may, depend-
ing on the scale of automatic testing required by the institution, involve separate
computing hardware. Transfer of submissions from the student and staff servers
to the testing server is encrypted to prevent malicious modification or theft of a
submission.
BOSS offers automatic testing functionality in two modes: submission-based and

batch-based. The first is available to students at submission time. The course
manager can make available tests that give immediate feedback to students. These
tests can be used as a simple check of the submission and can help prevent erro-
neous submissions. Furthermore, based on the feedback given to them students can
revise their submissions if they discover that they have not met the requirements
(assuming that the final deadline has not passed). The majority of the automatic
testing is performed in the second mode and can not be seen or executed by a
student. These post-submission tests are typically executed by the course manager
as a batch job after the final submission deadline. We can construct more elaborate
and thorough tests at this stage as there is no requirement for immediate feedback
to a student. The results of these post-submission tests can be linked to marking
categories which assess the correctness of a submission freeing the marker to spend
a greater amount of effort assessing the style of the submission.
Both of the testing paradigms introduced in Section 2 are available in both the

submission-based and batch-based testing modes. The first paradigm defines input
and output as data files, and checks a student’s submission against the expected
output. Although this is a simple mechanism, it is also very powerful and allows a
course manager to model the strict input and output requirements that are often
present in real-world software engineering tasks. JUnit tests form the basis of the
second BOSS testing paradigm (available only for Java submissions). This form of
test consists of testing for the equality of two method calls given a specified input.
More specifically, suppose that a Java programming assignment can be specified by:
the input CI ; the output CO; and a method m with signature CO m(CI). Then a
test can be defined by: an object OI , an instance of class CI ; and an object OO, an
instance of class CO, such that m(OI) returns OO. A student’s implementation of
method m can then be tested by checking m(OI).equals(OO). Of course, we may
need to override equals() to achieve the desired result. Unlike the first paradigm,
this does not allow for the I/O presentation to be specified and testing may require
a combination of both techniques.
In both modes, to prevent overloading the testing server close to a submission

deadline we limit the number of concurrent tests. Consequently some students
at the submission stage may have to wait several moments for a test result. We
see this as an acceptable compromise to prevent overstretching available testing
resources. All tests are executed inside a sandbox able to limit the amount of
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available CPU time and memory and with strictly controlled set of permissions to
prevent malicious submissions compromising the host system. There have been no
known compromises of the testing system.

4.3 Databases

Central to a data-bound application such as BOSS is the storage and management
of the data. In addition to storage of submitted assignments as archives on secure
backed-up file systems, an SQL database is used for other data, such as times of
submissions, basic student identity information, and marks awarded. The initial
deployment of a proprietary database was found to be unsuccessful (due to the
repeated requirement of systems staff to manage the database), and Open Source
databases such as MySQL, MSQL and PostgreSQL have since been used. Differ-
ences between the dialects of SQL used are a continual source of frustration, though
the latest versions of MySQL and PostgreSQL allow interchangeability with mini-
mal intervention, assisted by the use of JDBC to connect with the Java servers.
In order to facilitate the import of data from external sources (such as the Uni-

versity’s Student Record System), an “institution-independent” database schema,
called CoreSoft, was developed [Joy et al. 2002]. The aim of CoreSoft was to
present the minimum data required for BOSS (and other related applications re-
quiring similar data) in a format that would be compact, and use appropriately
normalized tables with easy to remember names. The translation of data from ex-
ternal databases to the CoreSoft schema (and vice-versa) is — at least in principle
— a straightforward task.
This incorporation of Coresoft into a large software package such as BOSS demon-

strates that it is an effective tool for providing an interface between the external
academic data requirements of the package and the data supply capabilities of the
host institution.

