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Foreword. The usual way to deal with the so-called shoch phenomenon in compress-
ible fluids is the following. On the one hand there is the fact that in many cases of observ-
able flow there exist narrow zones across which pressure, density and velocity undergo
rapid changes. On the other hand, it is well-known that the differential equations of
inviscid perfect fluids fail to supply solutions satisfying certain boundary conditions that
can be realized physically. One therefore makes the assumption that these differential
equations are valid in regions of the (x, y, z, t) space which are separated from each other
by discontinuity surfaces whose shape is a priori unknown. From physically plausible
hypotheses one then derives necessary conditions for the values assumed by the physical
variables on either side of the discontinuity surfaces. Such conditions were first given by
Riemann, and later modified by Rankine and Hugoniot. It is finally assumed—-and con-
firmed at least in special cases—that the differential equations combined with these
transition conditions are sufficient to determine both the discontinuity surfaces them-
selves and the continuous flows in the regions between them (see [4], pp. 116-118, 134-
138).

A different approach, as suggested by R. von Mises to the author, is followed in the
present paper. The sole basis is formed by the system of partial differential equations
(Navier-Stokes equations) which govern the motion of a viscous, heat-conducting,
compressible fluid. No additional assumptions of any kind are introduced. It is proved
that the integrals of these equations include a class of solutions of the boundary layer
type; that is to say, solutions which asymptotically converge (with vanishing viscosity)
towards flow patterns entirely different from those which are obtained when from the
start viscosity is neglected. For a small viscosity coefficient n, these flows have rapid
changes of the physical variables across certain narrow regions, the widths of which con-
verge to zero as /j, —> 0. In the limit the values of the variables on the two sides of the
transition are subject to equations which are identical with the Rankine-Hugoniot con-
ditions. These conditions, obtained here without any hypotheses, are thus proved to be
not only necessary but also sufficient for the existence of shocks.

1. Introduction. In a recent paper [6], R. von Mises has discussed the occurrence of a
shock in the one-dimensional steady flow of a real fluid. Here "real" will be used to
denote "heat conducting, viscous and compressible." If we write his fundamental equa-
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tions (1) through (5) in a dimension-free form by referring p, u, x, p to standard values
p0 , u0 , d, p0ul , we obtain:

ptu = to, (1.1)

TOM + p — a = CiTO, (1.2)

(f + + u(p — a) — H — C2m, (1.3)TO1

with
V = pT, (1.4)

4 du
a SRdx'

tj k 1 dTti —
(1.5)

k 1 PR dx '

where T is referred to ul/R (R is the gll of [6]), and we use the same symbols to denote
the non-dimensional quantities, but change the 7 of Reference G to k for convenience.
Here R is the Reynolds number,

(1.6)
and P the Prandtl number,

P = —-^—7 R y • (1.7)
K — 1 K

These equations are based on the assumption that the fluid is a perfect gas (1.4) with
constant specific heats. Further, von Mises considers that P, n, k may vary. For conven-
ience we shall also assume n, k and therefore P are constant, though the results are equally
true without this restriction. Finally, if we write

z = |, (1.8)

the equations (1.5) become
4 du „ k 1 dT

c - H = ~^-T5X, d-5')3 ds ' k- IP ds '

and the set of equations (1.1) through (1.4) and (1.5') is now independent of R.
In order to discuss the boundary layer nature of shock transition, we recall the as-

sumptions of the Prandtl boundary layer theory, according to which the Navier-Stokes
equations are reduced to a new system of "boundary layer" equations (see [2]). If we
denote by (i>j , v2) the components of the velocity along the normals and parallels to a
boundary line S in two-dimensional steady flow, and by d/ da, d /8(3 differentiations along
these directions, then symbolically

