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Having run out of hard copies of the book a number of years ago, the author is

pleased to publish an on-line version of the book in PDF format. A number of minor

corrections have been made to the original, following feedback from a number of

readers. The author is particularly grateful to Ambrose Thompson and Peter Juhl

for their feedback.

There have obviously been a number of advances since the publication of the first print

in 1998. The author has created the website www.boundary-element-method.com as

a general resource on the method. Further developments and applications of the

work can be found in the Addendum at the back of this book or on the webpage

www.boundary-element-method.com/extra.



Preface to 1998 Print

The boundary element method (BEM) is a powerful computational technique, pro-

viding numerical solutions to a range of scientific and engineering problems. To the

user, the main characteristic of the method is that only a mesh of the boundary of

the domain is required. Hence, at the very least, the method is easier to apply than

the more traditional finite element method.

The subject of this text is the development of boundary element methods for the

solution of problems in linear acoustics. Three classes of problem are considered:

Chapter 4 - interior acoustic problems, Chapter 5 - exterior acoustic problems and

Chapter 6 - the modal analysis of an enclosed fluid. Each class of problem is considered

in three domain settings: two-dimensions, three-dimensions and axisymmetry.

In the field of linear acoustics, the BEM is and important alternative to the more

traditional methods. This is especially true for exterior problems, where the acoustic

domain such as the open air or the ocean is so large it is acceptable to model it

to be infinite in extent. For example consider a vibrating body, radiating into the

open air. Applying domain methods, such as the finite element method, to such

a problem clearly requires some careful thought. However, it is natural to use the

BEM in this kind of application since only a mesh of the surface of the body is

required; reducing both the time for preparing the mesh and in the computation of

the numerical solution.

In order to apply the boundary element method, the partial differential equation

governing the domain (here the Helmholtz or reduced wave equation) must be re-

formulated as an integral equation relating functions defined on the boundary of the

domain only. By representing boundary or surface as a set of panels and the boundary

functions by a simple parametric form on each panel, the boundary integral equation

is reduced to a linear system of equations and a numerical solution becomes possible.

The general development of the BEM and its application in acoustics is considered

in the introductory chapter.

In this text the boundary element methods for the solution of acoustic or Helmholtz

problems are developed in a bottom-up way. Chapter 2 is on the preparation of

the boundary and surface meshes. Chapter 3 considers the techniques employed in

reducing the integral equation to discrete form. The solution of the acoustic problems

are considered in Chapters 4 to 6 .
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The boundary element method for the solution of acoustic problems has been devel-

oped over the last three or four decades. Out of the three problem classes considered,

only the interior problem has been found to be straightforward. The development

of the BEMs for the exterior problem and the interior modal analysis problem have

been hampered my a range of well-publicised difficulties. However, as we shall see in

this text, the BEM has reached a level of maturity in these areas that demonstrates

that many of these difficulties have been overcome. In this text the development of

the BEM for acoustic problems is treated positively.

A library of Fortran 77 routines have been developed alongside this text. Each acous-

tic problem considered in this text can be solved through simply calling one Fortran

routine. The user must simply set up the parameter list for the subroutine in or-

der to obtain the numerical solution by the BEM and to interpret the results. The

source code is made available so that the methods employed are entirely transparent.

Although the mathematical development of the methods is given in this text, the

software can be used without any knowledge of these details. Users of the software

will need to have a working knowledge of Fortran.

In the penultimate section of chapters 4 to 6 a range of test problems and results have

been given. The source code implementing the test problems and calling the relevant

routines is given. Hence the user can view and run the programs, modify and re-run

them to build up confidence before going on to more interesting applications. At the

end of each of chapters 4 to 6 a typical real-world application of the subroutines has

been included to show the wide-ranging potential of the BEM in this application.

A website http://www.boundary-element-method.com has been introduced to provide

a wider resource on the BEM in acoustics. The author is interested to hear from

readers and users of the software, particularly of ideas for extending this work or of

novel applications. The e-mail address is stephen@kirkup.info.

Finally, the author is grateful for all those who have helped him generate the material

of this book. In particular David Henwood, George Symm, Geoff Miller, Dick Tyrrell,

Sia Amini and Mark Jones.



ii The BEM in Acoustics by Stephen Kirkup



Contents

1 Introduction 1

1.1 The Boundary Element Method in Acoustics . . . . . . . . . . . . . . 2

1.2 Outline of The Boundary Element Method . . . . . . . . . . . . . . . 4

1.2.1 Operator Notation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Numerical Solution of the Integral Equation . . . . . . . . . . 6

1.2.3 Domain Solution . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Direct and Indirect Boundary Integral Equations . . . . . . . 9

1.2.5 Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Acoustics and the Helmholtz Equation . . . . . . . . . . . . . . . . . 11

1.3.1 The Wave Equation and the Helmholtz Equation . . . . . . . 12

1.3.2 Other Acoustic Properties (Exterior Problems) . . . . . . . . . 13

1.3.3 Acoustic Domains and Conditions . . . . . . . . . . . . . . . . 14

1.3.4 Condition at Infinity for Exterior Problems . . . . . . . . . . . 14

1.3.5 Resonant Frequencies and Mode Shapes . . . . . . . . . . . . 15

1.3.6 Units of Measurement . . . . . . . . . . . . . . . . . . . . . . 15

1.3.7 Acoustic Media: Air and Water . . . . . . . . . . . . . . . . . 16

1.4 Computer Programming . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Extending the work . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.3 Subordinate routines . . . . . . . . . . . . . . . . . . . . . . . 18

iii



iv The BEM in Acoustics by Stephen Kirkup

1.4.4 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . 19

2 Boundary Representation 21

2.1 Subdivision of the Boundary into Panels . . . . . . . . . . . . . . . . 21

2.2 Two dimensional Boundaries . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Three dimensional Surfaces . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Axisymmetric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The Discrete Helmholtz Operators 31

3.1 The Helmholtz Integral Operators . . . . . . . . . . . . . . . . . . . . 32

3.1.1 The Helmholtz Operators . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Properties of the Operators . . . . . . . . . . . . . . . . . . . 33

3.2 Some Properties of the Kernel Functions . . . . . . . . . . . . . . . . 33

3.2.1 Derivatives of G0 with respect to r . . . . . . . . . . . . . . . 33

3.2.2 Derivatives of Gk (k 6= 0) with respect to r . . . . . . . . . . . 34

3.2.3 Expressions for the normal derivatives of Gk . . . . . . . . . . 34

3.2.4 Expressions for the normal derivative of r . . . . . . . . . . . 34

3.2.5 Expressions for ∂2G0

∂up∂nq
. . . . . . . . . . . . . . . . . . . . . . 35

3.2.6 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Evaluation of the Discrete Forms . . . . . . . . . . . . . . . . . . . . 37

3.5 General Introduction to the Subroutines . . . . . . . . . . . . . . . . 38

3.5.1 General control of the subroutines . . . . . . . . . . . . . . . . 39

3.5.2 Geometrical Information . . . . . . . . . . . . . . . . . . . . . 39

3.5.3 Quadrature Rule . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.4 Validation of the input . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



www.boundary-element-method.com v

3.6.1 Subroutine H2LC . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2 Subroutine H3LC . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.3 Subroutine H3ALC . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Special Numerical Integration Methods . . . . . . . . . . . . . . . . . 48

3.7.1 Two-dimensional problems . . . . . . . . . . . . . . . . . . . . 49

3.7.2 Three-dimensional problems . . . . . . . . . . . . . . . . . . . 49

3.7.3 Axisymmetric three-dimensional problems . . . . . . . . . . . 51

3.8 Analysis of Computational Cost . . . . . . . . . . . . . . . . . . . . . 51

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 The Interior Acoustic Problem 55

4.1 Integral Equation Formulation . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Direct Formulation . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Indirect Formulation . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Field Modification . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Boundary Element Method . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Direct Boundary Element Method . . . . . . . . . . . . . . . . 61

4.2.2 Indirect Boundary Element Method . . . . . . . . . . . . . . . 62

4.3 Subroutines AIBEM2, AIBEM3 and AIBEMA . . . . . . . . . . . . . . 63

4.3.1 Solution Strategy of the AIBEM* routines . . . . . . . . . . . 63

4.3.2 Subroutine AIBEM2 . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Subroutine AIBEM3 . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.4 Subroutine AIBEMA . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Program AIBEM2 T . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Program AIBEM3 T . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 Program AIBEMA T . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Application: Interior acoustics of a 2D car . . . . . . . . . . . . . . . 76



vi The BEM in Acoustics by Stephen Kirkup

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 The Exterior Acoustic Problem 79

5.1 Elementary Formulations and Methods . . . . . . . . . . . . . . . . . 81

5.1.1 Elementary Direct Formulations . . . . . . . . . . . . . . . . . 81

5.1.2 Elementary Indirect Formulations . . . . . . . . . . . . . . . . 82

5.1.3 Elementary Methods . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 The Schenck Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Improved Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Improved Indirect Formulation . . . . . . . . . . . . . . . . . 86

5.3.2 Improved Direct Formulation . . . . . . . . . . . . . . . . . . 87

5.3.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Improved Boundary Element Methods . . . . . . . . . . . . . . . . . 88

5.4.1 Improved Indirect Method . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Improved Direct Method . . . . . . . . . . . . . . . . . . . . . 89

5.5 Subroutines AEBEM2, AEBEM3 and AEBEMA . . . . . . . . . . . . . 90

5.5.1 Solution Strategy of the AEBEM* routines . . . . . . . . . . . 91

5.5.2 Subroutine AEBEM2 . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.3 Subroutine AEBEM3 . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.4 Subroutine AEBEMA . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Program AEBEM2 T . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.2 Program AEBEM3 T . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.3 Program AEBEMA T . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Application: Engine Noise Analysis . . . . . . . . . . . . . . . . . . . 103

5.7.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



www.boundary-element-method.com vii

6 Interior Modal Analysis 107

6.1 Formulations of the Eigenvalue Problem . . . . . . . . . . . . . . . . 109

6.1.1 Indirect Formulation . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2 Direct Formulation . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Application of Collocation . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Indirect Method . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Solution of the Non-linear Eigenvalue Problem . . . . . . . . . . . . . 111

6.4 Subroutines MBEM2, MBEM3 and MBEMA . . . . . . . . . . . . . . . 112

6.4.1 Solution Strategy of the MBEM* routines . . . . . . . . . . . . 113

6.4.2 Subroutine MBEM2 . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.3 Subroutine MBEM3 . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.4 Subroutine MBEMA . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.1 Program MBEM2 T . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.2 Program MBEM3 T . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.3 Program MBEMA T . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Application: Loudspeaker Enclosure . . . . . . . . . . . . . . . . . . . 124

6.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6.2 Particular implementations of computational method and Mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



viii The BEM in Acoustics by Stephen Kirkup



Chapter 1

Introduction

Over recent decades, the boundary element method (BEM) has received much atten-

tion from researchers and has become an important technique in the computational

solution of a number of physical problems. In common with the better-known finite

element method (FEM) and finite difference method (FDM), the boundary element

method is essentially a method for solving partial differential equations (PDEs) and

can only be employed when the physical problem can be expressed as such. As with

the other methods mentioned, the boundary element method is a numerical method

and hence it is an important subject of research amongst the numerical analysis com-

munity. However, the potential advantages of the BEM have seemed so considerable

that the strongest impetus behind its development has come from the engineering

community, in its enthusiasm to obtain flexible and efficient computer-based solu-

tions to a range of engineering problems. The boundary element method has found

application in such diverse topics as stress analysis, potential flow, fracture mechanics

and acoustics (the subject of this text).

Acoustics is an important branch of physical science. An acoustic field can exist in

a fluid domain such as air or water, the two most important acoustic media. The

linear wave equation forms an acceptable model in many fluids and it is often used

in the cases of air and water media. In many physical situations the acoustic field

is periodic, and has the outcome of reducing the wave equation to a sequence of

Helmholtz equations by a Fourier decomposition with one Helmholtz equation for each

sample frequency. In the methods of this text, solutions of such acoustic problems

are obtained through the consideration of the individual Helmholtz problems.

The Helmholtz equation governing a range of classes of domains may be solved by

the boundary element method. Hence the BEM has received attention from engineers

1
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that are interested in applications such as the sound output of a loudspeaker, the

noise from a radiating source such as an engine and the interior acoustic modes of an

enclosure such as a vehicle interior. The method is equally applicable in underwater

acoustics and can be used to model the scattering effect of an obstruction in the ocean

or to determine the acoustic field surrounding a sonar transducer.

Here the development of the boundary element method for a range of acoustic domains

and conditions is presented. Fortran subroutines that implement the methods and a

set of test problems are available. A chapter is devoted to each of the interior, exterior

and modal acoustic problems. The codes implement the boundary element method

in its simplest form. The boundaries are approximated by the straight lines for two

dimensional problems, planar triangles for three-dimensional problems and by trun-

cated cones in axisymmetric three-dimensional problems. The boundary functions

are approximated by a constant on each segment or panel of the boundaries. Specif-

ically, the boundary elements are C−1; constant on each panel and discontinuous on

the edges of the panels.

The subroutines have been designed to allow as much flexibility as possible whilst

minimizing their complexity. The parameter list in each main subroutine is stated in

the text to enable the reader to appreciate the way in which a call to the subroutine

can be included in a Fortran program. Toward the end of Chapters 4, 5 and 6 test

problems are applied to each subroutine, to demonstrate how to use the routine and

to validate the methods. Results from relevant applications are given to demonstrate

the usefulness of the methods in the computer-aided analysis of engineering problems.

1.1 The Boundary Element Method in Acoustics

The boundary element method is derived through the discretisation of an integral

equation that is mathematically equivalent to the original partial differential equation.

The essential re-formulation of the PDE that underlies the BEM consists of an integral

equation that is defined on the boundary of the domain and an integral that relates

the boundary solution to the solution at points in the domain. The former is termed

a boundary integral equation (BIE) and the BEM is often referred to as the boundary

integral equation method or boundary integral method. Over the last twenty years

the term boundary element method has become more popular. The other terms are

still used in the literature however, particularly when authors wish to refer to the

overall derivation and analysis of the methods, rather than their implementation or

application.
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An integral equation re-formulation can only be derived for certain classes of PDE.

Hence the BEM is not widely applicable when compared to the near-universal adapt-

ability of the finite element and finite difference method. However, in the cases in

which the boundary element method is applicable, it often results in a numerical

method that is easier to use and more computationally efficient than the competing

methods.

The advantage in the boundary element method arises from the fact that only the

boundary (or boundaries) of the domain of the PDE requires sub-division. (In the

finite element method or finite difference method the whole domain of the PDE re-

quires discretisation.) Thus the dimension of the problem is effectively reduced by

one, for example an equation governing a three-dimensional region is transformed into

one over its surface. In cases where the domain is exterior to the boundary, as it is

in acoustic radiation and scattering models, the extent of the domain is infinite and

hence the advantages of the BEM are even more striking; the equation governing the

infinite domain is reduced to an equation over the (finite) boundary.

Solutions to two-dimensional, three-dimensional and axisymmetric three-dimensional

acoustic problems are developed in this text. In each case boundary element tech-

niques are developed for the solution of interior and exterior boundary-value prob-

lems and the interior eigenvalue problem, each allowing for a wide range of classes of

boundary condition. The subroutines have been written so that they are applicable

to a wide variety of acoustic problems. A very general form of boundary condition

is assumed and it is possible to include an incident field that is necessary in acoustic

scattering, for example. Nine major Fortran subroutines are developed for solving

each of these problems and the source codes are available. It is the emphasis on the

method development and programming that distinguishes this work from earlier texts

such as Colton and Kress [23], Ciskowski and Brebbia [22] and Rego Silva [72].

Table 1.A: The main subroutines

Chapter 2-dimensional 3-dimensional Axisymmetric

Core routines 3 H2LC H3LC H3ALC

Interior analysis 4 AIBEM2 AIBEM3 AIBEMA

Exterior analysis 5 AEBEM2 AEBEM3 AEBEMA

Modal analysis 6 MBEM2 MBEM3 MBEMA

The three subroutines, for each dimensional space, call a core routine that is respon-

sible for discretising the integral equation. Chapter 3 decribes the core routines; the
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underlying methods employed and the way in which the routines are called from the

main programs. The major subroutines supplied with the text are listed in Table 1.A.

In science and engineering there are a wide variety of acoustic problems, only a frac-

tion of which are considered in this work. The important example of fluid-structure

interaction modelling, in which an acoustic field existing in a fluid influences and is

influenced by a structure with which it is in contact [83], [59], [3] and [42], is not

addressed in this work. However, the subroutines described in Chapters 4-6 can be

adapted to include such problems.

A further important extension of the methods in this text is the use of integral equa-

tion methods for modelling the acoustic field exterior to a thin shell or shield. The

traditional boundary element method is not directly applicable to such problems and

alternative integral equation methods have been developed in references [10], [82].

This method has been developed as a generalisation of the boundary element method

(the boundary and shell element method) by the author [47], [41], [49]. Again such

problems are beyond the scope of this text. More advanced use of the subroutines is

discussed in Appendix 7.

1.2 Outline of The Boundary Element Method

In this Section the overall strategy in using the BEM is briefly outlined. For a more

thorough introduction, the reader is advised to consult the textbooks exclusively

devoted to the boundary element method, such as Jaswon and Symm [34], Brebbia

[13], Banerjee and Butterfield [7], Chen and Zhou [20] and Hall [29]. An introduction

to the boundary element method with subroutines for solving Laplace’s equation is

also available on the web site [33].

In the derivation of the BEM, the underlying objective is to replace the partial dif-

ferential equation that governs the solution in a domain by an equation that governs

the solution on the boundary alone. For example the Laplace equation

N
∑

i=1

∂2ϕ(p)

∂p2
i

= 0

where N is the dimension of the space, or more concisely,

∇2ϕ(p) = 0 ,

governing the interior to a domain D bounded by a surface S (as shown in Figure
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1.1) can be replaced by an integral equation of the form

∫

S

∂G

∂nq

(p,q) ϕ(q)dSq +
1

2
ϕ(q) =

∫

S
G(p,q)

∂ϕ

∂nq

dSq . (1.1)

The function G is known as a Green’s function, the precise form of which for the

Laplace (and Helmholtz) equation is given in Section 3.1. Physically, G(p,q) repre-

sents the effect observed at a point p of a unit source at the point q. The terminolology
∂∗
∂nq

represents the partial derivative of the function ∗ with respect to the unit outward

normal at the point q on the boundary.

The integral equation can be derived from the Laplace equation by applying Green’s

second theorem. The power of the formulation (1.1) lies in the fact that it relates the

potential ϕ and its derivative on the boundary alone; no reference is made to ϕ at

points in the domain. In a typical boundary-value problem we may be given ϕ(q),
∂ϕ
∂nq

(q) or a combination of such data on S: equation (1.1) is a means of determining

the unknown boundary function(s) from given boundary data.

Fig. 1.1. Illustration of the interior domain.
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1.2.1 Operator Notation

Operator notation is a useful shorthand in writing integral equations. Moreover, it

will be shown that it is very powerful notation in that it clearly demonstrates the

connection between the integral equation and the linear system of equations that

results from its discretisation.

Integral equations can always be written in terms of integral operators. For example

if ζ is a function defined on S then applying the following operation to ζ for all points

p on S
∫

S
G(p,q) ζ(q)dSq = ν(p) (p ∈ S)

gives a function ν. This can be viewed as the application of an operator to the

function ζ to return the function ν. More simply we may write

{Lζ}S(p) = ν(p) . (1.2)

In (1.2) the L represents the integral operator

and the subscript (Γ) refers to the domain of integration. Here Γ is used as a variable,

representing either a whole surface or a patch of surface.

In operator notation the integral equation (1.1) can be written in the alternative

shorthand notation

{Mϕ}S(p) +
1

2
ϕ(p) = {Lv}S(p) or {(M +

1

2
I)ϕ}S(p) = {Lv}S(p) (1.3)

where v(q) = ∂ϕ
∂nq

, the M represents the other integral operator;

{Mζ}Γ(p) ≡
∫

Γ

∂G

∂nq

(p,q) ζ(q)dSq , (1.4)

and I the identity operator.

1.2.2 Numerical Solution of the Integral Equation

In order to develop a numerical method for the solution of integral equations like

(1.3), a technique is applied so that the equation is simplified into a linear system

of equations. Hence there is a close analogy between linear integral equations and

systems of linear equations; the integral operators can be viewed as matrices, the

boundary functions as vectors.
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The application of such a technique transforms the equation (1.3) to an equation of

the form

Mϕ̂+
1

2
ϕ̂ = Lv̂ or (M +

1

2
I)ϕ̂ = Lv̂ (1.5)

where the components of the vectors ϕ̂ and v̂ represent (approximations to) the values

of the function ϕ(p) and ∂ϕ
∂nq

(p) at a set of points on the boundary. L, M and I are

matrices derived from the corresponding integral operators in (1.3) with I representing

the identity matrix. A complete demonstration of how the matrix-vector equation is

obtained from the integral equation in given in Subsection 1.2.5. The connection

between the system of linear equations (1.5) and the integral equation (1.3) or (1.1)

is now clear. As stated earlier, the boundary data ϕ, ∂ϕ
∂nq

or some combination of the

two functions are given and the solution of the system of linear equations (1.5) can

be used to derive approximations to the unknown boundary data.

There are a variety of techniques for deriving the system of linear equations from a

given integral equation (see [5], [26], for example). In general, a method can be derived

by replacing the integrals in an integral equation by a quadrature formula or by a

weighted residual method such as the Galerkin method. Many methods for solving

integral equation can be used to develop a particular boundary element method [13].

The method employed in the software accompanying this text is that of collocation

since it is considerably easier to program and probably more efficient than competing

techniques.

The application of collocation to a boundary integral equation requires that the

boundary is represented by a set of panels. For example a two dimensional boundary

can be approximated by a set of straight lines as illustrated in Figure 1.2. In order

to complete the discretisation of the integral equations, the boundary functions also

need to be approximated on each panel. In this work, it is the characteristics of the

panel and the representation of the boundary function on the panel that together

define the element in the boundary element method. The technique of dividing the

boundaries into panels is described in Chapter 2.

By representing the boundary functions by a characteristic form on each panel, the

boundary integral equations can be written as a linear system of equations of the

form introduced earlier. The boundary functions are approximated by a constant on

each panel in all of the methods associated with this text, with the collocation point

at the centre of the panel (C−1 collocation). The overall process is that of discretising

the integral operators and the methods for carrying this out are covered in Chapter

3.
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Fig 1.2. The boundary represented by a set of straight line panels.

1.2.3 Domain Solution

On solution of the integral equation (approximations to) the unknown boundary

function(s) will be known on S. Hence both of ϕ(q) and ∂ϕ
∂nq

(q) will be explicit

if the method is based on the integral equation (1.5). In most cases a solution in the

domain D is required and this can be found using the following equation:

ϕ(p) =
∫

S
G(p,q)

∂ϕ

∂nq

dSq −
∫

S

∂G

∂nq

(p,q) ϕ(q)dSq (p ∈ D) (1.6)

or, more concisely,

ϕ(p) = {Lϕ}S − {Mv}S (p ∈ D) ,

using the notation of Subsection 1.2.1. The equation (1.6) is also an outcome of

Green’s second theorem. The domain solution ϕ(p) for any point p in the domain

can be obtained through simply evaluating the integrals in (1.6).



www.boundary-element-method.com 9

1.2.4 Direct and Indirect Boundary Integral Equations

There are two fundamental approaches to the derivation of an integral equation for-

mulation of a partial differential equation. The first is often termed the direct method

and the integral equations are derived through the application of Green’s second the-

orem and an example of this has already been given in Subsection 1.2.1.

The other technique is termed the indirect method. This is based on the assumption

that the solution can be expressed in terms of a source density function defined on

the boundary. For example it is assumed that the solution of the Laplace equation

can be written in the form

ϕ(p) =
∫

S
G(p,q) σ(q)dSq ,

where σ is the source density function defined on S only. The following integral

equation can be derived from the above:

∂ϕ

∂np

(p) =
∂

∂np

∫

S
G(p,q) σ(q)dSq +

1

2
σ(p) =

∫

S

∂G

∂np

(p,q) σ(q)dSq +
1

2
σ(p) .

In operator notation the above integral equations are written

ϕ(p) = {Lσ}(p) and v(p) = {(M t +
1

2
I)σ}(p).

Note the relationship between the operatorM t and the operatorM introduced earlier;

M t is known at the transpose ofM and is arrived at simply by swapping the arguments

p and q in the definition.

In some cases the indirect method is a more versatile reformulation of the partial

differential equation as the terms ϕ and ∂ϕ
∂n

are already isolated; the expressions for

ϕ and v can be substituted directly into the boundary condition, giving the indirect

integral equation formulation. For a general boundary condition, the direct method

is a little more difficult to implement. In this text both the direct and indirect

formulations and methods for solving Helmholtz problems are considered. However,

the accompanying main subroutines all implement direct methods.

1.2.5 Collocation

The step from the integral equation to the linear system of equations, as illustrated

in Section 1.2, is carried out by applying an integral equation method to an equation

such as (1.3) to give an equation like (1.5). There are a range of methods for carrying
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this out (ref [13]) but the most favoured technique is that of collocation, because of

its inherent simplicity. Collocation can be applied in a remarkably elementary form,

which is termed C0 collocation in this text since it is derived by approximating the

boundary functions by a constant on each panel. In this subsection the C0 collocation

method is briefly outlined.

