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1. Introduction.

Let R be a Noetherian local ring with the maximal ideal m and assume that R possesses
positive characteristic p > 0. For each m-primary ideal I in R let eI (R) and I∗ denote the
multiplicity of R with respect to I and the tight closure of I , respectively. Here let us briefly
recall the definition of tight closures. For an ideal a in R let a[q] = (aq | a ∈ a)R where
q = pe with e ≥ 0. Let R0 = R \ ⋃

�∈Min R p. Let a∗ denote the set of elements x ∈ R for

which there exists c ∈ R0 such that cxq ∈ a[q] for all q � 0. Then the set a∗ forms an ideal
in R containing a, which we call the tight closure of a. The ideal a is said to be tightly closed
if a∗ = a. A local ring R is called F -rational if every parameter ideal in R is tightly closed.

In this paper we investigate the behavior of sup� �R(q∗/q) and sup�{e�(R)− �R(R/q∗)},
where q moves all parameter ideals in R. These two values are very closely related. In fact,
they agree if R is Cohen-Macaulay. By definition of F -rationality, it immediately follows that
sup� �R(q∗/q) = 0 if and only if R is F -rational. The second author studied sup� �R(q∗/q) in
[N2] and he gave some necessary conditins for sup� �R(q∗/q) to be finite. On the other hand,
Watanabe and Yoshida posed in [WY] the conjecture that the difference e�(R) − �R(R/q∗)
is not negative for every prameter ideal q in R if R is unmixed. Moreover, they conjectured
that e�(R) − �R(R/q∗) = 0 for some parameter ideal q, then R is Cohen-Macaulay and
F -rational. This problem is affirmatively solved in [GN] under the condition that R is a
homomorphic image of a Cohen-Macaulay ring of chracteristic p > 0 and Ass R = Assh R.
We further investigate the finiteness of the supremum of the difference e�(R) − �R(R/q∗) in
this paper. The first result gives a necessary and sufficient condition for sup� �R(q∗/q) to be
finite. Namely,

THEOREM 1.1. Let R be excellent and equidimensional. Then the following three
conditions are equivalent.

(1) sup� �R(q∗/q) < ∞.
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(2) Local rings R� are F -rational for all p ∈ Spec R \ {m}.
(3) R is FLC and (0)∗

Hd
�(R)

is a module of finite length.

When this is the case, we have that sup�{e�(R) − �R(R/q∗)} < ∞.

Here (0)∗
Hd
�(R)

stands for the tight closure of (0) in the local cohomology module Hd
�(R)

(d = dim R) (cf. [HH1, Chap 8]). We also refer e.g. [GY] for the definition of FLC rings.
The theorem concludes, for instance, that sup� �R(q∗/q) is finite for excellent local domains
R having isolated singularity. The finiteness of sup�{e�(R)−�R(R/q∗)} yields the following.

THEOREM 1.2. Let R be a homomorphic image of a Cohen-Macaulay local ring of
characteristic p > 0 and assume that Ass R ⊆ Assh R ∪ {m}. If sup�{e�(R) − �R(R/q∗)} <

∞, Then

{p | R� is Cohen-Macaulay} \ {m} = {p | R� is F -rational} \ {m} .

We state how this paper is organized. Section 2 is devoted to preliminaries. We recall
the concept of d-sequences and USD-sequences, which plays a key role throughout our argu-
ment. We also briefly explain the tight closure of modules and argue the relation between the
tight closure of parameter ideals and the tight closure of (0) in the local cohomology module
Hd
�(R) under the assumption that R is excellent and equidimensional. In Section 3 we shall

give the proof of our theorems.
Throughout this paper let (R,m) denote a Noetherian local ring of dimension d . For

a finitely generated R-module M we denote by �R(M) the length of M and by eI (M) the
multiplicity of M with respect to an m-primary ideal I . Let Hi

�(M) (i ∈ Z) stand for the i-th
local cohomology module of M with respect to m.

ACKNOWLEDGMENT. The authors are grateful to the referee for many suggestions.

2. Preliminaries.

We first recall the definition of d-sequences and USD-sequences. A sequence a1, a2, · · · ,
as of elements in R is called a d-sequence on R (cf. [H1]) if the equality

(a1, a2, · · · , ai−1) : aiaj = (a1, a2, · · · , ai−1) : aj

holds for all 1 ≤ i ≤ j ≤ s, and moreover, it is called an unconditioned strong d-sequence
(a USD-sequence for short) on R if a

n1
1 , a

n2
2 , · · · , ans

s is a d-sequence in any order and for all
integers n1, n2, · · · , ns > 0.