4.4 Plagiarism detection

The department’s plagiarism detection software, known as “Sherlock” [Joy and
Luck 1999], has been developed in parallel with BOSS, and until 2002 was a separate
tool. Sherlock reports on a collection of documents and reports instances of pairs
(or larger clusters) of documents that contain similarities. Initially written for use
with Pascal (and now Java) programs, Sherlock has been extended to operate on
free text data files. Both its source code and free text facilities compare well, both
in terms of accuracy and of ease of use, with other plagiarism detection tools such
as CopyCatch [CFL Software Development 2004].

4.5 HCI

The development of both web-based and application clients is motivated by two
main factors. Firstly, students demand a simple to use product to submit their
work, both from the campus and when working at home, suggesting a web client
as being appropriate. Figure 6 shows screenshot of a dialogue from the web-based
client for students.
Secondly, staff who are marking assignments for large classes desire an interface

which is quick to use, and minimizes the number of key strokes. This type of in-
terface is simpler to code as an application, and when used on a machine directly
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Fig. 6. Web client screenshot

connected to the campus network avoids the delays inherent in the web-based so-
lution. Screenshots of the application interface are presented in Figures 3 and 4
above.
Both interfaces have been coded to take account of appropriate “good practice”

[Shneiderman 1998]. For example, the web interfaces are structured as collections
of relatively small individual pages with many navigation aids and shortcuts, and
are appropriate for remote access to the server where the connection may be slow
or unreliable. The application interfaces maximize the amount of relevant informa-
tion available on each screen, to enable the user to navigate through the dialogues
and complete their task, and is appropriate for the local high-speed connections
normally available to staff. Both student and staff clients have been coded with
both types of interface, and evaluation of the usage patterns is ongoing.

5. EVALUATION AND DISCUSSION

The development of BOSS is ongoing, driven by the evolving demands of academics
and of the technologies that can be applied. In the academic year 2004–5 an
opportunity was taken to evaluate BOSS [Heng et al. 2005], and we present a
“snapshot” of its current use, and discuss issues which will affect the directions in
which the software will change.
Our evaluation is restricted to its use at the University of Warwick, since —

BOSS being an open source product — we do not have accurate information as to
which other institutions have deployed BOSS, and what local changes they have
made to the software.
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5.1 Methodology

We employed a combination of techniques in order to gain information to assist us.
These included:

—an analysis of end of module questionnaires;

—interviews with staff who have been involved in the BOSS marking or manage-
ment process;

—interviews with a representative group of students; and

—an analysis of the contents of the database used by BOSS.

We summarize our findings in three main parts. First of all, we present a technical
evaluation of the software, and provide evidence which indicates that the software is
now stable, and that remaining issues relate principally to the lesser-used dialogues
within the staff clients. Secondly, we discuss the usability of the software. Finally,
we consider the pedagogy of BOSS, and argue that its original objective of being a
“pedagogically neutral” tool has been achieved.

5.2 Technical Evaluation

As evidence of the stable nature of BOSS, we describe how the major design de-
cisions that have influenced its development have led to improved reliability and
security. We describe how BOSS was used in the academic year 2004–05, outline
the outstanding issues, and explain why they do not pose significant obstacles to
general use.
Dividing functionality between separate servers has provided technical and organ-

isational benefits. It has helped ensure that problems with the marking or testing
systems do not directly affect the submission of coursework. Also, the student
server and client have restricted access and limited functionality to help reduce the
risk of a security breach.
The large user base has allowed us to quickly identify and resolve any problems

with the software. In 2004–05, the performance of BOSS can be summarized:

—over 5500 coursework submissions received electronically;

—no major outages, or downtimes impacting submission deadlines; and,

—no (known) security breaches.