To begin with the boundary S is assumed to be expressed as a set of panels; S =
∑n

j=1 ∆Sj. Usually the panels have a characteristic form and cannot represent a given

boundary exactly, but this distinction will be left for the next chapter. Often the ∆Sj

are referred to as elements in other texts. However, the term element refers not only to

the geometry of ∆Sj but also to the method of representing the boundary functions on

∆Sj. The representation of boundaries in two-dimensional space, three-dimensional

space and axisymmetric problems is considered in Chapter 2.

The C0 collocation method involves representing the boundary function by a constant

on each panel. For example

ϕ(p) ≈ ϕj , v(p) ≈ vj if p ∈ ∆Sj . (1.7)

The substitution of representations of this form for the boundary functions in the

integral equation reduce it to discrete form. The combination of the representation

of the panels and the approximation of the boundary functions, as typified by (1.7),

defines the element.

The simplifications allow us to re-write equation (1.3) as the approximation

n
∑

j=1

{(M +
1

2
I)e}∆Sj

(p) ϕj ≈
n

∑

j=1

{Le}∆Sj
(p) vj (p ∈ S)

where e is the unit function (e ≡ 1). The {Le}∆Sj
(p), for example, for a specific point

p, are the numerical values of definite integrals and are termed the discrete form of

the L integral operator.

The constant approximation is taken to be the value of the boundary functions at

the representative central point (the collocation point) on each panel. By finding the

discrete forms of the relevant integral operators for all the collocation points, a system

of the form
n

∑

j=1

{(M +
1

2
I)e}∆Sj

(pi) ϕj ≈
n

∑

j=1

{Le}∆Sj
(pi) vj (1.8)

for i = 1, 2, ..., n is obtained by putting p = pi in the previous approximation. Note

that because of the approximation of the boundary functions (and also the boundary

approximation, if applicable), the discrete equivalent of equation (1.3) is an approxi-

mation relating the exact values of the boundary functions at the collocation points.
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This system of approximations (1.8) can now be written in the matrix-vector form

(M +
1

2
I)ϕ ≈ Lv (1.9)

with

[L]ij = {Le}∆Sj
(pi) , [M]ij = {Me}∆Sj

(pi). (1.10)

The vectors ϕ and v represent the exact values of ϕ and v at the collocation points.

The approximate relationship between the exact values (1.9) can be interpreted as an

exact relationship between approximate values, equation (1.5).

The terms on the right hand side of the equations in (1.10) are definite integrals that

need to be computed to return their value on the left hand side of the equations.

The process of computing the integral is termed the discretisation of the integral

operators. In many cases this is carried out through a straightforward application

of a numerical integration method. However, in the implementation of boundary

element methods it is well-known that some of the integrals that arise have singular

integrands, requiring special methods. For Helmholtz problems, some of the integral

operators that arise are more difficult still and their discretisation requires careful

treatment. The techniques employed to discretise the Helmholtz operators in the

boundary element methods of this text are described in Chapter 3.

1.3 Acoustics and the Helmholtz Equation

The governing equations in acoustics need to be prepared for the application of the

boundary element method. For example the time-dependent sound pressure in the

original wave equation model is replaced by a potential in the Helmholtz equation

and the BEM is applied to the latter. However, eventually the results from the BEM

need to be interpreted in terms of physical acoustic properties - not just the sound

pressure but also the sound power, radiation ratio and also often on the decibel scale.

In this Section it is shown how the time-dependent wave equation governing the

acoustic field can be simplified to the Helmholtz equation when harmonic solutions

are considered. For further background to acoustic properties and acoustic modelling

see texts such as Morse [62] or Pierce [71]. The three classes of acoustic problem

that form the subject of this text are formally described. The content of this Section

assumes more importance towards the end of Chapters 4-6 where test problems and

applications of the methods are considered.
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1.3.1 The Wave Equation and the Helmholtz Equation

The acoustic field is assumed to be present in the domain of a homogeneous isotropic

fluid. Whatever the shape and nature of the domain, the acoustic field is taken to be

governed by the linear wave equation

∇2Ψ(p, t) =
1

c2
∂2

∂t2
Ψ(p, t) (1.11)

where Ψ(p, t) is the scalar time-dependent velocity potential related to the time-

dependent particle velocity by

V(p, t) = ∇Ψ(p, t) (1.12)

and c is the propagation velocity (p and t are the spatial and time variables). The

time-dependent sound pressure Q(p, t) is given in terms of the velocity potential by

Q(p, t) = −ρ∂Ψ

∂t
(p, t) (1.13)

where ρ is the density of the acoustic medium.

Only periodic solutions to the wave equation are considered, thus the time-dependent

velocity potential Ψ(p, t) can be reduced to a sum of components each of the form

ψ(p, t) = Reϕ(p)e−iωt (1.14)

where ω is the angular frequency (ω = 2πν, where ν is the frequency in hertz) and

ϕ(p) is the (time-independent) velocity potential. The substitution of expression

(1.14) into (1.11) reduces it to the Helmholtz (reduced wave) equation:

∇2ϕ(p) + k2ϕ(p) = 0 (1.15)

where k2 = ω2

c2
and k is the wavenumber. It follows that the wavenumber and the

frequency of an acoustic medium are connected by the equation

k =
2πν

c
. (1.16)

In order to carry out a complete solution, the wave equation is written as a series of

Helmholtz problems, through expressing the boundary conditions as a Fourier series

with components of the form (1.14). For each wavenumber and its associated bound-

ary condition, the Helmholtz equation is then solved. The time-dependent sound

pressure ψ(p, t) can then be constituted from the separate solutions. In practical

situations, such as that considered in the example of the analysis of engine noise in
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Section 5.7, the wave equation is resolved into a large series of the order of hundreds

or thousands of frequency components.

The sound pressure p(p) at the point p in the acoustic domain is related to the

velocity potential by the formula

p(p) = iρωϕ(p) . (1.17)

Often sound levels are measured on the decibel scale. The magnitude in decibels of

the sound pressure can be found by the expression

log10(|
p(p)

p∗
|) ∗ 20 (1.18)

where p∗ is the reference pressure which is taken to be 2.0 × 10−5Pa.

The phase of the signal is also important. The phase is equivalent to the angle about

the origin that is made by plotting the point corresponding to the sound pressure in

the Argand plane and it can be found using the arctan or tan−1 function. In Fortran

the generalised arctangent function ATAN2 is most useful for this and the phase is

given by an expression of the form

ATAN2(AIMAG(p),DBLE(p)) , (1.19)

which will return a result in the range [0, 2π]. The expression (1.19) gives the phase

in radians. The phase in degrees can be found by multiplying this by 180/π.

1.3.2 Other Acoustic Properties (Exterior Problems)

At any frequency of enquiry, the sound pressure at all points in the acoustic do-

main describe the solution. However other acoustic properties are often of interest in

practical situations. For example the acoustic intensity on the surface is

I(p) =
1

2
Re(p∗(p)v(p)) (1.20)

at each point p, where the ∗ denotes the complex conjugate.

The sound power is given by

W =
∫

S
I(q)dSq (1.21)

or equivalently by

W =
1

2ρc

∫

SF

p∗(q)p(q)dSq (1.22)
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where SF is a hypothetical closed surface in the far-field that encloses S.

The radiation ratio is given by

σRAD =
W

1
2
ρc

∫

S v
∗(q)v(q)dSq

. (1.23)

1.3.3 Acoustic Domains and Conditions

In this text a Chapter is devoted to each of three distinct types of acoustic problems:

the interior problem, the exterior problem and the interior modal analysis problem.

The three distinct cases of two-, three- and axisymmetric three-dimensional problems

are covered within each Chapter. The solution of interior and exterior boundary value

problems is determined by the boundary condition and the shape of the boundary.

Some classes of problem, for example the scattering problem, also involve an incident

acoustic field.

The boundary condition specifies either the velocity potential ϕ (that is related closely

to the sound pressure by (1.17)) or the normal velocity v (the derivative of ϕ with

respect to the normal to the boundary) or some relationship between them at the

boundary points. For the boundary value problems, the boundary condition takes

the following form:

α(p)ϕ(p) + β(p)v(p) = f(p) (p ∈ S) (1.24)

where α, β and f are complex-valued functions defined on S. For the modal analysis

problem the boundary condition is the homogeneous form of (1.24).

In a pure radiation problem, for example, v will be specified on the boundary and

there will be no incident field. In a pure scattering problem the boundary condition

may be specified such that it is perfectly reflecting (v = 0), for example, or that it

has an impedance boundary condition of the form ϕ = γv where γ is a constant. The

general form of the boundary condition (1.24) allows different forms of condition to

be specified at different regions on the boundary.

1.3.4 Condition at Infinity for Exterior Problems

For the exterior problems it is necessary to introduce a condition at infinity. This

ensures the physical requirement that all scattered and radiated waves are outgoing.

This is termed the Sommerfeld radiation condition:

lim
r→∞ r

1

2 (
∂ϕ(p)

∂r
− ikϕ(p)) = 0 in two dimensions and (1.25)
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lim
r→∞

r(
∂ϕ(p)

∂r
− ikϕ(p)) = 0 in three dimensions, (1.26)

where r is the distance from a fixed origin to a general field point.

1.3.5 Resonant Frequencies and Mode Shapes

An enclosed volume of fluid exhibits resonances in the same way as a structure does.

At the acoustic resonances any excitation generally leads to a (theoretically) infinite

response. In practical situations the resonance frequencies inform us of the frequencies

at which the acoustic response appears to be significantly magnified.

Knowledge of the modal properties can be of great value. For example a particular

car design may be such that that its structural resonant frequencies coincide with

the acoustic resonances of the car interior, having the apparent effect of magnifying

the noise. Re-designing the car so that the two sets of resonant frequencies do not

coincide could significantly reduce the interior car noise.

In acoustic problems the eigenvalues of the Helmholtz equation correspond to the

resonant frequencies and the corresponding eigenfunctions to the mode shapes. They

are the wavenumbers k∗ and the mode shapes ϕ∗ that satisfy the Helmholtz equation

∇2ϕ∗(p) + (k∗)2ϕ∗(p) = 0 (p ∈ D)

subject to a homogeneous boundary condition of the form

α(p)ϕ(p) + β(p)v(p) = 0 (p ∈ S) .

The solutions of the eigenvalue problem are related to the shape of the domain and

the nature of the boundary condition. The numerical determination of the resonant

frequencies and mode shapes of an enclosed fluid are considered in Chapter 6.

1.3.6 Units of Measurement

The units of the acoustic properties considered in this text are not always stated.

Table 1.B shows the standard units that generally apply. In the case of the velocity,

the velocity potential and the sound pressure, the quantities are complex-valued.

These are phasar quantities; their complex value expresses both their magnitude and

relative phase.
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Table 1.B: Standard Units

Property Unit

mass kg

distance m

density kg/m3

sound pressure Pa=kg/m2

velocity m/s

velocity potential no units

power W

intensity W/m2

frequency Hz

wavenumber no units

1.3.7 Acoustic Media: Air and Water

In linear acoustics, different acoustic media are simply reflected in the change in

scaling factors that relate quantities such as wavenumber and frequency. The scaling

factors can be found from tabulated values of the density ρ of the fluid and the speed

at which sound propagates through the fluid c. Note also the density of the fluid

generally varies with other conditions such as the temperature of the medium.

The two most important acoustic media are those of air and water. Typically air at

20◦ celcius and one atmosphere has a density of 1.29 kg/m3 and speed of sound of

334 m/s. Water at 4◦ celcius has a density of 1000 kg/m3 and the speed of sound is

1524 m/s. From Section 1.3, equation (1.16) it can be deduced that ν = 53.2k for

air and ν = 242.6k for water under the stated conditions. From equation (1.17) it

can be deduced that p = i431kϕ for air and p = i1524× 103kϕ for water under same

conditions.

1.4 Computer Programming

The available computer software is as important in this work as the development of

the boundary element method given in the text. The important subroutines are given

in Table 1.A and the directory structure of the files on the relevant diskettes and on

the web site is given in Appendix 1. The computer programs are written in standard

Fortran 77 and they enable the reader to experience the methods in use. The source

code may be observed so that the way in which the methods are implemented is clear,

which is of particular value if the reader intends to develop the methods further. The
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nine major subroutines that solve each of the acoustic problems in each domain are

easy to use and hence they may be employed to solve acoustic problems of particular

interest to the user.

1.4.1 Fortran

Though the term Fortran is used freely in this text, Fortran is not a unique or static

language. It has evolved over a number of decades and a number of important stan-

dards have arisen. Fortran 77 is the most important comtemporary standard but

recently it has been superceded by Fortran 90 and Fortran 95. However care has been

taken to ensure that later versions of Fortran are supersets of Fortran 77: programs

written in Fortran 77 should also compile with a Fortran 90 compiler. Hence the

software described in this text is satisfactory for either compiler.

The name Fortran is an abbreviation of formula translation: it is a language that has

been pricipally written for re-creating mathematics on computer. Unlike Algol-like

languages such as Pascal, Fortran code is generally not elegant and Fortran lacks the

inherent brevity of C coding. However Fortran is still popular since it has important

constructs that are dear to mathematicians, scientists and engineers - for example

a complex numeric type and a good range of mathematical functions. Because of

Fortran’s early dominance in mathematical programming, a range of library codes for

carrying out sophisticated numerical algorithms or the evaluation of special functions

have been developed. Fortran software libraries such as NAG [63], IMSL [32] and

reference [70] contain the results of such endeavours.

1.4.2 Extending the work

The source codes of the main subroutines are provided so that the user can easily

extend the work covered in this text. Most simply, the test programs can be adjusted

to change the description of the boundaries, the boundary conditions, the acoustic

frequency, and so on so that the user can test the software further or directly apply

the software to practical problems.

The subroutines for computing the interior and exterior boundary-value problems

(AIBEM* and AEBEM*) can be used in an alternative way. If the parameter .LSOL.

is set .FALSE. the workspace parameters WKSPC1, WKSPC2, WKSPC3, WKSPC4

contain the information required to solve a wider range of acoustic problems outside

the routine. The use of the subroutines in this way is described in Appendix 7.
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At a more advanced level, the user may wish to introduce more sophistication and

adjust the parameters of H2LC, H3LC and H3ALC accordingly in order to analyse the

methods or to improve computational efficiency of the boundary element method.

The core routines can be used to introduce the integral equation methods to a much

wider range of acoustic problems than those explicitly covered in this text.

1.4.3 Subordinate routines

The major subroutines described in Chapters 3-6 require back-up modules for carrying

out routine (though not necessarily simple) tasks. The following backing-software is

required.

(i) A method for solving a linear system of equations where the matrices are full and

complex. The subroutine CGLS for carrying this out is described in Appendix 3.

(ii) A method for finding the eigenvalues of an interpolating complex polynomial

matrix is implemented by subroutine INTEIG. INTEIG requires a method for solving

a generalised eigenvalue problem, again with complex matrices is implemented by

subroutine CGEIG. These routines are outlined in Appendix 4.

(iii) A subroutine for computing a spherical hankel function is listed in Appendix 5.

The method (i) is required for all interior and exterior boundary value problems,

the methods (ii) are only required for modal analyses and the method (iii) is only

necessary for two-dimensional problems.

The method for solving the linear system of equations, necessary in the solution of

the interior and exterior boundary value problems of Chapters 4 and 5, is carried

out by a subroutine identified by CGLS. The modal analysis problems considered in

Chapter 6 each need to call a subroutine identified by INTEIG, for solving a polynomial

eigenvalue problem. This is then re-cast as a generalised eigenvalue problem (CGEIG)

and solved by using a standard library routine. The hankel functions are evaluated

through calling a subroutine identified by FNHANK.

In the software provided, NAG routines are invoked for solving the generalised eigen-

value problem (CGEIG) and for computing the terms of the Hankel functions (FN-

HANK) in the supplied software. If the reader does not have NAG then these codes

will need to be developed in some alternative way. The codes for solving the interior

and exterior three-dimensional boundary-values problems do not invoke any external

routines.
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1.4.4 Computational Efficiency

Often, the greater the computer time and memory available the more accurate the

result of a computational method. In practice, computer facilities are limited and the

programmer will seek to trade off accuracy to reduce execution times and keep within

the hardware limits of the available computer. The term computational efficiency

refers to the accuracy obtained in a numerical method in relation to the work done.

The greater the computational efficiency of a numerical method the better.

One of the main reasons for using the boundary element method in the first place is

that it is often expected to be more computationally efficient than competing methods.

For example the finite element method might be rejected as a feasible solution method

for exterior acoustic problems because it is awkward to use in an infinite domain.

However, the feasibility of the FEM can be equally questioned on the grounds of its

poor computational efficiency in this case.

When running the boundary element method on small scale problems, solutions will

usually be obtained in a few minutes or even in a matter of seconds. However, if the

user is interested in developing boundary element methods for large-scale problems the

issue of computational efficiency could be important; adapting the code with a view to

reducing computational cost could greatly reduce the execution time in an application

without a significant effect on accuracy. Alternatively, the numerical analysis of

integral equation methods should ideally include a consideration of computational

efficiency.

In Section 3.8 the computational cost of the core routines is tabulated. These can be

used to determine the computing time required to compute the matrices in the bound-

ary element method for example. The characteristics of the extra computational cost

of running the methods for solving linear systems of equations and eigenvalue prob-

lems are documented in numerical analysis literature. The cost of function evaluations

and in particular the evaluation of the Hankel functions can be determined experi-

mentally. Hence the execution times of programs can be estimated in terms of number

of elements, number of quadrature points etc. The contents of the parameter list of

the core routines could be adjusted as a means to reducing the execution time.



20 The BEM in Acoustics by Stephen Kirkup



Chapter 2

Boundary Representation

The boundary element method can be a versatile method only if it includes the

ability to represent any boundary in the given class of two-, three- or axisymmetric

three-dimensional space. In general this is carried out by the facility of defining the

surface as a set of panels, each having the same characteristic form (or a set of two

or three characteristic forms in more advanced software). For example a closed two-

dimensional boundary can be represented by a set of straight lines, as illustrated

earlier in Figure 1.2.

2.1 Subdivision of the Boundary into Panels

Let S be the original boundary and ∆S̃j ( for j = 1, 2, .., n) be the panels that rep-

resent an approximation to S in the boundary element method. If S̃ =
∑n

j=1 ∆S̃

is the surface described by the complete set of panels then S̃ is the approximation

to S (that is S̃ ≈ S). The representation of the boundary in this way is the first

step in the discretisation of the integral operators that occur in the boundary integral

formulation of the Helmholtz equation. Since every panel (in each particular dimen-

sional space) has a similar characteristic form, the integration over each panel can be

generalised. This function is carried out by the subroutines H2LC, H3LC and H3ALC

for the two-, three- and axisymmetric three dimensional problems respectively and

these subroutines form the core modules for each of the interior, exterior and modal

acoustic problems. A full description of the methods employed in the discretisation

of the operators by these subroutines is given in Chapter 3.

The representation of the boundary by a set of characteristic panels enables us to

easily define the boundary using a data structure. For example an ordered list of

21
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the coordinates of the vertices of the approximating polygon in Figure 1.2 defines the

boundary. As an illustration, the boundaries of the test problems are explicitly stated

in this Chapter.

Fig 2.1. The straight line, planar triangle and truncated cone panels.

Part of the numerical error in the boundary element solution will be a result of the

approximation of the boundary. A better boundary approximation and a smaller

numerical error will generally arise if the boundary is represented by curved panels.

The methods described in this text apply to only the simplest panels, straight line

panels for two-dimensional boundaries, planar triangles for general three-dimensional

boundaries and truncated conical panels for axisymmetric problems, as shown in

Figure 2.1. In this Chapter we consider the representation of the boundary S in

terms of these panels in each dimensional space. The boundary can be expressed

by two data structures in each case; the first enumerating the vertices and storing

their coordinates, the second lists the individual panel by indicating the two or three

vertices that define each panel.

2.2 Two dimensional Boundaries

In the subroutines that solve acoustic problems in two dimensions (AIBEM2, AEBEM2

and MBEM2) the boundaries must be represented in the form illustrated in Figure

1.2. In order that the normal to the boundary points outward rather than inward

the two nodes that define each element must be listed in the clockwise direction

around the boundary. The programs AIBEM2 T, AEBEM2 T and MBEM2 T each

solve acoustic problems in which the boundary under consideration is that of a square

of side 0.1. The boundary is represented by 32 uniform panels and also has 32 vertices,

as illustrated in Figure 2.2.



www.boundary-element-method.com 23

Fig 2.2. The square divided into 32 panels.

In this example the representation of the boundary is exact. In order to pass the

description of the boundary to the subroutines it is defined by the two Tables of data

2.A and 2.B. Table 2.A lists the (x, y) coordinates of the vertices and is identified by

the real array VERTEX. Table 2.B lists the index of the two vertices that define each

panel and is referred to by the integer array SELV.
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Table 2.A: Vertices of square boundary (VERTEX)

Index x y Index x y

1 0.0000 0.0000 17 0.1000 0.1000

2 0.0000 0.0125 18 0.1000 0.0875

3 0.0000 0.0250 19 0.1000 0.0750

4 0.0000 0.0375 20 0.1000 0.0625

5 0.0000 0.0500 21 0.1000 0.0500

6 0.0000 0.0625 22 0.1000 0.0375

7 0.0000 0.0750 23 0.1000 0.0250

8 0.0000 0.0875 24 0.0000 0.0125

9 0.0000 0.1000 25 0.1000 0.0000

10 0.0125 0.1000 26 0.0875 0.0000

11 0.0250 0.1000 27 0.0750 0.0000

12 0.0375 0.1000 28 0.0625 0.0000

13 0.0500 0.1000 29 0.0500 0.0000

14 0.0625 0.1000 30 0.0375 0.0000

15 0.0750 0.1000 31 0.0250 0.0000

16 0.0875 0.1000 32 0.0125 0.0000

Table 2.B: Panels that constitute the square (SELV))

Index Vertex 1 Vertex 2 Index Vertex 1 Vertex 2

1 1 2 17 17 18

2 2 3 18 18 19

3 3 4 19 19 20

4 4 5 20 20 21

5 5 6 21 21 22

6 6 7 22 22 23

7 7 8 23 23 24

8 8 9 24 24 25

9 9 10 25 25 26

10 10 11 26 26 27

11 11 12 27 27 28

12 12 13 28 28 29

13 13 14 29 29 30

14 14 15 30 30 31

15 15 16 31 31 32

16 16 17 32 32 1
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2.3 Three dimensional Surfaces

In the subroutines that solve acoustic problems in three dimensions (AIBEM3, AEBEM3

and MBEM3) the boundaries must be represented in the form of a set of planar tri-

angles. In order that the normal to the boundary points outward rather than inward

the three nodes that define each element must be listed in the anti-clockwise direction

when it is viewed from just outside the surface. The programs AIBEM3 T, AEBEM3 T

and MBEM3 T each solve acoustic problems in which the boundary under consider-

ation is that of a sphere of unit radius. The boundary is represented by 36 planar

triangles and has 20 vertices. The approximate surface is illustrated in Figure 2.3.

In this example the representation of the boundary is quite a severe approximation

on the original boundary and hence some corresponding loss of accuracy should be

expected in the BEM solution.

Fig 2.3. Representation of the sphere by flat triangular panels.

In order to pass the description of the boundary to the subroutines it is represented

by the two tables data 2.C and 2.D. Table 2.C lists the (x, y, z) coordinates of the

vertices and is identified by the real array VERTEX. Table 2.D lists the index of the

three vertices that define each panel and is identified by the integer array SELV.
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Table 2.C: Vertices of approximate sphere boundary (VERTEX)

Index x y z Index x y z

1 0.000 0.000 1.000 11 -0.500 -0.866 0.000

2 0.000 0.745 0.667 12 -1.000 0.000 0.000

3 0.645 0.372 0.667 13 -0.500 0.866 0.000

4 0.645 -0.372 0.667 14 0.000 0.745 -0.667

5 0.000 -0.745 0.667 15 0.645 0.372 -0.667

6 -0.645 -0.372 0.667 16 0.645 -0.372 -0.667

7 -0.645 0.372 0.667 17 0.000 -0.745 -0.667

8 0.500 0.866 0.000 18 -0.645 -0.372 -0.667

9 1.000 0.000 0.000 18 -0.645 0.372 -0.667

10 0.500 -0.866 0.000 20 0.000 0.000 1.000

Table 2.D: Panels that constitute the sphere (SELV))

Index Vertex 1 Vertex 2 Vertex 3 Index Vertex 1 Vertex 2 Vertex 3

1 1 3 2 18 8 15 14

2 1 4 3 19 8 9 15

3 1 5 4 20 9 16 15

4 1 6 5 22 9 10 16

5 1 7 6 23 10 17 16

6 1 2 7 24 10 11 17

7 2 3 8 25 11 18 17

8 3 9 8 26 11 12 18

9 3 4 9 27 12 19 18

10 4 10 9 28 12 13 19

11 4 5 10 29 13 14 19

12 5 11 10 30 13 8 14

13 5 6 11 31 14 15 20

14 6 12 11 32 15 16 20

15 6 7 12 33 16 17 20

16 7 13 12 34 17 18 20

17 7 2 13 35 18 19 20

18 2 8 13 36 19 14 20

2.4 Axisymmetric Surfaces

In the subroutines that solve axisymmetric acoustic problems (AIBEMA, AEBEMA and

MBEMA) the boundaries must be represented in the form of a set of truncated cone

shells. In axisymmetric problems the surface can be defined by specifying the points
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on the generator and sweeping through 2π. In order that the normal to the boundary

points outward rather than inward the two nodes that define each element must be

listed in the clockwise direction around the generator of the boundary. The programs

AIBEMA T, AEBEMA T and MBEMA T each solve acoustic problems in which the

boundary under consideration is that of a sphere of unit radius. The boundary is

represented by 18 truncated cone shells and has 19 vertices. The approximate surface

is described in Section 2.4.