For a system a1, a2, · · · , ad of parameters of R, it is known that

{R/(an
1 , an

2 , · · · , an
d )

a1···ad−→ R/(an+1
1 , an+1

2 , · · · , an+1
d )}

forms a direct system whose direct limit is Hd
�(R). Let Kn be the kernel of the canoni-

cal map from R, through R/(an
1 , an

2 , · · · , an
d )R, to the direct limit Hd

�(R). Then the system

{R/Kn
a1···ad−→ R/Kn+1} forms a direct system again whose maps are injective and whose

direct limit is also Hd
�(R). Hence we can write that lim−→R/Kn = ⋃

n>0 R/Kn = Hd
�(R).
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Furthermore, when a1, a2, · · · , ad is a USD-sequence, by the monomial property of a USD-
sequence (cf. Theorem 2.3 of [GY]), Kn coincides with

Σ(an
1 , an

2 , · · · , an
d ) :=

d∑
i=1

((an
1 , · · · , ân

i , · · · , an
d ) : an

i ) + (an
1 , an

2 , · · · , an
d ) .

We denote Σ(q) = (a1, a2, · · · , ad) when q = (a1, a2, · · · , ad). Also notice that Σ(q) ⊆ q∗,
by colon capturing property (cf. [HH1, Theorem 7.9]) when R is a homomorphic image of a
Cohen-Macaulay local ring of characteristic p > 0 and equidimensional.

Next we briefly explain the tight closure of the zero-module of arbitrary R-modules.
Suppose that R has characterstic p > 0. The Frobenius endomorphism Fe : R → R is given
by Fe(x) = xpe

. When we consider R as an R-algebra via Fe, we denote it by eR. Let M be
an R-module and x ∈ M . We say that x ∈ (0)∗M if there exists c ∈ R0 such that c ⊗ x = 0 in
eR ⊗R M for all e � 0. The following properties readily comes from the definition.

(1) (0)∗R/I = I∗/I for any ideal I of R.
(2) Let f : M → N be a homomorphism of R-modules. Then f induces (0)∗M →

(0)∗N .
Kawasaki’s result [K, Corollary 1.2] guarantees that an excellent local ring R is a ho-

momorphic image of a Cohen-Macaulay ring A. Furthermore, according to his theory, the
Cohen-Macaulay ring A is given as a Rees algebra over R. Thus, an excellent local ring R of
characteristic p can be a homomorphic image of a Cohen-Macaulay local ring of characteris-
tic p. We put H = Hd

�(R) for short.

PROPOSITION 2.1. Let R be an excellent and equidimensional local ring of charac-
teristic p. Suppose that the system a1, a2, · · · , ad of parameters of R forms a USD-sequence.
Then

(1) (0)∗H = lim−→(an
1 , an

2 , · · · , an
d )∗/(an

1 , an
2 , · · · , an

d ).
(2) (0)∗H = ⋃

n>0(a
n
1 , an

2 , · · · , an
d )∗/Σ(an

1 , an
2 , · · · , an

d ). In particular, the length of
(0)∗H is finite if and only if supn{�R((an

1 , an
2 , · · · , an

d )∗/Σ(an
1 , an

2 , · · · , an
d ))} < ∞.

PROOF. (1): We put (an) = (an
1 , an

2 , · · · , an
d ). The natural map αn : R/(an) → H

induces βn : (an)∗/(an) = (0)∗R/(an) → (0)∗H . Thus, we have the following commutative
diagram:

lim−→(an)∗/(an)
β→ (0)∗H

↓ ↓
lim−→R/(an)

α→ H ,

where vertical arrows are injective. Since α is isomorphic, the injectivity of β follows. Next
we shall prove that β is surjective. Let ξ ∈ (0)∗H . Then there exist n > 0 and x ∈ R such
that x̄ ∈ R/(an) and αn(x̄) = ξ , while there exists c ∈ R0 such that c ⊗ ξ = 0 in eR ⊗R H

for all e � 0. Hence c ⊗ x̄ belongs to the kernel of eR ⊗ αn : eR ⊗R R/(an) → eR ⊗R H .
On the other hand, passing to isomorphisms eR ⊗R R/(an) ∼= R/(anq) and eR ⊗R H ∼= H ,
where q = pe, eR ⊗ αn coincides with αnq , whence we have cxq ∈ Ker αnq . Therefore,
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cxq ∈ Knq = Σ(a
nq

1 , a
nq

2 , · · · , anq

d ) ⊆ (a
nq

1 , a
nq

2 , · · · , anq

d )∗ since a1, a2, · · · , ad is a USD-
sequence.