I = ^
vx = 0(R-U2); v2 = 0(1), (1.10)
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and other physical quantities are 0(1). Thus we stretch the normal distance by a factor
R1/2, magnify vx , the normal component of velocity, by R1/2, and then consider that all
new quantities and new derivatives have the same order of magnitude 0(1). Neglecting
all but the terms of highest order in our equations, we obtain the reduced set of "boundary
layer" equations. A solution of the latter equations constitutes an asymptotic integration
of the Navier-Stokes equations. Now consider shock transition at S. Here, in contrast to
(1.9), (1.10), we assume

£-0W, A = 0(1), (1.90

Vl = 0(1); v2 = 0(1), (1.100

where these are suggested in the following manner. If we superpose a constant velocity
v2 = 0(1) on the motion discussed by von Mises, then we obtain a two-dimensional
steady motion with S a straight line. For this motion, (1.9') and (1.10') clearly hold, in
view of (1.5). Thus, in the general case, we stretch the normal distance by a factor R and
then consider all new quantities and their new derivatives to have the same order of
magnitude 0(1). Neglecting all but the terms of highest order in our equations, we obtain
the reduced set of "shock transition" equations, a solution of which constitutes an
asymptotic integration of the Navier-Stokes equations. These "shock transition" equa-
tions are found to be completely analogous to the system (1.1) through (1.4) and (1.5').
Hence the existence of "shock transition" regions in a real fluid can be inferred; further,
the fact that as R —»<*> these regions go over into discontinuity surfaces for which the
Rankine-Hugoniot conditions of inviscid flow apply, can be shown.

Having discussed the points on which the boundary layer and the shock transition are
analogous, we must next note two important differences. First, compressibility is an
essential for the latter, but not for the former: shocks do not occur in an incompressible
fluid. Second, time-variation of the motion produces essential changes in shock-transition,
but not in the boundary layer. In the former, S has its own motion; in the latter, S is
fixed. Hence the purpose of the paper is formulated precisely as follows: Given an arbitrary
hypersurface S (which satisfies loose regularity conditions), a Vs in (t, x, y, z) space
it is possible to solve asymptotically the Navier-Stokes equations so that physical vari-
ables undergo rapid changes normal to S, and relatively slow changes parallel to S, in the
neighborhood of S, provided that R is large enough. Moreover, in the limit R —S
becomes a discontinuity surface across which the Rankine-Hugoniot conditions are
fulfilled. To make the discussion clearer, we shall work through two simpler cases first,
one of steady motion and the other of unsteady.

Finally, we shall use the fact (inherent in von Mises' discussion) that du/ds, d2u/ds2,
dT/ds, d2T/ds2 • ■ • are of the same order as u, T ■ ■ ■ in some fixed interval [s], depending
only on m, C, , C2, of s, and that the end points of this interval correspond very nearly to
the Rankine-Hugoniot conditions which strictly hold for s = =F °o. This is equivalent to
the result that the "thickness" of the shock is extremely small in von Mises' case, and
that outside conditions are very nearly uniform.

2. Steady two-dimensional flow. The momentum equation in vector form may be
written non-dimensionally:

p^to X V + grad | F2) = -grad p + ^ grad d - curl u (2.1)
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where the vorticity to and the dilatation $ are given by

o> = curl V, t? = div V (2.2)

([1]—true also for compressible and heat-conducting fluid). In (2.1) R is the Reynold's
number and the other quantities have their usual meaning. The equation of continuity
may likewise be written:

div PV = 0 (2.3)

and the equation of state:

V = pT. (2.4)

The energy equation is not commonly derived under such general conditions but a short
computation yields (appendix A):

pV . grad (i V + ^j)

    — V2T — divK PR
,(p + i*)v] + i;v!y'-5div(vx")-

(2.5)

where P is the Prandtl number (assumed constant) and the dilatation & is given in (2.2)
together with the vorticity <o.

