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Abstract

Deep reinforcement learning has recently shown many impressive successes. However,
one major obstacle towards applying such methods to real-world problems is their lack
of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based
reinforcement learning method which combines a learned, factorized transition model of the
environment with rollout simulations to learn an effective policy from few examples. The
learned transition model employs an abstract, discrete (bottleneck) state, which increases
sample efficiency by reducing the number of model parameters and by exploiting structural
properties of the environment. We provide a mathematical analysis of the Bottleneck
Simulator in terms of fixed points of the learned policy, which reveals how performance is
affected by four distinct sources of error: an error related to the abstract space structure, an
error related to the transition model estimation variance, an error related to the transition
model estimation bias, and an error related to the transition model class bias. Finally,
we evaluate the Bottleneck Simulator on two natural language processing tasks: a text
adventure game and a real-world, complex dialogue response selection task. On both tasks,
the Bottleneck Simulator yields excellent performance beating competing approaches.

1. Introduction

Deep reinforcement learning (RL) has recently shown impressive successes across a variety of
tasks (Mnih et al., 2013; Tesauro, 1995; Silver et al., 2017, 2016; Brown & Sandholm, 2017;
Watter et al., 2015; Lillicrap et al., 2016; Schulman et al., 2015; Levine et al., 2016). However,
the silver bullet for many of these successes have been enormous amounts of training data and
result in policies which do not generalize to changes or novel tasks in the environment. Fewer
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successes have been achieved outside the realm of simulated environments or environments
where agents can play against themselves. Thus, one major impediment towards applying
deep RL to real-world problems is a lack of data-efficiency.

One promising solution is model-based RL, where an internal model of the environment
is learned. By learning an internal environment model the agent may be able to exploit
structural properties of the environment. This enables the agent to reduce the amount of
trial-and-error learning and to better generalize across states and actions.

In this paper we propose a model-based RL method based on learning an approximate,
factorized transition model. The approximate transition model involves discrete, abstract
states acting as information bottlenecks, which mediate the transitions between successive
full states. Once learned, the approximate transition model is then applied to learn the
agent’s policy (for example, using Q-learning with rollout simulations). This method has
several advantages. First, the factorized model has significantly fewer parameters compared
to a non-factorized transition model, making it highly sample efficient. Second, by learning
the abstract state representation with the specific goal of obtaining an optimal policy (as
opposed to maximizing the transition model’s predictive accuracy), it may be possible to
trade-off some of the transition model’s predictive power for an improvement in the policy’s
performance. By grouping similar states together into the same discrete, abstract state, it
may be possible to improve the performance of the policy learned with the approximate
transition model.

The idea of grouping similar states together has been proposed before in a variety of
forms, such as state aggregation (Bean, Birge, & Smith, 1987; Bertsekas & Castanon, 1989;
Dietterich, 2000; Jong & Stone, 2005; Jiang, Kulesza, & Singh, 2015). In contrast to
many previous approaches, in our method the grouping is applied exclusively within the
approximate transition model, while the agent’s policy still operates on the complete world
state. This allows the agent’s policy (e.g. a neural network) to form its own high-level,
distributed representations of the world from the complete world state. Importantly, in this
method, the agent’s policy is capable of obtaining better performance compared to standard
state aggregation, because it may counter deficiencies in the abstract state representation
by optimizing for myopic (next-step) rewards which it can do efficiently by accessing the
complete world state. This is particularly advantageous when it is possible to pretrain the
policy to imitate a myopic human policy (e.g. by imitating single actions or preferences
given by humans) or with a policy learned on a similar task. Furthermore, as with state
aggregation, the grouping may incorporate prior structural knowledge. As shown by the
experiments, by leveraging simple knowledge of the problem domain significant performance
improvements are obtained.

Our contributions are three-fold. First, we propose a model-based RL method, called
the Bottleneck Simulator, which learns an approximate transition distribution with discrete
abstract states acting as information bottlenecks. We formally define the Bottleneck
Simulator and its corresponding Markov decision process (MDP) and describe the training
algorithm in details. Second, we provide a mathematical analysis based on fixed points. We
provide two upper bounds on the error incurred when learning a policy with an approximate
transition distribution: one for general approximate transition distributions and one for
the Bottleneck Simulator. In particular, the second bound illustrates how the overall error
may be attributed to four distinct sources: an error related to the abstract space structure
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(structural discrepancy), an error related to the transition model estimation variance, an error
related to the transition model estimation bias, and an error related to the transition model
class bias. Finally, we demonstrate the data-efficiency of the Bottleneck Simulator on two
tasks involving few data examples: a text adventure game and a real-world, complex dialogue
response selection task. We demonstrate how efficient abstractions may be constructed and
show that the Bottleneck Simulator beats competing methods on both tasks. Finally, we
investigate the learned policies qualitatively and, for the text adventure game, measure how
performance changes as a function of the learned abstraction structure.

2. Background

This section provides a brief technical background.

2.1 Definitions

A Markov decision process (MDP) is a tuple 〈S,A, P,R, γ〉, where S is the set of states, A
is the set of actions, P is the state transition probability function, R(s, a) ∈ [0, rmax] is the
reward function, with rmax > 0, and γ ∈ (0, 1) is the discount factor (Sutton & Barto, 1998).
We adopt the standard MDP formulation with finite horizon. At time t, the agent is in a
state st ∈ S, takes an action at ∈ A, receives a reward rt = R(st, at) and transitions to a
new state st+1 ∈ S with probability P (st+1|st, at).

We assume the agent follows a stochastic policy π. Given a state s ∈ S, the policy π
assigns a probability to each possible action a ∈ A: π(a|s) ∈ [0, 1], s. t.

∑
a∈A π(a|s) = 1.

The agent’s goal is to learn a policy maximizing the discounted sum of rewards: R =∑T
t=1 γ

trt, called the cumulative return. or, more briefly, the return.
Given a policy π, the state-value function V π is defined as the expected return of the

policy starting in state s ∈ S:

V π(s) = Eπ

[
T∑
t=1

γtrt | s1 = s

]
. (1)

The state-action-value function Qπ is the expected return of taking action a in state s, and
then following policy π:

Qπ(s, a) = Eπ

[
T∑
t=1

γtrt | s1 = s, a1 = a

]
. (2)

An optimal policy π∗ is a policy satisfying ∀s ∈ S, a ∈ A:

V π∗(s) = V ∗(s) = max
π

V π(s). (3)

The optimal policy can be found via dynamic programming using the Bellman optimality
equations (Bertsekas & Tsitsiklis, 1995; Sutton & Barto, 1998), ∀s ∈ S, a ∈ A:

V ∗(s) = max
a∈A

Q∗(s, a), (4)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′) (5)
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which hold if and only if eq. (3) is satisfied. Popular algorithms for finding an optimal policy
include Q-learning, SARSA and REINFORCE (Sutton & Barto, 1998).

2.2 Model-Based RL with Approximate Transition Models

Suppose we aim to learn an efficient policy for the MDP 〈S,A, P,R, γ〉, but without having
access to the transition distribution P . However, suppose that we still have access to the
set of states and actions, the discount factor γ and the (immediate) reward function for
each state-action pair R(s, a). This is a plausible setting for many real-world applications,
including natural language processing, health care and robotics.

Suppose that a dataset D = {si, ai, s′i}i=1 with |D| tuples has been collected with a
policy πD acting in the true (ground) MDP (Sutton, 1990; Moore & Atkeson, 1993; Peng
& Williams, 1993).1 We can use the dataset D to estimate an approximate transition
distribution PApprox:

PApprox(s′|s, a) ≈ P (s′|s, a) ∀s, s′ ∈ S, a ∈ A. (6)

Given PApprox, we can form an approximate MDP 〈S,A, PApprox, R, γ〉 and learn a policy π
satisfying the Bellman equations in the approximate MDP, ∀s ∈ S, a ∈ A:

VApprox(s) = max
a∈A

QApprox(s, a), (7)

QApprox(s, a) = R(s, a) + γ
∑
s′∈S

PApprox(s′|s, a)VApprox(s′),

in the hope that PApprox(s′|s, a) ≈ P (s′|s, a) implies QApprox(s, a) ≈ Q(s′, a′) ∀s ∈ S, a ∈ A
for policy π.

The most common approach is to learn PApprox by counting co-occurrences in D (Moore
& Atkeson, 1993):

PApprox(s′|s, a) =
Count(s, a, s′)

Count(s, a, ·)
, (8)

where Count(s, a, s′) is the observation count for (s, a, s′) and the variable Count(s, a, ·)
=
∑

s′ Count(s, a, s′) is the observation count for (s, a) followed by any other state. Un-
fortunately, this approximation is not sample efficient, because its sample complexity for
accurately estimating the transition probabilities may grow in the order of O(|S|2|A|) (see
appendix).

The next section presents the Bottleneck Simulator, which learns a more sample efficient
model and implements an inductive bias by utilizing information bottlenecks

3. Bottleneck Simulator

This section introduces the Bottleneck Simulator.

1. Since the reward function R(s, a) is assumed known and deterministic, the dataset does not need to
contain the rewards.

574



The Bottleneck Simulator: A Model-Based Deep Reinforcement Learning Approach

3.1 Definition

The Bottleneck Simulator is given by the tuple 〈Z, S,A, PAbs, R, γ〉, where Z is a discrete
set of abstract states, S is the set of (full) states, A is the set of actions and PAbs is a set of
distributions.2 Further, we in general assume that |Z| << |S|.

The Bottleneck Simulator is illustrated in Figure 1. Conditioned on an abstract state
z ∈ Z, a state s ∈ S is sampled. Conditioned on a state s and an action a ∈ A, a reward
rt is outputted. Finally, conditioned on a state s and an action a, the next abstract state
z′ ∈ Z is sampled. Formally, the following distributions are defined:

PAbs(z0) Initial distribution of z (9)

PAbs(zt+1|st, at) Transition distribution of z (10)

PAbs(st|zt) Conditional distribution of s (11)

When viewed as a Markov chain, the abstract state z is a Markovian state: given a
sequence (z1, s1, a1, . . . , zt−1, st−1, at−1, zt), all future variables depend only on zt. As such,
the abstract state acts as an information bottleneck, since it has a much lower cardinality
than the full states (i.e. |Z| << |S|). This bottleneck helps reduce sparsity and improve
generalization. Furthermore, the representation for z can be learned using unsupervised
learning or supervised learning on another task. It may also incorporate domain-specific
knowledge.

Figure 1: Probabilistic directed graphical model for the Bottleneck Simulator. For each
time step t, zt is a discrete random variable which represents the abstract state
mediating the transitions between the successive full states st, at represents the
action taken by the agent, and rt represents the sampled reward.