Let Rred = R/
√

(0). For y ∈ R, let y ′ stand for the image of y in Rred . Now, we have
(cxq)′ ∈ ((a′

1
nq , a′

2
nq, · · · , a′

d
nq)Rred)∗. Besides, we can take t ∈ R0 such that t ′ is a test

element of Rred because Rred is an excellent reduced local ring (cf. [HH1, Theorem 6.1]).
Hence, it follows that

(tc)′x ′q ∈ (a′
1
n, a′

2
n, · · · , a′

d
n)[q]Rred

for all q � 0. Hence x ′ ∈ ((a′
1
n, a′

2
n, · · · , a′

d
n)Rred )∗, therefore we get x ∈ (an)∗ by [HH1,

Theorem 4.1]. This implies that the surjectivity of β.
(2): {(an)∗/Kn} is a direst system with injective maps. Besides, its direct limit coin-

cides with that of {(an)∗/(an)}. The assertion follows. �

3. Proof of the theorems.

Throughout this section, we assume that R is a homomorphic image of a Cohen-Macaulay
local ring of characteristic p > 0 and equidimensional. For an ideal I in R we put U(I) =⋃

n>0 I : mn and call it the unmixed component of I . A sequence a1, a2, · · · , as of elements
of R is called a filter regular sequence if (a1, a2, · · · , ai) : ai+1 ⊆ U((a1, a2, · · · , ai)) for all
0 ≤ i < s. Note that any system a1, a2, · · · , ad of parameters in R forms a filter regular se-
quence if R is FLC. For a parameter ideal q = (a1, a2, · · · , ad), we put qi = (a1, a2, · · · , ai).
We begin with the following Lemma.

LEMMA 3.1. Let q = (a1, a2, · · · , ad) be a parameter ideal of R. We put the function

f (n) = �R((qd−1 + (an
d ))∗/(U(qd−1) + (an

d ))

for all n > 0. Then f (n) is monotonous increasing function.

PROOF. We first note that U(qd−1) + (an
d ) ⊆ (qd−1 + (an

d ))∗ by the colon capturing
property (cf. [HH1, Theorem 7.9]). To get the lemma, it is enough to show that the following
map is injective.

Φ : (qd−1 + (an
d ))∗/(U(qd−1) + (an

d )) → (qd−1 + (an+1
d ))∗/(U(qd−1) + (an+1

d )) ,

where Φ(x̄) = adx. It readly follows that Φ is well-defined. Take x ∈ R such that adx ∈
U(qd−1) + (an+1

d ). Then there exists y ∈ R such that ad(x − an
dy) ∈ U(qd−1). Therefore

x − an
dy ∈ U(qd−1) since R/U(qd−1) is a 1-dimensional Cohen-Macaulay ring. Thus x ∈

U(qd−1) + (an
d ) and lemma follows. �

COROLLARY 3.2. Let R be an FLC ring and q = (a1, a2, · · · , ad) a parameter ideal
in R. Then for any integer n > 0, we have

e�(R) − �R(R/q) ≤ e(an
1 ,an

2 ,···,an
d )(R) − �R(R/(an

1 , an
2 , · · · , an

d )) .
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PROOF. Note that e�(R) = �R(R/U(qd−1) + (ad)) because a1, a2, · · · , ad forms a
filter regular sequence (cf. [GN, Proof of Theorem 1.1]). We now have

e(�d−1+(an
d ))(R) − �R(R/(qd−1 + (an

d))∗)
= �R(R/U(qd−1) + (an

d )) − �R(R/(qd−1 + (an
d ))∗)

= �R((qd−1 + (an
d))∗/(U(qd−1) + (an

d)) .

Hence by Lemma 3.1, we get

e(�d−1+(an
d ))(R) − �R(R/(qd−1 + (an

d )) ≤ e
(�d−1+(an+1

d ))
(R) − �R(R/(qd−1 + (an+1

d )) .

Changing the order of the system of parameters and repeating the same procedure, the asser-
tion follows. �

The following is an improvement of [N2, Proposition 4.4].

LEMMA 3.3. Let a1, a2, · · · , ad−1 be a subsystem of parameters of R of length d − 1.
Then (a1, a2, · · · , ad−1)

∗R� = ((a1, a2, · · · , ad−1)R�)
∗ for all p ∈ Spec R.