These are the equations of motion and we wish to refer them to a particular set of
orthogonal curvilinear coordinates having coordinate lines normal and parallel to the

p=consr. pmconst

Fig. 1.

given line S, (Fig. 1). This system of coordinates was used by von Mises [2] to obtain the
boundary layer equations for an arbitrary curved boundary line S. The square of the line
element in these coordinates may be written

ds* = da2 + (~T^J (2.6)

where /8 is the arc length on S measured from an arbitrary fixed point, r = r(/3) is the
radius of curvature of S, and a is the normal distance from S. Hence if we write the
components of velocity referred to these axes as (vx , v2) we have, instead of (2.1) and
(2.2),
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5^1 i r _ v* I = r §!? (o 7N
1 da r + a 2 3/3 r -\- a) da 3R da R r + a 3/3 '

A, ^ i _Mg_\ ZL_ dp _4_ r M [fc
' 1 3a r + a 2 3/3 r + a) r + a 3/3 3 R r + a 3/3 R da'

& =

3 (»0
(2.9)

r + a (3a \ r / 3/3

and instead of the continuity equation (2.3),

d_
da \ r r"7 1 3/3

The values of the various terms in the energy equation (2.5) may be obtained from

+ y (pv2) = 0 (2.10)

v • pad (| F* + ^j) -{>,£ + v, ̂  $1 V + ^j) (2.11a)

<*»»V' = r + a

V X w = (v2o3, —Vico) (2.11c)

with use of (2.9), i.e. we remember, for instance, that the expression for d gives us the
divergence of a vector V.

In agreement with the ideas of Sec. 1, we now replace a by s/R and consider in our
new system of coordinates that all functions and their derivatives are of the same order of
magnitude. Then considering only the highest order terms in 1/R, we may write the
previous equations (2.7) through (2.10) as:

3i>! dp 4 3 / d\ ,0
""ft--si + itoW (2'7)

dv2 =£(i) ^

(2.9')
# _ dVi co _ dV2
R ds ' R ds

d (p»0 = o (2.10')
ds

and the energy equation, from (2.11a) through (2.11c), as

d f1 , T \ K - 1 1 32T 3 17 , 2*\
pV'ds\2 + k - l) k ' P 3s2 ds Lv + ZRf1.

i /t-2\ d ( «\
+ d^{V)~ds\VtR)

(2.11')
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It is clear immediately that (2.8') with (2.9') is satisfied by

v2 = v2{0) (2.8")

which is the mathematical expression of the fact that the component of velocity parallel
to the line S remains unaltered along a direction prependicular to S. The equations (2.7'),
(2.10') and (2.11'), with use of (2.9') may be immediately integrated to give

pv! = m{0), (2.10")

A r)']J
™>1 + V - 3 = CM, (2.7")

f1 , T ] , ( 4 dvA k - 1 1 dT _ fo. .. 11(A
m\_2 + k - lj + Wl\p 3 ds) k P ds ( )

where we have made use of (2.8"). The equations (2.4), (2.7"), (2.10") and (2.11") are
equivalent to (1.1) through (1.4) and (1.5'), with i\ for u and Ci , c2 for mCx , mC2 .

These equations have been obtained under the sole assumptions that (i) R is large,

Fig. 2.

and (ii) changes along the shock are of the same order as du/ds, d2u/ds2 , d2T/ds2 , etc.
Thus they are accurate for the interval [s] of section 1. Hence the existence of a shock is
demonstrated. Letting R —><», the equations become exact without assumption (ii) and
[s] may (in this case alone) be extended to

-oo<s<+co (2.12)

Thus S becomes a discontinuity and the Rankine-Hugoniot conditions hold.
3. Unsteady one-dimensional flow. The equations governing the motion are here, in

non-dimensional form,

| M + £ (pw2 + V - *) = 0, (3.1)
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£ + (3.2)

i {-(I+ t^)} + i Wi »* + t^t) + H + <• - "A -0 (3-3>
with

_L rr   K ~ 1 1 dT o„\
3 Rdx' k PR dx ( )

and the equation of state is

V = pT. (3.4)