Fig 2.4. Representation of the sphere by truncated cone shells.

In order to pass the description of the boundary to the subroutines it is represented

by the two tables of data 2.E and 2.F. Table 2.E lists the (r, z) coordinates of the

vertices and is identified by the real array VERTEX. Table 2.F lists the index of the

two vertices that define each panel and is identified by the integer array SELV.
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Table 2.E: Vertices of sphere generator (VERTEX)

Index r z Index r z

1 0.000 1.000 11 0.985 -0.174

2 0.174 0.985 12 0.940 -0.342

3 0.342 0.940 13 0.866 -0.500

4 0.500 0.866 14 0.766 -0.643

5 0.643 0.766 15 0.643 -0.766

6 0.766 0.643 16 0.500 -0.866

7 0.866 0.500 17 0.342 -0.940

8 0.940 0.342 18 0.174 -0.985

9 0.985 0.174 19 0.000 -1.000

10 1.000 0.000

Table 2.F: Panels that constitute the sphere (SELV))

Index Vertex 1 Vertex 2 Index Vertex 1 Vertex 2

1 1 2 10 10 11

2 2 3 11 11 12

3 3 4 12 12 13

4 4 5 13 13 14

5 5 6 14 14 15

6 6 7 15 15 16

7 7 8 16 16 17

8 8 9 17 17 18

9 9 10 18 18 19

2.5 Conclusion

In this Chapter it has been shown how boundaries in each dimensional setting can

be represented by two data structures. The square and the sphere represented by

triangles and axisymmetric cone panel are used throughout the remainder of this text

to demonstrate the boundary element methods. In the subroutines of Chapters 4, 5

and 6 the two data structures that represent the relevant structure are passed as array

parameters. By setting the validation parameter LVALID=.TRUE. in the subroutines

a check is made to ensure that the boundaries are closed.

The subdivision of the square and the sphere into triangles enables us to simulate

general acoustic problems in two- and three- dimensions. However, the axisymmetric

elements are uniform when rotated about the z-axis. Conical elements should only

be used when the acoustic field as well as the surface is known to be axisymmetric.
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In the 2D example of the square in Figure 2.2, the panels are of uniform length. For

the sphere illustrated in Figure 2.3 the triangles are of approximately equal size. As

a general rule, the element sizes for general two- and three-dimensional boundaries

should be as close to uniform as possible across the boundary. Moreover, in the three-

dimensional case, the triangles should not deviate too far from the equilateral shape.

For axisymmetric surfaces, the lengths of the generator of the elements should be as

close to uniform size as possible. If the validation parameter is set LVALID=.TRUE.

then the input panels are checked to ensure that their sizes are reasonably uniform

and the input boundary is checked to ensure it does not contain sharp angles.

In some cases it is wise to overrule the general guidelines of the previous paragraph.

For example if a boundary has an intricate shape in a localised area it would be

beneficial to use more elements in the area so that the boundary is satisfactorily

represented. In other cases it may be known that the potential is strongly varying in

some areas of the surface - for example in the neighbourhood of a sharp corner the

potential can be singular - and in these regions it is often beneficial to increase the

number of elements.

The approximation methods used in this Chapter are very simple, but each is suf-

ficient to approximate the boundaries in each class of domain. For more intricate

geometries, the boundary would be better represented by curved panels. Unfortu-

nately, curved elements require careful computational treatment and such elements

are not considered in this text. In the next Chapter the elements are completed by

also including a representation of the boundary functions.
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Chapter 3

The Discrete Helmholtz Operators

This Chapter considers the general problem of constructing methods for discretising

the integral operators, as required in the application of collocation to integral equation

formulations of the Helmholtz equation. The Chapter is important only if the precise

algorithms used to compute the discrete operators need to be known or the reader

wishes to develop programs for solving acoustic problems that are not covered in the

text. Readers wishing to go directly to the solution of interior, exterior or modal

analysis problems may omit this Chapter.

Linear acoustic or Helmholtz problems obviously give rise to a range of integral equa-

tion formulations, for example depending on whether the acoustic field lies in an

interior or exterior domain. However, the integral equations that arise in all prob-

lems in the same spatial dimensions contain similar integral operators. For example

a computational method for evaluating the discrete from of the integral operators in

a three-dimensional exterior acoustic problem can also be used in any other three-

dimensional acoustic problem.

For each dimensional space it is possible to develop a module for computing the

discrete form of the integral operators that is common to the interior, exterior and

modal analysis subroutines. The purpose of this Section is to show how the discrete

forms of the integral operators in the three spatial dimensions are computed and to

introduce the subroutines H2LC, H3LC and H3ALC that have been developed in order

to carry this out [33]. The naming of the subroutines is such that the H represents

Helmholtz, the 2, 3, 3A identifies the dimensionality, the LC represents the linear

boundary approximation with a constant function approximation on each panel.

31
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3.1 The Helmholtz Integral Operators

The subroutines compute the discrete form of the integral operators Lk, Mk, M
t
k and

Nk that arise in the application of collocation to integral equation formulations of

the Helmholtz equation. Expressions for the discrete integral operators are derived

by approximating the boundaries by the most simple panels for each of the three

cases - straight line panels for the general two-dimensional case, flat triangular panels

for the general three-dimensional case and conical panels for the axisymmetric three-

dimensional case - and approximating the boundary functions by a constant on each

panel. For each particular case of boundary division, the discrete form of the operators

is computed using the subroutines H2LC (two-dimensional), H3LC (three-dimensional)

and H3ALC (axisymmetric three-dimensional).

3.1.1 The Helmholtz Operators

The Helmholtz integral operators are defined as follows:

{Lkζ}Γ(p) ≡
∫

Γ

Gk(p,q) ζ(q) dSq , (3.1)

{Mkζ}Γ(p) ≡
∫

Γ

∂Gk

∂nq

(p,q) ζ(q) dSq , (3.2)

{M t
kζ}Γ(p;up) ≡

∂

∂up

∫

Γ

Gk(p,q) ζ(q) dSq , (3.3)

{Nkζ}Γ(p;up) ≡
∂

∂up

∫

Γ

∂Gk

∂nq

(p,q) ζ(q) dSq , (3.4)

where Γ is a boundary or partial boundary, nq, up are unit vectors with nq the unique

normal to Γ at q and ζ(q) is a function defined for q ∈ Γ. Gk(p,q) is the free-space

Green’s function for the Helmholtz equation.

3.1.2 Green’s functions

Let the Green’s functions be denoted by Gk and they are defined as follows:

Gk(p,q) =
i

4
H

(1)
0 (kr) (k ∈ C \ {0}) in two dimensions, (3.5)

Gk(p,q) =
1

4π

eikr

r
(k ∈ C) in three dimensions, (3.6)
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where r = |r|, r = p−q, C is the set of complex numbers and i is the unit imaginary

number. The function H
(1)
0 is the spherical Hankel function of the first kind of order

zero. The Green’s functions (3.5) and (3.6) also satisfy the Sommerfeld radiation

condition for |k| > 0.

For the special case when k = 0 the Helmholtz equation (1.15) is the Laplace equation.

In this particular case the chosen Green’s functions will be

G0(p,q) = − 1

2π
log r in two dimensions, (3.7)

G0(p,q) =
1

4π

1

r
in three dimensions. (3.8)

Note that limk→0Gk(p,q) = G0(p,q) for the three-dimensional case but not for the

two dimensional case and that G0(p,q) for the two-dimensional case does not satisfy

condition (1.25).

3.1.3 Properties of the Operators

In general for a given function ζ(p) (p ∈ S), {Lkζ}Γ(p) and {Nkζ}Γ(p;up) are

continuous across the boundary Γ (for any given unit vector up in the definition

of the latter function). The {Mkζ}Γ(p) and {M t
kζ}Γ(p) are discontinuous at Γ and

continuous on the remainder of the domain. The operators Mk and M t
k have the

following continuity properties at points in the neighbourhood of Γ:

lim
ǫ→0

{Mkζ}Γ(p + ǫnp) +
1

2
ζ(p) = {Mkζ}Γ(p) = lim

ǫ→0
{Mkζ}Γ(p − ǫnp) −

1

2
ζ(p) ,

lim
ǫ→0

{M t
kζ}Γ(p+ǫnp;np)−

1

2
ζ(p) = {M t

kζ}Γ(p;np) = lim
ǫ→0

{M t
kζ}Γ(p−ǫnp;np)+

1

2
ζ(p) ,

where p ∈ Γ and np is the unit normal to the Γ at p. The continuity properties are

slightly different if Γ is not smooth at p.

3.2 Some Properties of the Kernel Functions

The results given in this Section are extracted mainly from Burton [16], [17]. In the

following r = p − q and r = |r|, Gk = Gk(p,q), G0 = G0(p,q).

3.2.1 Derivatives of G0 with respect to r

In two dimensions we have
∂G0

∂r
= − 1

2π

1

r
, (3.9)
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∂2G0

∂r2
=

1

2π

1

r2
. (3.10)

In three dimensions we have
∂G0

∂r
= − 1

4π

1

r2
, (3.11)

∂2G0

∂r2
=

1

2π

1

r3
. (3.12)

3.2.2 Derivatives of Gk (k 6= 0) with respect to r

In two dimensions we have
∂Gk

∂r
= − i

4
kH

(1)
1 , (3.13)

where H
(1)
1 is the spherical Hankel function of the first kind and of order one and

∂2Gk

∂r2
=
i

4
k2(

H
(1)
1

kr
−H

(1)
0 ) . (3.14)

In three dimensions we have

∂Gk

∂r
=

eikr

4πr2
(ikr − 1) , (3.15)

∂2Gk

∂r2
=

eikr

4πr3
(2 − 2ikr − k2r2) . (3.16)

3.2.3 Expressions for the normal derivatives of Gk

The following expressions hold in both two and three dimensions and for all k:

∂Gk

∂nq

=
∂Gk

∂r

∂r

∂nq

, (3.17)

∂Gk

∂up

=
∂Gk

∂r

∂r

∂up

, (3.18)

∂2Gk

∂up∂nq

=
∂Gk

∂r

∂2r

∂up∂nq

+
∂2Gk

∂r2

∂r

∂up

∂r

∂nq

. (3.19)

3.2.4 Expressions for the normal derivative of r

The derivatives of r with respect to up and nq may be written as follows:

∂r

∂nq

= −r.nq

r
, (3.20)
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∂r

∂up

=
r.np

r
, (3.21)

∂2r

∂up∂nq

= −1

r
(up.nq +

∂r

∂up

∂r

∂nq

) . (3.22)

3.2.5 Expressions for ∂2G0

∂up∂nq

The following results can be derived from the substitution of (3.22) and (3.9),(3.10)

or (3.11),(3.12) into (3.19) with k = 0:

∂2G0

∂up∂nq

=
1

2πr2
(up.nq + 2

∂r

∂up

∂r

∂nq

) in two dimensions, (3.23)

∂G0

∂up∂nq

=
1

4πr3
(up.nq + 3

∂r

∂up

∂r

∂nq

) in three dimensions. (3.24)

3.2.6 Asymptotic Properties

In the following results, p,q ∈ Γ where Γ is a surface and Γ is smooth at p:

lim
q→p

(Gk(p,q) −G0(p,q)) = O(r0) , (3.25)

lim
q→p

∂Gk

∂up

(p,q) = O(r0) , (3.26)

lim
q→p

∂Gk

∂nq

(p,q) = O(r0) , (3.27)

lim
q→p

(
∂2Gk

∂up∂nq

(p,q) − ∂2G0

∂up∂nq

(p,q) +
1

2
k2Gk(p,q)) = O(r0) . (3.28)

3.3 Discretisation

In order to derive the discrete forms of the integral operators (3.1), (3.2), (3.3) and

(3.4), Γ is approximated by a set of n panels Γ̃ =
∑n

j=1 ∆Γ̃j. The boundary function

ζ is replaced by its equivalent on the approximate boundary Γ̃. The function is then

replaced by a constant on each panel. Thus for the Lk integral operator:

{Lkζ}Γ(p) ≈ {Lkζ̃}Γ̃(p) ≈
n

∑

j=1

∫

∆Γ̃j

Gk(p,q)ζ̃(pj)dSq ≈
n

∑

j=1

[ζ̃(pj){Lkẽ}∆Γj
(p)] ,

(3.29)
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where ẽ is the unit function. The other integral operators may be discretised in a

similar way.

The discrete forms are thus defined as follows:

{Lkẽ}∆Γ̃j
(p) =

∫

∆Γ̃j

Gk(p,q)dSq , (3.30)

{Mkẽ}∆Γ̃j
(p) =

∫

∆Γ̃j

∂Gk

∂nq

(p,q)dSq , (3.31)

{M t
kẽ}∆Γ̃j

(p;up) =
∂

∂up

∫

∆Γ̃j

Gk(p,q)dSq and (3.32)

{Nkẽ}∆Γ̃j
(p;up) =

∂

∂up

∫

∆Γ̃j

∂Gk

∂nq

(p,q)dSq . (3.33)

The derivative operator in (3.32) can always be carried inside the integral. The same

is true for the operator in (3.33) when p does not lie on the panel ∆Γ̃j. Thus we may

write:

{M t
kẽ}∆Γ̃j

(p;up) =
∫

∆Γ̃j

∂Gk

∂up

(p,q)dSq , (3.34)

{Nkẽ}∆Γ̃j
(p;up) =

∫

∆Γ̃j

∂2Gk

∂up∂nq

(p,q)dSq when p 6∈ ∆Γ̃j . (3.35)

When p 6∈ ∆Γ̃j the integrals of (3.30), (3.31), (3.32) and (3.33) will all be regular and

hence are amenable to standard quadrature. The same is true for the integrands of

(3.31) and (3.32) when p ∈ ∆Γ̃j (although not on the edge of the panel). However,

the evaluation of the discrete integral operators (3.30) and (3.33) generally require

special treatment when p ∈ ∆Γ̃j.

The special techniques applied here involve ‘subtracting out’ the singularity and eval-

uating the singular part and remaining regular part separately. The following results

are immediate from the asymptotic properties of the kernel functions (3.25) and

(3.28):

{Lkẽ}∆Γ̃j
(p) = {L0ẽ}∆Γ̃j

(p) +
∫

∆Γ̃j

(Gk(p,q) −G0(p,q))dSq , (3.36)

{Nkẽ}∆Γ̃j
(p;up) = {N0ẽ}∆Γ̃j

(p;up) −
1

2
k2{L0ẽ}∆Γ̃j

(p) +

∫

∆Γ̃j

(
∂2Gk

∂up∂nq

(p,q) − ∂2G0

∂up∂nq

(p,q) +
1

2
k2G0(p,q))dSq , (3.37)

where in each of (3.36) and (3.37) the explicit integral is non-singular. Evaluation

in this way requires the computation of the regular integral (amenable to standard

quadrature) and the determination of the subtracted out part.
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In summary, the evaluation of the integral operators requires a summation of a set

of integrand values multiplied by quadrature weights. In the case when p ∈ ∆Γ̃j the

evaluation of the subtracted out part is also required for the Lk and Nk operators.

3.4 Evaluation of the Discrete Forms

In this Section a list of operations for computing the discrete integral operators is

given. This particular programme of computation is given prominence because it

needs to be executed for each quadrature point and hence it is the key to deter-

mining the computational cost of the overall method. The following computational

programme is intended to be optimal. Note that it is assumed that p and up are

already set.

A: Set q the point on the panel

B: Set nq the unit outward normal to the panel at q

C: Compute up.nq

D: Compute r

E: Compute r, r2

F: Compute r3 (in the 3D case)

G: Compute ∂r
∂nq

via (3.20)

H: Compute ∂r
∂up

via (3.21)

I: Compute ∂r
∂nq

∗ ∂r
∂up

J: Compute ∂2r
∂up∂nq

via (3.22)

K: Compute kr [k ∗ r] and ikr [i ∗ kr]
L: Compute skr [kr ∗ kr] in the 3D case)

M: Compute H [Hankel function H
(1)
0 (kr), H

(1)
1 (kr)] for 2D problems or E [exp(ikr)]

for 3D problems.

N: Compute Green’s function via (3.5) or (3.7) for 2D or via (3.6) or (3.8) for 3D.

O: Multiply Lk kernel by weight and add to sum

P: Compute ∂Gk

∂r
via (3.13) or (3.9) for 2D or via (3.15) or (3.11) for 3D

Q: Compute value of quadrature weight multiplied by the result of operation N.

R: Compute Mk kernel multiplied by weight and add to sum

S: Compute M t
k kernel multiplied by weight and add to sum

T: Compute ∂2Gk

∂r2 via (3.14) or (3.10) for 2D or via (3.16) or (3.12) for 3D

U: Multiply Nk kernel by weight and add to sum
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Apart from operations E and M, each operation can be directly costed in terms of

floating-point operations. Operation E computes a square root and operation M com-

putes a Hankel function in two-dimensional problems and a complex exponential in

three-dimensional problems. The square root and the complex exponential functions

are available in most programming languages, although in some cases it could be ben-

eficial (in terms of computational cost) not to use the standard language functions.

In the two-dimensional case, operation M requires the computation of the spherical

Hankel functions or log functions when k is zero. Since Hankel functions are not

generally available as standard functions, then some external routine is required for

their evaluation.

In the subroutines H2LC, H3LC and H3ALC the square root function and the exponen-

tial and/or Hankel function or log functions that are evaluated at each quadrature

point need to be provided as external functions with the identifiers FNSQRT, FN-

EXP, FNHANK and FNLOG. The freedom to define the functions externally and to

choose the quadrature rule allows the user to take full control of the efficiency of the

subroutines.

3.5 General Introduction to the Subroutines

The subroutines have the identifiers H2LC, H3LC and H3ALC, for computing the

discrete Helmholtz integral operators for the two-dimensional, three-dimensional and

axisymmetric cases. The subroutines’ parameter list have the following general form:

SUBROUTINE H{2 or 3 or A }LC(

complex wavenumber,

point (p and the unit vector up, if necessary),

geometry of the panel (vertices which define panel),

quadrature rule (weights and abscissae for the standard element),

validation and control parameters,

discrete Helmholtz integral operators (solution),

work space ).

View files H2LC.FOR, H3LC.FOR and H3ALC.FOR [33] in order to observe the sub-

routines.
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3.5.1 General control of the subroutines

The parameter complex K passes the wavenumber k to the subroutines. More efficient

methods are applied in the subroutines if the value of K is zero, real or imaginary.

These special cases of the wavenumber are discerned through testing whether the size

of the real part or imaginary part is less than or greater than the parameter EK.

The logical variable LVALID enables the user to switch on (.TRUE.) or off (.FALSE.)

the validation of the input parameters. Setting LVALID=.TRUE. puts a series of tests

on the input data into effect. The use of this facility will have a computational cost

but could be useful when initially constructing a program that calls the subroutines

or to facilitate the diagnosis of an error that appears in the calling program or in the

subroutine.

The logical variables LLK, LMK, LMKT and LNK allows the user to choose the specific

operators of Lk, Mk, M
t
k or Nk that are required. The LLK, LMK, LMKT and LNK

that have .TRUE. values results in the values of the corresponding discrete operator

to appear in DISLK, DISMK, DISMKT and DISNK respectively, on exit from the

subroutine.

3.5.2 Geometrical Information

Real one-dimensional Fortran arrays define the point p and the geometry of the panel;

they have two components in H2LC and H3ALC and three components in H3LC. In

H2LC and H3LC, the components of the arrays define the Cartesian coordinates of

the points and the Cartesian components of the directional vector up. In H3ALC, the

components of the array define the cylindrical polar coordinates of the points and the

cylindrical polar components of up.

Following from the techniques of defining the surfaces in Chapter 2, in H2LC and

H3ALC two points QA and QB, each one-dimensional real arrays in Fortran with two

components, define the panel. In H2LC, QA and QB are the edges of the straight line

panel. In H3ALC, QA and QB define the outer rims of the truncated conical shell

panel, the two points lying on the edges of the generator of the panel. In H3LC,

three points QA, QB and QC, each one-dimensional real arrays in Fortran with three

components, are the vertices that define the planar triangular panel.

The normal to the panel is computed within the subroutines. In H2LC and H3ALC, the

normal is defined to be [QA(2)-QB(2),QB(1)-QA(1)] normalised. Hence the normal

is to the right on the line QA-QB. Note that in H3ALC the normal is the normal
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on the generator of the panel. In H3LC the normal is defined to be [QB-QA] ×
[QC-QA] (normalised), where × denotes the vector cross product. Hence the normal

is presumed to be outward (to the observer) when QA-QB-QC are arranged anti-

clockwise around the triangle.

The integrals that define Lk and Nk require special treatment when the point p lies on

the panel. The logical variable LPONEL is used to inform the subroutine as to whether

the point p lies on the panel (.TRUE.) or not (.FALSE.). In the case LPONEL=.TRUE.,

methods based on the expressions for the integral operators in equations (3.36) and

(3.37) are used.

For the computation of the discrete M t
k and Nk operators the vector up needs to be

defined. In the subroutines it is denoted VECP and it must represent a unit vector.

Results for a non-unit vector up can be obtained by scaling the vector up before calling

the subroutine (so that it is a unit vector) and suitably scaling the results DISMKT

and DISNK afterwards. If the point p (P) lies on the panel then up (VECP) must be

the unit normal to the panel, as defined above.

3.5.3 Quadrature Rule

In subroutine H2LC a quadrature rule (a set of weights and abscissae) over the unit

interval must be input. A quadrature rule over the standard triangle is required in

H3LC and a quadrature rule over the unit square (consisting of standard quadrature

rules applied in both the generator and angular directions) must be input to H3ALC.

The input abscissae are mapped onto the panel over which the integration is carried

out. In general, the greater the number of quadrature points, and the more effi-

cient the choice of quadrature rule, the more accurate the resulting discrete integral

operators will be. However, the time taken for the execution of each subroutine is

proportional to the number of quadrature points (with an overhead cost).

When the point p does not lie on the panel, the integrand is continuously differentiable

and hence standard quadrature rules are satisfactory. However, when p lies on the

panel, the integrands are continuous (after the subtractions described by equations

(39) and (40)), but they are generally not differentiable at the point p. If the input

quadrature rule does not take this property into account then it could lead to an

inaccurate evaluation of the discrete forms.

In a practical computation, one of the subroutines will be called many times. The

subroutines allow different quadrature rules to be input for each call. For example

when p lies on the panel a special quadrature rule is advised, as discussed above.
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Also if one panel is relatively large or relatively close to the point p then a relatively

more accurate quadrature rule is generally desirable.

In subroutines H2LC and H3LC the parameter MAXNQ sets the limit on the number of

quadrature points in the quadrature rule defined in the generator and in the angular

direction. The values of these parameters must not be changed between calls of the

subroutines. The actual number of quadrature points, denoted NQ, must be less than

or equal to MAXNQ but can be altered between calls. For the H3ALC subroutine

the number of quadrature points consists of NGQ along the generator and NTQ in

the angular direction. The values of NGQ and NTQ may be changed between calls

of H3ALC, but they must always be less than MAXNGQ and MAXNTQ respectively.

Hence the total number of quadrature points used in H3ALC is NGQ×NTQ.

In subroutine H2LC, the parameters AQ and WQ store the abscissae and the weights

of the quadrature rule. The parameters AGQ, WGQ and ATQ, WTQ store similar

quadrature rules for the generator and angular directions in H3ALC. Note that in

H3ALC the panel is defined as the result of rotating the generator QA-QB about the

z axis. In practice, the size of the panel in the angular direction will vary greatly

between calls of H3ALC. Since it is good practice to distribute the quadrature points

fairly evenly over the panel, the number of quadrature points should be used in the

angular direction should be roughly proportional to the ‘radius’ of the panel.

Generally the most efficient quadrature rules to use in subroutines H2LC and H3ALC

are standard Gauss-Legendre rules. The weights and abscissae for such rules are listed

in Stroud and Secrest [79] and can also be generated using NAG routine D01BBF,

for example. When the point p lies on the panel then an efficient quadrature rule is

obtainable by dividing the domain at p and using suitably scaled Gauss-Legendre rules

on the separate regions. Note that such division is only necessary in the generator

direction in H3ALC.