PROOF. Let I = (a1, a2, · · · , ad−1). Notice that htRI = d − 1. We may assume that
p ⊇ I and p �= m. Take ad ∈ R so that a1, · · · , ad−1, ad forms a system of parameters. Let
S = R[1/ad ]. Then it follows that (IS)∗S�S = (IR�)

∗ by [N1, Lemma 2.2]. To get the
lemma, it is enough to show that I∗S = (IS)∗. The inclusion I∗S ⊆ (IS)∗ follows from
[HH1, Lemma 4.11]. Conversely, take x ∈ R with x/1 ∈ (IS)∗. Then there exists c ∈ R0

such that c/1 · (x/1)q ∈ I [q]S for all q � 0. One can take n so that

an
dcxq ∈ (a

q

1 , a
q

2 , · · · , aq

d−1) for all q � 0 . (a)

(Here the integer n may depend on q .)
We may put R = A/J , where A is a Cohen-Macaulay local ring of characteristic p and

J is an ideal of A with htAJ = 0. Let x̃, c̃, ã1, · · · , ãd ∈ A be preimages of x, c, a1, · · · , ad ∈
R, respectively. Here we can choose ã1, · · · , ãd ∈ A to be a system of parameters of A. (cf.
e.g., [BH, Lemma 10.1.10]). Taking the preimage of the whole of (a) in A yields

ãn
d c̃x̃q ∈ (ã

q

1 , ã
q

2 , · · · , ãq

d−1)A + J for all q � 0 .

We take d ∈ A \ ⋃
�∈MinAA/J p and q ′ = pe′

so that d · J [q ′] = (0). Then we have

dã
nq ′
d c̃q ′

x̃qq ′ ∈ (ã
qq ′
1 , ã

qq ′
2 , · · · , ãqq ′

d−1)A, whence dc̃q ′
x̃qq ′ ∈ (ã

qq ′
1 , ã

qq ′
2 , · · · , ãqq ′

d−1)A because
ã1, · · · , ãd is a regular sequence on A. This implies that d ′xq ∈ (a

q

1 , · · · , aq

d−1)R for some
d ′ ∈ R0 and for all q � 0. Thus we get x ∈ (a1, a2, · · · , ad−1)

∗, whence x/1 ∈ I∗S. Thus
the lemma follows. �

We come to the place to give the proof of Theorem 1.1.

PROOF. (1) ⇒ (2): We first note that R is FLC. In fact, for all parameter ideal q, we
have

�R(q∗/q) = (�R(R/q) − e�(R)) + (e�(R) − �R(R/q∗)) , (∗)
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while e�(R) − �R(R/q∗) is non negative by [GN, Theorem 1.1]. Hence sup�{�R(R/q) −
e�(R))} is finite. This implies that R is FLC by [CTS].

Take p ∈ Spec R with p �= m. Then R� is Cohen-Macaulay. We shall show that R� is F -
rational. We may assume that htAp = d−1. Let us take a parameter ideal q = (a1, a2, · · · , ad)

such that qd−1 = (a1, a2, · · · , ad−1) ⊆ p. Let N = sup�{�R(q∗/q)}. Then

mNq∗
d−1 ⊆ mN(qd−1 + (an

d ))∗ ⊆ qd−1 + (an
d )

for all n > 0. The intersection theorem yields mNq∗
d−1 ⊆ qd−1. Then it follows that

q∗
d−1R� = qd−1R�, while q∗

d−1R� = (qd−1R�)
∗ by Lemma 3.3. Hence R� is F -rational

since qd−1R� is a parameter ideal of R� (cf. [FW, Proposition 2.2]).
(2) ⇒ (3): We may assume that dim R ≥ 1. R� is Cohen-Macaulay for any p ∈

Spec R \ {m}, since R� is excellent F -rational ring (cf. [H2, Theorem 4.2]). Thus R is FLC

by [CTS] again. We shall show that the length of (0)∗H is finite. To do it, we may assume that
R is reduced. In fact, (

√
(0))� = (0) for all p ∈ Spec R\{m}. So Rred = R/

√
(0) satisfies the

assertion (2). Besides,
√

(0) is a module of finite length, whence we have that Rred is FLC

and Hd
�(R) ∼= Hd

�(Rred ). (Notice also that R0
red = {c̄ | c ∈ R0}.)

Now let f1, f2, · · · , fd be a system of parameters in R. Then for each i, fi has a
power f n

i which is a test element for parameter ideals in R since R[1/fi ] is F -rational
(cf. [V, Theorem 3.9]). Put a = (f n

1 , f n
2 , · · · , f n

d )R. Then a is an m-primary ideal for which
aI∗ ⊆ I holds for all parameter ideals I . Let (a) = a1, a2, · · · , ad be a system of param-
eters which forms a USD-sequence. (This choice is possible because R is FLC.) Since
(0)∗H = lim−→(a)∗/(a) by Proposition 2.1, we have a(0)∗H = (0). Thus we have an embedding
(0)∗H ↪→ HomR(R/a,H) whose length are finite.