Further, assume that for each state s ∈ S there exists exactly one abstract state z ∈ Z
where PAbs(s|z) assigns non-zero probability. Formally, let fs→z(s) be a known surjective
function mapping from S to Z, such that:

PAbs(s|z) = 0 ∀s ∈ S, z ∈ Z if fs→z(s) 6= z. (12)

2. In the POMDP literature, z often represents the observation. However, in our notation, z represents the
discrete, abstract state.
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This assumption allows us to construct a simple estimator for the transition distribution
based on fs→z(s). Given a dataset D = {si, ai, s′i}i=1 of tuples collected under a policy πD
acting in the true MDP, we may estimate PAbs as:

PAbs(z0) = 1(fs→z(sstart)=z0) (13)

PAbs(zt+1|st, at) =

∑
s′;fs→z(s′)=zt+1

Count(s, a, s′)∑
s′ Count(s, a, s′)

(14)

PAbs(st|zt) =

∑
s,a Count(s, a, st)∑

s,a,s′;fs→z(s′)=zt
Count(s, a, s′)

(15)

This approximation has a sample complexity in the order of O(|S||Z||A|) (see ap-
pendix). This should be compared to the estimator discussed previously, based on counting
co-occurrences, which had a sample complexity of O(|S|2|A|). For |Z| << |S|, clearly
|S||Z||A| << |S|2|A|. As such this estimator is likely to achieve lower variance transition
probability estimates for problems with large state spaces.

However, the lower variance comes at the cost of an increased bias. By partitioning the
states s ∈ S into groups, the abstract states z ∈ Z must contain all salient information
required to estimate the true transition probabilities:

PAbs(st+1|st, at) =
∑
zt+1

PAbs(zt+1|st, at)PAbs(st+1|zt+1) ≈ P (st+1|st, at). (16)

If the abstract states cannot sufficiently capture this information, then the approximation
w.r.t. the true transition distribution will be poor. This in turn is likely to cause the
policy learned in the Bottleneck Simulator to yield poor performance. The same drawback
applies to common state aggregation methods, such as state aggregation (Bean et al., 1987;
Bertsekas & Castanon, 1989). However, unlike aggregation method, the policy learned with
the Bottleneck Simulator has access to the complete, world state. Finally, it should be
noted that the count-based model for PAbs is still rather näıve and inefficient. In the next
sub-section, we propose a more efficient method for learning PAbs.

3.2 Learning

We assume that fs→z is known. The transition distributions can be learned using a parametric
classification model (e.g. a neural network with softmax output) by optimizing its parameters
w.r.t. log-likelihood. Denote by PAbs = PAbs,φ the transition distribution of the Bottleneck
Simulator parametrized by a vector of parameters φ. Formally, we aim to optimize:

arg max
φ

∑
(st,at,st+1,·)∈D

logPAbs(st+1|st, at) (17)

= arg max
φ

∑
(st,at,st+1,·)∈D

logPAbs(fs→z(st+1)|st, at) + logPAbs(st+1|fs→z(st+1)) (18)

This breaks the learning problem down into two optimization problems, which are solved
separately. In the appendix we propose a method for learning fs→z and PAbs jointly.
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4. Mathematical Analysis

In this section we develop two upper bounds related to the estimation error of the state-
action-value function learned in an approximate MDP. The first bound pertains to a general
class of approximate MDPs and illustrates the relationship between the learned state-action-
value function and the accuracy of the approximate transition distribution. The second
bound relies on the hierarchical latent structure and applies specifically to the Bottleneck
Simulator. This bound illustrates how the Bottleneck Simulator may learn a better policy
by trading-off between four separate factors.

Define the true MDP as a tuple 〈S,A, P,R, γ〉, where S is the set of states, A is the set
of actions, P is the true state transition distribution, R(h, a) ∈ [0, rmax] is the true reward
function and γ ∈ (0, 1) is the discount factor.

Let the tuple 〈S,A, PApprox, R, γ〉 be an approximate MDP, where PApprox is the transition
function. All other variables are the same as given in the true MDP. Let QApprox satisfy eq.
(7). This approximate MDP will serve as a reference for comparison.

Let the tuple 〈Z, S,A, PAbs, R, γ〉 be the Bottleneck Simulator, where Z is the discrete
set of abstract states and PAbs is the transition function, as defined in the previous section.
All other variables are the same as given in the true MDP. Finally, let QAbs be the optimal
state-action-value function w.r.t. the Bottleneck Simulator:

QAbs(s, a) = R(s, a) + γ
∑
s′∈S

PAbs(s
′|s, a)VAbs(s

′) (19)

= R(s, a) + γ
∑

s′∈S,z′∈Z
PAbs(s

′|z′)PAbs(z
′|s, a)VAbs(s

′) (20)

We derive bounds on the loss defined in terms of distance between Q∗ and sub-optimal fixed
points QApprox and QAbs:

||Q∗(s, a)−QApprox(s, a)||∞, (21)

||Q∗(s, a)−QAbs(s, a)||∞, (22)

where || · ||∞ is the infinity norm (max norm). In other words, we bound the maximum
absolute difference between the estimated return for any tuple (s, a) between the approximate
state-action value and the state-action value of the optimal policy. The same loss criteria
was proposed by Bertsekas and Tsitsiklis (1995, Chapter 6) as well as others.

Our first theorem bounds the loss w.r.t. an approximate MDP using either the total
variation distance or the Kullback-Leibler divergence (KL-divergence). This theorem follows
as a simple extension of existing results in the literature (Ross, 2013; Talvitie, 2015).

Theorem 1. Let QApprox be the optimal state-action-value function w.r.t. the approximate
MDP 〈S,A, PApprox, R, γ〉, and let Q∗ be the optimal state-action-value function w.r.t. the
true MDP 〈S,A, P,R, γ〉. Let γ be their contraction rates. Then it holds that:

||Q∗(s, a)−QApprox(s, a)||∞ ≤
γrmax

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′

∣∣P (s′|s, a)− PApprox(s
′|s, a)

∣∣∣∣∣∣∣
∣∣∣∣∣
∞

(23)

≤ γrmax

√
2

(1− γ)2

∣∣∣∣∣∣∣∣√DKL(P (s′|s, a)||PApprox(s′|s, a))

∣∣∣∣∣∣∣∣
∞
, (24)
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where DKL(P (s′|s, a)||PApprox(s
′|s, a)) is the conditional KL-divergence between P (s′|s, a)

and PApprox(s
′|s, a).

Proof. See appendix.

Eqs. (23) and (24) provide general bounds for any approximate transition distribution
PApprox (including PAbs). The bounds are asymptotically tight in the sense that when
PApprox converges to P both the bounds go to zero. Finally, the looser bound in eq. (24)
motivates why the approximate transition distribution might be learned using cross-entropy
loss (or, equivalently, maximum log-likelihood).

Our second theorem bounds the loss specifically w.r.t. the Bottleneck Simulator, under
the condition that if two states s, s′ ∈ S belong to the same abstract state z ∈ Z (i.e.
fs→z(s) = fs→z(s

′)) then their state-value functions are close to each other w.r.t. the optimal
policy π∗: |V ∗(s) − V ∗(s′)| < ε for some ε > 0 if fs→z(s) = fs→z(s

′). This state-value
similarity is closely related to metrics based on the notion of bisimulation (Dean, Givan, &
Leach, 1997; Ferns, Panangaden, & Precup, 2004; Ferns, Castro, Precup, & Panangaden,
2006; Abel, Hershkowitz, & Littman, 2016). The theorem is related to the results obtained
by Ross (2013, p. 257) and Ross and Bagnell (2012), though their assumptions are different
which in turn yields a bound in terms of expectations.

Theorem 2. Let QAbs be the optimal state-action-value function w.r.t. the Bottleneck
Simulator 〈Z, S,A, PAbs, R, γ〉, and let Q∗ be the optimal state-action-value function w.r.t.
the true MDP 〈S,A, P,R, γ〉. Let γ be their contraction rates, and define:

ε = max
si,sj∈S; fs→z(si)=fs→z(sj)

|V ∗(si)− V ∗(sj)| (25)

Then it holds that:

|Q∗(s, a)−QAbs(s, a)||∞ <
2γε

1− γ

+
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣PAbs(s

′|s, a)− P∞Abs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

+
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P∞Abs(s

′|s, a)− P ∗Abs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

+
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P ∗Abs(s

′|s, a)− P (s′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

(26)
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where Vmin and P∞Abs are defined as:

Vmin(s) = min
s′∈S,

fs→z(s′)=fs→z(s)

V ∗(s′), (27)

P∞Abs(s
′|s, a) =

∑
z′∈Z

P∞Abs(z
′|s, a)P∞Abs(s

′|z′) (28)

P∞Abs(z
′|s, a) =

∑
s′; fs→z(s′)=z′

P (s′|s, a) (29)

P∞Abs(s
′|z′) =

1(fs→z(s′)=z′)P
πD(s′)∑

s̄; fs→z(s̄)=z′ P
πD(s̄)

, (30)

P πD is the state visitation distribution under policy πD, and P ∗Abs satisfies:

P ∗Abs = arg min
P̂Abs

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P (s′|s, a)− P̂Abs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

s.t. P̂Abs(s
′|s, a) =

∑
z′∈Z

fs→z(s′)=z′

P̂Abs(z
′|s, a)P̂Abs(s

′|z′). (31)

Proof. See appendix.

The bound in eq. (26) consists of four error terms, each with an important interpretation:

||Q∗(s, a)−QAbs(s, a)||∞ < Structural Discrepancy

+ Transition Model Estimation Variance

+ Transition Model Estimation Bias

+ Transition Model Class Bias

Structural Discrepancy: The structural discrepancy is defined in eq. (25) and measures
the discrepancy (or dissimilarity) between state values within each partition. By assigning
states with similar expected returns to the same abstract partitions, the discrepancy is
decreased. Further, by increasing the number of abstract states |Z| (for example, by breaking
large partitions into smaller ones), the discrepancy is also decreased. The discrepancy depends
only on Z and fs→z, which makes it independent of any collected dataset D. Unlike the
previous bound in eq. (23), the discrepancy remains constant for Z and fs→z. However, in
practice, as more data is accumulated it is of course desirable to enlarge Z with new states.
In particular, if |Z| is grown large enough such that each state belongs to its own abstract
state (e.g. |Z| = |S|) then it can be shown that this term equals zero.