In subroutine H3LC, the parameters XQ, YQ, WQ store the x coordinates, the y coor-

dinates and the weights of the quadrature rule over the standard triangle. Quadrature

rules of the Gauss-Legendre type are listed in Laursen and Gellert [56]. In the case

when p lies on the panel then a suitable quadrature rule can be obtained by dividing

the triangle into three regions, by connecting the point p to the vertices of the panel,

and map suitably scaled standard quadrature rules onto the three separate triangular

regions.
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3.5.4 Validation of the input

If LVALID is .TRUE. then a file for storing and error messages or warnings must be

open prior to calling the subroutine. For subroutine H2LC the file H2LC.ERR must be

opened using a Fortran statement like OPEN(UNIT=10,FILE=’H2LC.ERR’). Similarly,

for subroutines H3LC and H3ALC the files H3LC.ERR and H3ALC.ERR respectively

should be opened.

If LVALID is .TRUE. then the parameters to the subroutines EGEOM and EQRULE

set the maximum absolute tolerance allowed in the input geometrical and quadrature

rule data. For example if the components of QA and QB are all within EGEOM of

each other (the points coincide) or the sum of the weights in the quadrature rules

is greater than NQ×EQRULE (allowing for an error of EQRULE in each component)

then an error message will be output to the error file. In such cases the subroutine

will be aborted and the parameter LFAIL will register .TRUE..

3.6 Subroutines

3.6.1 Subroutine H2LC

Subroutine H2LC computes the values of (3.30)-(3.33) for straight line elements with

chosen parameters k (K), p (P), up (VECP), ∆Γ̃j (QA and QB).

C SUBROUTINE H2LC(K,P,VECP,QA,QB,LPONEL,

C * MAXNQ,NQ,AQ,WQ,

C * LVALID,EK,EGEOM,EQRULE,LFAIL,

C * LLK,LMK,LMKT,LNK,DISLK,DISMK,DISMKT,DISNK)

C Wavenumber (input)

C complex K: The complex wavenumber.

C Point (input)

C real P(2): The Cartesian coordinates of the point p.

C real VECP(2): The Cartesian components of the unit normal at p.

C Required in the computation of DISMKT and DISNK. The squares of the

C components must sum to one.
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C Geometry of element (input)

C real QA(2): The Cartesian coordinates of the first edge of the

C element.

C real QB(2): The Cartesian coordinates of the second edge of the

C element.

C logical LPONEL: If the point P(2) lies on QA-QB then LPONEL must be

C set .TRUE., otherwise LPONEL must be set .FALSE..

C Quadrature rule (input)

C integer MAXNQ: The limit on the size of the quadrature rule. The

C value should not be changed between calls of H2LC. MAXNQ>=1.

C integer NQ: The actual number of quadrature rule points. 1=<NQ<=MAXNQ.

C real AQ(MAXNQ): The quadrature rule abscissae. The values must lie in

C the domain [0,1] and be in ascending order.

C real WQ(MAXNQ): The quadrature rule weights which correspond to the

C quadrature points in AQ. The components of WQ must sum to one.

C Validation and control parameters (input)

C logical LVALID: A switch to enable choice of checking of subroutine

C parameters (.TRUE.) or not (.FALSE.).

C real EK: The maximum absolute error expected in K. This is used

C to classify K as ’zero’, ’real’, ’imaginary’ or ’complex’.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry. Value is of importance only when

C LVALID=.TRUE..

C real EQRULE: The maximum absolute error in the components of the

C quadrature rule data. Value is of importance only when LVALID=.TRUE..

C Validation parameter (output)

C logical LFAIL: Value is only important if LVALID=.TRUE.. If

C LFAIL=.FALSE. then the input data has been found to be satisfactory.

C If LFAIL=.TRUE. then the input data has been found to be

C unsatisfactory. The subroutine would have been aborted. The output

C parameters DISLK, DISMK, DISMKT and DISNK will all be zero. A

C diagnosis will be given in the file H2LC.ERR.

C Choice of discrete forms required (input)
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C logical LLK: If discrete form of Lk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMK: If discrete form of Mk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMKT: If discrete form of Mkt operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LNK: If discrete form of Nk operator is required then set

C .TRUE., otherwise set .FALSE..

C Discrete Helmholtz integral operators (output)

C complex DISLK: The discrete Lk integral operator.

C complex DISMK: The discrete Mk integral operator.

C complex DISMKT: The discrete Mkt integral operator.

C complex DISNK: The discrete Nk integral operator.

3.6.2 Subroutine H3LC

Subroutine H3LC computes the values of (3.30)-(3.33) for planar triangular elements

with chosen parameters k (K), p (P), up (VECP), ∆Γ̃j (QA, QB and QC).

C SUBROUTINE H3LC(K,P,VECP,QA,QB,QC,LPONEL,

C * MAXNQ,NQ,XQ,YQ,WQ,

C * LVALID,EK,EGEOM,EQRULE,LFAIL,

C * LLK,LMK,LMKT,LNK,DISLK,DISMK,DISMKT,DISNK)

C Wavenumber (input)

C complex K: The complex wavenumber.

C Point (input)

C real P(3): The Cartesian coordinates of the point p.

C real VECP(3): The Cartesian components of the unit normal at p,

C required in the computation of DISMKT and DISNK. The squares of the

C components must sum to one.

C Geometry of element (input)

C real QA(3): The Cartesian coordinates of the first vertex of the

C element.
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C real QB(3): The Cartesian coordinates of the second vertex of the

C element.

C real QC(3): The Cartesian coordinates of the third vertex of the

C element.

C logical LPONEL: If the point P(3) lies on element QA-QB-QC then LPONEL

C must be set .TRUE., otherwise LPONEL must be set .FALSE..

C Quadrature rule (input)

C integer MAXNQ: The limit on the size of the quadrature rule. The value

C should not be changed between calls of H3LC. MAXNQ>=1.

C integer NQ: The actual number of quadrature rule points. 1<=NQ<=MAXNQ.

C real XQ(MAXNQ): The x-coordinate of the quadrature rule abscissae. The

C values must lie in the standard triangle.

C real YQ(MAXNQ): The y-coordinate of the quadrature rule abscissae. The

C values must lie in the standard triangle.

C real WQ(MAXNQ): The quadrature rule weights which correspond to the

C quadrature points in XQ and YQ. The components of WQ must sum to one.

C Validation and control parameters (input)

C logical LVALID: A switch to enable choice of checking of subroutine

C parameters (.TRUE.) or not (.FALSE.).

C real EK: The maximum absolute error expected in K. This is used

C to classify K as ’zero’, ’real’, ’imaginary’ or ’complex’.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry. Value is of importance only when

C LVALID=.TRUE..

C real EQRULE: The maximum absolute error in the components of the

C quadrature rule data. Value is of importance only when LVALID=.TRUE..

C Validation parameter (output)

C logical LFAIL: Value is only important if LVALID=.TRUE.. If

C LFAIL=.FALSE. then the input data has been found to be satisfactory.

C If LFAIL=.TRUE. then the input data has been found to be

C unsatisfactory. The subroutine would have been aborted. The output

C parameters DISLK, DISMK, DISMKT and DISNK will all be zero. A

C diagnosis will be given in the file H3LC.ERR.
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C Choice of discrete forms required (input)

C logical LLK: If discrete form of Lk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMK: If discrete form of Mk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMKT: If discrete form of Mkt operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LNK: If discrete form of Nk operator is required then set

C .TRUE., otherwise set .FALSE..

C Discrete Helmholtz integral operators (output)

C complex DISLK: The discrete Lk integral operator.

C complex DISMK: The discrete Mk integral operator.

C complex DISMKT: The discrete Mkt integral operator.

C complex DISNK: The discrete Nk integral operator.

3.6.3 Subroutine H3ALC

Subroutine H3ALC computes the values of (3.30)-(3.33) for conical elements with

chosen parameters k (K), p (P), up (VECP), ∆Γ̃j (QA and QB).

C SUBROUTINE H3ALC(K,P,VECP,QA,QB,LPONEL,

C * MAXNGQ,NGQ,AGQ,WGQ,MAXNTQ,NTQ,ATQ,WTQ,

C * LVALID,EK,EGEOM,EQRULE,LFAIL,

C * LLK,LMK,LMKT,LNK,DISLK,DISMK,DISMKT,DISNK,

C * WKSPCE)

C Wavenumber (input)

C complex K: The complex wavenumber.

C Point (input)

C real P(2): The point p in R,z coordinates. P(1)>=0.

C real VECP(2): A unit normal in R-z components, required in the

C computation of DISMKT and DISNK. The squares of the components must

C sum to one.

C Geometry of element (input)
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C real QA(2): The R-z coordinates of the first edge of the element.

C QA(1)>=0.

C real QB(2): The R-z coordinates of the second edge of the element.

C QB(1)>=0.

C logical LPONEL: If the point P lies on QA-QB then LPONEL must be set

C .TRUE., otherwise LPONEL must be set .FALSE..

C Generator-direction quadrature rule (input)

C integer MAXNGQ: The limit on the size of the generator-direction

C quadrature rule. The value should not be changed between calls of

C H3ALC. MAXNGQ>=1.

C integer NGQ: The actual number of generator-direction quadrature

C rule points. 1<=NGQ<=MAXNGQ, NGQ<=LIMNGQ.

C real AGQ(MAXNGQ): The generator-direction quadrature rule abscissae.

C The values must lie in the domain [0,1] and be in ascending order.

C real WGQ(MAXNGQ): The generator-direction quadrature rule weights

C which correspond to the quadrature points in AGQ. The components of

C WGQ must sum to one.

C Theta-direction quadrature rule (input)

C integer MAXNTQ: The limit on the size of the theta-direction

C quadrature rule. The value should not be changed between calls of

C H3ALC. MAXNTQ>=1.

C integer NTQ: The actual number of theta-direction quadrature rule

C points. 1<=NTQ<=MAXNTQ.

C real ATQ(MAXNTQ): The theta-direction quadrature rule abscissae. The

C values must lie in the domain [0,1].

C real WTQ(MAXNTQ): The theta-direction quadrature rule weights which

C correspond to the quadrature points in ATQ. The components of WTQ

C must sum to one.

C Validation and control parameters (input)

C logical LVALID: A switch to enable choice of checking of subroutine

C parameters (.TRUE.) or not (.FALSE.).

C real EK: The maximum absolute error expected in K. This is used

C to classify K as ’zero’, ’real’, ’imaginary’ or ’complex’.

C real EGEOM: The maximum absolute error in the parameters that
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C describe the geometry. Value is of importance only when

C LVALID=.TRUE..

C real EQRULE: The maximum absolute error in the components of the

C quadrature rule data. Value is of importance only when LVALID=.TRUE..

C Validation parameter (output)

C logical LFAIL: Value is only important if LVALID=.TRUE.. If

C LFAIL=.FALSE. then the input data has been found to be satisfactory.

C If LFAIL=.TRUE. then the input data has been found to be

C unsatisfactory. The subroutine would have been aborted. The output

C parameters DISLK, DISMK, DISMKT and DISNK will all be zero. A

C diagnosis of the errors will be given in the file H3ALC.ERR.

C Choice of discrete forms required (input)

C logical LLK: If discrete form of Lk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMK: If discrete form of Mk operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LMKT: If discrete form of Mkt operator is required then set

C .TRUE., otherwise set .FALSE..

C logical LNK: If discrete form of Nk operator is required then set

C .TRUE., otherwise set .FALSE..

C Discrete Helmholtz integral operators (output)

C complex DISLK: The discrete Lk integral operator.

C complex DISMK: The discrete Mk integral operator.

C complex DISMKT: The discrete Mkt integral operator.

C complex DISNK: The discrete Nk integral operator.

C Work space

C real WKSPCE(2*MAXNTQ+MAXNGQ)

3.7 Special Numerical Integration Methods

Special methods are required to evaluate the singular integrals that arise in the dis-

crete Lk and Nk operators when the collocation point lies on the element.
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3.7.1 Two-dimensional problems

The regular integrals that arise are approximated by a standard quadrature rule such

as a Gauss-Legendre rule which is specified in the parameter list to the subroutines.

Tables of Gauss-Legendre rules are given in Stroud and Secrest [79] and can also

generated from the NAG library [63], for example. The non-regular integrals that

arise in the formulae (3.36) and (3.37) are computed via the following methods. See

Jaswon and Symm [34] and Kirkup [40] for the background to these methods.

The M0 and M t
0 operators have regular kernels, hence the aim is to find expressions

for the following:

{L0ẽ}∆Γ̃(p) =
∫

∆Γ̃

G0(p,q) dSq , (3.38)

{N0ẽ}∆Γ̃(p;np) =
∂

∂np

∫

∆Γ̃

∂G0

∂nq

(p,q) dSq , (3.39)

where ∆Γ̃ is a straight line panel, p ∈ ∆Γ̃ (though not on an edge or corner of the

panel). Let it be assumed that the panel ∆Γ̃ has length a + b with q = q(x) and

p = q(0) for x ∈ [−a, b]. This gives the following formulae for (3.38) and (3.39):

{L0ẽ}∆Γ̃(p) =
1

2π
[a+ b− a log a− b log b] , (3.40)

{N0ẽ}∆Γ̃(p;np) = − 1

2π
[
1

a
+

1

b
] . (3.41)

3.7.2 Three-dimensional problems

The regular integrals that arise are approximated by a quadrature rule defined on a

triangle. Laursen and Gellert [56] contains a selection of Gauss-Legendre quadrature

rules for the standard triangle. The non-regular integrals that from discretising the

Lk and Nk operators are computed by the following methods. See Jaswon and Symm

[34], Terai [80], Banerjee and Butterfield [7] and Kirkup [40] for the background to

these methods.

The M0 and M t
0 operators have regular kernels, hence the aim is to find expressions

for:

{L0ẽ}∆Γ̃(p) =
∫

∆Γ̃

G0(p,q) dSq , (3.42)

{N0ẽ}∆Γ̃(p;np) =
∂

∂np

∫

∆Γ̃

∂G0

∂nq

(p,q) dSq , (3.43)
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where ∆Γ̃ is a planar triangular panel, p ∈ ∆Γ̃ (though not on an edge or corner of

the panel). Let R(θ) be the distance from p to the edge of the panel for θ ∈ [0, 2π],

as illustrated in Figure 3.1.

Fig. 3.1. Polar integration on the planar triangle panel.

The integrals (3.42) and (3.43) may be written in the form:

{L0ẽ}∆Γ̃(p) =
1

4π

∫ 2π

0
R(θ)dθ ,

{N0ẽ}∆Γ̃(p;up) = − 1

4π

∫ 2π

0

1

R(θ)
dθ .

In order to evaluate the integrals, the triangular panel ∆Γ̃ is divided into three △1,

△2 and △3 by joining the point p to the vertices. The resulting triangles have the

form of Figure 3.2.

Fig 3.2. Division of the planar triangle panel.

After some elementary analysis, we obtain

{L0ẽ}∆S̃(p) =
∑

△1,△2,△3

1

4π
R(0) sinB(log tan(

B + A

2
) − log tan

B

2
) and

{N0ẽ}∆S̃(p;up) =
∑

△1,△2,△3

1

4π

cos(B + A) − cosB

R(0) sinB
.
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3.7.3 Axisymmetric three-dimensional problems

The regular integrals that arise are approximated by a two-dimensional quadrature

rule defined on a rectangle which is specified in the parameter list to the subroutine.

These integrals can be approximated using a Gauss-Legendre rule in the generator

and θ directions. The non-regular integrals that arise in the formula are computed

by the following methods.

The M0 and M t
0 operators have regular kernels, hence the aim is to find expressions

for the following:

{L0ẽ}∆Γ̃(p) =
∫

∆Γ̃

G0(p,q) dSq , (3.44)

{N0ẽ}∆Γ̃(p;np) =
∂

∂np

∫

∆Γ̃

∂G0

∂nq

(p,q) dSq , (3.45)

where ∆Γ̃ is a conical shell panel, p ∈ ∆Γ̃ (though not on an edge of the panel).

The integral in (3.44) is evaluated through dividing the integral with respect to the

generator direction into two parts at p and transforming the integral through changing

the power of the variable in line with a method described in references [25] and [40].

The resulting regular integral on both parts is computed via the quadrature rule

supplied to the routine.

The integral in (3.45) is evaluated by using the result that if the surface of integration

in (3.45) is extended to enclose a three-dimensional volume then the integral vanishes

(see [40]). As each panel is a truncated right circular cone shell a 45◦ right circular

cone is added to each flat side of the panel. The integrals over the two 45◦ cones are

regular and are computed by a composite rule based on the quadrature rule based on

the quadrature rule supplied to the subroutine. The solution is thus equal to minus

the sum of the integrals over the two 45◦ cones.

3.8 Analysis of Computational Cost

The subroutines H2LC, H3LC and H3ALC were written with the aim of minimising the

computational cost of evaluating the discrete form when the point p does not lie on

the panel. When p does lie on the panel then each of the subroutines will generally

be more costly, this is particularly true for H3ALC. However, in integral equation

methods the cost of evaluating the discrete form when p does not lie on the panel is

the key to estimating the overall computational cost.
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Table 3.A: Required Operations

Op. Lk Mk M t
k Nk

A × × × ×
B × ×
C ×
D × × × ×
E × × × ×
F ◦
G × ×
H × ×
I ×
J ×
K × × × ×
L ×
M × × × ×
N ×
O ×
P × × ×
Q × ×
R × ×
S ×
T ×
U ×
× : Operation required in 2D and 3D

◦ : Operation required in 3D only
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Table 3.B: Cost of Operations A to J

Op. 2D 3D 3Daxi

A 2Cf 6Cf 2Cf

B 0 0 2Cf

C 0 0 2Cf

D 0 0 0

E Cs + 2Cf Cs + 3Cf Cs + 3Cf

F - Cf Cf

G 3Cf 4Cf 4Cf

H 3Cf 4Cf 3Cf

I Cf Cf Cf

J Cf Cf Cf

Cf : Cost of floating point operation

Cs: Cost of square root evaluation

Table 3.C: Cost of Operations K to U

k is zero k is real k is imaginary k is complex

Op. 2D 3D 2D 3D 2D 3D 2D 3D

K - - Cf Cf Cf Cf 2Cf 2Cf

L - - Cf Cf Cf Cf 2Cf 2Cf

M - - Ch Ce Ch Ce Ch Ce

N Cl + Cf Cf 2Cf 2Cf Cf Cf 2Cf 2Cf

O Cf Cf 2Cf 2Cf Cf Cf 2Cf 2Cf

P Cf Cf 2Cf 4Cf Cf Cf 4Cf 6Cf

Q Cf Cf 2Cf 2Cf Cf Cf 2Cf 2Cf

R Cf Cf Cf Cf Cf Cf 2Cf 2Cf

S Cf Cf 2Cf 2Cf Cf Cf 2Cf 2Cf

T Cf Cf 4Cf 4Cf 2Cf 2Cf 8Cf 6Cf

U 3Cf 3Cf 6Cf 6Cf 3Cf 3Cf 6Cf 6Cf

Cf : Cost of floating point operation

Cs: Cost of square root evaluation

Cl: Cost of logarithm evaluation

Ch: Cost of Hankel function evaluation

Ce: Cost of complex exponential evaluation

The list of operations necessary for computing all the integral operators when p

does not lie on the panel is given in Section 3.4. The computations required for the

calculation of each of the integral operators are given Table 3.A.
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Operations A to J are independent of k whereas operations K to U do depend on the

wavenumber. Savings are made in the subroutine when k is zero, purely real or purely

imaginary over when k is complex. The computational cost of the set of operations

is listed in Tables 3.B and 3.C for each of these cases.

3.9 Conclusion

The codes H2LC, H3LC and H3ALC are central to development of the full boundary

element method routines in the following Chapters. The subroutines of this Chapter

carry out integrations over a given element. The subroutines’ parameter lists give the

user a great deal of flexibility. The particular Helmholtz operators that are required

can be selected and the quadrature rule can be defined within the parameter list.

Within the subroutines a large number of checks on the input data are carried out

if the the validation parameter is set LVALID=.TRUE. (see Subsection 3.5.4) and the

results from the validation are sent to an external file. In the *BEM* subroutines

that follow this validation parameter is switched off since the necessary validation is

carried out in the main BEM subroutine.

A boundary element method needs to invoke the relevant H*LC core routine hundreds

or perhaps thousands of times. In a practical problem with around a thousand ele-

ments the core routine will be invoked the order of a million times. For this reason

the subroutines are efficiently coded. A computational cost analysis is given to advise

the user on the control of processing time.

Using higher order elements would clearly be a useful approach to improving the ef-

ficiency of the BEM further. In order to obtain the full benefit from this, a more

accurate method of representing the boundary would also need to be included. How-

ever, discretising the integral operators in such cases is very difficult, particularly for

the Nk operator.

We shall see it is very important that we include the Nk operator, particularly in the

solution of exterior acoustic problems. The techniques for representing the boundary

and boundary functions considered in this work are sufficient to approximate all

the relevant integral operators and provide a sound basis for the boundary element

methods of the next three Chapters.



Chapter 4

The Interior Acoustic Problem

The underlying problem addressed in this Chapter is that of computing the acoustic

field within an enclosed homogeneous isotropic fluid subject to a specified boundary

condition. Let the fluid occupy an arbitrary closed region D with boundary S, as

illustrated in Figure 4.1.

Fig 4.1. The domain of the interior acoustic problem.

55
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Following the analysis of Subsection 1.3.1, the problem is equivalent to the solution

of the Helmholtz equation

∇2ϕ(p) + k2ϕ(p) = 0 (p ∈ D) .

The boundary condition is assumed to take a general form

α(p)ϕ(p) + β(p)v(p) = f(p) (4.1)

where α, β and f are complex-valued functions defined on the boundary.

In this application the finite element method is now an established computational

technique (ref. [68], [69]) and it may well also be often more efficient than the BEM.

However, the BEM allows much more flexibility when the geometry of the domain is

complicated and is a more natural method to apply if the domain is to be coupled

with neighbouring domains in a wider computational method.

The volume of published research into the problem of determining the acoustic field

within an enclosure or cavity by the boundary element method is minute in compar-

ison to that of the corresponding exterior problem. There are two important reasons

for this. The first is that the interior problem can be solved much more straight-

forwardly by the finite element method than the exterior problem, hence there is no

pressing need for an alternative method. The other reason is that the development

of the BEM for the exterior problem has been beset by difficulties; extensive research

has been required to achieve reliable methods. The BEM for the interior problem is

relatively straightforward.

The boundary element method for the solution of the interior acoustic boundary-

value problem have been developed in Bell et al [9], Bernard et al [11], and Kipp and

Bernard [39]. Further analysis or applications of the method are described in Seybert

and Cheng [78], Cheng et al [19] and Kopuz and Lalor [53]. In this Chapter the

application of the BEM to the interior acoustic problem is developed further so that

the solution with a general boundary, boundary condition and incident field can be

obtained. The subroutines AIBEM2, AIBEM3 and AIBEMA [33] for solving the two-,

three- and axisymmetric three-dimensional problems are described and demonstrated.

4.1 Integral Equation Formulation

In this Section we consider the integral equation fomulations of the interior Helmholtz

equation. The range of papers described earlier each consider the solution with a
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particular type of boundary condition such as Dirichlet or Neumann. An incident

field along with a general boundary condition (4.1) is included and this leads to more

generalised boundary integral equations.

4.1.1 Direct Formulation

The application of Green’s second theorem to the Helmholtz equation gives the fol-

lowing equations:

{Mkϕ}S(p) + ϕ(p) = {Lkv}S(p) (p ∈ D) , (4.2)

{Mkϕ}S(p) +
1

2
ϕ(p) = {Lkv}S(p) (p ∈ S) , (4.3)

where the Helmholtz integral operators, Lk and Mk, are defined in Section 3.1 and

v(p) = ∂ϕ
∂n

. The equations have the same structure as those given in Section 1.2 for

the interior Laplace equation. Note that the normals to the boundary are taken to

be in the outward direction.

The above equations can be utilised to solve the interior Helmholtz equation in the

manner outlined in Section 1.2; equation (4.3) gives (approximations to) both ϕ and

v on the boundary S, equation (4.2) yields an approximation to ϕ(p) for any point

p in the domain. There is only one small difficulty with this approach and that is

in the case of a Dirichlet boundary condition equation (4.3) is a Fredholm integral

equation of the first kind.

In general first kind equations are found to be difficult to solve and the matrices

that arise in their equivalent linear systems are ill-conditioned (see [26], for example).

Even though first kind equations like (4.2), having singular kernels, do not present

the severe numerical problems that those with smooth kernels do, it is found that

their solution can lead to a marginal loss of accuracy since the matrices that arise

have higher condition numbers and hence magnify any numerical error [4]. Boundary

integral equation reformulations of the interior Helmholtz equation provide us with

a selection from which the possibility of having to solve a first kind equations can be

avoided.

Differentiating each term of equation (4.2) with respect to any vector v(p) gives

∂

∂up

{Mkϕ}S(p) +
∂ϕ(p)

∂up

=
∂

∂up

{Lkv}S(p) (p ∈ D) ,

or

{Nkϕ}S(p;up) +
∂ϕ(p)

∂up

= {M t
kv}S(p;up) (p ∈ D) ,
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using the notation of Section 3.1.