Our given surface S reduces to a line in the (x, t) plane and we set up the same system of
coordinates as in the previous section (Fig. 2). Thus a = const, represents a motion fixed
relative to the "shock" S, and /3 = const, represents motion directly across S. Now
equations (3.1) through (3.3a) may be written as

dA\ . dAl , r (dA\ , dAl \ „ n rN— sm - — cos<* + — (— cos* + sin <pj = 0, . - 1, 2, 3 (3.5)

A{ = pu2 p — a, Al = pu,

A\ — pu, A\ = p,

A\ = pu(^2 w2 + K _ + H + (a — p)u, Al = u + K _

(3.5a)

and

4 Jdu , r du .'-3sfesmi» + r^^cos"i'

„ (« - 1) 1 IdT . , r ST ,= —T" pit fcsm » + ¥cos
(3.6)

where we have used the rules for differentiation under change of variables. We note that

v = vU3) (3.7)

We now replace a by s/R and consider that in the new system of coordinates all func-
tions and their derivatives are of the same order of magnitude. Then considering only the
highest order terms in 1/2?, we may write (3.5) and (3.6) in the form:

~ (A[ - At cot <p) = 0, i = 1, 2, 3. (3.5')

and

4 • du TT (jc — 1) 1 . dT
'=rmvto' <3-6>
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If the velocity cot <p of the shock is written as c, the equations (3.5') reduce to

mu + p — a = c^/J), p(u — c) = m{&),

m[| u2 + _ H + (p - <t)u = c2(/3).
(3.5")

The equations (3.5") and (3.6') are equivalent to those of section 1 since (3.7) holds.
Thus the discussion at the end of section 2 may be repeated.

4. Unsteady three-dimensional flow. In this, the most general case, the situation is
a little more complicated. The differences between the present analysis and the preceding
will be noted at each stage. First, the momentum equations in (t, x, y, z) space have no
simple "vector" form which allows of simple transformation to new axes, as with (2.1) in
(x, y) space. In fact, they may probably be dealt with best in the form:

p(fF + V ' grad V) = -grad P + 3^> grad ̂  ^ v2y (4-1)

with

# = div V, V = (u, v, w). (4.1a)

The equation of continuity

+ div PV = 0 (4.2)

likewise has the same drawback. The equation of state

P = PT, (4.3)
and the energy equation (Appendix A)

If + div m VT - div [(„ + A*)v]
(4.4)

+ h v2v2 + |div (v • SradV)

with

to = curl V, I = p(! V2 + (4.5)

complete the system of equations governing the motion. The energy equation also is not
of vector form.

Suppose that the Euclidean metric

ds2 = dt2 + dx2 + dy2 + dz2 (4.6)

is imposed on the (t, x, y, z) space. Then it is possible to set up a system of orthogonal
curvilinear coordinates (a, /?, 7, 5) such that (4.6) reads:

ds2 = da2 + (ht + Xi«)2 d02 + (h2 + X2aO~ dy2 + (h3 + X3a)2 d82 (4.7)

where the lines /3, y, 5 — const, are normal to the given manifold S (here a F3) and the
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3-spaces a = const, are parallel to S (see Appendix A). Moreover h, , h2, h3, , X2 , X3 ,
are functions of /3, y, S alone, and

di = h\ dp2 + hi dy2 + hi dS2 (4.8)

is the metric of S. To illustrate the nature of this system, we note that in the two-
dimensional case of unsteady flow the lines (/3, y const.) are normal to a surface S whose
lines of curvature are a = 0, = const, and a = 0, y = const. Also in this case hi/Xi ,
h2/\2 are the principal radii of curvature of S, and are functions of (/3, 7).