BOSS allows students to resubmit their work multiple times. The administrative
burden of doing this with paper submissions would be substantial but with BOSS
this is easy. For example, in one of the first year programming modules 42% of
students resubmitted their work, yet it required no further effort from the course
manager. The number of resubmissions per student is presented in the graph in
Figure 7.
There are some outstanding issues with the BOSS system, specifically with the

staff client, which relate to the functionality of the software — staff have differing
opinions as to what extensions (if any) should be made to the client. Although
these issues are important they do not impinge upon upon the ability to accept
student submissions and store them accurately and securely, nor do they affect the
accuracy and stability of the test server.
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Fig. 7. Number of resubmissions for the “Programming Laboratory” module

5.3 Usability Evaluation

Ease of use is important for a tool such as BOSS, which receives heavy usage, and for
which mistakes during the processing of data can have very serious consequences.
We report on our evaluation of the usability of the system, from the perspec-

tives of its different users, as evidenced from a series of semi-structured interviews,
from which all the quotes in this section are taken. The interface is also heuristi-
cally evaluated against a list of guidelines and design principles [Nielsen 2005; MIT
Usability Group 2005].
This work has been used to design a new web interface for BOSS which addresses

the issues the evaluation has highlighted [Heng et al. 2005]. This has been imple-
mented for the student web client, and will be implemented for the staff web client
when resources permit.

5.3.1 Student client. All interviewed student users indicated that they had no
problems learning to use the student client. Some students explained that a reason
for this is their prior experience using other web applications.
Students commented that “it looks nice”, and compared to the previous interface

(2002) that the new interface “looks nicer and more friendly”. One commented that
“I prefer clean design, the less graphics the better”, and noted that the web interface
is “light-weight and quick”.
Minor user interface issues were identified. For example, pages of the client are

often long, and one of the markers noted that “it looks OK on a large screen, not
on a laptop”. Users with a screen resolution lower than 1280 x 1024 need to scroll
when using some of the dialogues, with the consequent increase in excise.
A specific issue raised was the lack of immediate feedback when students submit
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an assignment. Instead of generating a confirmation page on the browser indicating
the receipt of a student’s assignment immediately after a submission is made, an
email is sent to the student’s registered email address. The receipt of emails by
the students is sometimes delayed, and some students mentioned that they usually
make two or more attempts to submit the same assignment “just in case” the BOSS
server did not receive the first one.

5.3.2 Staff client. The result of heuristic evaluation relates the information pre-
sentation of the staff client interface to the web site structure. The existing client
uses a depth-emphasizing site structure rather than a balanced combination of
depth-emphasizing and breadth-emphasizing. The advantage of using a depth-
emphasizing site structure is that it expands the size of the site indefinitely by
storing information in many levels of the site. Information is revealed gradually
and other task buttons can be found in different levels when users click through the
pages. However, since a depth-emphasizing site structure lacks linear navigation,
many facilities are located in different levels of the site hierarchy, without immedi-
ate access for the users, and so this approach may not be ideal when adopted by a
software package with many features and functionalities targeted at different group
of users.
The staff client received more focused feedback from the staff users. Almost

all staff users demonstrated their need to look at the information presented on the
interface before deciding on the sequence of actions that need to be performed by the
system. They considered that the interface is more geared towards executing actions
rather than informing them about the state of the modules and the submissions
they are managing. Consequently, some of the staff users considered that BOSS is
complicated to use.
Heuristic evaluation and interviews also suggested that although BOSS Online

has achieved an overall consistency in look and feel by the use of stylesheets, some
details have been neglected in the design. For example, the naming and the posi-
tion of the buttons which have the same meaning in the interface are not always
consistent.
Information gathered from the developers and the system designers show that

both the student and the staff interfaces have been implemented pragmatically.
BOSS was designed based in order to satisfy the need of the Department of Com-
puter Science to facilitate the submission and the marking process of student as-
signments. Development over the years has been incremental, and new features
have been added to BOSS based on users’ requirements while retaining the existing
functionalities. The views of these two classes of user support a claim that the
software effectively fulfils its purpose.

5.4 Pedagogic Evaluation

BOSS is intended to be “pedagogically neutral”. We provide an environment in
which a secure online submission platform can be used with existing tools, or al-
ternatively the extra assessment utilities in BOSS can be used in conjunction with
them to offer increased functionality [Luck and Joy 1999].
In order to evaluate BOSS against this objective, we identify two sources of

evidence. First of all, we examine its patterns of use to test the hypothesis that
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Year of
study

Automatic
tests?