By taking the limit as the point p approaches the boundary with the vector up being

the unit outward normal to the boundary at p (that is np), and taking into account the

jump properties of Section 3.1 the following boundary integral equation is obtained:

{Nkϕ}S(p;np) = {(M t
k −

1

2
I)v}S(p;np)(p) (p ∈ S) , (4.4)

where v(p) = ∂ϕ(p)
∂np

.

Since the operators M t
k and Nk are available through the subroutines in Section 3,

then it is straightforward to base the boundary element method on equation (4.4).

However, for the Neumann problem we need to solve over the hypersingular operator

Nk, which can lead to some loss of accuracy, similar to that experienced with the

solution of the first kind equation discussed earlier.

Since neither of equations (4.3) and (4.4) are universally acceptable for solving the

interior Helmholtz equation for all boundary conditions of the form (4.1), a hybrid

equation is proposed that couples the two original equations into a single equation

{(Mk +
1

2
I + µNk)ϕ}S(p;np) = {(Lk + µ(M t

k −
1

2
I))v}(p;np) (p ∈ S) , (4.5)

where µ(6= 0) is the coupling parameter. The equation (4.5) provides a suitable basis

of a method for the solution of interior Helmholtz equation for all boundary conditions

and it is the equation employed in the subroutines associated with this Chapter.

4.1.2 Indirect Formulation

Following on from the ideas in Subsection 1.2.4, the corresponding indirect integral

equation formulations to (4.3) and (4.4) can be obtained by writing ϕ as a single or

double layer potential;

ϕ(p) = {Lkσ0}S(p) or ϕ(p) = {Mkσ∞}S(p) (p ∈ D)

where the σ0 and σ∞ are source density functions defined on S. For points on the

boundary the equations become boundary integral equations;

ϕ(p) = {Lkσ0}S(p) or ϕ(p) = {(Mk −
1

2
I)σ∞}S(p) (p ∈ S)

where the jump condition of Section 3.1 has been taken into account in the second

equation.
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The integral equations arrived at in this way have the same difficulties as the cor-

responding direct equation (4.3); the Dirichlet problem is replaced by a first kind

equation. Again the problem can be circumvented by using a hybrid formulation;

writing ϕ as a weighted sum of single and double layer potentials

ϕ(p) = {(Lk + νMk)σν}S(p) (p ∈ D) , (4.6)

where ν is a weighting parameter. This gives rise to the following boundary integral

equation:

ϕ(p) = {(Lk + ν(Mk −
1

2
I))σν}S(p) (p ∈ S) . (4.7)

The parameter ν should be chosen in a similar way to the parameter µ in the direct

formulation.

The equation (4.7) is only suitable for solving the Dirichlet problem since it refers

to ϕ and not v on the boundary. Differentiating equation (4.6) with respect to np

and taking the limit as the point p approaches a point on the boundary gives the

following boundary integral equation:

v(p) = {(M t
k +

1

2
I + νNk)σν}S(p;np) (p ∈ S) , (4.8)

which can be used for the solution of the Neumann problem.

Both equations (4.7) and (4.8) are required in the indirect solution of the Helmholtz

equation with a Robin boundary condition. In this case the relevant integral equation

is obtained through the substitution of the forms (4.7) and (4.8) into the boundary

condition (4.1) to give

α(p){(Lk+ν(Mk−
1

2
I))σν}S(p)+β(p){(M t

k+
1

2
I+νNk)σν}S(p;np) = f(p) (p ∈ S) .

(4.9)

4.1.3 Field Modification

The acoustic field need not be a result of the boundary and boundary condition alone;

the surface may simply act to modify an existing field. A simple example of this is

that of a loudspeaker in a room; the loudspeaker produces an acoustic field that is

modified by the walls of the room. In such cases there is an incident field in the

domain, termed ϕi, which is the field that would exist if there were no boundaries.

Such problems can also be solved by the boundary element method, it only requires

a generalisation of the integral equations and the corresponding alteration of the

boundary element methods.
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Direct formulation

In the simplest case, the equation (4.2) may be generalised as follows:

ϕ(p) = ϕi(p) − {Mkϕ}S(p) + {Lkv}S(p) (p ∈ D) ; (4.10)

the solution ϕ(p) is equated to the incident field ϕi(p) and modified by the other

terms. The boundary integral equation that arises from the formulation (4.10) is as

follows:

{Mkϕ}S(p) +
1

2
ϕ(p) = ϕi(p) + {Lkv}S(p) (p ∈ S) .

The corresponding generalisation of (4.4) is

{Nkϕ}S(p;np) = vi(p) + {(M t
k −

1

2
I)v}S(p;np)S(p) (p ∈ S) ,

where vi(p) = ∂ϕi
∂np

(p).

The formulation employed in subroutines AIBEM2, AIBEM3 and AIBEMA is a hybrid

of these equations

{(Mk+
1

2
I+µNk)ϕ}S(p;np) = ϕi(p)+µvi(p)+{(Lk+µ(M t

k−
1

2
I))v}S(p;np) (p ∈ S) .

(4.11)

The equation (4.11) is the generalisation of (4.5) and the equations are equivalent

when there is no incident field (ϕi(p) = 0, vi(p) = 0 for all p ∈ D ∪ S).

Indirect formulation

Generalising equations (4.6)-(4.8) to include the incident field gives rise to the follow-

ing integral equations:

ϕ(p) = ϕi(p) + {(Lk + νMk)σν}S(p) (p ∈ D) , (4.12)

ϕ(p) = ϕi(p) + {(Lk + ν(Mk −
1

2
I))σν}S(p) (p ∈ S) , (4.13)

v(p) = vi(p) + {(M t
k +

1

2
I + νNk)σν}S(p;np) (p ∈ S) . (4.14)

The indirect boundary integral equation for the solution of the interior Helmholtz

equation with the general Robin boundary condition (4.1) and with an incident field

is as follows:

α(p){ϕi(p)+(Lk+ν(Mk−
1

2
I))σν}(p)+β(p){vi(p)+(M t

k+
1

2
I+νNk)σν}S(p;np) = f(p)

(4.15)

for (p ∈ S).
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4.2 Boundary Element Method

By approximating the operators in the boundary integral equations in the way de-

scribed in Section 3.3, the equations can each be reduced to a linear system of equa-

tions, as demonstrated in Section 1.2. The first step is to approximate the boundary

S by a set of n panels S̃ =
∑n

j=1 ∆S̃j, as described in Chapter 2. The integral op-

erators are approximated by the technique outlined in Chapter 3 and the resulting

linear system of equations is solved. The overall method is equivalent to the solution

of the integral equations by collocation.

4.2.1 Direct Boundary Element Method

The application of collocation to the integral equation (4.11) reduces it to the following

linear system of equations:

[

Mk +
1

2
I + µNk

]

ϕ ≈ ϕi + µvi +
[

Lk + µ(Mt
k −

1

2
I)

]

v (4.16)

The Lk, Mk, Mt
k and Nk are n × n matrices arising from the discretisation method

outlined in Section 1.2 and Chapter 3; for example the components of Lk are defined

by [Lk]ij = {Lkẽ}∆S̃j
(pi), where ẽ is the unit function.

The vectors ϕ and v represent the values of the boundary functions ϕ and v at the

collocation points. The method involves finding the solution of the linear system of

equations
[

Mk +
1

2
I + µNk

]

ϕ̂ = ϕi + µvi +
[

Lk + µ(Mt
k −

1

2
I)

]

v̂ (4.17)

subject to the boundary condition applied at the collocation points;

αiϕ̂i + βiv̂i = fi for i = 1, 2, ..., n or Dαϕ̂+ Dβ v̂ = f , (4.18)

with αi = α(pi), βi = β(pi), fi = f(pi) and the Dα and Dβ denote diagonal matrices

with [Dα]ii = αi and [Dβ]ii = βi, to find ϕ̂ and v̂.

In the cases of a pure Dirichlet or pure Neumann boundary condition the equations

can be solved by a standard method such as LU factorization or Gaussian elimination.

However in the general case the equations (4.17) can be applied to rearrange the

linear system of equations (5.27) and the matrix-vector equation that arises can then

be solved by standard methods. The method used for solving systems of equations of

the form (4.17), (4.18) is described in Appendix 3.
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Once ϕ̂ and v̂ are obtained, equation (4.10) can be used to return an approximation

to the solution at any point p in the domain;

ϕ̂(p) = ϕi(p) −
n

∑

j=1

{Mkẽ}∆Sj
(p)v̂j +

n
∑

j=1

{Lkẽ}∆Sj
(p)ϕ̂j . (4.19)

4.2.2 Indirect Boundary Element Method

The collocation method reduces the indirect boundary integral equations (4.13), (4.14)

to the linear systems of approximations

ϕ ≈ ϕi +
[

Lk + ν(Mk −
1

2
I)

]

σν and

v ≈ vi +
[

Mt
k +

1

2
I + νNk

]

σν .

Applying the boundary condition at the collocation points as in the direct method

gives the equation

Dαϕ+ Dβv = f . (4.20)

Substituting the approximations for ϕ and v given above into equation (4.18) gives

the following:

[

Dα{Lk + ν(Mk −
1

2
I)} + Dβ{Mt

k +
1

2
I + νNk}

]

σν + Dαϕ
i + Dβv

i ≈ f

which is also the discrete analogue of equation (4.15).

In the indirect boundary element method, the first stage is to find the approximation

σ̂ν to the source density function σ. This can be done through the solution of the

following linear system of equations:

[

Dα{Lk + ν(Mk −
1

2
I)} + Dβ{Mt

k +
1

2
I + νNk}

]

σ̂ν + Dαϕ
i + Dβv

i = f . (4.21)

The form of this equation is more straightforward than the corresponding equations

for the direct method (4.17), (4.18). The equation (4.21) is simply a matrix-vector

equation that can be immediately solved by Gaussian elimination-type methods. Hav-

ing obtained the solution to (4.21), the approximation to σν , the approximate solution

in the domain can be found using the discrete equivalent of (4.12);

ϕ̂(p) = ϕi(p) +
n

∑

j=1

({Lkẽ}∆Sj
+ ν{Mkẽ}∆Sj

)σ̂νj .
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4.3 Subroutines AIBEM2, AIBEM3 and AIBEMA

In this Section the subroutines AIBEM2, AIBEM3 and AIBEMA are introduced. The

purpose of the subroutines is to solve the interior acoustic problem. Each subroutine’s

parameter list has the following general form:

SUBROUTINE AIBEM{2 or 3 or A(}
real wavenumber,

description of boundary and set of interior solution points,

boundary condition,

incident field at boundary points and at interior solution points,

control and validation parameters,

solution at boundary points and at interior solution points (solution),

working space )

The subroutines require input of the conditions of the acoustic field - the wavenumber,

a geometrical description of the boundary of the domain (as covered in Chapter 2)

and a list of the points in the interior domain where a solution is sought, the boundary

condition and the incident field (if any). The subroutine returns the solution at the

boundary points and at the selected points in the domain. The uses of the subroutines

are demonstrated by the programs AIBEM2 T, AIBEM3 T and AIBEMA T in the next

Section.

4.3.1 Solution Strategy of the AIBEM* routines

In the AIBEM* routines the interior Helmholtz equation is solved by the improved

direct boundary element method. That is finding the solution of (4.17) subject to the

discrete boundary condition (4.18). This will result in obtaining (approximations to)

both ϕ and v on S. The solution in the domain is then found using equation (4.19).

A simple analysis of the magnitude of the integral operators suggests that a weighting

of the form µ ∼ 1
k

tends to ensure that the relative contribution from each integral

operator on either side of the equation remains in balance, whatever the value of k.

µ is a parameter in the Fortran subroutines for solving the interior acoustic problem.

In the test problems the parameter is chosen as follows:

µ =
i

k + 1
.
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4.3.2 Subroutine AIBEM2

Subroutine AIBEM2 computes the solution of the two-dimensional Helmholtz equation

in the domain interior to a closed boundary. The boundary (S) is approximated by a

set of straight line elements.

C SUBROUTINE AIBEM2(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,

C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2) are the x,y coordinates of the i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.

C real PINT(MAXNPI,2). The coordinates of the interior point.
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C PINT(i,1),PINT(i,2) are the x,y coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.

C complex SF(MAXNSE): The values of f at the centres of the

C elements.

C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the elements

C complex PFFPHI(MAXNPI): The incident velocity potential at the chosen

C interior points

C Validation and control parameters (input)

C logical LSOL: A switch to control whether the particular solution is

C required

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ("{\phi}") at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity ("v" or "d{\phi}/dn" where n is

C the outward normal to the boundary) at the centres of the boundary

C elements.

C complex PIPHI(MAXNPI): The velocity potential ("{\phi}") at the

C interior points.

C Working space
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C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNPI,MAXNSE)

C complex WKSPC4(MAXNPI,MAXNSE)

C complex WKSPC5(MAXNSE)

C complex WKSPC6(MAXNSE)

C logical WKSPC7(MAXNSE)

The subroutine parameters that specify the interior two-dimensional Helmholtz prob-

lem must be set up in the main program. Let this be called MAIN.FOR. The following

files must be linked together to construct the complete program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEM2.FOR,

H2LC.FOR, the file for computing the discrete operators - see Chapter 3,

FNHANK.FOR, the Hankel function - see Appendix 5,

CGLS.FOR, the file for computing the solution to a linear system - see Appendix 3,

GEOM2D.FOR, the file for 2D geometry - see Appendix 6.

4.3.3 Subroutine AIBEM3

Subroutine AIBEM3 computes solution of the three-dimensional Helmholtz equation

in the domain interior to a closed surface. The boundary (S) is approximated by a

set of planar triangular elements.

C SUBROUTINE AIBEM3(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,

C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.

C Geometry of the boundary S (input)
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C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=4.

C integer NV: The number of vertices on S. 4<=NV<=MAXNV.

C real VERTEX(MAXNV,3): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2), VERTEX(i,3) are the x,y,z coordinates of the i-th

C vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=4.

C integer NSE: The number of elements describing S. 4<=NSE<=MAXNSE.

C integer SELV(MAXNSE,3): The indices of the three vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)),VERTEX(SELV(i,1),3)),

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)),VERTEX(SELV(i,2),3)) and

C (VERTEX(SELV(i,3),1),VERTEX(SELV(i,3),2)),VERTEX(SELV(i,3),3)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.

C real PINT(MAXNPI,3). The coordinates of the interior point.

C PINT(i,1),PINT(i,2),PINT(i,3) are the x,y,z coordinates of the i-th

C point.

C The boundary condition ({\alpha} phi + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of "{\beta}" at the centres

C of the elements.

C complex SF(MAXNSE): The values of "f" at the centres of the

C elements.

C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the elements

C complex PFFPHI(MAXNPI): The incident velocity potential at the chosen

C interior points
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C Validation and control parameters (input)

C logical LSOL: A switch to control whether the particular solution is

C required

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ({\phi}) at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity (v or d{\phi}/dn where n is

C the outward normal to the boundary) at the centres of the boundary

C elements.

C complex PIPHI(MAXNPI): The velocity potential ({\phi}) at the

C interior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNPI,MAXNSE)

C complex WKSPC4(MAXNPI,MAXNSE)

C complex WKSPC5(MAXNSE)

C complex WKSPC6(MAXNSE)

C logical WKSPC7(MAXNSE)

The subroutine parameters that specify the interior three-dimensional Helmholtz

problem must be set up in the main program. Let this be called MAIN.FOR. The

following files must be linked together to construct the complete program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEM3.FOR,

H3LC.FOR, the file for computing the discrete operators - see Chapter 3,

CGLS.FOR, the file for computing the solution to a linear system - see Appendix 3,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.
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4.3.4 Subroutine AIBEMA

Subroutine AIBEMA computes solution of the three-dimensional axisymmetric Helmholtz

equation in the domain interior to a closed surface. The boundary (S) is approximated

by a set of truncated cone elements.

C SUBROUTINE AIBEMA(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,

C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the generator

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices of the

C generator. VERTEX(i,1),VERTEX(i,2) are the r,z coordinates of the

C i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The generator of the i-th element has vertices with

C r,z coordinates (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.

C real PINT(MAXNPI,2). The coordinates of the interior point.
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C PINT(i,1),PINT(i,2) are the r,z coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the generator of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the generator of the elements.

C complex SF(MAXNSE): The values of f at the centres of the

C of the generator of the elements.

C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the generator of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the generator of the elements

C complex PFFPHI(MAXNPI): The incident velocity potential at the chosen

C interior points

C Validation and control parameters (input)

C logical LSOL: A switch to control whether a particular solution

C is required.

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ({\phi}) at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity (v or d{\phi}/dn where n is

C the outward normal to the boundary) at the centres of the boundary

C elements.

C complex PIPHI(MAXNPI): The velocity potential ({\phi}) at the

C interior points.

C Working space
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C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNPI,MAXNSE)

C complex WKSPC4(MAXNPI,MAXNSE)

C complex WKSPC5(MAXNSE)

C complex WKSPC6(MAXNSE)

C logical WKSPC7(MAXNSE)

The subroutine parameters that specify the interior three-dimensional axisymmet-

ric Helmholtz problem must be set up in the main program. Let this be called

MAIN.FOR. The following files must be linked together to construct the complete

program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEMA.FOR,

H3ALC.FOR, the file for computing the discrete operators - see Chapter 3,

CGLS.FOR, the file for computing the solution to a linear system - see Appendix 3,

GEOM2D.FOR, the file for 2D geometry - see Appendix 6,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.

4.4 Test Programs

In this Section the subroutines AIBEM2, AIBEM3 and AIBEMA are demonstrated

through invoking them from a main program and comparing the results with ana-

lytic solutions. The corresponding main programs are AIBEM2 T, AIBEM3 T and

AIBEMA T.

4.4.1 Program AIBEM2 T

The main program AIBEM2 T tests module AIBEM2, the subroutine for computing the

solution of the Helmholtz equation interior to a closed boundary in a two-dimensional

domain. In AIBEM2 T the domain is the interior of a square of side 0.1m with the

boundary represented by 32 uniform elements. The representation of the boundary

is described fully in Section 2.2 by the data structures VERTEX and SELV, see Tables

2.A and 2.B. Full results are given in file AIBEM2.OUT.

The acoustic medium is air at 20 celcius and 1 atmosphere. The speed of sound is

assigned the value c = 344m/s. The chosen frequency of the test is 400Hz, hence
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k = 7.31. The velocity potential defined by

ϕ(p) = sin(
k√
2
p1) sin(

k√
2
p2)

is clearly a solution of the Helmholtz equation. The boundary velocity is given by

differentiating ϕ with respect to p1 on the lines p1 = 0 and p1 = 0.1 and with respect

to p2 on the lines p2 = 0, p2 = 0.1 and taking into account the direction of the outward

normal on these boundary lines. This gives the following surface velocities on each

side of the square:

v(p) =































0 when p1 = 0 ,

0 when p2 = 0 ,
k√
2
cos( k√

2
0.1) sin( k√

2
p2) when p1 = 0.1 ,

k√
2
sin( k√

2
p1) cos( k√

2
0.1) when p2 = 0.1 .

Two test problems are devised in which the boundary condition

α(p)ϕ(p) + β(p)v(p) = f(p)

are set up so that α(p) = 1, β(p) = 0, f(p) = ϕ(p) for p ∈ S, the Dirichlet condition

and α(p) = 0, β(p) = 1, f(p) = v(p) for p ∈ S, the Neumann condition. The

numerical solution is determined on the boundary of the domain and at the interior

points (0.025,0.025),(0.075,0.025), (0.075,0.025), (0.075,0.075), (0.05,0.05).

To test run the program, link the files AIBEM2 T.FOR, AIBEM2.FOR, H2LC.FOR,

GEOM2D.FOR, CGLS.FOR and the file FNHANK (or the equivalent). The output file

is AIBEM2.OUT. The exact and numerical solutions at the selected interior points are

given in the Table 4.A.

Table 4.A: Results from AIBEM2 T

point exact solution numerical solution numerical solution

to Dirichlet condition to Neumann condition

(0.025,0.025) 0.0166 0.0159 + i0.0001 0.0156 - i0.0012

(0.075,0.025) 0.0488 0.0482 - i0.0000 0.0480 - i0.0014

(0.025,0.075) 0.0488 0.0482 - i0.0000 0.0480 - i0.0014

(0.075,0.075) 0.1429 0.1434 - i0.0003 0.1398 - i0.0019

(0.050,0.050) 0.0653 0.0650 - i0.0000 0.0639 - i0.0015
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4.4.2 Program AIBEM3 T

The main program AIBEM3 T tests module AIBEM3, the subroutine for computing

the solution of the Helmholtz equation interior to a general closed surface in a three-

dimensional domain. In AIBEM3 T the domain is the interior of a sphere of side 1m

with the boundary represented by 36 elements. The representation of the boundary

is described fully in Section 2.3 by the data structures VERTEX and SELV, see Tables

2.C and 2.D. Full results are given in file AIBEM3.OUT.

The acoustic medium is air at 20 celcius and 1 atmosphere so that the speed of sound

is c = 344m/s. The chosen frequency of the test is 20Hz, hence k = 0.37. The velocity

potential defined by

ϕ(p) = sin(kp3)

is clearly a solution of the Helmholtz equation. The surface velocity at a point p is

given by differentiating ϕ with respect the outward normal there, np, to give

∂ϕ

∂np

= ∇ϕ.np =
∂ϕ

∂p3

n3 = k cos(kp3)n3 .

where np = (n1, n2, n3). Two test problems are devised in which the boundary con-

dition

α(p)ϕ(p) + β(p)v(p) = f(p)

are set up so that α(p) = 1, β(p) = 0, f(p) = ϕ(p) for p ∈ S, the Dirichlet condition

and α(p) = 0, β(p) = 1, f(p) = v(p) for p ∈ S, the Neumann condition. The

numerical solution is determined on the boundary of the domain and at the interior

points (0.5,0.0,0.0), (0.0,0.0,0.25), (0.0,0.0,0.5),(0.0,0.0,0.75).

The sound pressure in this example is given by multiplying the velocity potential by

iρω = 2πiρf . In this example ρ = 1.205 and f = 100Hz hence the sound pressure is

returned when the velocity potentials are multiplied by i757.12;

p(p) = i757.12ϕ(p)

The sound pressures corresponding to the velocity potentials at each solution point

are given in the output file and some of the results are reproduced in Table 4.B.
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Table 4.B: Results from AIBEM3 T

point exact solution numerical solution numerical solution

to Dirichlet condition to Neumann condition

(0.5, 0.0, 0.0) 0.0000 0.0000 - i0.0000 0.0000 - i0.0000

(0.0, 0.0, 0.25) 0.0912 0.0889 - i0.0008 0.0800 + i0.0013

(0.0, 0.0, 0.5) 0.1816 0.1757 - i0.0015 0.1586 + i0.0025

(0.0 ,0.0, 0.75) 0.2706 0.2623 - i0.0020 0.2377 + i0.0035

In the final example that of finding the velocity potential at points in the domain of

the sphere with the Neumann boundary condition

v(p) = 0 for p ∈ S

and with a point source at the centre of the sphere, giving the incident field

ϕ(p)i =
1

4πr
eikr .

The velocity potentials obtained at the interior points are summarised in Table 4.C.

Table 4.C: Results from AIBEM3 T

point incident field numerical solution

(0.0, 0.0, 0.25) 0.317 + i0.029 -1.143 - i0.594

(0.0, 0.0, 0.5) 0.157 + i0.029 -1.296 - i0.590

(0.0 ,0.0, 0.75) 0.102 + i0.029 -1.372 - i0.599

4.4.3 Program AIBEMA T

The main program AIBEMA T tests module AIBEMA. In AIBEMA T the acoustic

domain is interior of a sphere of unit radius. The surface is represented by eighteen

truncated conical elements, as described in 2.4. Program AIBEM3 T runs three test

problems. In each test problem the frequency is 40Hz and the acoustic medium is air

at 20 celcius (c=344m/s). Full results are given in file AIBEMA.OUT.

For each test the solution is listed on the surface. In the first test problem the velocity

potential on the surface is determined by the field

ϕ(p) = sin(kp3) .
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and AIBEMA is used to determine ϕ within the domain. The results are given in

Table 4.D.

Table 4.D: Results from AIBEMA T

point (r,z) exact solution numerical solution

(0.0, 0.0) 0.000 0.000 - i0.001

(0.0, 0.5) 0.357 0.357 + i0.004

(0.0 , -0.5 ) -0.357 -0.357 - i0.004

(0.5 , 0.0 ) 0.000 0.000 - i0.000

The second test problem has the same solution but in this case the corresponding

Neumann condition is applied at the boundary. The corresponding solutions from

this test problem are given in Table 4.E.

Table 4.E: Results from AIBEMA T

point (r,z) exact solution numerical solution

(0.0, 0.0) 0.000 0.000 - i0.000

(0.0, 0.5) 0.357 0.354 - i0.001

(0.0 , -0.5 ) -0.357 -0.354 - i0.001

(0.5 , 0.0 ) 0.000 0.000 - i0.000

The third test problem is made up of a unit source at (r, z) = (0.0, 0.25). The Dirichlet

boundary condition is also given by the free-field velocity potential that would arise

from the same source. Hence the exact solution for the whole field is given by

ϕ(p) =
eikr

4πr
.

The results from this test problem are given in Table 4.F.