We now wish to introduce a notation for vectors A ,■in our 4-space. We shall denote by
(Ax , A2 , A3 , —round brackets—the components of A t referred to the (t, x, y, z)
axes, and by {A[ , A2 , A3 , A4}—curled brackets—its components referred to the
(a, (3, y, S) axes. Moreover we shall denote by div* the divergence i.e.

div* A{ = + — + — (4 9)dt ^ dx ^ dy ^ dz K )

and similarly the gradient by grad*. Finally we shall suppose that the relative orientation
of the two sets of axes is given by the scheme

t x y z

ki l2 m3 n4

fci l2 m3 nt (4.10)

l2 m3 rit

kx l2 m3 nt

in which all elements are independent of a.
Consider now the first of the momentum equations (4.1). We have

^7 + V • grad u = (I, u, v, w) • grad* u
at

— ( » f— 1 du 1 du 1 chi
' ' ' 4 ' hi + Xicc dp ' h2 + X2o: dy ' h3 \3a 68

(4.11)

where

Vi — ki + hu + mxv + riiW, v2 = k2 + l2u + m2v + n2w,

v3 = k3 + l3u + m3v + n3w, v4 = kt + l4u + m4f + n^w.
(4.11a)

As in the previous sections we now replace a by s/K and (considering all functions and
derivatives to be of the same order of magnitude in the new coordinates) retain only the
lowest powers of 1/72. Thus:

+ V • grad u = RVi~ (4.12)
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Also, to the same order,

Further we have

with

- T>1 §2 §& _ P7 §&
dx 1 ds ' dx 1 ds

div* (o, , 0, o) = div* {liU, l2U, l3U, kU}

TJ — I — -I ?2 du l3 du Z4 du
1 da hi + Xia d/3 h2 + X2a dy h3 + X3a dS ,

so that

!? = (K + \ia)(h» + X2a)(/i3 + X3ff) Pl + Xia)(^ + X2a)(/l3 + Xsa)ZlC7]

+ ^ [(^2 + X2a)(/*3 + X3a)l2JJ] -f- • • • + " " l

(4.14)
  J?2j2 A
~~ as2'

to the highest order. We thus have from (4.14)

V2w = 722(1 - fc?) ̂  (4.15)

To complete the discussion of (4.1) we have from (4.1a):

d = div* (0, u, v, w) = div* {^i — kx , v2 — k2 , v3 — k3 , vt — fc4}

d (4-16)
= Rfs(v1-k1)

The x momentum equation, in (a, (3, y, 8) coordinates, is thus,

+ I*'> + «-«)$• »•"■>
The y and z momentum equations are obtained in a similar manner: we merely change u
to v and w, and lt to mx and nx , respectively, to form two new equations (4.17b) and
(4.17c). Unlike the case before, these equations are not component equations referred
to the new system (a, y, 5) but are referred to the old system in new system terms.

The continuity equation (4.2) can be written as

0 = div* (p, pu, pv, pw) = div* {pvx , pv2 , pv3 , pvt]

and this becomes

£ (pv0 = 0. (4.18)
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From the preceding discussion we may list immediately the following reductions of the
terms of the energy equation (4.4)

j-t + div (TV) = R~ (M), (4.19a)

V2T = R\1 (4.19b)
OS

V2(72) = R2( 1 - k\) , (4.19c)

div ("+H)v -RI [(»+M)«" - *4
Moreover similarly to (4.12)

V • grad V = R(vt — kt) ~

so that similarly to (4.16)

div (V • grad V) = ft' A {(», - h) | fe, - i,)}

Using (4.19a) through (4.19e) and (4.16), we may replace (4.4) by

(4.19e)

I Wl r + 7^1 K — 1 1 n ,2s d2T d , . .