Transition Model Estimation Variance: This error term is a variant of the total
variation distance between PAbs(s

′|s, a) and P∞Abs(s
′|s, a), where each term is weighted by

the minimum state-value function within each abstract state Vmin(s′). The distribution
P∞Abs(s

′|s, a) represents the most accurate PAbs(s
′|s, a) learned under the policy πD under

the constraint that the model factorizes as P∞Abs(s
′|s, a) =

∑
z P
∞
Abs(s

′|z′)P∞Abs(z
′|s, a). In

other words, P∞Abs(s
′|s, a) corresponds to PAbs(s

′|s, a) estimated on an infinite dataset D
collected under the policy πD. As such, this error term is analogous to the variance term in

579



Serban, Sankar, Pieper, Pineau, & Bengio

the bias-variance decomposition for supervised learning problems. Furthermore, suppose
that P∞Abs = P ∗Abs = P . In this case, the last two error terms in the bound are exactly
zero, and this error term is smaller than the general bound in eq. (23) since applying
Vmin(s′) ≤ rmax/(1− γ) yields:

γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣PAbs(s

′|s, a)− P∞Abs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

rmax

1− γ

∣∣∣PAbs(s
′|s, a)− P∞Abs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

=
γrmax

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

∣∣PAbs(s
′|s, a)− P (s′|s, a)

∣∣∣∣∣∣∣
∣∣∣∣∣
∞

For problems with large state spaces or with extreme state values, we might expect
Vmin(s′) << rmax/(1 − γ) for the majority of states s′ ∈ S. In this case, this bound
would be far smaller than the general bound given in eq. (23). Finally, we may observe the
sampling complexity of this error term. Under the simple counting distribution introduced
earlier, PAbs has |S||A||Z|+ |Z||S| parameters. This suggests only O(|S||Z||A|) samples are
required to reach a certain accuracy. In contrast, for the general PApprox with a counting
distribution, the sampling complexity grows with O(|S|2|A|). For |Z| << |S|, we would
expect this term to decrease on the order of O(|S|) times faster than the term in eq. (23).

Transition Model Estimation Bias: This error term measures the weighted total
variation distance between P∞Abs(s

′|s, a) and P ∗Abs(s
′|s, a), where each term is weighted by

Vmin(s′). In other words, it measures the distance between the most accurate approximate
transition distribution PAbs(s

′|s, a), obtainable from an infinite dataset D collected under
policy πD, and the optimal factorized transition distribution P ∗Abs(s

′|s, a) (i.e. the transition
distribution with the minimum sum of weighted absolute differences to the true transition
distribution). As such, this error term represents the systematic bias induced by the
behaviour policy πD.

Transition Model Class Bias: This error term measures the weighted total variation
distance between P ∗Abs(s

′|s, a) and P (s′|s, a), where each term is weighted by Vmin(s′). It
represents the systematic bias induced by the restricted class of probability distributions,
which factorize according to latent abstract states with the mapping fs→z. As such, this
error term is analogous to the bias term in the bias-variance decomposition for supervised
learning problems. As more data is accumulated it is possible to enlarge Z with new states.
In particular, if |Z| is grown large enough, such that each state belongs to its own abstract
state, and if PAbs(s

′|s, a) is a tabular function, then this error term will become zero.
The bound in eq. (26) offers more than a theoretical analysis. In the extreme case where

|S| >> |D|, the bound inspires hope that we may yet learn an effective policy if only we can
learn an abstraction with small structural discrepancy.

5. Experiments

We carry out experiments on two natural language processing tasks in order to evaluate
the performance of the Bottleneck Simulator and to compare it to other approaches. Many
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real-world natural language processing tasks involve complex, stochastic structures, which
have to be modelled accurately in order to learn an effective policy. Here, large amounts
of training data (e.g. training signals for on-policy learning, or observed trajectories of
human agents executing similar tasks) are often not available. This makes these tasks
particularly suitable for demonstrating the advantages of the Bottleneck Simulator related
to data-efficiency, including improved performance based on few samples.

5.1 Text Adventure Game

The first task is the text adventure game Home World introduced by Narasimhan, Kulkarni,
and Barzilay (2015). The environment consists of four connected rooms: kitchen, bedroom,
garden and living room. The game’s objective involves executing a given task in a specific
room, such as eating an apple in the kitchen when the task objective is ”You are hungry”.
The agent receives a reward of 1.0 once the task is completed. Further, we adopt the more
complex setting where the objectives are redundant and confusing, such as ”You are not
hungry but now you are sleepy.”. The vocabulary size is 84. The environment has 192 unique
states and 22 actions.

Setup: We use the same experimental setup and hyper-parameters as Narasimhan et al.
(2015) for our baseline. We train an state-action-value function baseline policy parametrized
as a feed-forward neural network with Q-learning. The baseline policy is trained until the
average percentage of games completed reaches at least either 15%, 20% or 30%. Then,
we estimate the Bottleneck Simulator environment model with the episodes collected thus
far (∼1500 transitions). On the collected episodes, we learn the mapping from states to
abstract states, fs→z, by applying k-means clustering using Euclidean distance to the word
embeddings computed on the objective text and current observation text. We use Glove
word embeddings (Pennington, Socher, & Manning, 2014). We train the transition model
on the collected episodes. The transition model is a two-layer MLP classifier predicting a
probability for each cluster-id of the next state given a state and action. Finally, we train a
two-layer MLP predicting the reward given a state and action. This MLP defines the reward
function in the Bottleneck Simulator environment model.

Policy: We initialize the Bottleneck Simulator policy from the baseline policy and
continue training it by rolling out simulations in the Bottleneck Simulator environment
model. For every 150 rollouts Bottleneck Simulator environment model, we evaluate the
policy in the real game by letting the agent play out 20 episodes and measure the percentage
of completed games. We stop training when the percentage of completed games stops
improving.

Benchmark Policies: We compare the Bottleneck Simulator policy to two benchmark
policies. The first is the baseline policy trained with Q-learning. The second is a policy
trained with a state abstraction method, which we call State Abstraction. The observed
states s ∈ S are mapped to abstract states z ∈ Z, where Z are the same set of abstract states
utilized by the Bottleneck Simulator environment model. As with the Bottleneck Simulator
environment model, the function fs→z is used to map from states to abstract states. The
action space a ∈ A was not modified. As with the Bottleneck Simulator policy, we evaluate
the State Abstraction policy every 150 episodes by letting the agent play out another 20
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episodes and measure the percentage of completed games. For the final evaluation, we select
the State Abstraction policy which obtained the highest percentage of completed games.

Evaluation: The results are given in Table 1, averaged over 10 runs for different cluster
sizes. We evaluate the policies based on the percentage of games completed. It is important
to note that since our goal is to evaluate sample efficiency, our policies have been trained on
far fewer episodes compared to Narasimhan et al. (2015).3 Further, we have retained the
baseline policy’s hyper-parameters for the Bottleneck Simulator policies while reporting the
results. For the first experiment, where the baseline policy reaches 15% completed games,
we observe peak performance at 36.8% for the Bottleneck Simulator policy with a cluster
size of 24, which is significantly higher than the State Abstraction policy at 26.5% and the
baseline policy at only 15%. For the second experiment, where the baseline policy reaches
20.7% completed games, we observe peak performance at 42.6% for the Bottleneck Simulator
policy with a cluster size of 32, which is significantly higher than the State Abstraction
policy at 28.4% and the baseline policy at only 20.7%. For the second experiment, where the
baseline policy reaches 30.1% completed games, we observe peak performance at 63.3% for
the Bottleneck Simulator policy with a cluster size of 32, which is significantly higher than
the State Abstraction policy at 57.5% and the baseline policy at only 30.1%. This shows
empirically that the Bottleneck Simulator policy is the most sample efficient algorithm, since
all policies have been trained on the same number of examples. Furthermore, we observe
that the performance of both the Bottleneck Simulator policy and the State Abstraction
policy improve as the number of completed games of the Q-learning baseline policy increases.
This is to be as expected, since a higher number of completed games of the Q-learning
baseline policy means a larger dataset available for training Bottleneck Simulator policy and
the baseline policy. Finally, it should be noted that the State Abstraction and Bottleneck
Simulator policies are complementary and may even be combined (e.g. by training a State
Abstraction policy from samples generated by the Bottleneck Simulator environment model).

5.2 Dialogue

The second task is a real-world problem, where the agent must select appropriate responses in
social, chit-chat conversations. The task is the 2017 Amazon Alexa Prize Competition (Ram,
Prasad, Khatri, Venkatesh, et al., 2017), where a spoken dialogue system must converse
coherently and engagingly with humans on popular topics (e.g. entertainment, fashion,
politics, sports).45

Setup: We experiment with a dialogue system consisting of an ensemble of 22 response
models. The response models take as input a dialogue and output responses in natural
language text. In addition, the response models may also output one or several scalar values,
indicating confidence levels. The response models have each their own internal procedure
for generating responses: some response models are based on information retrieval models,
others on generative language models, and yet others on template-based procedures. Taken
together, these response models output a diverse set of responses. The dialogue system is

3. Indeed, a tabular state-action-value function could straightforwardly be trained with Q-learning to solve
this task perfectly if given enough training examples.

4. See also https://developer.amazon.com/alexaprize/2017-alexa-prize.
5. Two demo videos of the system are available online:

https://youtu.be/TCVbYpu9Llo and https://youtu.be/LG482LzW77Y.
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Table 1: Average percentage of completed games for Home World (± 95% confidence
intervals) across three different experiments. The Q-learning baseline policy was
trained once until reaching an average game completion rate of 15%, 20.7% and
30.1% in the first, second and third experiment respectively.

Number of Clusters (i.e. |Z|)
Policy 4 16 24 32

Exp 1 Q-learning (Baseline) 15.0 15.0 15.0 15.0

State Abstraction 27.8±4.4 24.7±8.4 26.5±7.5 21.3±10.7

Bottleneck Simulator 17.0±2.3 24.8±2.4 36.8±2.1 29.8±4.7

Exp 2 Q-learning (Baseline) 20.7 20.7 20.7 20.7

State Abstraction 16.0±3.1 24.7±1.9 28.0±4.2 28.4±1.2

Bottleneck Simulator 24.4±1.1 37.9±2.1 41.6±5.4 42.6±3.2

Exp 3 Q-learning (Baseline) 30.1 30.1 30.1 30.1

State Abstraction 35.3±0.9 50.5±8.4 56.1±7.1 57.5±1.3

Bottleneck Simulator 32.1±0.8 53.7±5.1 52.0±5.4 63.3±3.2

described further in Serban, Sankar, Zhang, Lin, Subramanian, Kim, Chandar, Ke, et al.
(2017a) (see also Serban, Sankar, Germain, Zhang, Lin, Subramanian, Kim, Pieper, Chandar,
Ke, et al. (2017b)).

The agent’s task is to select an appropriate response from the set of responses, in order
to maximize the satisfaction of the human user. At the end of each dialogue, the user gives
a score between 1 (low satisfaction) and 5 (high satisfaction).

Prior to this experiment, a few thousand dialogues were recorded between users and two
other agents acting with ε-greedy exploration. These dialogues are used for training the
Bottleneck Simulator and the benchmark policies. In addition, about 200,000 labels were
annotated at the dialogue-turn-level using crowd-sourcing: for each recorded dialogue, an
annotator was shown a dialogue and several system responses (the actual response selected
by the agent and several alternative responses) and asked to score each between 1 (very
poor) and 5 (excellent).