Table 4.F: Results from AIBEMA T

point (r,z) exact solution numerical solution

(0.0, 0.0) 0.313 + i0.058 0.312 + i0.059

(0.0, 0.5) 0.313 + i0.058 0.312 + i0.059

(0.0 , -0.5 ) 0.091 + i0.055 0.090 + i0.056

(0.5 , 0.0 ) 0.131 + i0.057 0.130 + i0.058
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4.5 Application: Interior acoustics of a 2D car

The application of the interior of a vehicle has often been used in demonstrating

computational methods for solving the interior acoustic problem. For example in

Petyt et al [68] the finite element method is used to compute the interior acoustic

modes of a van. The concept of a computer-aided approach to designing a vehicle

compartment with low noise properties is considered in Nefske et al [64] and Nefske

and Sung [65], wherein again the finite element method is used to model the acoustic

reponse within the enclosure.

More recently, the boundary element method has been used in this application. Meth-

ods for the interior modal analysis of the passenger compartment are considered in

Banerjee et al [8], Coyette and Fife [24] and Jeong-Guon Ih et al [31]. As an ap-

plication to demonstrate the subroutine AIBEM2, the boundary is a two-dimensional

version of the vehicle interior used in Jeong-Guon [31]. A diagram of the vehicle

interior is shown in Figure 4.2.

Figure 4.2. Diagram of the interior of the 2D car.

The boundary is divided into 60 elements of approximately equal size. The test is run

at a range of frequencies between 0 and 1000Hz. The boundary condition is defined

so that the diagonal part of the boundary at the driver’s feet is determined to have

uniform vibration of amplitude 1mm at all frequencies. The remaining boundary

is rigid. Figure 4.3 shows a graph of the computed sound pressure at the selected

interior point (0.5,0.4) in the domain.
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4.6 Conclusion

As stated in the introduction of Chapter 4, the solution of the interior boundary

value problem by the boundary element method is well-established. The results in

Tables 4.A, 4.B, 4.D, 4.E and 4.F show the accuracy of the method on the three test

boundaries by comparing computed and exact solutions.

The results from the two-dimensional car show a series of peaks in the sound pres-

sure. The peaks are the outcome of acoustic resonances. The determination of the

frequencies at which the peaks occur in this type of problem is the subject of Chapter

6.

Figure 4.3. The magnitude of the sound pressure at (0.5,0.4).
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Chapter 5

The Exterior Acoustic Problem

This chapter addresses the problem of computing the acoustic field in an homogeneous

isotropic fluid, exterior to a closed surface or surfaces and subject to a particular

boundary condition and to a specified incident acoustic field. Such problems include

the determination of the sound pressure field that is produced by a radiating surface

or the perturbation or scattering of an acoustic field that results from an obstruction.

Let the domain of the acoustic field be the region E exterior to the closed boundary

S, as illustrated in Figure 5.1.

Fig 5.1. The domain of the exterior acoustic problem.

79
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The problem is equivalent to the solution of the Helmholtz equation

∇2ϕ(p) + k2ϕ(p) = 0 (p ∈ E)

in the domain E. The exterior problem also requires a condition that the scattered

and radiated waves are outgoing, this is known as the Sommerfeld radiation condition,

stated earlier in Section 1.3. The boundary condition is assumed to take a general

form

α(p)ϕ(p) + β(p)v(p) = f(p) (p ∈ S) (5.1)

where α, β and f are complex-valued functions defined on the boundary.

Although the exterior Helmholtz equation can be solved by the finite element or

finite difference methods ( see, for example, Harari and Hughes [30]), such methods

are clearly awkward to apply and probably inefficient since the domain is infinite. The

boundary element method has an important strategic advantage over the alternative

methods in that it requires discretisation of the boundary only. The solution at points

in the domain can then be obtained by a straightforward integration of the boundary

functions.

The application of the BEM to acoustic radiation and scattering problems has been

investigated by researchers over the past three decades or so. Early contributors (see

references [18], [21]) applied what may be called elementary methods; methods derived

in the standard way from the integral equations arising from Green’s second theorem

(generally known an the Helmholtz formula of the Helmholtz-Kirchoff equation) or a

single- or double-layer representation. However, the resulting BEMs, the elementary

methods, were subsequently found to give unreliable results for all but a relatively

low range of wavenumber. They are generally reliable for wavenumbers such that

kD < 4.0, where D represents the diameter of the body or the maximum distance

between any two points on the boundary - much too restrictive a condition for most

applications.

There has been a large number of contributors to the research and development of

boundary element methods for the solution of the exterior acoustic problem. Alter-

native integral formulations of the exterior Helmholtz equation were introduced in

references [12], [57], [66], [54] and [15] and these will be termed the improved for-

mulations. A further non-standard BEM, based on the original integral equation

formulations but being demonstrably more reliable, was introduced by Schenck [75]

and this has since become very popular since it turns out to be rather easier to imple-

ment than the methods based on the alternative formulations. Early reviews of these

and other methods are given in Burton [16], [17] and Kleinmann and Roach [51]. The

monograph by Amini et al [3] contains a more recent review.
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The main difficulty with the improved formulations is that they generally involve the

Nk integral operator. Although methods can be developed for its discretisation, they

are notoriously difficult to devise and program. Nevertheless, as far as this work is

concerned, the discretisation of all the operators has been programmed for the simple

elements covered in Chapter 2. Hence the presence of the Nk operator is no barrier to

the implementation of these methods for the purposes of this work. In this Chapter

the most important integral equation formulations and methods are considered. The

subroutines AEBEM2, AEBEM3 and AEBEMA [33] for solving the two-, three- and

axisymmetric three-dimensional problems are introduced.

5.1 Elementary Formulations and Methods

The elementary formulations are those that are derived from Green’s second theorem

or from simple layer potential representation of the solution. Although the methods

are not suitable for general computation, it is important to introduce them as the

alternative methods originate with these formulae.

5.1.1 Elementary Direct Formulations

The application of Green’s second theorem to the Helmholtz equation gives the fol-

lowing equations:

{Mkϕ}S(p) − ϕ(p) = {Lkv}S(p) (p ∈ E) , (5.2)

{Mkϕ}S(p) − 1

2
ϕ(p) = {Lkv}S(p) (p ∈ S) , (5.3)

where Lk and Mk, are defined in Section 3.1 and v(p) = ∂ϕ
∂n

. The equations are also

termed the Helmholtz formula or the Helmholtz-Kirchoff equation. The equation

(5.3) is often also termed the surface Helmholtz equation. In this text the equations

will be known as the elementary direct formulation.

The most straightforward approach to solving the exterior Helmholtz equation via

the elementary formulations is to first find ϕ and v on the boundary from equation

(5.3). The value of ϕ(p) for points p in the domain can then be obtained through

the discretisation of equation (5.2).
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5.1.2 Elementary Indirect Formulations

The elementary indirect integral equation formulations to can be obtained by writing

ϕ as a single- or double-layer potential;

ϕ(p) = {Lkσ0}S(p) or ϕ(p) = {Mkσ∞}S(p) (p ∈ E) (5.4)

where the σ0 and σ∞ are source density functions defined on S. For points on the

boundary the equations become boundary integral equations;

ϕ(p) = {Lkσ0}S(p) or ϕ(p) = {(Mk +
1

2
I)σ∞}S(p) (p ∈ S), (5.5)

where the jump conditions of Section 3.1 have been taken into account. In order to

solve the exterior Helmholtz equation with a Dirichlet boundary condition using the

above equations the first step is to solve one of the equations to obtain an approxi-

mation to either σ0 or σ∞. The solution at any point p in the domain can then be

obtained by approximating the relevant equation of (5.4).

For the Neumann problem, further equations must be derived. Differentiating the

equations (5.4) with respect to np, the normal to a point p ∈ S, and taking the limit

as the point approaches S returns the following equations:

v(p) = {(M t
k −

1

2
I)σ0}S(p;np) or v(p) = {Nkσ∞}S(p;np) (p ∈ S) (5.6)

The solution of one of the integral equations (5.6) returns either σ0 or σ∞ and the

solution in the domain can then be obtained from one of the equations (5.4).

The solution of the Robin problem by elementary indirect methods can be achieved

by substituting the expressions for ϕ or v on S into the boundary condition (5.1):

α(p){Lkσ0}S(p) + β(p){(M t
k −

1

2
I)σ0}S(p;np) = f(p) or

α(p){(Mk +
1

2
I)σ∞}S(p;np) + β(p){Nkσ∞}S(p) = f(p) .

Once an approximation to the solution σ0 is obtained from the first of these equations

or an approximation to σ∞ is obtained from the second, the solution in the domain

can be obtained through approximation of the relevant equation of (5.4) .

5.1.3 Elementary Methods

Methods that are derived straightforwardly from the integral equations of the previous

Section are termed elementary methods. A typical example is the solution of the
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exterior Neumann problem using equations (5.2), (5.3). The application of collocation

to the integral equation (5.3) reduces it to the following system of equations:

[

Mk −
1

2
I
]

ϕ̂ = Lkv̂ (5.7)

The Lk, Mk are n × n matrices arising from the discretisation method outlined in

Sections 1.1 and 2.3; for example the components of Lk are defined by [Lk]ij =

{Lkẽ}∆S̃j
(pi) , where ẽ is the unit function. The vectors ϕ and v represent the values

of the boundary functions ϕ and v at the collocation points and ϕ̂ and v̂ are their

approximations. The solution at any point p in the domain can then be approximated

using

ϕ̂(p) =
n

∑

j=1

{Mkẽ}∆Sj
(p)ϕ̂j − {Lkẽ}∆Sj

(p)v̂j , (5.8)

is the discrete equivalent of (5.2).

Unfortunately, such methods have been found to be very unsuitable for the general

computational solution of the exterior Helmholtz equation. The underlying reason

for this is that for each formulation on each boundary with a given form of bound-

ary condition the operator over which we solve is singular for certain values of k∗,

often termed the characteristic wavenumbers. For example the direct solution of the

exterior Neumann problem requires the solution of equation (5.3), obtaining ϕ from

v. However at a set of real values k∗, the eigenfrequencies of the interior Dirichlet

problem, the operator Mk∗ − 1
2
I is singular. If k takes the value of any one of the

values k∗ then a solution is impossible.

It might be argued that the wavenumbers for which a solution to the Helmholtz

equation is sought do not coincide with any of the characteristic wavenumbers and

so the problem does not arise. However, the operator over which we solve is not only

singular at k = k∗ it is ill-conditioned for values of k in the neighbourhood of k∗; the

condition of the operator being approximately proportional to 1
|k−k∗| [4].

The condition of the operator over which a solution is obtained in integral equation

methods is one of the most important factors governing the numerical error. In this

case the numerical error can be characterised by ǫ
|k−k∗| , following the profile of the

condition of the operator. The ǫ is determined by the nature of the problem and the

accuracy of the boundary representation and the boundary function approximation

and it tends to increase gently with k.

Given also the fact that the characteristic wavenumbers tend to cluster more and more

at higher real wavenumbers, the elementary methods are generally unsatisfactory.

Reports on results of implementations of elementary methods first appeared in the
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1960s: Banaugh and Goldsmith [6], Chen and Schweikert [18], Chertock [21] and

Brundrit [14]. All but the last of these references seem to have been unaware of the

difficulties with the methods at the characteristic wavenumbers. The computational

performance of elementary methods is compared with various alternative methods in

Schenck [75], Meyer et al [60], Sayhi et al [74], for example. Because of the perceived

computational difficulties, research has generally moved away from the elementary

methods and towards alternative methods. A formal analysis of the solution of the

exterior Helmholtz equation by elementary methods is given in Amini and Kirkup

[4]. The convergence of the error with respect to element size and the accuracy of the

representation of the boundary and boundary functions is considered in Juhl [38].

5.2 The Schenck Method

The Schenck method [75] represented an important step forward in the boundary

element solution of the exterior Helmholtz equation. The method takes advantage of

the complementary equation of equations (5.2) and (5.3) for points in the interior;

{Mkϕ}S(p) = {Lkv}S(p) (p ∈ D) . (5.9)

If we write the discrete form of this equation for a selected set of points q1,q2, ...,qm ∈
D then the following linear system of equations can be obtained:

M̄kϕ ≈ L̄kv (5.10)

where L̄k is an m × n matrices with [L̄k]ij = {Lkẽ}∆S̃j
(qi) and the other matrix is

defined similarly.

The matrix approximation (5.10) is regarded as a further set of m approximations

that relate ϕ and v. Schenck suggested that instead of basing the numerical method

on the equation related to (5.7) alone, the surface solution is found from the following

matrix-vector approximation that is constructed from both the approximation (5.7)

and (5.10):




Mk − 1
2
I

M̄k



ϕ ≈




Lk

L̄k



 v , (5.11)

where the matrices in (5.11) have n columns and n+m rows.

A least squares method may be employed to find an approximation to the unknown

boundary function. For example for the Neumann problem this is equivalent to finding
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the solution of the matrix-vector equation

[

(Mk − 1
2
I)T (M̄k)

T
]





Mk − 1
2
I

M̄k



 ϕ̂ =
[

(Mk − 1
2
I)T (M̄k)

T
]





Lk

L̄k



 v , (5.12)

which is arrived at through pre-multiplying both sides of the system (5.11) by the

transpose of the matrix on the left hand side. Since the transposed matrix has the

dimension n × (n + m) then the matrices on both sides of (5.12) are n × n when

multiplied out and the equation is simply a system of n equations in n unknowns

that can be solved by standard methods.

For further details on the Schenck method, often also termed the CHIEF method,

the reader is referred to Seybert et al [76], [77], [78] and Juhl [37], for example. The

Schenck method has the potential of greatly extending the range of wavenumbers over

which a solution of the exterior Helmholtz equation can be achieved when compared to

the elementary methods. However, the Schenck method suffers from the difficulty that

the number of interior points and their positions is not clear. At higher wavenumbers,

more and more interior points are required to maintain accuracy on the one hand but

the size of the matrices must correspondingly increase on the other, signalling a loss

of efficiency.

The Schenck method remains popular, particularly since it avoids the necessity of

discretising the Nk operator, which is generally required by the improved formulations

that are considered in the next Section.

5.3 Improved Formulations

The term improved formulations is used to include the integral equation representa-

tions that were introduced in the 1960s and early 1970s for which the integral operator

over which a solution was sought was always non-singular. Hence the formulations

were intended to form a firm foundation for the boundary element method solution

of the exterior Helmholtz equation. The general drawback with these methods is the

inclusion of the Nk operator, which is very difficult to discretise. However, for the

elements considered in this manual, the discrete Nk operator is available through the

subroutines outlined in Chapter 3. Hence it is feasible to implement the improved

methods and, because of their robustness in comparison with the methods outlined

earlier, boundary element methods that result from them are implemented in the

accompanying software and considered in the next Sections. In this Chapter a par-

ticular implementation of an improved method is described and this forms the basis
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of the subroutines AEBEM2, AEBEM3 and AEBEMA that are introduced in Section

5.5.

5.3.1 Improved Indirect Formulation

The equations for the improved indirect formulation that are directly applicable to

the solution of the Dirichlet problem were apparently introduced independently by

Brakhage and Werner [12], Leis [57] and Panich [66]. The formulation involves writing

ϕ(p) for p ∈ E as a linear sum of single- and double-layer potentials;

ϕ(p) = {(Lk + νMk)σν}S(p) (p ∈ E) . (5.13)

For points on the boundary the equation becomes

ϕ(p) = {(Lk + ν(Mk −
1

2
I))σν}S(p) (p ∈ S) . (5.14)

For a given Dirichlet boundary condition the boundary integral equation (5.14) has a

unique solution provided the parameter ν is such that Im(ν) 6= 0. Having computed

σν(p) for p ∈ S, the solution in the domain can be computed through substituting it

into an approximation based on (5.13).

An integral equation that is suitable for solving the exterior Neumann problem can

be derived through differentiating (5.13) with respect to the outward normal to the

boundary and taking the limit as p approaches the boundary at the base of the

normal. This gives the following boundary integral equation:

v(p) = {(M t
k −

1

2
I + νNk)σν}S(p;np) (p ∈ S) , (5.15)

which is attributed to Kussmaul [54]. In correspondence with the earlier formulation

(5.14), the equation (5.15) has a unique solution provided Im(ν) 6= 0. The solution

of the Neumann problem can be obtained from finding an approximation to σν by

solving the boundary integral equation (5.15). The solution in the domain can then

be obtained by approximating (5.13).

For the general Robin problem the boundary condition takes the form (5.1). Substi-

tuting the expressions for ϕ(p) and v(p) obtained earlier into the boundary condition

gives the following integral equation:

{(α(p)(Lk + ν(Mk −
1

2
I)) + β(p)(M t

k +
1

2
I + νNk))σν}S(p;np) = f(p) . (5.16)

Given a suitable Robin condition, the functions α(p), β(p) and f(p), an approxima-

tion to σν(p) for p ∈ S can be obtained from the numerical solution of the integral

equation (5.16). The solution at points of the domain E can then be found by the

substitution of the result into (5.13).
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5.3.2 Improved Direct Formulation

The improved direct formulation originates in the paper by Burton and Miller [15].

The formulation is a hybrid of the elementary direct formulation (5.3) and equation

that arises through differentiating that equation with respect to the normal to the

boundary;

{Nkϕ}S(p;np) = {(M t
k +

1

2
I)v}S(p;np) (p ∈ S) .

The improved direct integral equation formulation is simply a linear combination of

(5.3) with this equation, giving the following:

{(Mk −
1

2
I + µNk)ϕ}S(p;np) = {(Lk + µ(M t

k +
1

2
I))v}S(p;np) (p ∈ S) . (5.17)

The boundary integral equation can be used to solve both the Neumann and Dirichlet

problems for the exterior Helmholtz equation; the numerical solution of (5.17) gives

both functions ϕ and v on S and approximation of (5.2) gives the solution at any

point in the exterior. The integral equation (5.17) has a unique solution provided

Im(µ) 6= 0 [15]. For the general Robin problem the integral equation (5.17) must be

solved alongside the specified Robin condition (5.1). A method for carrying this out

will be given in the next Section.

5.3.3 Scattering

When an incident acoustic field is modified by an obstacle the result is termed the

scattered field. The concept of scattering is analagous to that of field modification

considered in the previous Chapter, and the inclusion of the incident field term in

the integral equation formulations is entirely similar. In scattering problems there

is an incident field in the domain, termed ϕi, which is the field that would exist if

there were no boundaries, or the free-space acoustic field. Such problems can also

be solved by the boundary element method, it only requires a generalisation of the

integral equations and the corresponding alteration of the resulting boundary element

methods.

To complete this Section the improved integral reformulations of the Helmholtz equa-

tion are generalised. The improved methods based on these formulations are given

in the next Section. The generalisation of the elementary methods and the Schenck

method in order to include the scattering term is not explicitly carried out in this

text, although the development of such methods should be clear from the formulations

given.
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Indirect formulation

The inclusion of the scattering term generalises the integral equations (5.13), (5.14),

(5.15) as follows:

ϕ(p) = ϕi(p) + {(Lk + νMk)σν}S(p) (p ∈ E) , (5.18)

ϕ(p) = ϕi(p) + {(Lk + ν(Mk +
1

2
I))σν}S(p) (p ∈ S) , (5.19)

v(p) = vi(p) + {(M t
k −

1

2
I + νNk)σν}S(p;np) (p ∈ S) (5.20)

where vi =
∂ϕi
∂np

.

For a Dirichlet (Neumann) boundary condition, the solution can be found by solving

(5.19) ((5.20)) to find σν and then substituting the result into (5.18) to find ϕ in E.

Substituting the expressions (5.19) and (5.20) for ϕ and v into the equation for the

more general Robin boundary condition (5.1) gives

{(α(p){ϕi(p)+(Lk+ν(Mk−
1

2
I))+β(p){vi(p)+(M t

k+
1

2
I+νNk)σν}S(p;np) = f(p) .

(5.21)

Direct formulation

The solution of the exterior acoustic problem on the boundary S can be determined

through solving the following integral equation:

{(Mk−
1

2
I+µNk)ϕ}S(p;np) = −ϕi(p)−µvi(p)+{(Lk+µ(M t

k+
1

2
I))v}S(p;np) (5.22)

for (p ∈ S), a generalisation of equation (5.17), subject to the boundary condition

(5.1). Once ϕ(p) and v(p) are obtained through solving the above equation, the

solution in the domain can be obtained by the integration

ϕ(p) = ϕi(p) + {Mkϕ}S(p) − {Lkv}S(p) (p ∈ E) . (5.23)

5.4 Improved Boundary Element Methods

The first step is to approximate the boundary S by a set of n panels S̃ =
∑n

j=1 ∆S̃j, as

considered in Chapter 2. The integral operators are approximated by the technique

outlined in Chapter 3 and the resulting linear system of equations is solved. The

overall method is equivalent to the solution of the integral equations by collocation.
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5.4.1 Improved Indirect Method

The collocation method reduces the indirect boundary integral equations (5.19), (5.20)

to the linear systems of approximations

ϕ ≈ ϕi +
[

Lk + ν(Mk +
1

2
I)

]

σν and

v ≈ vi +
[

Mt
k −

1

2
I + νNk

]

σν .

Applying the boundary condition at the collocation points as in the direct method

gives the equation

Dαϕ+ Dβv = f (5.24)

where Dα, Dβ are diagonal matrices with [Dα]ii = α(pi), [Dβ]ii = β(pi). Substituting

the approximations for ϕ and v given above into equation (5.24) gives the following:

[

Dα{Lk + ν(Mk +
1

2
I)} + Dβ{Mt

k −
1

2
I + νNk}

]

σν ≈ f − Dαϕ
i − Dβv

i ,

which is also the discrete equivalent of (5.21).

In the indirect boundary element method, the first stage is to find the approximation

σ̂ν to the representation of the source density function σν . This can be done by solving

the following linear system of equations

[

Dα{Lk + ν(Mk +
1

2
I)} + Dβ{Mt

k −
1

2
I + νNk}

]

σ̂ν = f − Dαϕ
i − Dβv

i . (5.25)

The equation (5.25) is simply a matrix-vector equation that can be immediately solved

by Gaussian elimination-type methods. Having obtained σ̂ν , the solution to (5.25),

the approximate solution in the domain can be found using the discrete equivalent of

(5.18):

ϕ̂(p) = ϕi(p) +
n

∑

j=1

({Lkẽ}∆Sj
+ ν{Mkẽ}∆Sj

)σ̂νj .

5.4.2 Improved Direct Method

The application of collocation to the integral equation (5.22) reduces it to the following

linear system of equations:

[

Mk −
1

2
I + µNk

]

ϕ ≈ −ϕi − µvi +
[

Lk + µ(Mt
k +

1

2
I)

]

v . (5.26)
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The Lk, Mk, Mt
k and Nk are n × n matrices arising from the discretisation method

outlined in Sections 1.2 and 3.3; for example the components of Lk are defined by

[Lk]ij = {Lkẽ}∆S̃j
(pi) , where ẽ is the unit function.

The vectors ϕ and v represent the values of the boundary functions ϕ and v at the

collocation points. The method involves finding the solution of the linear system of

equations
[

Mk −
1

2
I + µNk

]

ϕ̂ = −ϕi − µvi +
[

Lk + µ(Mt
k +

1

2
I)

]

v̂ (5.27)

subject to the boundary condition applied at the collocation points

αiϕ̂i + βiv̂i = fi for i = 1, 2, ..., n or Dαϕ+ Dβv = f , (5.28)

with αi = α(pi), βi = β(pi) and the Dα and Dβ denote diagonal matrices with

[Dα]ii = αi and [Dβ]ii = βi, to find ϕ̂ and v̂, the approximations to ϕ and v.

In the cases of a pure Dirichlet or pure Neumann boundary condition then the equa-

tions can be solved by a standard method such as LU factorization or Gaussian

elimination. However in the general case the equations (5.28) can be used to rear-

range the linear system of equations (5.27) and the matrix-vector equation that arises

can then be solved by standard methods. The method is carried out by subroutine

CGLS used for solving systems of equations of the form (5.27), (5.28) is described in

Appendix 3.

Once ϕ̂ and v̂ are obtained, equation (5.23) can be used to return an approximation

to the solution at any point p in the domain:

ϕ(p) ≈ ϕi(p) +
n

∑

j=1

{Mkẽ}∆Sj
v̂j −

n
∑

j=1

{Lkẽ}∆Sj
ϕ̂j v̂j

or

ϕ̂(p) = ϕi(p) +
n

∑

j=1

{Mkẽ}∆Sj
ϕ̂j −

n
∑

j=1

{Lkẽ}∆Sj
v̂j . (5.29)

5.5 Subroutines AEBEM2, AEBEM3 and AEBEMA

In this Section the subroutines AEBEM2, AEBEM3 and AEBEMA are introduced. The

purpose of the subroutines is to solve the exterior acoustic problem. Each subroutine’s

parameter list has the following general form:

SUBROUTINE AEBEM{2 or 3 or A(}
real wavenumber,

description of boundary and set of exterior solution points,
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boundary condition,

incident field at boundary points and at exterior solution points,

control and validation parameters,

solution at boundary points and at exterior solution points (solution),

working space )

The subroutines require input of the conditions of the acoustic field - the wavenumber,

a geometrical description of the boundary of the domain (as covered in Chapter 2) and

a list of the points in the exterior domain where a solution is sought, the boundary

condition, the incident field (if any). The subroutine returns the solution at the

boundary points and at the selected points in the domain. The use of the subroutines

are demonstrated by the programs AEBEM2 T, AEBEM3 T and AEBEMA T in the

next Section.