+ ia_^3!(Z!) + i _ 2+ 2 (1 k,) ds2 + 6 3s2 {Vi kl) •

(4.20)

Before discussing these equations, we must introduce simplifications. If we write

D2 = l\ + m\ + n\ = 1 - k\

it is clear that n = (h/D, rnJD, nx/Z>) is the unit normal in (x, y, z) space to the instan-
taneous position of the "shock." Moreover — kx/D is the normal velocity of the "shock"
in this space. Denoting then the normal component of velocity by un and the normal
velocity of the "shock" by U i.e.

lxu + mxv + UiW = Dun , —ki^DU. (4.21)

We may rewrite (4.17a), (4.17b), (4.17c), (4.18) and (4.20) in the more familiar form:

u, TT\ du — _Z1 dP _L 1 J d*U" _1_ n d*U (A 17' \
p(M" ~ U) ds ~ D 3s + 31' (4'17 a)
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, TTS dv —mr dp , 1 d'Un , ^ d2V ,, NP(un-U)- =—- + -miW+D-2, (4.17 b)

, rn dw ~»i dP . 1 d U2n , r,d2W ,. 1_, .
^^--D &+3"1 (4'l7c)

3 [pfu, - (7) - 0 (4.180
ds

K — 1 D r/T _ d(pun)
K P ds2 ds

+ Ddxn,D^2
+ 2 ds2 + 6 ds2 *

(4.20')

If we multiply (4.17'a) by h , (4.17'b) by m, , and (4.17'c) by nx and add we obtain

, rn dun dp , 4D d2(«„) r,i\
"(«* - -si ' ~ £ + T 17" (4'2i)

which may be integrated by virtue of (4.18'), i.e.

p(m„ - U) = m(/3, t, 6), (4.22)

to give

mw„ + p - <r = Ci(l3, 7, S) (4.23)

with

4 d(lln) . .
^ ~ 3 ~ds~ (4"23a)

Furthermore if we multiply (4.17'a) by , (4.17'b) by U and subtract we have

d
m — (mill — lxv) = D —% {miu — lxv)

OS OS

which is satisfied if

(vhu - kv) = f(p, 7, 5). (4.24)

Similarly the other components of V X n are independent of a. Hence the component of V
tangential to the instantaneous position of the shock in the (x, y, z) is independent of a.
Thus we may write

5W-5M (4-25>
and the energy equation (4.20') can be written in integrated form:

m(|W" + K - J ~ H + (p - a)un = c2(/3, 7, 5) (4.26)
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with

k - ID dT .....H~—pT, <4'26a>

The equations (4.3), (4.22), (4.23), (4.23a), (4.26) and (4.26a) are equivalent to those of
section 1 with un for u, and definition of m(/3, 7, 5) slightly changed, since D = D(J3, 7, 5)
from (4.10). Hence discussion at end of section 2 applies equally well here.

Summary. Given an arbitrary hypersurface S in (t, x, y, z) space and an arbitrary
distribution (within the loose restriction of the constant c of von Mises' paper) of V, T, p
and derivatives on it, we have the following:

(i) It is possible to construct a family of solutions of the Navier-Stokes equations
having large normal derivatives on S and (comparatively) small derivatives parallel to S,
provided n is small enough. The solution is analogous to a solution of the steady one-
dimensional equations of motion, in which the ^-differentiation is replaced by

±-U*-
dn dt'

where V is the normal velocity of the "instantaneous" section of S by (x, y, z) space and
d/dn denotes differentiation along the normal to this section. Moreover the Rankine-
Hugoniot conditions are approximated very nearly, and the component of V in the
tangent plane to the "instantaneous" section of S by (x, y, z) space is conserved along the
normal direction of S.

(it) As ix —► 0 the surface S becomes a discontinuity surface and the Rankine-
Hugoniot conditions hold exactly.

The purpose of this paper, as stated at the beginning, was to prove the existence of
shocks, using as sole basis the Navier-Stokes equations for the motion of a perfect fluid.
As a by-product of the analysis, we are given a method of investigating the structure of a
shock in the most general motion of a perfect fluid. However, if such an application is
made, it must be borne in mind that it will only be valid when the Navier-Stokes equa-
tions hold, that is when the fluid can be considered as a continuum, in other words, for
weak shocks.