Plagiarism
detection?

Online
marking?

Code type

1 no yes no simple C++
1 no yes no simple Java
1 yes no yes simple Java
1 yes yes yes simple UNIX Shell

and Perl
1 yes yes no intermediate Java
2 no yes no Prolog
2 yes yes yes advanced Java

Table I. Programming modules using BOSS

the tool is indeed used with a variety of existing tools. Secondly, we consider the
comments made by interviewed staff who have used the system which relate to its
educational value.

5.4.1 Patterns of Use. The Department of Computer Science does not prescribe
how an individual academic should manage his/her own modules, and each aca-
demic is free to use BOSS as much or as little as they desire. An analysis of the
patterns of use over the fifteen modules which used BOSS highlights the different
individual approaches taken to the adoption of the software.
Seven of the modules used the system as a collection mechanism only, allowing

the assessment process to be supported by other tools, such as spreadsheets. The
reasons for not using the assessment features include:

—assignments are essay-based (2 modules);

—assignments relate to formal methods, and don’t require coding (1 module);

—assignments take the form of group projects, which contain added administrative
complexity not appropriate for BOSS (1 module);

—assignments require students to code, but the nature of the programming paradigm
(for example, declarative) requires tests to be performed on students’ code which
is not easily modelled as “expected output for given input” (3 modules).

One further (essay-based) module used BOSS for collection and the plagiarism
detection software only.
Of the remaining seven modules which did use the majority of the software fea-

tures, all involved students programming using procedural or object-oriented lan-
guages, as illustrated in Table I, which identifies

—whether the automatic tests were used,

—whether the plagiarism detection software was used,

—whether the marking process was conducted online within BOSS, and

—the type of code which the module was delivering.

5.4.2 Plagiarism detection. The assessment process involves ensuring that stu-
dents are marked on their own work, and prevention and detection of plagiarism is
therefore an important part of the process. All staff who used the plagiarism de-
tection software commented that it was effective, and in each module disciplinary
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action was taken on a number of students as a result. Use of the plagiarism detec-
tion software as a regular part of the assessment process, and its associated visibility
to students, has resulted in effective deterrence, and although plagiarism has not
been eliminated, instances of it have been reduced on large programming modules
to typically less than 5% [Joy and Luck 1999; White and Joy 2005].
The one module which did not use the plagiarism detection component offered

introductory Java programming for science students (principally mathematicians
and physicists). The teaching style adopted involved the students being presented
with “templates” which shielded them from the complexities of the object-oriented
paradigm, and enabled them to concentrate on writing and editing relatively small
amounts of procedural code appropriate to their disciplines. The use of automatic
plagiarism detection software is not effective on data where the amount of individ-
ually contributed code is small.

5.4.3 Automatic testing. For four of the seven module assessments it was appro-
priate to use the automatic test harness together with the on-line marking dialogue
(these were first and second year modules using Java or UNIX Shell code). The final
three modules were supported by alternative assessment and management regimes.
The staff involved in each of these modules were skilled in alternative software
products, and wished to use facilities which would be inappropriate to include in
BOSS. For example, one academic remarked:

“A spreadsheet is very flexible, you can sort it in many ways, do lots
of things on it, colour it, and so on. You can highlight it, give private
comments, comments for yourself, ... do layout, create graphs ...”