Policy: The Bottleneck Simulator policy is trained using discounted Q-learning on rollout
simulations from the Bottleneck Simulator environment model. The policy is parametrized as
an state-action-value function Q(s, a), taking as input the dialogue history s and a candidate
response a. Based on the dialogue history s and candidate response a, 1458 features are
computed, including word embeddings, dialogue acts, part-of-speech tags, unigram and
bigram word overlap, and model-specific features. These features are given as input to a
five-layered feed-forward neural network, which then outputs the estimated state-action
value. Further details on the model architecture are given in the appendix.
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Abstraction Space: As defined earlier, let Z be the set of abstract states used by the
Bottleneck Simulator environment model. We then define Z as the Cartesian product:

Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance,

where ZDialogue act, ZUser sentiment and ZGeneric user utterance are three discrete sets. The first
set consists of 10 dialogue acts, representing high-level user intentions (Stolcke, Ries, Coccaro,
Shriberg, Bates, Jurafsky, Taylor, Martin, Van Ess-Dykema, & Meteer, 2000): ZDialogue act =
{Accept,Reject,Request,Politics,Generic Question,
Personal Question,Statement,Greeting,Goodbye,Other}. These dialogue acts represent the
high-level intention of the user’s utterance. The second set consists of sentiments types:
ZUser sentiment = {Negative,Neutral,Positive}. The third set contains the binary variable:
ZGeneric user utterance = {True,False}. This variable is True only when the user utterance is
generic and topic-independent (i.e. when the user utterance only contains stop-words). We
develop a deterministic classifier fs→z mapping dialogue histories to corresponding classes
in ZDialogue act, ZUser sentiment and ZGeneric user utterance. Although we only consider dialogue
acts, sentiment and generic utterances, it is trivial to expand the abstract state with other
types of information.

Transition Model: The Bottleneck Simulator environment model uses a transition
distribution parametrized by three independent two-layer MLP models. All three MLP
models take as input the same features as the Bottleneck Simulator policy, as well as features
related to the dialogue act, sentiment and generic property of the last user utterance. The
first MLP predicts the next dialogue act (ZDialogue act), the second MLP predicts the next
sentiment type (ZUser sentiment) and the third MLP predicts whether the next user utterance
is generic (ZGeneric user utterance). The training dataset consists of ∼500, 000 recorded dialogue
transitions, of which 70% of the dialogues are used as training set and 30% of the dialogues are
used as validation set. The MLPs are trained with cross-entropy using mini-batch stochastic
gradient descent. During rollout simulations, given a dialogue history st and an action at
selected by the policy, the next abstract state zt+1 ∈ Z is sampled according to the predicted
probability distributions of the three MLP models. Then, a corresponding next dialogue
history st+1 is sampled at uniformly random from the set of recorded dialogues, under the
constraint that the dialogue history matches the abstract state (i.e. fs→z(st+1) = zt+1).

Reward Model: The Bottleneck Simulator environment model uses a reward model
parametrized as a feed-forward neural network with a softmax output layer. The reward
model is trained to estimate the reward for each action based on the 200,000 crowd-sourced
labels. When rolling out simulations with the Bottleneck Simulator, the expected reward
is given to the agent at each time step. Unless otherwise stated, in the remainder of this
section, this is the model we will refer to as the learned, approximate reward model.

Benchmark Policies: We evaluate the Bottleneck Simulator policy against the following
seven competing methods:

Heuristic: a heuristic policy based on pre-defined rules.

Supervised: an state-action-value function policy trained with supervised learning
(cross-entropy) to predict the annotated scores on the ∼200,000 crowd-sourced labels.
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Q-learning: an state-action-value function policy trained with discounted Q-learning
on the recorded dialogues, where episode returns are given by a learned, approximate
reward model.

Q-Function Approx: an state-action-value function policy trained on the. ∼500,000
recorded transitions with a least-squares regression loss, where the target values are
given by a learned, approximate reward model.

REINFORCE: an off-policy REINFORCE policy trained with reward shaping on the
∼500,000 recorded transitions, where episode returns are given by the final user scores.

REINFORCE Critic: an off-policy REINFORCE policy trained with reward shaping
on the ∼500,000 recorded transitions, where episode returns are given by a learned,
approximate reward model.

State Abstraction: a tabular state-action-value function policy trained with discounted
Q-learning on rollouts from the Bottleneck Simulator environment model, with abstract
policy state space Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance containing
60 discrete abstract states and action space containing 52 abstract actions, and where
episode returns are given by a learned, approximate reward model.

The two off-policy REINFORCE policies were trained with the action probabilities of the
recorded dialogues (information which none of the other policies used). With the exception
of the Heuristic and State Abstraction policies, all policies were parametrized as five-layered
feed-forward neural networks. Furthermore, the Bottleneck Simulator, the Q-learning, the
Q-Function Approx. and the two off-policy REINFORCE policies were all initialized from
the Supervised policy. This is analogous to pretraining the policies to imitate a myopic
human policy (i.e. imitating the immediate actions of humans in given states). For these
policies, the first few hidden layers were kept fixed after initialization from the Supervised
policy, due to the large number of parameters. See appendix for details.

Preliminary Evaluation: We use two methods to perform a preliminary evaluation of
the learned policies. The first method evaluates each policy using the crowdsourced human
scores. For each dialogue history, the policy must select one of the corresponding annotated
responses. Afterwards, the policy receives the human-annotated score as reward. Finally,
we compute the average human-annotated score of each policy. This evaluation serves as
a useful approximation of the immediate, average reward a policy would get on the set of
annotated dialogues.6

The second method evaluates each policy by running 500 rollout simulations in the
Bottleneck Simulator environment model, and computes the average return and average
reward per time step. The rollouts are carried out on the held-out validation set of dialogue
transitions (i.e. only states s ∈ S, which occur in the held-out validation set are sampled
during rollouts). Although the Bottleneck Simulator environment model is far from an

6. The feed-forward neural network policies were all pre-trained with cross-entropy to predict the training
set of the crowdsourced labels, such that their second last layer computes the probability of each human
score (see appendix for details). Therefore, the output of their last hidden layer is used to select the
response in the crowdsourced evaluation. Note further that the crowdsourced evaluation is carried out on
the held-out test set of crowdsourced labels, while the neural network parameters were trained on the
training set of crowdsourced labels.
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Table 2: Policy evaluation w.r.t. average crowdsourced scores (± 95% confidence intervals),
and average return and reward per time step computed from 500 rollouts in the
Bottleneck Simulator environment model (± standard deviations). Star ∗ indicates
policy is significantly better than Heuristic policy at 95% statistical significance
level. Triangle N indicates policy is initialized from Supervised policy feed-forward
neural network and hence yield same performance w.r.t. crowdsourced human
scores.

Crowdsourced Simulated Rollouts

Policy Human Score Return Avg Reward

Heuristic 2.25±0.04 −11.33±12.43 −0.29±0.19

Supervised 2.63±0.05∗ −6.46±8.01 −0.15±0.16

Q-learning 2.63±0.05∗N −6.70±7.39 −0.15±0.17

Q-Function Approx. 2.63±0.05∗N −24.19±23.30 −0.73±0.27

REINFORCE 2.63±0.05∗N −7.30±8.90 −0.16±0.16

REINFORCE Critic 2.63±0.05∗N −10.19±11.15 −0.28±0.19

State Abstraction 1.85±0.04 −13.04±13.49 −0.35±0.19

Bottleneck Sim. 2.63±0.05∗N −6.54±8.02 −0.15±0.18

Table 3: A/B testing experiments average real-world user scores (± 95% confidence intervals).
Star ∗ indicates policy is significantly better than other policies at 95% statistical
significance level. Results are based on a total of ∼3000 real-world users.

Policy Exp 1 Exp 2 Exp 3

Heuristic 2.86±0.22 - -

Supervised 2.80±0.21 - -

Q-Function Approx. 2.74±0.21 - -

REINFORCE 2.86±0.21 3.06±0.12 3.03±0.18

REINFORCE Critic 2.84±0.23 - -

Bottleneck Sim. 3.15±0.20* 2.92±0.12 3.06±0.17

accurate representation of the real world, it has been trained with cross-entropy (maximum
log-likelihood) on ∼500,000 recorded transitions. Therefore, the rollout simulations might
serve as a useful first approximation of how a policy might perform when interacting with
real-world users. The exception to this interpretation is the Bottleneck Simulator and
State Abstraction policies, which themselves utilized rollout simulations from the Bottleneck
Simulator environment model during training. Because of this, it is possible that the these
two policies might be overfitting the Bottleneck Simulator environment model and, in turn,
that this evaluation might be over-estimating their performance. Therefore, we will not

586



The Bottleneck Simulator: A Model-Based Deep Reinforcement Learning Approach

Table 4: First A/B testing experiment topical specificity and coherence by policy. The
columns are average number of noun phrases per system utterance (System NPs),
average number of overlapping words between the user’s utterance and the system’s
response (This Turn), and average number of overlapping words between the user’s
utterance and the system’s response in the next turn (Next Turn). Stop words are
excluded. 95% confidence intervals are also shown.

Word Overlap

Policy System NPs This Turn Next Turn

Heuristic 1.05±0.05 7.33±0.21 2.99±1.37

Supervised 1.75±0.07 10.48±0.28 10.65±0.29

Q-Function Approx. 1.50±0.07 8.35±0.29 8.36±0.31

REINFORCE 1.45±0.05 9.05±0.21 9.14±0.22

REINFORCE Critic 1.04±0.06 7.42±0.25 7.42±0.26

Bottleneck Sim. 1.98±0.08 11.28±0.30 11.52±0.32

consider strong performance of either of these two policies here as indicating that they are
superior to other policies.

The results are given in Table 2. On the crowdsourced evaluation, the Supervised policy
and all policies initialized perform decently reaching an average human score of 2.63. This is
to be expected, since the Supervised policy is trained only to maximize the crowdsourced
human scores. However, the Heuristic policy performs significantly worse indicating that
there is much improvement to be made on top of the pre-defined rules. Further, the State
Abstraction policy performs worst out of all the policies, indicating that the abstract state-
action space cannot effectively capture important aspects of the states and actions to learn
a useful policy for this complex task. On the rollout simulation evaluation, we observe that
the Supervised policy, Q-learning policy, and Bottleneck Simulator policy are tied for first
place. Since the Bottleneck Simulator policy performs similarly to the other policies here, it
would appear that the policy has not overfitted the Bottleneck Simulator environment model.
After these policies follow the two REINFORCE policies and the Heuristic policy. Second
last comes the State Abstraction policy, which again indicates that the state abstraction
method is insufficient for this complex task. Finally, the Q-function Approx. appears to
perform the worst, suggesting that the learned, approximate reward model it was trained
with does not perform well.

This section provided a preliminary evaluation of the policies. The next section will
provide a large-scale, real-world user evaluation.