5.5.1 Solution Strategy of the AEBEM* routines

In the AEBEM* routines the exterior Helmholtz equation is solved by the improved

direct boundary element method. That is finding the solution of (5.27) subject to the

discrete boundary condition (5.28). This will result in obtaining (approximations to)

both ϕ and v on S. The solution in the domain is then found using equation (5.29).

A simple analysis of the magnitude of the integral operators suggests that a weighting

of the form µ ∼ 1
k

tends to ensure that the relative contribution from each integral

operator on either side of the equation remains in balance, whatever the value of k.

µ is a parameter in the Fortran subroutines for solving the interior acoustic problem.

In the test problems the parameter is chosen as follows:

µ =
i

k + 1
.

5.5.2 Subroutine AEBEM2

Subroutine AEBEM2 computes the solution of the two-dimensional Helmholtz equa-

tion in the domain exterior to a closed boundary. The boundary (S) is approximated

by a set of straight line elements.

C SUBROUTINE AEBEM2(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPE,NPE,PEXT,
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C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PEPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2) are the x,y coordinates of the i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Exterior points at which the solution is to be observed (input)

C integer MAXNPE: Limit on the number of points exterior to the

C boundary. MAXNPE>=1.

C integer NPE: The number of exterior points. 0<=NPE<=MAXNPE.

C real PEXT(MAXNPE,2). The coordinates of the exterior point.

C PEXT(i,1),PEXT(i,2) are the x,y coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.

C complex SF(MAXNSE): The values of f at the centres of the

C elements.
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C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the elements

C complex PFFPHI(MAXNPE): The incident velocity potential at the chosen

C exterior points

C Validation and control parameters (input)

C logical LSOL: A switch to control whether the particular

C solution is required.

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ({\phi}) at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity (v or d{\phi}/dn where n

C is the outward normal to the boundary) at the centres of the

C boundary elements.

C complex PEPHI(MAXNPE): The velocity potential ({\phi}) at the

C exterior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNPE,MAXNSE)

C complex WKSPC4(MAXNPE,MAXNSE)

C complex WKSPC5(MAXNSE,MAXNSE)

C complex WKSPC6(MAXNSE,MAXNSE)

C logical WKSPC7(MAXNSE)
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5.5.3 Subroutine AEBEM3

Subroutine AEBEM3 computes solution of the three-dimensional Helmholtz equation

in the domain exterior to a closed surface. The boundary (S) is approximated by a

set of planar triangular elements.

C SUBROUTINE AEBEM3(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPE,NPE,PEXT,

C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PEPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=4.

C integer NV: The number of vertices on S. 4<=NV<=MAXNV.

C real VERTEX(MAXNV,3): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2), VERTEX(i,3) are the x,y,z coordinates of the i-th

C vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=4.

C integer NSE: The number of elements describing S. 4<=NSE<=MAXNSE.

C integer SELV(MAXNSE,3): The indices of the three vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)),VERTEX(SELV(i,1),3)),

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)),VERTEX(SELV(i,2),3)) and

C (VERTEX(SELV(i,3),1),VERTEX(SELV(i,3),2)),VERTEX(SELV(i,3),3)).

C Exterior points at which the solution is to be observed (input)

C integer MAXNPE: Limit on the number of points exterior to the

C boundary. MAXNPE>=1.

C integer NPE: The number of exterior points. 0<=NPE<=MAXNPE.
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C real PEXT(MAXNPE,3). The coordinates of the exterior point.

C PEXT(i,1),PEXT(i,2),PEXT(i,3) are the x,y,z coordinates of the i-th

C point.

C The boundary condition ({\alpha} phi + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.

C complex SF(MAXNSE): The values of f at the centres of the

C elements.

C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the elements

C complex PFFPHI(MAXNPE): The incident velocity potential at the chosen

C exterior points

C Validation and control parameters (input)

C logical LSOL: A switch to control whether the particular solution is

C required.

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ({\phi}) at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity (v or d{\phi}/dn where n is

C the outward normal to the boundary) at the centres of the boundary

C elements.

C complex PEPHI(MAXNPE): The velocity potential ({\phi}) at the

C exterior points.
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C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNSE,MAXNSE)

C complex WKSPC4(MAXNSE,MAXNSE)

C complex WKSPC5(MAXNSE)

C complex WKSPC6(MAXNSE)

C logical WKSPC7(MAXNSE)

The subroutine parameters that specify the exterior three-dimensional Helmholtz

problem must be set up in the main program. Let this be called MAIN.FOR. The

following files must be linked together to construct the complete program:

MAIN.FOR (and files containing any user-defined sub-programs),

AEBEM3.FOR,

H3LC.FOR, the file for computing the discrete operators - see Chapter 3,

CGLS.FOR, the file for computing the solution to a linear system - see Appendix 3,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.

5.5.4 Subroutine AEBEMA

Subroutine AEBEMA computes solutions of the axisymmetric three-dimensional Helmholtz

equation in the domain exterior to a closed surface. The boundary (S) is approxi-

mated by a set of conical elements.

C SUBROUTINE AEBEMA(K,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPE,NPE,PEXT,

C * SALPHA,SBETA,SF,SFFPHI,SFFVEL,PFFPHI,

C * LSOL,LVALID,EGEOM,MU,

C * SPHI,SVEL,PEPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,

C * WKSPC5,WKSPC6,WKSPC7)

C Wavenumber (input)

C real K: Must be positive.
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C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the generator

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices of the

C generator. VERTEX(i,1),VERTEX(i,2) are the r,z coordinates of the

C i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The generator of the i-th element has vertices with

C r,z coordinates (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Exterior points at which the solution is to be observed (input)

C integer MAXNPE: Limit on the number of points exterior to the

C boundary. MAXNPE>=1.

C integer NPE: The number of exterior points. 0<=NPE<=MAXNPE.

C real PEXT(MAXNPE,2). The coordinates of the exterior point.

C PEXT(i,1),PEXT(i,2) are the r,z coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = f) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the generator of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the generator of the elements.

C complex SF(MAXNSE): The values of f at the centres of the

C of the generator of the elements.

C complex SFFPHI(MAXNSE): The incident velocity potential at the

C centres of the generator of the elements

C complex SFFVEL(MAXNSE): The derivative of the incident velocity

C centres of the generator of the elements

C complex PFFPHI(MAXNPE): The incident velocity potential at the chosen

C exterior points
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C Validation and control parameters (input)

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C complex MU: The weighting parameter in the direct formulations.

C As a default, set MU=I/(K+1).

C Solution (output)

C complex SPHI(MAXNSE): The velocity potential ({\phi}) at the

C centres of the boundary elements.

C complex SVEL(MAXNSE): The velocity (v or d{\phi}/dn where n is

C the outward normal to the boundary) at the centres of the boundary

C elements.

C complex PEPHI(MAXNPE): The velocity potential ({\phi}) at the

C exterior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNPE,MAXNSE)

C complex WKSPC4(MAXNPE,MAXNSE)

C complex WKSPC5(MAXNSE)

C complex WKSPC6(MAXNSE)

C logical WKSPC7(MAXNSE)

The subroutine parameters that specify the exterior three-dimensional axisymmet-

ric Helmholtz problem must be set up in the main program. Let this be called

MAIN.FOR. The following files must be linked together to construct the complete

program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEMA.FOR,

H3ALC.FOR, the file for computing the discrete operators - see Chapter 3,

CGLS.FOR, the file for computing the solution to a linear system - see Appendix 3,

GEOM2D.FOR, the file for 2D geometry - see Appendix 6,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.
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5.6 Test Programs

In this Section the subroutines AEBEM2, AEBEM3 and AIBEMA are demonstrated

through invoking them and comparing the results with analytic solutions. The cor-

responding main programs are AEBEM2 T, AEBEM3 T and AEBEMA T.

5.6.1 Program AEBEM2 T

The main program AEBEM2 T tests module AEBEM2, the subroutine for comput-

ing the solution of the Helmholtz equation exterior to a closed boundary in a two-

dimensional domain. In AEBEM2 T the domain lies exterior to a square of side 0.1m

with the boundary represented by 32 elements. The representation of the boundary

is described in Section 2.2 by the data structures VERTEX and SELV, see Tables 2.A

and 2.B and Figure 2.2. Full results are given in file AEBEM2.OUT.

The acoustic medium is air at 20 celcius and 1 atmosphere so the speed of sound is

344m/s. The chosen frequency of the test is 400Hz, hence k = 7.31. For the first two

tests, the velocity potential defined by ϕ(p) = i
4
H0(kr), with r being the distance

from the point p to the centre of the square, is clearly a solution of the Helmholtz

equation in the exterior domain. The boundary velocity is given by differentiation

this expression for ϕ(p) with respect to the normal to the boundary at p for each

collocation point p on S.

In the first two tests the Dirichlet and Neumann boundary conditions arising from

this potential is processed by AEBEM2. The solution is given at the points (0,0.15),

(0.05,0.15), (0.1,0.15) and (0.05,-0.1). Comparisons between the exact and numerical

solutions are given in Table 5.A.

Table 5.A: Results from AEBEM2 T

point exact solution numerical solution numerical solution

to Dirichlet condition to Neumann condition

(0.000,0.150) 0.0176 + i 0.2100 0.0198 + i 0.2079 0.0181 + i 0.2104

(0.050,0.150) 0.0394 + i 0.2177 0.0415 + i 0.2154 0.0397 + i 0.2181

(0.100,0.150) 0.0176 + i 0.2100 0.0198 + i 0.2079 0.0181 + i 0.2104

(0.050,-0.100) -0.0398+ i 0.1804 -0.0375 + i 0.1792 -0.0396 + i 0.1808
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5.6.2 Program AEBEM3 T

The main program AEBEM3 T tests module AEBEM3, the subroutine for computing

the solution of the Helmholtz equation exterior to a general closed surface in a three-

dimensional domain. In AEBEM3 T the domain is the exterior of a sphere of side 1m

with the boundary represented by 36 elements. The representation of the boundary

is described fully in Section 2.3 by the data structures VERTEX and SELV, see Tables

2.C and 2.D. Full results are given in file AEBEM3.OUT.

The acoustic medium is air at 20 celcius and 1 atmosphere so that the speed of sound

is c = 344m/s. In the first two test problems the acoustic field in the exterior is

defined to be

ϕ =
ejkr

r
which is a multiple of the Green’s function and hence is clearly a solution of the

Helmholtz equation. The acoustic frequency is 100Hz, hence k = 1.8265. The numer-

ical and exact solutions at the points (0,0,2), (0,0,4), (0,0,8) and (0,0,-2) are given in

Table 5.B.

Table 5.B: Results from AEBEM3 T

point exact solution numerical solution numerical solution

to Dirichlet condition to Neumann condition

(0,0,2) -0.4360 - i 0.2447 -0.4628 - i 0.1897 -0.5011 - i 0.2389

(0,0,4) 0.1302 + i 0.2133 0.1557 + i 0.1960 0.1614 + i 0.2274

(0,0,8) -0.0572 + i 0.1112 -0.0431 + i 0.1175 -0.0549+ i 0.1284

(0,0,-2) -0.4360 - i 0.2447 -0.4628 - i 0.1897 -0.5011 - i 0.2389

In this example a comparison of the computed and exact sound pressures are given.

The magnitudes (in decibels) and the phases (in degrees) are given in Table 5.C. The

values are computed from the sound pressures in line with the methods described in

Section 1.3.

Table 5.C: Results from AIBEM3 T

point exact solution numerical solution numerical solution

to Dirichlet condition to Neumann condition

(0,0,2) 72.8dB, -60.7◦ 72.8dB, -69.8◦ 73.2dB, -64.7◦

(0,0,4) 69.8dB, 148.6◦ 69.8dB, 139.5◦ 70.2dB, 144.4◦

(0,0,8) 66.8dB, -152.8◦ 66.8dB, -161.9◦ 67.2dB, -157.1◦

(0,0,-2) 72.8dB, -60.7◦ 72.8dB, -69.8◦ 73.2dB, -64.7◦
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The program AEBEMA T also shows results from a sphere scattering a point source

where in the first case the potential on the sphere is assigned the incident potential in

a Dirichlet condition, so that the sphere is effectively invisible. In the second case the

sphere represents a rigid (non-vibrating) acoustically hard scatterer. An application

similar to these examples is given in the next Section.

5.6.3 Program AEBEMA T

The main program AEBEMA T tests module AEBEMA. In AEBEMA T the acoustic

domain is exterior to a sphere of unit radius. The surface is represented by eighteen

truncated conical elements, as described in Section 2.4. The acoustic medium is air

at 20 celcius (c=344m/s). Full results are given in file AEBEMA.OUT.

Fig 5.2. Radiation ratio curve for pulsating sphere (— exact, ⋄ computed).

In each test problem the frequency ranges from 10 Hz to 1000Hz in 10 Hz steps.

The purpose of the first test problem is to plot the radiation ratio of a pulsating
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sphere. In the test problem the surface velocity is prescribed the value of unity on

each element. Note that the radiation ratio refers to the shape of the boundary

condition, the amplitude is arbitrary. The results from the test are directed to the

file AEBEMA.OUT. The exact radiation ratio for a sphere of radius unity, pulsating

at wavenumber k is k2

k2+1
. A comparison of the computed and exact radiation ratios

are given in Figure 5.2.

Results for an oscillating sphere, that is the sphere vibrating up and down without

changing volume, are given in Figure 5.3. These results can be obtained from a test

problem similar to AEBEMA by setting the same Neumann surface condition but with

SFVAL(ITEST,ISP)=SELCNT(ISP,2). The exact radiation ratio of an oscillating sphere

is k4

4+k4 .

Fig 5.3. Radiation ratio curve for oscillating sphere (— exact, ⋄ computed).
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5.7 Application: Engine Noise Analysis

A computational prediction of the acoustic properties of an engine design can be

useful. It enables the engineer to analyse the noise output of an engine at the early

design stage and hence make the necessary adjustments. This Section is on the

prediction of the noise output from an engine block. In order to do this the engine is

modelled as an arbitrary three-dimensional vibrating surface radiating into free-space.

From the theoretical point of view, the BEM can closely represent the the physical

situation of the engine in free-space or in an anechoic chamber. In order to apply the

method, the surface of the block must be simplified so some of the surface details need

to be omitted. The boundary element method in this application has been considered

by a number of researchers, for example references [52], [76].

For this type of problem subroutine AEBEM3 is most suitable. However, the results

presented in this Section were obtained using a prototype program that uses similar

elements and method but preceded AEBEM3 by a number of years. The work of this

Section was originally published in reference [45] and the reader is advised to consult

that paper if further details are required.

5.7.1 Details

The velocity distribution (at each frequency) on the surface, required for the input of

the Neumann boundary condition, is determined through using accelerometers fitted

at a set number of points over the surface. In order to apply the boundary element

method the surface is simplified and represented by around 550 planar triangular el-

ements with the vertices of the triangles generally being at the accelerometer points.

On each boundary element the surface velocity is determined by averaging the val-

ues of the surface velocity at the three vertices. At vertices where there was no

accelerometer reading the velocity was prescribed a zero value.

5.7.2 Results

The sound power was computed at a range of frequencies from 400Hz to 2400Hz.

The results of this are compared with measured results in Figure 5.4. The measured

results are found by integrating the readings from a microphone array; a method based

on equation (1.22). The boundary element mesh of the rig, showing the computed

surface intensity pattern at 1120Hz, is shown on the cover of this textbook. The



104 The BEM in Acoustics by Stephen Kirkup

colours range from deep blue on the areas of low intensity through green, yellow,

orange red and to purple on the areas of high intensity. Only the middle-left cylinder

was excited in the test and this is reflected in the results.

Fig 5.4. Comparison between computed and measured sound powers.

5.8 Conclusion

Table 5.A shows the results from computing the potentials exterior to a square. The

results from Table 5.B show similar results for the exterior to a sphere. The noticeably

less-accurate results in Table 5.B can be attributed to the crude approximation that

is made to the sphere. In Table 5.C, the results of Table 5.B are repeated but the

sound pressures are given in terms of decibels and phases. This demonstrates another

important way of interpreting the results from the subroutines and also shows that

often the numerical error appears far less significant when it is viewed in decibel units.

In the final test problem the important acoustic property of the radiation ratio is

considered. In Figures 5.1 and 5.2 the computed versus exact radiation ratios for

pulsating and oscillating spheres across a wide wavenumber range are given where
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the acoustic field is taken to be axisymmetric. The results show some numerical drift

from the exact solution with increasing wavenumber. As a general rule, the accuracy

of the BEM solution of acoustic problems slowly deteriorates with frequency if the

same boundary element mesh is used throughout. It may often be necessary to use

finer meshes at higher wavenumbers.

In the introduction to the Chapter, a history of the difficulties in employing the

boundary element method successfully to exterior problems was outlined. However,

the test problems in Section 5.6 and the application in Section 5.7 show that the

improved formulations provide the foundation for methods that are robust throughout

the frequency range; the methods do not show the wild errors that have been reported

in the solution by the elementary methods of Section 5.1.

The Schenck or CHIEF method of Section 5.2 is currently the most popular in the

solution of exterior acoustic problems. However it is the author’s view that the

method, however implemented, will tend to degrade at higher wavenumbers, although

the point at which this happens is often beyond the range of wavenumbers of interest

in practice. Basing the boundary element method on the improved formulations of

Burton and Miller [15] (direct) and Brackage and Werner [12], Leis [57], Panich [66]

and Kussmaul [54] (indirect) is the most suitable for the numerical solution of exterior

acoustic problems.
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.



Chapter 6

Interior Modal Analysis

In this Chapter it is shown how the boundary element method can be used to obtain

the resonant frequencies and the mode shapes of an enclosed homogeneous isotropic

fluid; the computational solution of the interior Helmholtz eigenvalue problem. The

problem is that of finding the values of the wavenumber k and a non-trivial scalar

function ϕ such that the Helmholtz equation

∇2ϕ(p) + k2ϕ(p) = 0 (p ∈ D) (6.1)

is satisfied in an interior domain D with boundary S and subject to a homogeneous

boundary condition of the form

α(p)ϕ(p) + β(p)
∂ϕ(p)

∂np

= 0 (p ∈ S) (6.2)

where α(p) and β(p) are known complex-valued functions of p(∈ S) and np is the unit

outward normal to the boundary at p. The non-trivial solutions k = k∗ and ϕ(p) =

ϕ∗(p) (p ∈ D ∪ S) are termed the characteristic wavenumbers and eigenfunctions

and they are dependent on the boundary S and the boundary functions α(p) and

β(p). The characteristic wavenumbers are all real numbers and they correspond to

the resonant frequencies of the enclosed fluid. The eigenfunctions are equivalent to

the mode shapes.

The Helmholtz eigenvalue problem is amenable to solution via finite element or finite

difference methods. In these cases, the problem reduces to that of solving a generalised

linear eigenvalue problem of the form

(K − k2M)x = 0 (6.3)

where the matrices K and M (termed the stiffness and mass matrices) in (6.3) are

sparse and structured and are independent of k. Standard computational algorithms

107
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are available for solving generalised linear eigenvalue problems. Indeed special tech-

niques (such as iterative methods) are available for solving the general problem (6.3),

given the special structure of the matrices and the fact that only a fraction of the

full set of eigenvalues are generally required [69]. Hence eigenfrequency analysis of

the Helmholtz problem via the finite element or finite difference method is straight-

forward.

In cases where it is applicable, it is well known that the boundary element method

has an important advantage over the finite element and finite difference methods: the

partial differential equation governing the domain is reduced to an integral equation

relating values of ϕ and ∂ϕ
∂n

on the boundary only. Hence the dimension of the problem

is effectively reduced by one. However, the application of the boundary element

method reduces the Helmholtz eigenvalue problem to that of solving an eigenproblem

of the form

Akµ = 0 (6.4)

where the matrix Ak is generally full, having no particular structure but with each

component being a continuously differentiable complex-valued function of k.

Because of the main advantage of the boundary element method over finite element

and finite difference methods stated earlier, the matrix in (6.4) is generally much

smaller than the matrices in (6.3), for any given modal analysis problem and a given

level of required accuracy. The disadvantages of this approach are that the eigenvalue

problem (6.4) is non-linear and the components of the Ak matrix are defined in terms

of integrals and hence may be costly to evaluate. The solution of non-linear eigenvalue

problems are considered in references [55], [73] and [84]. Unfortunately, standard

algorithms for solving non-linear eigenvalue problems are not generally available.

The problem of solving the Helmholtz eigenvalue problem via boundary element-type

methods have been given some consideration by researchers. For example iterative

methods such as the secant method are applied to the problem of finding the roots

of the equation det(Ak) = 0 in references [81], [27] and [1]. However, this is not a

satisfactory method when the matrix Ak is large [84]. A similar method, based on

finding the values of k for which the smallest eigenvalues of Ak is zero is considered

in [58]. Unfortunately, these methods are unwieldy since they do not compute the

solutions simultaneously; they require a starting point to be chosen for each required

eigenfrequency.

In reference [8] a hybrid of the boundary element and finite element method is in-

troduced. The method seems to have the advantage of the finite element method in

that a linear eigenvalue problem results and the advantage of the boundary element



www.boundary-element-method.com 109

method in that a solution on the boundary only is sought in the main computation.

The method is considered further in references [24], [2].

In general, both eigenfrequencies and eigenfunctions of the Helmholtz problem will

be of interest The method considered in this Chapter was introduced in Kirkup and

Amini [46]. The method involves approximating each component of the matrix Ak

by a polynomial in k in some given sub-range of the full wavenumber range. This

allows us to re-write the non-linear eigenvalue problem (6.4) in the form of a standard

generalised eigenvalue problem. Thus all of the eigenvalues in the sub-range are

computed simultaneously.

6.1 Formulations of the Eigenvalue Problem

The integral equation formulations of the interior Helmholtz equation were given in

Section 4.1. The distinction here is that the boundary condition (6.2) is homogeneous

and the characteristic wavenumbers k∗ and the eigenfunctions ϕ∗ are sought, rather

than the solution of a boundary-value problem.

6.1.1 Indirect Formulation

An indirect formulation of the interior Helmholtz problem is derived by writing ϕ as

a single-layer potential, as first shown in Section 4.1. The following equations result:

ϕ(p) = {Lkσ}S(p) (p ∈ D ∪ S), (6.5)

v(p) = {M t
kσ}S(p;np) +

1

2
σ(p) (p ∈ S), (6.6)

where σ is a source density function defined on S, (termed σ0 in Section 4.1). Also

v(p) = ∂ϕ(p)
∂np

and np is the unit outward normal to the boundary at p.

The indirect formulations for the Dirichlet and Neumann eigenproblems are as follows:

{Lkµ}S(p) = 0 (p ∈ S) , for the Dirichlet boundary condition and

{(M t
k +

1

2
I)µ}S(p;np) (p ∈ S) for the Neumann boundary condition.

For the Helmholtz eigenvalue problem with the general boundary condition (6.2) the

integral equation formulation is as follows:

α(p){Lkµ}S(p) + β(p){(M t
k +

1

2
I)µ}S(p) = 0 (p ∈ S) (6.7)
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which arises through the substitution of (6.5) and (6.6) into (6.2) where σ has been

replaced by µ in (6.5)-(6.6).

The general solution strategy is to find the solutions k∗, µ∗ of the relevant integral

equation defined on S. Each of these may then be substituted into equation (6.5) to

obtain the solution at the domain points.

6.1.2 Direct Formulation

As in Section 4.1, the direct formulation is obtained through the application of Green’s

second theorem to the Helmholtz equation and can be presented as follows:

{Mkϕ}S(p) + ϕ(p) = {Lkv}S(p) (p ∈ D) , (6.8)

{Mkϕ}S(p) +
1

2
ϕ(p) = {Lkv}S(p) (p ∈ S) . (6.9)

The direct formulation for the Dirichlet and Neumann eigenproblems are as follows:

{Lkµ}S(p) = 0 (p ∈ S) for the Dirichlet boundary condition,

{(Mk +
1

2
I)µ}S(p) = 0 (p ∈ S) for the Neumann boundary condition,

where ϕ has been replaced by µ in (6.8)-(6.9).

For the more general Robin condition (6.2) the eigenproblem cannot be written so

concisely; it is the solution of (6.9) subject to the boundary condition (6.2).

6.2 Application of Collocation

By approximating the operators in the boundary integral equations in the way de-

scribed in Section 3.3, they can each be reduced to an eigenvalue problem of the

form (6.4). The first step is to approximate the boundary S by a set of n panels

S̃ =
∑n

j=1 ∆S̃j, as described in Chapter 2. The integral operators are approximated

by the technique outlined in Chapter 3.