The pedagogic effectiveness of BOSS is that of the educational paradigm it is
used to support. The simplest non-trivial use of BOSS — and one of the original
motivations for its creation — is the incorporation of black-box automatic tests
into the assessment process for programming modules. Conversations with module
leaders suggest that the time necessary to devise and deploy a set of automatic tests
is typically one or two hours, and that the time taken to mark a single student’s
submission may be as low as a couple of minutes, and this is strong evidence that
the approach is administratively effective. All the staff who used the software for its
automatic tests and the online marking agreed that the black box paradigm worked
successfully, although setting up those tests was regarded as complex. This is in
part a usability issue, but is also a comment on the inherent difficulty of writing a
correct test harness together with a clear and comprehensible specification which
will enable students to understand what they are required to code.
Incorporation of program metrics into the software is recent, and has not yet

been fully incorporated into any academic’s marking scheme. Similarly, although
JUnit unit tests have been included in the system functionality, the technology has
not yet been taken up in any module at Warwick.
Automatic testing paradigms are not magic bullets. JUnit tests require technical

skill to code, and are language-specific. Input versus expected output tests, when
interpreted as text files, invites difficulties due to mis-spellings, control characters
and whitespace, which can confuse superficially simple comparisons.
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The student view has been generally very positive, and comments in end of
module questionnaires indicate that it is regarded as an efficient and convenient
system to use. A specific comment often made by students is that the automatic
testing is “too fussy”. In an environment where we encourage students to take a
formal engineering-based approach to software development, it seems appropriate
that a tool such as BOSS is precise, and this student view might be interpreted
positively. However, there are drawbacks to such an engineering approach, and the
following students’ views about the use of automatic tests are not unusual:

“Automatic tests are unfair against those who have tried and only just
failed to reach the required outcome.”

“Didn’t like the auto tests — too picky with spaces etc.”

The number of tests, and their place in the marking scheme, is another focus of
discussion. It is neither feasible nor desirable to provide a complete testing suite
for use by students whilst they are learning the basics of programming, since the
number of tests would be prohibitive, and communicating the results to students
correspondingly problematic. However, it may be desirable to allow students access
to some automatic tests to assist them in their program development. It may also
be desirable to reserve some tests for the marking process in order to encourage
students to think through the specification thoroughly. This is a strategy which is
difficult to justify to students:

“I don’t understand why there are more tests on the assignment. Can
you give us all tests when you give us assignments. Then we can know
what you want us to do.”

More detailed staff feedback (via interviews) suggests that the functionality of
such a system supports colleagues’ requirements, but identify the client dialogues
as being over complex.
Our claim of “pedagogic neutrality” is further supported by the use of BOSS

as a vehicle for innovative pedagogic approaches. For example, the software has
successfully been extended to provide a package to support peer assessment [Sit-
thiworachart and Joy 2004].

5.5 Future directions

Any initiative that is dependent on technology is also at risk from changes in tech-
nology, and it would be unwise to speculate what those changes will be. However,
the paradigm used by BOSS appears to support a variety of modules successfully,
and significant changes are not currently envisaged. The underlying technology will
be upgraded as and when suitable new technologies and standards are in place
The software has been made available as Open Source under the GNU General

Public License [Free Software Foundation 2004]. There are three primary reasons
for taking the Open Source route.

—The development of BOSS is not commercially viable given the level of commit-
ment that would be needed to support, maintain and continue development of
the software.
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—Making the software Open Source encourages take-up by other institutions and
the subsequent community support and development that naturally follow.

—Placing the source code of the system in the public domain enables other insti-
tutions not only to use the system, but to customize and extend it without any
license restrictions (and hopefully feed back their extensions to the user commu-
nity).

5.6 Other Issues

In order for a system such as BOSS to be used effectively, it must interact with
institution processes efficiently and accurately, and several issues have arisen during
the deployment of BOSS that may well apply to many other institutions.
The quality of data received from the SRS (Student Record System) is sometimes

poor. For example, delays in updating student data centrally often preclude the
automatic generation of accurate lists of students registered for a given module.
The schema used by the SRS is required for generation of accurate statistical data
for government agencies, in addition to the more general central management func-
tions. The type of statistics required affect the table structure of the database (for
example, separate module codes are used for students repeating a module, which
is often required if they do not pass the module at first attempt) and cause the
import of data into BOSS, through the generic CoreSoft database schema, to be
more difficult than expected.
The separation of the BOSS marking process into the three phases of mark,