Real-World Evaluation: We carry out a large-scale evaluation with real-world users
through three A/B testing experiments conducted during the Amazon Alexa Prize Com-
petition, between July 29th - August 21st, 2017. In the first experiment the Heuristic,
Supervised, Q-Function Approx., REINFORCE, REINFORCE Critic and Bottleneck Simu-
lator policies were evaluated. In the next two experiments only the Bottleneck Simulator
and REINFORCE policies were evaluated. In total, ∼3000 user scores were collected.
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The average user scores are given in Table 3. We observe that the Bottleneck Simulator
policy performed best in both the first and third experiments. This shows that the Bottleneck
Simulator policy has learned an effective policy, which is in agreement with the preliminary
evaluation. On the other hand, the REINFORCE policy performed best in the second
experiment. This shows that the REINFORCE policy is the most fierce contender of the
Bottleneck Simulator policy. In line with the preliminary evaluation, the REINFORCE
Critic and Q-Function Approx. policies perform worse than the REINFORCE and Bottleneck
Simulator policies. Finally, in contrast to the preliminary evaluation, the Supervised policy
performs worse than all other policies evaluated, though not significantly worse than the
Heuristic policy.

Next, we conduct an analysis of the policies in the first experiment w.r.t. topical specificity
and topical coherence. For topical specificity, we measure the average number of noun phrases
per system utterance. A topic-specific policy will score high on this metric. For topical
coherence, we measure the word overlap between the user’s utterance and the system’s
response, as well as word overlap between the user’s utterance and the system’s response at
the next turn. The more a policy remains on topic, the higher we would expect these two
metrics to be. An engaging policy should score high on both topical specificity and topical
coherence.

As shown in Table 4, the Bottleneck Simulator policy performed best on all three metrics.
This indicates that the Bottleneck Simulator has the most coherent and engaging dialogues
out of all the evaluated policies. This is in agreement with its excellent performance w.r.t.
real-world user scores and w.r.t. the preliminary evaluation. A further analysis of the selected
responses indicates that the Bottleneck Simulator has learned a more risk tolerant strategy.

6. Related Work

This section discusses work related to the Bottleneck Simulator.

Model-Based RL: The Bottleneck Simulator is inspired by previous work on model-
based RL. Model-based RL research dates back to the 90s, and includes well-known algorithms
such as Dyna, R-max and E3 (Sutton, 1990; Moore & Atkeson, 1993; Peng & Williams, 1993;
Kuvayev & Sutton, 1997; Brafman & Tennenholtz, 2002; Kearns & Singh, 2002; Wiering
& Schmidhuber, 1998; Wiering, Sa lustowicz, & Schmidhuber, 1999). For an overview, see
Kaelbling, Littman, and Moore (1996). Model-based RL with deep learning has also been
investigated, in particular for robotic control tasks (Watter et al., 2015; Lenz, Knepper,
& Saxena, 2015; Gu, Lillicrap, Sutskever, & Levine, 2016; Finn & Levine, 2017). Sample
efficient approaches have also been proposed by taking a Bayesian approach to learning the
dynamics model. For example, PILCO incorporates uncertainty by learning a distribution
over models of the dynamics in conjunction with the agent’s policy (Deisenroth & Rasmussen,
2011). Another approach based on Bayesian optimization was proposed by Bansal, Calandra,
Xiao, Levine, and Tomiin (2017). An approach combining dynamics models of various levels
of fidelity or accuracy was proposed by Cutler, Walsh, and How (2015). Other related
work includes (Bansal et al., 2017; Cutler et al., 2015; Oh, Guo, Lee, Lewis, & Singh, 2015;
Venkatraman, Capobianco, Pinto, Hebert, Nardi, & Bagnell, 2016; Kansky, Silver, Mely,
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Eldawy, et al., 2017; Racaniere, Weber, Reichert, Buesing, et al., 2017; Francois-Lavet,
Bengio, Precup, & Pineau, 2019).

A key idea employed by the Bottleneck Simulator is to group similar states together.
The idea of grouping similar states together also has a long history in the RL community.
Numerous algorithms exist for models based on state abstraction (state aggregation) (Bean
et al., 1987; Bertsekas & Castanon, 1989; Dean et al., 1997; Dietterich, 2000; Jong & Stone,
2005; Li, Walsh, & Littman, 2006; Jiang et al., 2015). The main idea of state abstraction is to
group together similar states and solve the reduced MDP. Solving the optimization problem
in the reduced MDP requires far fewer iterations or samples, which improves convergence
speed and sample efficiency. In particular, related theoretical analyses of the regret incurred
by state abstraction methods are provided by Van Roy (2006) and Petrik and Subramanian
(2014). In contrast to state abstraction, in the Bottleneck Simulator the grouping is applied
exclusively within the approximate transition model while the agent’s policy operates on the
complete, observed state. Compared to state abstraction, the Bottleneck Simulator reduces
the impact of compounding errors caused by inaccurate abstractions in the approximate
transition model. By giving the policy access to the complete, observed state, it may
counter inaccurate abstractions by optimizing for myopic (next-step) rewards. This enables
pretraining the policy to mimic a myopically optimal policy (e.g. single human actions), as
is the case in the dialogue response selection task. Furthermore, the Bottleneck Simulator
allows a deep neural network policy to learn its own high-level, distributed representations
of the state from scratch. Finally, the Bottleneck Simulator enables a mathematical analysis
of the trade-offs incurred by the learned transition model in terms of structural discrepancy
and weighted variation distances, which is not possible in the case of general, approximate
transition models.

In a related vein, learning a factorized MDP (for example, by factorizing the state
transition model) has also been investigated extensively in the literature (Boutilier, Dean,
& Hanks, 1999; Degris, Sigaud, & Wuillemin, 2006; Strehl, Diuk, & Littman, 2007; Ross
& Pineau, 2008; Bellemare, Veness, & Bowling, 2013; Wu, Feng, & Zheng, 2014; Osband
& Van Roy, 2014; Hallak, Schnitzler, Mann, & Mannor, 2015). For example, Ross and
Pineau (2008) develop an efficient Bayesian framework for learning factorized MDPs. As
another example, Bellemare et al. (2013) propose a Bayesian framework for learning a
factored environment model based on a class of recursively decomposable factorizations. An
important line of work in this area are stochastic factorization models (Barreto, Beirigo,
Pineau, & Precup, 2015, 2016). Similar to non-negative matrix factorization (NMF), these
models approximate the environment transition model P with matrices DK ≈ P. Similar to
other methods, these models may improve sample efficiency when the intrinsic dimensionality
of the transition model is low. However, in comparison to the Bottleneck Simulator and other
methods, it is difficult to incorporate domain-specific knowledge since D and K are learned
from scratch. In contrast to the Bottleneck Simulator and other state abstraction methods,
there is no constraint for each state to belong to exactly one abstract state. Whether or
not this constraint improves or deteriorates performance is task specific. However, without
imposing this constraint, it seems unlikely that one can provide a mathematical analysis of
policy performance in terms of structural discrepancy.

It is also instructive to compare the Bottleneck Simulator to the broader research field
of hierarchical reinforcement learning (McGovern, Sutton, & Fagg, 1997; Parr & Russell,
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1998b, 1998a; Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Sutton, Precup, &
Singh, 1999; Dietterich, 2000; Barto & Mahadevan, 2003), in particular approaches where
spatio-temporal abstractions are utilized in order to help break down the sequential decision
making problem into smaller pieces. One such approach is the semi-Markov decision process
(SMDP) with options framework (Sutton et al., 1999), where a policy is trained to operate
simultaneously on primitive actions and on so-called options, a generalization of primitive
actions, which includes temporally extended courses of actions. In contrast to this framework,
as well as other frameworks for temporal abstractions, the Bottleneck Simulator does not
construct abstractions related to the actions but utilizes instead abstraction for the state
representation at a single point in time (e.g. by mapping the dialogue history at a single
point in time to a corresponding abstract state). Apart from the work discussed earlier in
this section, a lot of the work on hierarchical reinforcement learning seems to have focused
on temporal abstractions related to the actions while keeping the state representation the
same (Francois-Lavet, Henderson, Islam, Bellemare, Pineau, et al., 2018). Nevertheless, it
seems likely that such temporal abstractions may be combined with the Bottleneck Simulator
in order to further improve performance.

Finally, a highly relevant research direction is the model-based reinforcement learning
framework of value-aware model learning (VAML) (Farahmand, Barreto, & Nikovski, 2017;
Asadi, Cater, Misra, & Littman, 2018; Luo, Xu, Li, Tian, Darrell, & Ma, 2019). In this
framework the environment transition model is learned by minimizing a loss function, which
takes into account the impact the transition model has on the learned policy. This is in
contrast to the approach we proposed above, where the Bottleneck Simulator environment
model is simply trained with a cross-entropy objective function. Specifically, the loss function
in the VAML framework is derived from the residual error between the Bellman operator
w.r.t. the true transition model and the Bellman operator w.r.t. the learned transition model.
By learning the environment transition model with such a loss function, the parameter
updates of the policy at training time may become more accurate, which in turn may
improve the performance of the learned policy. However, since the loss function makes
further approximations and only considers the residual error arising from applying the
Bellman operator once, it is not clear whether the converged, learned policy will be better
compared to a policy learned using an transition model trained with a cross-entropy objective
function. Nevertheless, future work should explore whether it is possible to improve the
performance of the Bottleneck Simulator by incorporating the VAML framework for learning
the transition model.

Dialogue Systems: Numerous researchers have applied RL for training goal-oriented
dialogue systems (Singh, Kearns, Litman, & Walker, 1999; Walker, 2000; Singh, Litman,
Kearns, & Walker, 2002; Williams & Young, 2007a, 2007b; Pieraccini, Suendermann,
Dayanidhi, & Liscombe, 2009). One line of research has focused on learning dialogue
systems through simulations, often using abstract dialogue states and actions (Eckert, Levin,
& Pieraccini, 1997; Levin, Pieraccini, & Eckert, 2000; Chung, 2004; Cuayahuitl, Renals,
Lemon, & Shimodaira, 2005; Georgila, Henderson, & Lemon, 2006; Schatzmann, Thomson,
Weilhammer, Ye, & Young, 2007; Heeman, 2009; Traum, Marsella, Gratch, Lee, & Hartholt,
2008; Lee & Eskenazi, 2012; Khouzaimi, Laroche, & Lefevre, 2017; Lopez-Cozar, 2016; Su,
Gasic, Mrksic, Rojas-Barahona, et al., 2016; Fatemi, Asri, Schulz, He, & Suleman, 2016; Asri,
He, & Suleman, 2016; Kreyssig, Casanueva, Budzianowski, & Gasic, 2018). The approaches
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here differ based on how the simulator is created or estimated, and whether or not the
simulator is also considered an agent trying to optimize its own reward. For example, Levin
et al. (2000) tackle the problem of building a flight booking dialogue system. They estimate
a user simulator model by counting transition probabilities between abstract dialogue states
and user actions (similar to an n-gram model), which is then used to train an RL policy. As
a more recent example, Yu, Xu, Black, and Rudnicky (2016) propose to learn a dialogue
manager policy through model-free off-policy RL based on simulations with a rule-based
system. As another example, Kreyssig et al. (2018) propose to learn a dialogue manager
policy through a user simulator, which simulates the user’s response text in the dialogue,
and demonstrate that this may lead to better performance compared to a user simulator
invoking abstractions.