Appendix A

If we denote an element of the stress-tensor of a viscous fluid by <rti and an element of
the rate of strain tensor by , the generalized concept of viscosity leads to [3]

an — — (p + 2/3 S{j + ixCij (A.l)
with

= !: + £' * = = (A.2)
Here we use dimensional quantities, with n the coefficient of viscosity and
(x, y, z) = (xi , x2 , x;i), (u, v, w) = (ui , u2, u3). Since the total energy [4] is

' - 4 +^i)- (A-3)
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the energy equation is easily seen to be

'§i{ly' + 7^i)-k^"r + dJW1 <A'4>
From (A.l) and (A.2) it follows, however, that

4+ f»*V< + s;(iF') + »'S- cm>
Inserting this into the right hand side of (A.4) and using the equation of continuity (4.2)
on the left hand side, we obtain the dimensional form of (4.4).

For one-dimensional unsteady flow, we have V = (u, 0, 0) and

- § M div m + § V2V2 + n div (V • grad V) = | „ ~ (u |*), (A.6)

and (4.2) reduces to (3.3).
For steady two dimensional flow d/dt — 0 and the transformations of vector analysis

yield

— i juV2F2 + n div (V • grad V) = /i div (<o X V). (A.7)
A

Hence (A.7) reduces (4.2) lo the form (2.5).

Appendix B

Let r = n>, , v2 , v3) be the position vector of the manifold S (F3) in the (t, x, y, z)-
space, where (v, , v2 , v*) form an orthogonal system of coordinates, i.e.

r, -r, = |r, | | r, | (B.l)

with

r,=g (,-1,2.3)

The unit normal n to S is uniquely determined by the equations:

n • r, = 0, (B.2)

n ■ n = 1. (B.3)

From (B.3) we have by differentiation:

n • n< = 0, (B.4)

and hence we may write

n, = E n„ |^4 r, (B.5)
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with suitable n;i = n,-,(vx , v2 , v3). Moreover from (B.2) we have

n,-i\ + nT^ = 0,

whence

n;r, = n^r, (B.6)

or substituting (B.5) and noting (B.l)

ria = nu . (B.7)

Now suppose we have a unit vector in S defined by

s = E «, jzh (B.8)
i=l I r» |

Then the derivative of n in the direction s is

E n, *i ~ r = E E *i ~~t (B.9)
i~1 I *» I t = 1 J -1 I M |

and this lies along s if
3

E w./Si = ksf (j = 1, 2, 3) , (B.10)
i'=l

for some k. From the theory of matrices it is known [5] that since nu is symmetric (B.7)
there exists at least one set of mutually orthogonal real unit eigenvectors sa,(X = 1, 2, 3)
satisfying (B.10) with corresponding real eigenvalues k = ka>. Taking these directions
s(X) as the coordinate directions of a new set of orthogonal coordinates (8, y, 5) in S we
have

n$ //iTji , n7 f^2^y } Us (B.ll)

with Mi , M2 , M3 functions of (/3, y, 5).
Now let n complete a system of four orthogonal directions in 4-space and a be distance

measured along it. Then if R is the position vector in this space

R = r + an

with r, n independent of a. Hence, using (B.ll), we have

R» = n, Rs = 10 + <2% = Tp (1 + Mi<*))
(B.12)

Ry = r7 (1 + ii2a), Rj = rs (1 + At3«)-

Hence (a, (3, y, 8) form a system of orthogonal curvilinear coordinates with

ds2 = da2 + (hi + Xio;)2 ii/32 -f- (h2 + X2a)2 dy" + (h3 + X3a)2 d82, (B.13)

where hi = ip etc., independent of a, and Xx = etc., independent of a.
We have thus demonstrated the validity of (4.7) and (4.8) as well as the statements

about these equations. We have constructed F3-spaces a = const, parallel to S (in the
obvious sense of the term) and used them to form an orthogonal system of coordinates.
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