(3) ⇒ (1): From the equation (∗) it is enough to prove that sup�{e�(R) − �R(R/q∗)} is
finite. To see this, by Corollary 3.2, we may assume that the generating system a1, a2, · · · , ad

of q is a USD-sequence. (Taking a suitable power, an
1 , an

2 , · · · , an
d is a USD-sequence since

R is FLC.)
Now q ⊆ U(qd−1) + (ad) ⊆ Σ(q) ⊆ q∗ (here we apply the colon capturing property),

thus we have

e�(R) − �R(R/q∗) = �R(q∗/U(qd−1) + (ad))

= �R(q∗/Σ(q)) + �R(Σ(q)/U(qd−1) + (ad))

≤ �R(q∗/Σ(q)) + �R(Σ(q)/q) ,

where the first equality follows from the fact that a1, a2, , · · · , ad is a filter regular sequence.
Because �R(Σ(q)/q) = ∑d−1

i=0 ( d
i )�R(Hi

�(R)) (cf. [G, Proposition 3.6]) and q∗/Σ(q) ⊆ (0)∗H
by Proposition 2.1. Hence the finiteness of sup�{e�(R) − �R(R/q∗)} follows. �

Before the proof of Theorem 1.2, we recall the following.

LEMMA 3.4 ([GN, Lemma 3.2]). Suppose that Ass R ⊆ Assh R ∪ {m}. Then

F := {p ∈ Spec R | htRp > 1 = depth R�, p �= m}
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is a finite set.
Let us recall the statement of Theorem 1.2.

THEOREM 1.2. Suppose that Ass R ⊆ Assh R ∪ {m}. If sup�{e�(R) − �R(R/q∗)} <

∞, then
{p | R� is F-rational } \ {m} = {p | R� is Cohen-Macaulay} \ {m} .

PROOF. The inclusion ⊆ follows from [H2, Theorem 4.2]. Let us show the opposite
inclusion. Let a = ∏

i<d AnnRHi
�(R). By [K, Proposition 2.3], V (a) is the non Cohen-

Macaulay locus of R. We can choose a generating system f1, f2, · · · , fn of a such that fi ∈
R0 for all i because htRa > 0. Let p ∈ Spec R with p �= m and assume that R� is Cohen-
Macaulay. Then there exists fi with fi /∈ p. Let S = R[1/fi ] and taken n ∈ Max S with
n ⊇ pS. Let P = n ∩ R. Notice that RP is Cohen-Macaulay. Besides, S/n = S/PS =
R/P [1/fi ], which is a field, whence dim R/P = 1. Thus htRP = d − 1.

CLAIM 1. There exists a1, a2, · · · , ad−1 ∈ P which forms a filter regular sequence.

PROOF. When d = 1, there is nothing to prove. Let d ≥ 2. Let F be as in Lemma 3.4.
Then P �⊆ Q for any Q ∈ F . We take

a1 ∈ P \
( ⋃

Q∈F
Q

)
∪

( ⋃
Q∈AsshR

Q

)
.

Then it follows that Ass R/(a1) ⊆ Assh R/(a1) ∪ {m}. In fact, take p1 ∈ Ass RR/(a1) with
p1 �= m. Then depth R�1 = 1 and it implies that htRp1 = 1. Thus, dim R/p1 = dim R/(a1),
whence p1 ∈ Assh R/(a1). From this choice it follows that a1 is a filter regular sequence of
length one. Repeating this procedure, the claim follows. �

Let N = sup�{e�(R) − �R(R/q∗)} and a1, a2, · · · , ad−1 ∈ P be as above. We take
ad ∈ R so that a1, · · · , ad−1, ad is a system of parameters in R. Notice that it forms a filter
regular sequence. Let I = (a1, a2, · · · , ad−1) and J = I + (an

d ). Then

�R(J ∗/U(I) + (an
d )) = �R(R/U(I) + (an

d)) − �R(R/J ∗)
= eJ (R) − �R(R/J ∗)
≤ N

Hence, mNI∗ ⊆ mNJ ∗ ⊆ U(I) + (an
d ) for all n > 0. The intersection theorem yields

mNI∗ ⊆ U(I). Hence I∗ = U(I) by colon capturing property. Now I∗RP = (IRP )∗
by Lemma 3.3, while U(I)P = IRP . It implies that IRP is tightly closed, whence RP is
F -rational Cohen-Macaulay ring (cf. [FW, Proposition 2.2]). Therefore, R� is F -rational. �
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