Researchers have also investigated learning generative neural network policies operating
directly on raw text through user simulations (Zhao & Eskenazi, 2016; Guo, Klinger,
Rosenbaum, Bigus, et al., 2016; Das, Kottur, Moura, Lee, & Batra, 2017; Lewis, Yarats,
Dauphin, Parikh, & Batra, 2017; Liu & Lane, 2017). In parallel to our work, Peng, Li, Gao,
Liu, and Wong (2018) have proposed a related model-based reinforcement learning approach
for dialogue utilizing the Dyna algorithm. To the best of our knowledge, the Bottleneck
Simulator is the first model-based RL approach with discrete, abstract states to be applied
to learning a dialogue policy operating on raw text.

In a related vein, researchers have investigated learning effective dialogue managers
policies by estimating a partially observable Markov decision process (POMDP) (Williams &
Young, 2007b, 2007a; Gasic & Young, 2011; Png, Pineau, & Chaib-Draa, 2012; Casanueva,
Budzianowski, Su, Ultes, Rojas-Barahona, Tseng, & Gasic, 2018). In both this line of work
and in the Bottleneck Simulator a probability distribution over latent states is estimated.
However, a major difference between the two approaches is that the POMDP approaches
often require the dialogue system designer to explicitly construct the complete, latent state
of the world (for example, in the form of slot-value pairs) rather than an incomplete, abstract
state. The POMDP approaches often also require the dialogue system designer to put
a significant amount of work into specifying, and even hand-crafting, the transition and
observation functions as well as the set of possible user intentions. If the latent state of the
world is missing components (e.g. slot-value pairs), if the transition and observation functions
are not sufficiently accurate or if some user intentions have been omitted, then a POMDP
approach may not perform well. For this reason the POMDP approaches may be very adept
at learning effective policies on goal-driven dialogue tasks within clearly defined, limited
domains, but may struggle to learn effective policies on non-goal-driven dialogue tasks as well
as in broader domains (for example, domains where it is difficult to construct slot-value pair
representations with high domain coverage). On the other hand, the Bottleneck Simulator
only requires the dialogue system designer to create a small set of abstract states Z along
with function fs→z mapping dialogues to abstract states. There is no need for the abstract
states Z to capture all salient information from a dialogue, as highlighted by the bound in
eq. (26) and its dependence on the structural discrepancy. Further, as demonstrated in the
first experiment, even a simple, automated approach such as clustering, may be sufficient to
construct the abstract states and learn a policy superior to other reinforcement learning
approaches. This also shown by the second experiment, where a Bottleneck Simulator policy
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trained with only 60 possible abstract, latent states (|Z| = 60) manages to outperform seven
competing policies.

7. Conclusion

We have proposed the Bottleneck Simulator, a model-based reinforcement learning (RL)
approach combining a learned, factorized environment transition model with rollout simu-
lations to learn an effective policy from few data examples. The learned transition model
employs an abstract, discrete state (a bottleneck state), which increases sample efficiency
by reducing the number of model parameters and by exploiting structural properties of the
environment. We have provided a mathematical analysis of the Bottleneck Simulator in
terms of fixed points of the learned policy. The analysis reveals how the policy’s performance
is affected by four distinct sources of errors related to the abstract space structure (structural
discrepancy), to the transition model estimation variance, to the transition model estimation
bias, and to the transition model class bias. We have evaluated the Bottleneck Simulator on
two natural language processing tasks: a text adventure game and a real-world, complex di-
alogue response selection task. On both tasks, the Bottleneck Simulator has shown excellent
performance beating competing approaches. In contrast to much of the previous work on
abstraction in RL, our dialogue experiments are based on a complex, real-world task with a
very high-dimensional state space and evaluated by real-world users.
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Appendix A. Dynamic Programming Preliminaries

The Bellman optimality equations can be shortened by defining the Bellman operator
(sometimes called the dynamic programming operator) B (Bertsekas & Tsitsiklis, 1995,
Chapter 2). For a given (not necessarily optimal) state-action-value function Qπ, the
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operator is:

(BQπ)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a∈A

Qπ(s′, a). (32)

In other words, the operator B updates Q towards Q∗ with one dynamic programming
iteration.

We need the following lemma, as derived by Jiang et al. (2015).

Lemma 1. Let Q1 and Q2 be the fixed points for the Bellman optimality operators B1, B2,
which both operate on R|S|×|A| and have contraction rate γ ∈ [0, 1):

||Q1 −Q2||∞ ≤
||B1Q2 −Q2||∞

1− γ
. (33)

Proof. We prove the inequality by writing out the left-hand side, applying the triangle
inequality and the Bellman residual bound (Bertsekas & Tsitsiklis, 1995, Chapter 2):

||Q1 −Q2||∞ = ||Q1 −B1Q2 +B1Q2 −Q2||∞
≤ ||Q1 −B1Q2||∞ + ||B1Q2 −Q2||∞
= ||B1Q1 −B1Q2||∞ + ||B1Q2 −Q2||∞
≤ γ||Q1 −Q2||∞ + ||B1Q2 −Q2||∞

We move the first term on the right-hand side to the other side of the inequality and re-order
the terms:

||Q1 −Q2||∞ − γ||Q1 −Q2||∞ ≤ ||B1Q2 −Q2||∞
⇔

(1− γ)||Q1 −Q2||∞ ≤ ||B1Q2 −Q2||∞
⇔

||Q1 −Q2||∞ ≤
||B1Q2 −Q2||∞

1− γ

Appendix B. Co-Occurrence Sample Efficiency

The common, but näıve transition model estimated by eq. (8) is not very sample efficient. In
order to illustrate this, assume that sample efficiency for a transition (s, a, s′) is measured as
the probability that PApprox(s′|s, a) is more than ε > 0 away from the true value in absolute
value. We bound it by Chebyshev’s inequality:

P (|PApprox(s′|s, a)− P (s′|s, a)| > ε)) ≤ σ2

Count(s, a, ·)ε2
,

where σ2 = maxs,a,s′ P (s′|s, a)(1−P (s′|s, a)) (i.e. an upper bound on the variance of a single
observation from a binomial random variable). The error decreases inversely linear with

593



Serban, Sankar, Pieper, Pineau, & Bengio

the factor Count(s, a, ·). If we assume each sample (s, a, s′) ∈ D is drawn independently at
uniform random, then the expected number of samples is: ED[Count(s, a, ·)] = |D|/(|S||A|).
Summing over all s′ ∈ S, we obtain the overall sample complexity:

∑
s′

P (|PApprox(s′|s, a)− P (s′|s, a)| > ε) .
σ2

ε2
|S|2|A|
|D|

,

which grows in the order of O(|S|2|A|). Unfortunately, this implies the simple model is
highly inaccurate for many real-world applications, including natural language processing
and robotics applications, where the state or action spaces are very large.

Appendix C. Theorem 1

In this section we provide the proof for Theorem 1. Let QApprox be the optimal state-action-
value function w.r.t. an approximate MDP 〈S,A, PApprox, R, γ〉, and let Q∗ be the optimal
state-action-value function w.r.t. the true MDP 〈S,A, P,R, γ〉. Let γ be their contraction
rates. Then, the theorem states that:

||Q∗(s, a)−QApprox(s, a)||∞

≤ γrmax

∣∣∣∣∣
∣∣∣∣∣∑
s′

∣∣P (s′|s, a)− PApprox(s′|s, a)
∣∣∣∣∣∣∣
∣∣∣∣∣
∞

(34)

≤ γrmax

√
2

∣∣∣∣∣∣∣∣√DKL(P (s′|s, a)||PApprox(s′|s, a))

∣∣∣∣∣∣∣∣
∞
, (35)

where DKL(P (s′|s, a)||PApprox(s′|s, a)) is the conditional KL-divergence between P (s′|s, a)
and PApprox(s′|s, a):

DKL(P (s′|s, a)||PApprox(s′|s, a))
def
=
∑
s′

P (s′|s, a) log
P (s′|s, a)

PApprox(s′|s, a)
(36)
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Proof. We start by applying Lemma 1 to the loss:

||Q∗ −QApprox||∞

≤ 1

1− γ
||BQApprox −QApprox||∞ Apply eq. (33)

=
1

1− γ
||R(s, a) + γ

∑
s′

P (s′|s, a) max
a′

QApprox(s′, a′) Use definition in eq. (32)

− QApprox(s, a)||∞

=
1

1− γ
||R(s, a) + γ

∑
s′

P (s′|s, a) max
a′

QApprox(s′, a′) Fixed point:

−R(s, a)− γ
∑
s′

PApprox(s′|s, a) max
a′

QApprox(s′, a′)||∞ QApprox = BApproxQApprox

=
γ

1− γ
||
∑
s′

P (s′|s, a) max
a′

QApprox(s′, a′) Cancel R(s, a); move γ out

−
∑
s′

PApprox(s′|s, a) max
a′

QApprox(s′, a′)||∞

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′

(
P (s′|s, a)− PApprox(s′|s, a)

)
max
a′

QApprox(s′, a′)

∣∣∣∣∣
∣∣∣∣∣
∞

Merge sums

≤ γrmax

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′

∣∣P (s′|s, a)− PApprox(s′|s, a)
∣∣∣∣∣∣∣
∣∣∣∣∣
∞

Use QApprox(s′,a′)≤
rmax

1− γ

Here, it should be noted that norms || · ||∞ are taken over all combinations of s ∈ S, a ∈ A.
Next, we recognize the sum as being two times the total variation distance between P (s′|s, a)
and PApprox(s′|s, a). Thus, we apply Pinsker’s inequality (Tsybakov, 2009, p. 132) to obtain:

||Q∗ −QApprox||∞ ≤
γrmax

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′

∣∣P (s′|s, a)− PApprox(s′|s, a)
∣∣∣∣∣∣∣
∣∣∣∣∣
∞

≤ γrmax

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣2
√

1

2
DKL(P (s′|s, a)||PApprox(s′|s, a))

∣∣∣∣∣
∣∣∣∣∣
∞

=
γrmax

√
2

(1− γ)2

∣∣∣∣∣∣∣∣√DKL(P (s′|s, a)||PApprox(s′|s, a))

∣∣∣∣∣∣∣∣
∞

Appendix D. Theorem 2

In this section we provide the proof for Theorem 2. Let QAbs be the optimal state-action-
value function w.r.t. the Bottleneck Simulator 〈Z, S,A, PAbs, R, γ〉, and let Q∗ be the optimal
state-action-value function w.r.t. the true MDP 〈S,A, P,R, γ〉. Let γ be their contraction
rates. Finally, define:

ε = max
si,sj∈S; fs→z(si)=fs→z(sj)

|V ∗(si)− V ∗(sj)| (37)
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Then the theorem states that:

||Q∗(s, a)−QAbs(s, a)||∞

<
2γε

(1− γ)2
(38)