moderate, and finalise is not the paradigm of choice for all academics, some of
whom interleave the processes. Flexibility in the mode of use is an adjustment to
the functionality of BOSS that is currently being incorporated.
BOSS has been conceived as a tool targeted at a single task, namely the man-

agement of online programming assignments. It is not intended to provide a suite
of learning materials, and contains no functionality to support students’ learning
other than that which directly arises from the activity of assessment. The sup-
port for learning provided by BOSS is encapsulated by the process of a student
getting feedback from automatic tests prior to submission, followed by feedback
from markers after submission. Thus, the learning benefits to students of using
BOSS are similar to other assessment methods, and are primarily dependent on
the academic design of the assessment (or preferably a sequence of both formative
and summative assessments) and the quality of feedback given by markers.
It is interesting to compare the BOSS approach with that of CourseMarker [Hig-

gins et al. 2003], formerly named Ceilidh, a tool developed at the University of
Nottingham, which allows both formative and summative assessment. The forma-
tive approach which can be taken in CourseMarker is to allow students to present
solutions to programming problems multiple times. Each solution is then marked
against a “template” and against a variety of metrics, allowing the student to im-
prove their solution prior to final submission by assimilating the frequent feedback
presented by CourseMarker. This was an approach that we chose not to follow,
since we wished BOSS to focus on the process of online submission, and measuring
the correctness of students’ code, rather than become a tool with a broader sup-
port for formative assessment. The CourseMarker approach prescribes a style of
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programming that, it might be argued, is not always appropriate, and we decided
that the formative functionality would be inappropriate for BOSS. Our emphasis is
on providing a tool to assist teaching staff and encourage best practice in teaching
programming rather than to provide an online learning environment.
It should be noted that, although our primary aim is to support the teaching

of programming, BOSS is also useful as a submission and marking tool for other
types of assessment, such as essays. For example, an automatic “essay style checker”
could be seamlessly plugged into BOSS to support the assessment of an essay-based
module. BOSS provides an effective means for the collection of submissions, since
students can submit using computers across the campus or from home via the web
interface. The Sherlock plagiarism tool allows teaching staff to detect intracorpal
plagiarism in the essays submitted by students [White and Joy 2005]. BOSS can
also be used as a repository for a marker (or group of markers) to store feedback on
each submission. At the end of the marking process this feedback can be collated
and moderated for each submission and then returned to the student.

5.7 Historical notes

The initial software package was developed in the mid 1990s, when many terminals
were still text-only, students would normally interact with the University computer
systems from on-campus, and remote communication with central UNIX servers was
necessarily text-based. The technology initially deployed was an application with
a text interface, which ran on a central UNIX server. Coding was in ANSI C, and
designed in as re-usable and modular a fashion as the language would easily allow.
Security was achieved by means of standard UNIX file permissions, and judicious
use of the “setUID” mechanism. The Snefru [Merkle 1990] hash algorithm was used
to sign each submission and ensure the integrity of submitted data.
This solution was successful, but the rapid advent of higher-quality terminals

with graphic capability suggested that an improved user interface was desirable.
Not only would staff productivity increase with a “point and click” interface, but
student perception of the software would improve, since it would appear more “up to
date”. The immediate solution was to add a front-end coded in Tcl/Tk, which was
relatively easy to implement due to the modular structure of the underlying code
[Luck and Joy 1999]. Whilst this solution was effective, it exposed a fundamental
weakness in the choice of technology, namely that the scalability was poor. For
example, the modular constructs of Tcl/Tk are few and primitive, and the Tcl/Tk
scripting language is weakly typed. It was felt that the software was not amenable
to significant development in its current state, and a permanent solution was sought.
A detailed description of the system at that time has been reported elsewhere [Luck
and Joy 1999].
The use of simple UNIX utilities such as diff have been used to perform the

comparison between actual and expected program output since the first version
of the software. However, despite the apparent ease of writing tests, care must be
taken to ensure that the tests and the specification (as presented to the students) are
consistent. The incorporation of JUnit tests is a recent addition to the software and
relies on the use of Java as the language being taught. Furthermore, the approach
taken must be “object-oriented”, and it should be noted that many teachers choose
to adopt a procedural approach to the introductory teaching of Java [Yau and Joy
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2004; Burton and Bruhn 2003].