6.2.1 Indirect Method

For example the application of collocation to indirect integral equations gives an

eigenvalue problem of the form (6.7) with Ak = Lk for the Dirichlet boundary condi-

tion and Ak = Mt
k + 1

2
I for the Neumann boundary condition. For the more general
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Robin condition (6.2) the eigenvalue problem is of the form (6.4) with

Ak = DαLk + Dβ(Mt
k +

1

2
I)

where the matrices Lk and Mk are as defined by the techniques employed in Section

1.1 and Chapter 3, Dα, Dβ are diagonal matrices with [Dα]ii = α(pi), [Dβ]ii = β(pi)

and the pi are the collocation points.

6.2.2 Direct Method

For the Dirichlet boundary condition the discrete equivalent is identical to that of

the indirect method stated earlier; Ak = Lk. For the Neumann problem and Ak =

Mk + 1
2
I. For the more general Robin condition (6.2) the eigenvalue problem cannot

be straightforwardly put in the form (6.4). It can be written in the form

(Mk +
1

2
I)ϕ = Lkv (6.10)

with

Dαϕ+ Dβv = 0 . (6.11)

After rearrangement, these equations can take the form (6.4).

6.3 Solution of the Non-linear Eigenvalue Problem

The discrete eigenvalue problems are each of the form (6.4). The method employed

for solving the general problem (6.4) requires that in an interval [kA, kB] of values of

k the matrix Ak is approximated by a matrix polynomial in k

Ak ≈ A[0] + kA[1] + ...+ kmA[m] for k real. (6.12)

The non-linear eigenvalue problem (6.4) can be replaced with the following eigenvalue

problem:

[A[0] + kA[1] + ...+ kmA[m]]µ = 0. (6.13)

The solutions of (6.13) are the same as those of the following generalised linear eigen-

value problem:
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= k
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Equation (6.14) is amenable to solution by the QZ algorithm [61], which is available

on a number of numerical libraries. Methods for solving problems of the form (6.13)

are considered in references [67], [55], [28] and [84].

Since the eigenvalues k∗ of the underlying Helmholtz problem are all real and we are

interested only in positive values, it is sufficient to compute the interpolant (6.12) for

the positive real numbers k. However, as a result of numerical error, the computed

wavenumber and mode shape will have small imaginary parts.

The generalised eigenvalue problem (6.14) will generally have m×n solutions. Half of

these can be immediately discounted since the eigenvalues occur in pairs k̂, −k̂. The

full set of solutions will contain approximations to the true eigenvalues of the under-

lying Helmholtz problem. However, many spurious solutions are generally produced

as a result of the collocation method and approximation (6.12). These spurious eigen-

values do not have small imaginary parts and hence they can be sorted from the true

eigenvalues. Approximations to the true eigenvalues lying outside the range [kA, kB]

may also be produced. These approximations will generally be poor and they can be

excluded from the results.

Let k̂, µ̂ be a typical non-spurious solution to (6.14). The eigenvalue k̂ is an approx-

imation to the eigenfrequencies k∗ of the Helmholtz problem. The approximation to

the eigenfunctions in D ∪S can be recovered through the substitution of the approx-

imation µ̂ for σ in equation (6.5) or µ̂ for ϕ (Dirichlet) or ∂ϕ
∂n

(Neumann) in equations

(6.8)-(6.9).

6.4 Subroutines MBEM2, MBEM3 and MBEMA

In this Section the subroutines MBEM2, MBEM3 and MBEMA are introduced. The

purpose of the subroutines is to solve the interior acoustic modal analysis problem.

Each subroutine’s parameter list has the following general form:

SUBROUTINE MBEM{2 or 3 or A(}
real wavenumber,

description of boundary and set of interior solution points,
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homogeneous boundary condition,

validation parameters,

characteristic wavenumbers and their corresponding mode shape at boundary points and

at interior solution points (solution),

working space )

The subroutines require input a geometrical description of the boundary of the domain

(as covered in Chapter 2) and a list of the points in the interior (from which the values

of the ϕ at those points allow us to construct the mode shapes), the homogeneous

boundary condition, the subroutine returns the characteristic wavenumbers and their

corresponding mode shape at boundary points and at interior solution points. The

use of the subroutines are demonstrated by the programs MBEM2 T, MBEM3 T and

MBEMA T in the next Section.

6.4.1 Solution Strategy of the MBEM* routines

In the MBEM* routines the interior Helmholtz eigenvalue problem is solved by the di-

rect boundary element method. The discrete homogeneous boundary condition (6.11)

is used to rearrange the system of equations (6.10). This results in the generalised

eigenvalue problem of the form (6.4) which is solved by the method described in

section 6.3.

In the subroutines MBEM2, MBEM3 and MBEMA, the technique employed for deriv-

ing the polynomial approximation (6.12) involves computing Ak at the m+ 1 Cheby-

shev (∞ norm) interpolation points for any selected wavenumber range [kA, kB]. The

coefficient matrices A[0], A[1], ..., A[m] in (6.12) are obtained through Newton’s divided

differences using the value of Ak at the selected values of k in [kA, kB].

6.4.2 Subroutine MBEM2

Subroutine MBEM2 computes the modal solutions of the two-dimensional Helmholtz

equation in the domain interior to a closed boundary and in a predetermined frequency

range. The boundary (S) is approximated by a set of straight line elements.

C SUBROUTINE MBEM2(KA,KB,MAXNK,NK,

C * MAXNEIG,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,



114 The BEM in Acoustics by Stephen Kirkup

C * SALPHA,SBETA,

C * LVALID,EGEOM,

C * NEIG,EIGVAL,SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,WKSPC5,WKSPC6,WKSPC7,

C * WKSP00,WKSP01,WKSP02,WKSP03,WKSP04,WKSP05,

C * WKSP06,WKSP07,WKSP08,WKSP09,WKSP10,WKSP11,

C * WKSP12)

C Wavenumber interpolation information (input)

C Lower limit of k-range

C REAL*8 KA

C Upper limit of k-range

C REAL*8 KB

C Limit on the number of interpolation points in the k-range

C INTEGER MAXNK

C Number of interpolation points in the k-range

C INTEGER NK

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2) are the x,y coordinates of the i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.



www.boundary-element-method.com 115

C real PINT(MAXNPI,2). The coordinates of the interior point.

C PINT(i,1),PINT(i,2) are the x,y coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = 0) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.

C Validation and control parameters (input)

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C Solution (output)

C integer NEIG: The number of eigenvalues.

C complex EIGVAL(MAXNEIG): The eigenvalues.

C complex SPHI(MAXNEIG,MAXNSE): The velocity potential ({\phi}) at

C the centres of the boundary elements.

C complex SVEL(MAXNEIG,MAXNSE): The velocity (v or d{\phi}/dn

C where n is the outward normal to the boundary) at the centres of the

C boundary elements.

C complex PIPHI(MAXNEIG,MAXNPI): The velocity potential ({\phi}) at

C the interior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNSE,MAXNSE)

C logical WKSPC4(MAXNSE)

C complex WKSP00((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP01((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP02((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP03((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP04((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP05((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)
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C real WKSP06((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP07((MAXNK-1)*MAXNSE)

C real WKSP08((MAXNK-1)*MAXNSE)

C real WKSP09(MAXNK)

C integer WKSP10((MAXNK-1)*MAXNSE)

C complex WKSP11((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP12((MAXNK-1)*MAXNSE)

The subroutine parameters that specify the interior two-dimensional Helmholtz prob-

lem must be set up in the main program. Let this be called MAIN.FOR. The following

files must be linked together to construct the complete program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEM2.FOR,

H2LC.FOR, the file for computing the discrete operators - see Chapter 3,

FNHANK.FOR, the Hankel function - see Appendix 5,

INTEIG.FOR, the file for computing the solution to a linear system - see Appendix 4,

GEOM2D.FOR, the file for 2D geometry - see Appendix 6.

6.4.3 Subroutine MBEM3

Subroutine MBEM3 computes the modal solutions of the three-dimensional Helmholtz

equation in the domain interior to a closed surface and in a predetermined frequency

range. The boundary (S) is approximated by a set of planar triangular elements.

C SUBROUTINE MBEM3(KA,KB,MAXNK,NK,

C * MAXNEIG,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,

C * SALPHA,SBETA,

C * LVALID,EGEOM,

C * NEIG,EIGVAL,SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,WKSPC5,WKSPC6,WKSPC7,

C * WKSP00,WKSP01,WKSP02,WKSP03,WKSP04,WKSP05,

C * WKSP06,WKSP07,WKSP08,WKSP09,WKSP10,WKSP11,

C * WKSP12)

C Wavenumber interpolation information (input)
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C Lower limit of k-range

C REAL*8 KA

C Upper limit of k-range

C REAL*8 KB

C Limit on the number of interpolation points in the k-range

C INTEGER MAXNK

C Number of interpolation points in the k-range

C INTEGER NK

C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,3): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2),VERTEX(i,3) are the x,y,z coordinates of the i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,3): The indices of the three vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2),VERTEX(SELV(i,1),3)),

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2),VERTEX(SELV(i,2),3)) and

C (VERTEX(SELV(i,3),1),VERTEX(SELV(i,3),2),VERTEX(SELV(i,3),3)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.

C real PINT(MAXNPI,3). The coordinates of the interior point.

C PINT(i,1),PINT(i,2),PINT(i,3) are the x,y coordinates of the i-th

C point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = 0) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.
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C Validation and control parameters (input)

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C Solution (output)

C integer NEIG: The number of eigenvalues.

C complex EIGVAL(MAXNEIG): The eigenvalues.

C complex SPHI(MAXNEIG,MAXNSE): The velocity potential ({\phi}) at

C the centres of the boundary elements.

C complex SVEL(MAXNEIG,MAXNSE): The velocity (v or d{\phi}/dn

C where n is the outward normal to the boundary) at the centres of the

C boundary elements.

C complex PIPHI(MAXNEIG,MAXNPI): The velocity potential ({\phi}) at

C the interior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNSE,MAXNSE)

C logical WKSPC4(MAXNSE)

C complex WKSP00((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP01((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP02((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP03((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP04((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP05((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP06((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP07((MAXNK-1)*MAXNSE)

C real WKSP08((MAXNK-1)*MAXNSE)

C real WKSP09(MAXNK)

C integer WKSP10((MAXNK-1)*MAXNSE)

C complex WKSP11((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP12((MAXNK-1)*MAXNSE)
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The subroutine parameters that specify the exterior three-dimensional Helmholtz

problem must be set up in the main program. Let this be called MAIN.FOR. The

following files must be linked together to construct the complete program:

MAIN.FOR (and files containing any user-defined sub-programs),

AEBEM3.FOR,

H3LC.FOR, the file for computing the discrete operators - see Chapter 3,

INTEIG.FOR, the file for computing the solution to a linear system - see Appendix 4,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.

6.4.4 Subroutine MBEMA

Subroutine MBEMA computes the modal solutions of the axisymmetric three-dimensional

Helmholtz equation in the domain interior to a closed surface and in a predetermined

frequency range. The boundary (S) is approximated by a set of conical elements.

C SUBROUTINE MBEMA(KA,KB,MAXNK,NK,

C * MAXNEIG,

C * MAXNV,NV,VERTEX,MAXNSE,NSE,SELV,

C * MAXNPI,NPI,PINT,

C * SALPHA,SBETA,

C * LVALID,EGEOM,

C * NEIG,EIGVAL,SPHI,SVEL,PIPHI,

C * WKSPC1,WKSPC2,WKSPC3,WKSPC4,WKSPC5,WKSPC6,WKSPC7,

C * WKSP00,WKSP01,WKSP02,WKSP03,WKSP04,WKSP05,

C * WKSP06,WKSP07,WKSP08,WKSP09,WKSP10,WKSP11,

C * WKSP12)

C Wavenumber interpolation information (input)

C Lower limit of k-range

C REAL*8 KA

C Upper limit of k-range

C REAL*8 KB

C Limit on the number of interpolation points in the k-range

C INTEGER MAXNK

C Number of interpolation points in the k-range

C INTEGER NK
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C Geometry of the boundary S (input)

C integer MAXNV: The limit on the number of vertices of the polygon

C that defines (approximates) S. MAXNV>=3.

C integer NV: The number of vertices on S. 3<=NV<=MAXNV.

C real VERTEX(MAXNV,2): The coordinates of the vertices. VERTEX(i,1),

C VERTEX(i,2) are the x,y coordinates of the i-th vertex.

C integer MAXNSE: The limit on the number of elements describing S.

C MAXNSE>=3.

C integer NSE: The number of elements describing S. 3<=NSE<=MAXNSE.

C integer SELV(MAXNSE,2): The indices of the two vertices defining

C each element. The i-th element have vertices

C (VERTEX(SELV(i,1),1),VERTEX(SELV(i,1),2)) and

C (VERTEX(SELV(i,2),1),VERTEX(SELV(i,2),2)).

C Interior points at which the solution is to be observed (input)

C integer MAXNPI: Limit on the number of points interior to the

C boundary. MAXNPI>=1.

C integer NPI: The number of interior points. 0<=NPI<=MAXNPI.

C real PINT(MAXNPI,2). The coordinates of the interior point.

C PINT(i,1),PINT(i,2) are the x,y coordinates of the i-th point.

C The boundary condition ({\alpha} {\phi} + {\beta} v = 0) (input)

C complex SALPHA(MAXNSE): The values of {\alpha} at the centres

C of the elements.

C complex SBETA(MAXNSE): The values of {\beta} at the centres

C of the elements.

C Validation and control parameters (input)

C logical LVALID: A switch to enable the choice of checking of

C subroutine parameters.

C real EGEOM: The maximum absolute error in the parameters that

C describe the geometry.

C Solution (output)

C integer NEIG: The number of eigenvalues.

C complex EIGVAL(MAXNEIG): The eigenvalues.

C complex SPHI(MAXNEIG,MAXNSE): The velocity potential ({\phi}) at
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C the centres of the boundary elements.

C complex SVEL(MAXNEIG,MAXNSE): The velocity (v or d{\phi}/dn

C where n is the outward normal to the boundary) at the centres of the

C boundary elements.

C complex PIPHI(MAXNEIG,MAXNPI): The velocity potential ({\phi}) at

C the interior points.

C Working space

C complex WKSPC1(MAXNSE,MAXNSE)

C complex WKSPC2(MAXNSE,MAXNSE)

C complex WKSPC3(MAXNSE,MAXNSE)

C logical WKSPC4(MAXNSE)

C complex WKSP00((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP01((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP02((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP03((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP04((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP05((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP06((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C real WKSP07((MAXNK-1)*MAXNSE)

C real WKSP08((MAXNK-1)*MAXNSE)

C real WKSP09(MAXNK)

C integer WKSP10((MAXNK-1)*MAXNSE)

C complex WKSP11((MAXNK-1)*MAXNSE,(MAXNK-1)*MAXNSE)

C complex WKSP12((MAXNK-1)*MAXNSE)

The subroutine parameters that specify the exterior three-dimensional axisymmet-

ric Helmholtz problem must be set up in the main program. Let this be called

MAIN.FOR. The following files must be linked together to construct the complete

program:

MAIN.FOR (and files containing any user-defined sub-programs),

AIBEMA.FOR,

H3ALC.FOR, the file for computing the discrete operators - see Chapter 3,

INTEIG.FOR, the file for computing the solution to a linear system - see Appendix 4,

GEOM2D.FOR, the file for 2D geometry - see Appendix 6,

GEOM3D.FOR, the file for 3D geometry - see Appendix 6.
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6.5 Test problems

In this Section the subroutines MBEM2, MBEM3 and MBEMA are demontrated

through invoking them from a main program and comparing the results with an-

alytic solutions. The corresponding main programs are MBEM2 T, MBEM3 T and

MBEMA T.

6.5.1 Program MBEM2 T

The main program MBEM2 T tests module MBEM2, the subroutine for computing

the resonant frequencies and mode shapes of an enclosed fluid in two dimensions.

In MBEM2 T the domain is the interior of a square of side 0.1m with the boundary

represented by 32 elements. The representation of the boundary is described fully in

Section 2.2 by the data structures VERTEX and SELV, see Tables 2.A and 2.B. Full

results are given in file MBEM2.OUT.

The acoustic medium is air at 20 celcius and 1 atmosphere so that the speed of sound c

is 344m/s. The program MBEM2 T contains three test problems. In the first test the

mode(s) of the pure Neumann problem is sought in the frequency range [40Hz,60Hz]

with NK=3 (quadratic interpolation) whereas in the second test the same modes are

sought in the range [40Hz,50Hz] with NK=4 (cubic interpolation). The mode exists

in both of these frequency ranges and satisfies both the Helmholtz equation and

the homogeneous boundary condition is of the form ϕ(p) = sin(10πp1) sin(10πp2)

with the corresponding resonant wavenumber of 10
√

2π which equals 44.4288 (Hz)

to four decimal places. In the first test the resonant frequency is approximated by

44.2092 whereas in the second test problem the resonant frequency is approximated by

44.4804. In general the shorter the wavenumber range the more accurate the results

are (up to a point) and this is confirmed by these examples.

In the third test problem the square is assigned the Dirichlet condition on two adjacent

sides and a Neumann condition on the other two adjacent sides. Under these con-

ditions the first mode is of the form ϕ∗(p) = sin(5πp1) sin(5πp2) with corresponding

resonant wavenumber 5
√

2π which equals 22.2144 to four decimal places. In the test

the solution is sought in the wavenumber range [20Hz,30Hz] and the approximation

to the wavenumber is 22.2316. The exact and computed values of the mode shape

at five points in the interior are listed in Table 6.A. Note that the modal analysis

programs assign the value ϕ = 1 to the maximum value of ϕ at the selected interior

points hence in this case the exact solution is ϕ∗(p) = sin(5πp1) sin(5πp2)/0.83553.
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Table 6.A: Results from MBEM2 T

point exact solution numerical solution

(0.025,0.025) 0.1716 0.1729 + i0.0028

(0.025,0.075) 0.4142 0.4138 + i0.0017

(0.075,0.025) 0.4142 0.4138 + i0.0017

(0.075,0.075) 1.0000 1.0000 + i0.0000

(0.05,0.05) 0.5858 0.5862 + i0.0018

6.5.2 Program MBEM3 T

The main program MBEM3 T tests module MBEM3, the subroutine for computing

the resonant frequencies and mode shapes of an enclosed fluid in three dimensions.

In MBEM3 T the domain is the interior of a sphere of side 1m with the boundary

represented by 36 elements. The representation of the boundary is described fully in

Section 2.3 by the data structures VERTEX and SELV, see Tables 2.C and 2.D. Full

results are given in file MBEM3.OUT.

The program MBEM3 T contains two test problems. In the first test the mode(s) of

the pure Dirichlet problem is sought in the wavenumber range [3,4] with NK=4. The

approximation to the characteristic wavenumber π is 3.5567. This is equivalent to

194.7 Hz in the acoustic medium of air.

In the second test the Neumann mode is sought in the range [2,3]. The program

returns three results 2.4068, 2.4071 and 2.3163. However, these are all approximations

to the same characteristic wavenumber of 2.0816. The approximation occurs three

times because this is a repeated eigenvalue.

The results show that the approximate wavenumber is significantly greater than the

exact wavenumber in both cases. This can be explained simply by observing that the

effect of the boundary approximation is to significantly lessen the size of the sphere

and the larger eigenvalues reflect this.

6.5.3 Program MBEMA T

The main program MBEMA T tests module MBEMA, the subroutine for computing

the resonant frequencies and mode shapes of an enclosed fluid in three dimensions.

In MBEMA T the domain is the interior of a sphere of side 1m with the boundary

represented by 16 truncated conical elements. The representation of the boundary is

described fully in Section 2.4 by the data structures VERTEX and SELV, see Tables
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2.E and 2.F. Full results are given in file MBEMA.OUT.

In the first test problem the Dirichlet modes are sought in the range [3,5] with NK=2

(linear interpolation). The approximations 3.138 and 4.512 are found to the exact

solutions of 3.142 and 4.493. In the acoustic medium of water the approximate eigen-

frequencies are 761Hz and 1094Hz.

In the second test problem the Neumann modes are sought in the range [2,4] with

NK=4 (cubic interpolation). The approximations 2.089 and 3.360 are found to the

exact solutions of 2.082 and 3.342.

6.6 Application: Loudspeaker Enclosure

In this Section a modal analysis of the air-tight interior of a test axially symmet-

ric loudspeaker is carried out via the boundary element method using subroutine

MBEMA. Some of the results are compared with results from physical experiment.

For further details on this application and the results obtained the reader is referred

to [48].

6.6.1 Background

The effect of the fluid-loading of the air on the cone is of some interest to loudspeaker

designers. The coupling of air external to the loudspeaker to the motion of the cone

is considered experimentally in Jones [35], wherein the difference between the forced

vibration of a cone in air and its vibration in a vacuum is found to be negligible.

However, it is expected that the presence of the air inside the cabinet can have a

significant effect on the vibration of the cone due to the relatively small, enclosed

volume occupied by the air.

The greatest effect of air loading on the vibration of the cone occurs when there

are large changes in pressure over the surface of the cone. The maximum change in

pressure will be at acoustic resonant frequencies and therefore the corresponding mode

shapes are studied. By applying the methods to an axisymmetric loudspeaker, the

acoustic properties may be examined whilst reducing the dimension of the problem

by one and thus reducing the computational expense when compared to the full

three-dimensional analysis that is necessary for a general loudspeaker design. In

addition, considerable previous work has been done on the structural vibration of

axially symmetric loudspeaker drive units (see Jones [35] and Jones and Henwood
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[36], for example). In this work we show results for the cabinet shown in Figure 6.1,

which is basically a cylinder 120mm deep and 132mm in diameter. The loudspeaker

has a conical drive unit of radius 80mm fitted. Given these dimensions, the lowest

cabinet resonance occurs around 1kHz, and the cabinet resonances can be observed

in sound pressure measurements outside the cabinet.

Fig. 6.1. Diagram of the axisymmetric cabinet.
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6.6.2 Particular implementations of computational method

and Measurements

For the application of the boundary element method the boundary of the generator

of the loudspeaker is approximated by 32 conical elements of approximately equal

length along the generator, as shown in Figure 6.1. Solutions were sought in the k-

ranges [0.0,5.0], [5.0,10.0], [10.0,15.0] and so on. In each range quadratic interpolation

was applied (NK=3). The approximations to the mode shapes are then obtained at

around 100 points in the interior.

For the measurement of the resonant frequencies, microphone readings of the sound

pressure were taken at various positions within the cabinet. Measurements were made

through all frequencies of interest, commencing at 20Hz and going through to 20kHz.

The peaks in the response inform us of the internal resonant frequencies.

6.6.3 Results

Firstly the five lowest resonant frequencies obtained through the boundary element

methods and the results obtained by measurement are compared in Table 6.B.

Table 6.B: Computed and measured loudspeaker resonant frequencies

Mode Boundary Element Experimental

1 1414 Hz 1318 Hz

2 1590 Hz 1679 Hz

3 2232 Hz 2133 Hz

4 2815 Hz 2691 Hz

5 2876 Hz 3306 Hz

The major contribution to the discrepancy between the measured and calculated

values is believed to be the simplicity of the model chosen, which fails to include any

internal structure to the loudspeaker. In addition, the maximum pressure occurs at

slightly different frequencies for different microphone positions.

Figure 6.2 shows the third and fifth mode shapes obtained via the boundary element

method. The mode shapes are constructed from the returned values of ϕ∗ in the

domain. The values on the contours are arbitrary.
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Fig 6.2(a). The third mode shape of the loudspeaker cabinet.

Fig 6.2(b). The fifth mode shape of the loudspeaker cabinet.



128 The BEM in Acoustics by Stephen Kirkup

6.7 Conclusion

It may seem unnecessary to develop the boundary element method for the solution

of interior acoustic modal analysis or the interior boundary value problem since such

problems can satisfactorily solved by the more traditional finite element method.

Furthermore, no claim is being made that the BEM is generally more efficient than

the finite element method in these applications, although in some cases it is easier to

apply since only the boundary requires discretisation. However, in software libraries

for solving acoustic problems based on the boundary element method, such as the one

that accompanies this text, it would be anomalous not to provide a method for solving

the modal analysis poblem. Besides, the underlying technique has been applied to

the modal analysis of structures in contact with fluids in Kirkup and Amini [41] -

such problems can be difficult to solve by other methods.

Underlying the solution of the modal analysis problem by the BEM is a method

for solving a non-linear eigenvalue problem. The method that is derived through

frequency interpolation of the matrix described in Section 6.3 is a flexible and con-

sistent method for the modal analysis of the interior acoustic problem. However, it

may be possible to develop more efficient methods than the QZ algorithm for solving

the eigenvalue problem (6.12).

The subroutines described in this Section are flexible in that the wavenumber range

over which the resonant frequencies are sought and the number of interpolation points

within that range are parameters. In general the sequence of resonant frequencies can

be obtained by stepping through the full wavenumber range covering a fixed subinter-

val at each stage. Ideally users need to determine the wavenumber interval and the

number of interpolation points used in each interval to obtain satisfactory solutions

with minimum processing time. It is beneficial for users to gain some experience with

the methods before using them in practical situations.

The results from the test problems show that the boundary element method can be

confidently applied to the modal analysis problem. The comparison of numerical and

experimental results in the application of the methods to the loudspeaker enclosure

show that the BEM is able to extract the resonant frequencies and mode shapes of

an enclosure in a practical application. The mode shapes shown in the figures are

comparable with those obtained by the finite element method, see Kirkup and Jones

[48].
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