+
γ

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣PAbs(s

′|s, a)− P∞Abs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

+
γ

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P∞Abs(s

′|s, a)− P ∗Abs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

(39)

+
γ

(1− γ)2

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P ∗Abs(s

′|s, a)− P (s′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

where Vmin is defined as

Vmin(s) = min
s′∈S,

fs→z(s′)=fs→z(s)

V ∗(s′) (40)

and P∞Abs is defined as

P∞Abs(s
′|s, a) =

∑
z∈Z

P∞Abs(z
′|s, a)P∞Abs(s

′|z′) (41)

P∞Abs(z
′|s, a) =

∑
s′; fs→z(s′)=z′

P (s′|s, a) (42)

P∞Abs(s
′|z′) =

1(fs→z(s′)=z′)P
πD(s′)∑

s̄; fs→z(s̄)=z′ P
πD(s̄)

, (43)

and P ∗Abs satisfies:

P ∗Abs = arg min
P̂Abs

∣∣∣∣∣
∣∣∣∣∣∑
s′∈S

Vmin(s′)
∣∣∣P (s′|s, a)− P̂Abs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

s.t. P̂Abs(s
′|s, a) =

∑
z′∈Z

fs→z(s′)=z′

P̂Abs(z
′|s, a)P̂Abs(s

′|z′). (44)
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Proof. We start by applying Lemma 1 to the loss:

||Q∗ −QAbs||∞

≤ 1

1− γ
||Q∗ −BAbsQ

∗||∞ Use Lemma 1

=
1

1− γ

∣∣∣∣∣
∣∣∣∣∣Q∗(s, a)−R(s, a)− γ

∑
s′

PAbs(s
′|s, a) max

a′
Q∗(s′, a′)

∣∣∣∣∣
∣∣∣∣∣
∞

Use eq. (32)

=
1

1− γ

∣∣∣∣∣
∣∣∣∣∣R(s, a)− γ

∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′) Use BQ∗ = Q∗

−R(s, a)− γ
∑
s′

PAbs(s
′|s, a) max

a′
Q∗(s′, a′)

∣∣∣∣∣
∣∣∣∣∣
∞

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′) Reorder terms

− PAbs(s
′|s, a) max

a′
Q∗(s′, a′)

∣∣∣∣∣
∣∣∣∣∣
∞

& move γ out

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′

P (s′|s, a)V ∗(s′)− PAbs(s
′|s, a)V ∗(s′)

∣∣∣∣∣
∣∣∣∣∣
∞

Insert V ∗(s′)

≤ γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′

∣∣∣P (s′|s, a)V ∗(s′)− PAbs(s
′|s, a)V ∗(s′)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

|∑i ai|≤
∑
i |ai|

By observing that s′ belongs to exactly one z′ we can rewrite this to:

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

∣∣∣P (s′|s, a)V ∗(s′)− PAbs(s
′|s, a)V ∗(s′)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

∣∣∣P (s′|s, a)V ∗(s′)− PAbs(s
′|s, a)V ∗(s′) Add & subtract:

+ P (s′|s, a)Vmin(s′)− P (s′|s, a)Vmin(s′) P (s′|s,a)Vmin(s′)

+ PAbs(s
′|s, a)Vmin(s′)− PAbs(s

′|s, a)Vmin(s′)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

PAbs(s
′|s,a)Vmin(s′)
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=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

∣∣∣P (s′|s, a)V ∗(s′)− P (s′|s, a)Vmin(s′)
∣∣∣ Use

+
∣∣∣PAbs(s

′|s, a)V ∗(s′)− PAbs(s
′|s, a)Vmin(s′)

∣∣∣ triangle inequality

+
∣∣∣P (s′|s, a)Vmin(s′)− PAbs(s

′|s, a)Vmin(s′)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

P (s′|s, a)
∣∣∣V ∗(s′)− Vmin(s′)

∣∣∣ Combine terms

+ PAbs(s
′|s, a)

∣∣∣V ∗(s′)− Vmin(s′)
∣∣∣

+ Vmin(s′)
∣∣∣P (s′|s, a)− PAbs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

We now apply the assumption on similarity between states s, s′ ∈ S belonging to same
abstract state z′ ∈ Z (eq. (37)):

γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

P (s′|s, a)
∣∣∣V ∗(s′)− Vmin(s′)

∣∣∣
+ PAbs(s

′|s, a)
∣∣∣V ∗(s′)− Vmin(s′)

∣∣∣
+ Vmin(s′)

∣∣∣P (s′|s, a)− PAbs(s
′|s, a)

∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

<
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

P (s′|s, a)ε Use eq. (25) twice

+ PAbs(s
′|s, a)ε

+ Vmin(s′)
∣∣∣P (s′|s, a)− PAbs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

=
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣2ε+

∑
z′

∑
s′;fs→z(s′)=z′

Vmin(s′)
∣∣∣P (s′|s, a)− PAbs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

1=
∑
s′ P (s′|s,a)

=
∑
s′ PAbs(s

′|s,a)
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≤ 2γε

1− γ
+

γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
z′

∑
s′;fs→z(s′)=z′

Vmin(s′)
∣∣∣P (s′|s, a)− PAbs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

Triangle inequality
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Contract sums

≤ 2γε

1− γ
+

γ
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Triangle inequality

+
γ

1− γ

∣∣∣∣∣
∣∣∣∣∣∑
s′

Vmin(s′)
∣∣∣P (s′|s, a)− P∞Abs(s

′|s, a)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
∞

by inserting P∞Abs

Finally, we apply the triangle inequality one last time by inserting P ∗Abs in order to obtain
the final result.

Appendix E. Dialogue Experiment Benchmarks

As discussed in the Experiments section, we compare the Bottleneck Simulator to several
competing approaches.

Heuristic Policy

The first approach is a heuristic policy, which selects its response from two response models
in the system. The first response model is the chatbot Alice (Wallace, 2009; Shawar &
Atwell, 2007), which generates responses by using thousands of template rules. The second
response model is the question-answering system Evi, which is capable of handling a large
variety of factual questions.7

A few pre-defined rules are used to decide if the user’s utterance should be classified as a
question or not. If it is classified as a question, the policy will select the response generated by
the question-answering system Evi. Otherwise, the policy will select the response generated
by the chatbot Alice.

Evi is an industry-strength question-answering system using dozens of factual databases
and proprietary algorithms built over the course of an entire decade. Further, Alice is capable
of handling many different conversations effectively using its internal database containing
thousands of template rules. Therefore, this policy should be considered a strong baseline.

Supervised Policy: Learning with Crowdsourced Labels

The second approach to learning a policy is based on estimating the state-action-value
function using supervised learning on crowdsourced labels. This approach also serves as
initialization for the approaches discussed later.

Crowdsourcing: We use Amazon Mechanical Turk (AMT) to collect training data.
We follow a setup similar to Liu, Lowe, Serban, Noseworthy, Charlin, and Pineau (2016).
We show human evaluators a dialogue along with 4 candidate responses, and ask them to

7. www.evi.com.
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score how appropriate each candidate response is on a 1-5 Likert-type scale. The score 1
indicates that the response is inappropriate or does not make sense, 3 indicates that the
response is acceptable, and 5 indicates that the response is excellent and highly appropriate.
The dialogues are extracted from interactions between Alexa users and preliminary versions
of our system. For each dialogue, the corresponding candidate responses are created by
generating candidate responses from the 22 response models in the system. We preprocess
the dialogues and candidate responses by masking profanities and swear words. Furthermore,
we anonymize the dialogues and candidate responses by replacing first names with randomly
selected gender-neutral names. Finally, dialogues are truncated to the last 4 utterances and
last 500 words, in order to reduce the cognitive load of the task.

After the crowdsourcing, we manually inspected the annotations and observed that
annotators tended to frequently overrate topic-independent, generic responses. We corrected
for this by decreasing the label scores of generic responses.

In total, we collected 199, 678 labels. These are split into training (train), development
(dev) and testing (test) sets consisting of respectively 137,549, 23,298 and 38,831 labels each.

Figure 2: The system policy is parametrized as a five-layer neural network, which takes as
input a dialogue history and candidate response and outputs either the estimated
expected return or score. The model consists of an input layer with 1458 features,
a hidden layer with 500 hidden units, a hidden layer with 20 hidden units, a
softmax layer with 5 output probabilities (corresponding to the five AMT labels
discussed in Section 7), and a scalar-valued output layer. The dashed arrow
indicates a skip connection.

Training: The policy is parametrized as a neural network taking as input 1458 features
computed based on the dialogue history and candidate response. See Figure 2. The neural
network parametrizes the state-action-value function (i.e. the estimate of the expected return
given a state particular state and action). We optimize the neural network parameters
w.r.t. log-likelihood (cross-entropy) to predict the 4th layer, which represents the AMT label
classes. Formally, we optimize the model parameters θ as:

θ̂ = arg max
θ

∑
x,y

logPθ(y|x), (45)

where x are the input features, y is the corresponding AMT label class (a one-hot vector)
and Pθ(y|x) is the model’s predicted probability of y given x, computed in the second
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last layer of the model. We use the first-order gradient-descent optimizer Adam (Kingma
& Ba, 2015) . We experiment with a variety of hyper-parameters, and select the best
hyper-parameter combination based on the log-likelihood of the dev set. For the first hidden
layer, we experiment with layer sizes in the set: {500, 200, 50}. For the second hidden layer,
we experiment with layer sizes in the set: {50, 20, 5}. We use L2 regularization on all model
parameters, except for bias parameters. We experiment with L2 regularization coefficients
in the set: {10.0, 1.0, 10−1, . . . , 10−9}. Unfortunately, we do not have labels to train the last
layer. Therefore, we fix the parameters of the last layer to the vector [1.0, 2.0, 3.0, 4.0, 5.0].
In other words, we assign a score of 1.0 for the label very poor, a score of 2.0 for the label
poor, a score of 3.0 for the label acceptable, a score of 4.0 for the label good and a score of
5.0 for the label excellent. At every turn in the dialogue, the policy picks the candidate
response with the highest estimated score. As this policy was trained on crowdsourced data
using supervised learning, we call it Supervised.

Q-learning Policy

In the second approach, we fixed the last output layer parameters to [1.0, 2.0, 3.0, 4.0, 5.0].
In other words, we assigned a score of 1.0 for very poor responses, 2.0 for poor responses,
3.0 for acceptable responses, and so on. It’s not clear whether this score is correlated with
scores given by real-world Alexa users, which is what we ultimately want to optimize the
system for. This section describes a (deep) Q-learning approach, which directly optimizes
the policy towards improving the Alexa user scores.