6. RELATED WORK

A variety of other tools have been created which address some of the issues moti-
vating BOSS. We briefly review these in this section.
Other methods used to collect students’ work online include email [Dawson-Howe

1995] and requiring students to store their work in a specified folder [Isaacson and
Scott 1989; Ghosh et al. 2002].
Tools and techniques to assist in the automatic testing of programs include the

use of shell scripts [Isaacson and Scott 1989], copying submitted files to the teacher’s
filespace [Reek 1989], and transferring ownership of submitted files to the teacher
[MacPherson 1997]. Since students’ programs may exploit loopholes in the system
(either accidentally or deliberately), automatic testing is often performed in a re-
stricted environment designed to minimise the possibility of damage to the system
[Cheang et al. 2003; Hurst 1996].
The Online Assessment System (OAS) [Bancroft et al. 2003] supports online as-

signment submission together with a web-based interface for online marking. OAS
interfaces with an institution student database (FITSIS), and uses a custom appli-
cation F 2M2 to facilitate the online marking process.
The Online Judge [Cheang et al. 2003] provides a straightforward testing harness

where tests are defined in terms of whether (string) output from students’ programs
matches expected output. Plagiarism detection software is included, but there is
no additional functionality.
CourseMarker [Higgins et al. 2003] provides a web-based client-server architecture

which supports online submission, automated assessment, and a rich marking inter-
face. A fundamental difference between CourseMarker and BOSS is the paradigm
for interacting with a student. BOSS is conceived as a summative assessment tool,
and although it supports feedback for students, its primary function is to assist
in the process of accurate assessment. CourseMarker also supports the formative

aspects of assessment, allowing students to have their program graded at frequent
intervals prior to submission. In order for this to be feasible, the profile of the
program is constrained by measuring its attributes and its functionality in order
to arrive at a grading. It can be argued that this can constrain the student by
penalising an unusual (but correct) solution.
Automatic assessment tools for specific languages have been developed, such

as Scheme [Saikkonen et al. 2003], and the use of Knuth’s Literate Programming
paradigm [Knuth 1984] has also been used to allow automatic annotation of stu-
dents’ programs [Hurst 1996].
Canup and Shackleford [Canup and Shackleford 1998] have developed software for

automatic submission, but which does not support automatic testing of programs,
and Blumenstein et al. have been developing a generic assessment and marking
engine which can be configured for multiple languages [Blumenstein et al. 2004].

7. CONCLUSION

The use of BOSS over a period of years has demonstrated the effectiveness of a
focused tool which addresses the requirements of assessing students’ programming
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skills. The inclusion of a generic database schema and plagiarism detection soft-
ware, together with a platform-independent client-server architecture, provide a
foundation which is adaptable to changes both in technologies and in pedagogic
requirements.
The BOSS system is a modular and extensible tool that has significantly aided

student assessment in the authors’ Computer Science department. Academics have
the flexibility to use BOSS simply as a collection mechanism or as a complete auto-
mated assessment suite. BOSS is focused on supporting the process of assessment; it
contains no functionality to support student learning other than that which directly
arises from the activity of assessment. This has been demonstrated in practice by its
successful use in a range of modules within the authors’ department. Academics are
free to use their own judgement about how the system can be best used to support
students’ learning in the context of a particular module. BOSS has proved itself
to be successful tool, that supports the assessment process but does not artificially
constrain it.
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