Q-learning: Let Q be the approximate, state-action-value function parametrized by
parameters θ. Let {sdt , adt , Rd}d,t be a set of observed (recorded) examples, where sdt is the
dialogue history for dialogue d at time step (turn) t, adt is the agent’s action for dialogue d
at time step (turn) t and Rd is the return for dialogue d. Let D be the number of observed
dialogues and let T d be the number of turns in dialogue d. Q-learning then optimizes the
state-action-value function parameters by minimizing the squared error:

D∑
d=1

T d∑
t=1

||Qθ(sdt , adt )− rdt + γmax
a

Qθ(s
d
t+1, a)||2 (46)

Training: We initialize the policy with the parameters of the Supervised policy, and
then train the parameters w.r.t. eq. (46) with stochastic gradient descent using Adam. We
use a set of a few thousand dialogues recorded between users and a preliminary version of the
system. The same set of recorded dialogues were used by the Bottleneck Simulator policy.
About 80% of these examples are used for training and about 20% are used for development.
To reduce the risk of overfitting, we only train the parameters of the second last layer. We
select the hyper-parameters with the highest expected return on the development set. We
call this policy Q-learning.

Q-Function Policy

This section describes an alternative approach to learn the state-action-value function, based
on training an approximate, reward model capable of predicting the Alexa user score.

Approximate State-Action-Value Function: For time (turn) t, let st be a dialogue
history and let at be the corresponding response given by the system. We aim to learn a
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regression model, gφ, which predicts the final return (user score) at the current turn:

gφ(st, at) ∈ [1, 5], (47)

where φ are the model parameters. We call this an approximate state-action-value function
or reward model, since it directly models the user score, which we aim to maximize. Let
{sdt , adt , Rd}d,t be a set of observed (recorded) examples, where t denotes the time step (turn)
and d denotes the dialogue. Let Rd ∈ [1, 5] denote the observed real-valued return for
dialogue d. The majority of users give whole number (integer) scores, but some users give
decimal scores (e.g. 3.5). Therefore, we treat Rd as a real-valued number in the range 1-5.
We learn the model parameters φ by minimizing the squared error between the model’s
prediction and the observed return:

φ̂ = arg max
φ

∑
d

∑
t

(gφ(sdt , a
d
t )−Rd)2 (48)

As before, we optimize the model parameters using mini-batch stochastic gradient de-
scent with the optimizer Adam. We use L2 regularization with coefficients in the set
{10.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.0}. We select the coefficient with the smallest
squared error on a hold-out dataset.

As input to the reward model we compute 23 higher-level features based on the dialogue
history and a candidate response. In total, our dataset for training the reward model has
4340 dialogues. We split this into a training set with 3255 examples and a test set with 1085
examples.

To increase sample efficiency, we learn an ensemble model through a variant of the
bagging technique (Breiman, 1996). We create 5 new training sets, which are shuffled
versions of the original training set. Each shuffled dataset is split into a sub-training set and
sub-hold-out set. The sub-hold-out sets are created such that the examples in one set do not
overlap with other sub-hold-out sets. A reward model is trained on each sub-training set,
with its hyper-parameters selected on the sub-hold-out set. This increases sample efficiency
by allowing us to re-use the sub-hold-out sets for training, which would otherwise not have
been used. The final reward model is an ensemble, where the output is an average of the
underlying linear regression models.

Training: As with the supervised learning approach, the policy here is a neural network
which parametrizes an state-action-value function. To prevent overfitting, we do not train
the neural network from scratch with the reward model as target. Instead, we initialize the
model with the parameters of the Supervised neural network, and then fine-tune it with the
reward model outputs to minimize the squared error:

θ̂ = arg max
θ

∑
d

∑
t

(fθ(s
d
t , a

d
t )− gφ(sdt , a

d
t ))

2, (49)

As before, we optimize the model parameters using mini-batch stochastic gradient descent
with Adam. As training this model does not depend on AMT labels, training is carried out
on recorded dialogues. We train on several thousand recorded dialogue examples, where
about 80% are used for training and about 20% are used as hold-out set. This is the same
set of dialogues as were used by the Bottleneck Simulator policy. No regularization is used.
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We early stop on the squared error of the hold-out dataset w.r.t. Alexa user scores predicted
by the reward model. At every turn in the dialogue, the corresponding policy picks the
candidate response with the highest estimated score. As this policy was trained with an
approximate state-action-value function, we call it Q-Function Approx.

We expect this policy to perform better compared to directly selecting the actions with
the highest score under the reward model, because the learned policy is based on a deep
neural network initialized using the crowdsourced labels.

Off-Policy REINFORCE Policy

The previous benchmark policies parametrized the estimated state-action-value function.
Another way to parametrize the policy is as a discrete probability distribution over actions
(candidate responses). In this case, the neural network outputs real-valued scores for each
candidate response. These scores are then normalized through a softmax function, such
that each candidate response is assigned a probability. This parametrization allows us to
learn the policy directly from recorded dialogues through a set of methods known as policy
gradient methods. This section describes one such approach.

Off-Policy Reinforcement Learning: We use a variant of the classical REINFORCE
algorithm suitable for off-policy learning (Williams, 1992; Precup, 2000; Precup, Sutton, &
Dasgupta, 2001).

As before, let {sdt , adt , Rd}d,t be a set of observed (recorded) examples, where sdt is the
dialogue history for dialogue d at time step (turn) t, adt is the agent’s action for dialogue d
at time step (turn) t and Rd is the return for dialogue d. Let D be the number of observed
dialogues and let T d be the number of turns in dialogue d. Further, let θd be the parameters
of the stochastic policy πθd used during dialogue d. The algorithm updates the policy
parameters θ by:

∆θ ∝ cdt ∇θ log πθ(a
d
t |sdt ) Rd where d ∼ Uniform(1, D) and t ∼ Uniform(1, T d), (50)

where cdt is the importance weight ratio:

cdt
def
=

∏t
t′=1 πθ(a

d
t′ |hdt′)∏t

t′=1 πθd(a
d
t′ |hdt′)

. (51)

This ratio corrects for the discrepancy between the learned policy πθ and the policy under
which the data was collected πθd (sometimes referred to as the behaviour policy). It gives
higher weights to examples with high probability under the learned policy and lower weights
to examples with low probability under the learned reward function.

The importance ratio cdt is known to exhibit very high, possibly infinite, variance (Precup
et al., 2001). Therefore, we truncate the products in the nominator and denominator to
only include the current time step t:

cdt,trunc.
def
=

πθ(a
d
t |hdt )

πθd(a
d
t |hdt )

. (52)

This induces bias in the learning process, but also acts as a regularizer.
Reward Shaping: As mentioned before, one problem with the algorithm presented

in eq. (50) is that it suffers from high variance (Precup et al., 2001). The algorithm uses
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the return, observed only at the very end of an episode, to update the policy’s action
probabilities for all intermediate actions in the episode. With a small number of examples,
the variance in the gradient estimator is overwhelming. This could easily lead the agent to
over-estimate the utility of poor actions and, vice versa, to under-estimate the utility of good
actions. One remedy for this problem is reward shaping, where the reward at each time step
is estimated using an auxiliary function (Ng, Harada, & Russell, 1999). For our purpose, we
propose a simple variant of reward shaping which takes into account the sentiment of the
user. When the user responds with a negative sentiment (e.g. an angry comment), we will
assume that the preceding action was highly inappropriate and assign it a reward of zero.
Given a dialogue d, at each time t we assign reward rdt :

rdt
def
=

0 if user utterance at time t+ 1 has negative sentiment,

Rd

T d
otherwise.

(53)

With reward shaping and truncated importance weights, the learning update becomes:

∆θ ∝ cdt,trunc.∇θ log πθ(a
d
t |sdt ) rdt where d ∼ Uniform(1, D), t ∼ Uniform(1, T d), (54)

Off-Policy Evaluation: To evaluate the policy, we estimate the expected return under
the policy (Precup, 2000):

Rπθ [R] ≈
∑
d,t

cdt,trunc. r
d
t . (55)

Training: We initialize the policy with the parameters of the Supervised policy, and
then train the parameters w.r.t. eq. (54) with stochastic gradient descent using Adam. We
use a set of a few thousand dialogues recorded between users and a preliminary version
of the system. The same set of recorded dialogues were used by the Bottleneck Simulator
policy. About 60% of these examples are used for training, and about 20% are used for
development and about 20% are used for testing. To reduce the risk of overfitting, we only
train the parameters of the second last layer. We use a random grid search with different
hyper-parameters, which include a temperature parameter and the learning rate. We select
the hyper-parameters with the highest expected return on the development set. We call this
policy REINFORCE.

Off-Policy REINFORCE with Learned Reward Function

Similar to the Q-Function Approx. policy, we may use the reward model for training with
the off-policy REINFORCE algorithm. This section describes how we combine the two
approaches.

Reward Shaping with Learned Reward Model: We use the reward model of the
Q-Function Approx. policy to compute a new estimate for the reward at each time step in
each dialogue:

rdt
def
=

{
0 if user utterance at time t+ 1 has negative sentiment,

gφ(st, at) otherwise.
(56)
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This is substituted into eq. (54) for training and into eq. (55) for evaluation.
Training: As with the REINFORCE policy, we initialize this policy with the parameters

of the Supervised policy, and then train the parameters w.r.t. eq. (54) with mini-batch
stochastic gradient descent using Adam. We use the same set of dialogues and split as before.
We use a random grid search with different hyper-parameters, As before, to reduce the risk
of overfitting, we only train the parameters of the second last layer using this method. We
select the hyper-parameters with the highest expected return on the development set. In
this case, the expected return is computed according to the learned reward model.

This policy uses the learned reward model, which approximates the state-action-value
function. This is analogous to the critic in an actor-critic architecture. Therefore, we call
this policy REINFORCE Critic.

State Abstraction Policy

Finally, we describe an approach for learning a tabular state-action-value function based on
state abstraction (Bean et al., 1987; Bertsekas & Castanon, 1989).

State Abstraction: We define the abstract policy state space to be the same as the
set of abstract states Z used by the Bottleneck Simulator environment model described in
Section 5.2:

Z = ZDialogue act × ZUser sentiment × ZGeneric user utterance. (57)

This abstract state space contains a total of 60 discrete states. As with the Bottleneck
Simulator environment model, the mapping fs→z is used to map a dialogue history to its
corresponding abstract state.

We define the abstract action space as the Cartesian product:

A = AResponse model class ×AWh-question ×AGeneric response, (58)

where AResponse model class is a one-hot vector corresponding to one of the 13 response model
classes8 which generated the response, AWh-question = {True, False} is a binary variable
indicating whether or not the model response is a wh-question (e.g. a what or why question),
and AGeneric response = {True, False} is a binary variable indicating whether the response
is generic and topic-independent (i.e. a response which only contains stop-words). The
abstract action state space contains 52 abstract actions. A deterministic classifier is used to
map an action (model response) to its corresponding abstract action.

In total, the tabular state-action-value function is parametrized by 60 × 52 = 3120
parameters.

Training: We train the policy with Q-learning on rollouts from the Bottleneck Simulator
environment model. We use the same discount factor as the Bottleneck Simulator policy.
We call this policy State Abstraction.
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