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THE BOUNDARY VALUE PROBLEM FOR DIRAC-HARMONIC MAPS

QUN CHEN, JÜRGEN JOST, GUOFANG WANG, MIAOMIAO ZHU

Abstract. Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions
of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this
structure, including the appropriate boundary conditions, in a geometric framework. The main results of our
paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic
maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We show that a weakly Dirac-
harmonic map is smooth in the interior of the domain. We also prove regularity results for Dirac-harmonic maps
at the boundary when they solve an appropriate boundary value problem which is the mathematical interpretation
of the D-branes of superstring theory.

1. Introduction

In [6], a variational problem has been introduced that is an analogue with ordinary, that is, commuting
fields of the non-linear supersymmetric sigma model of quantum field theory. Of course, this model is no
longer supersymmetric, but it does share the other symmetries of the sigma model, in particular conformal
invariance. Also, this model has a surprisingly subtle geometric and analytic structure. In the present paper,
we explore some further geometric and analytic aspects. In particular, we look at boundary conditions that
are of the type of the D-branes of superstring theory and involve the chirality operator of a spin structure.
After a careful geometric derivation of these boundary conditions, we shall provide the analytic regularity
theory for solutions of the field equations at such a boundary.

Let us now describe the model in some more detail. For the non-linear supersymmetric sigma model of
quantum field theory (see e.g. [8] or [21] for mathematical background), one considers a map

Y : Ms → N (1.1)

from a (2|2)-dimensional supermanifold Ms to some Riemannian manifold N. With local even coordinates
x1, x2 and odd (i.e., anticommuting) coordinates θ1, θ2, the action is

S =

∫
1
4
εαβ〈DαY,DβY〉d2xdθ2dθ1 (1.2)

where ε is the usual antisymmetric tensor, the brackets 〈., .〉 denote the Riemannian metric on N (by confor-
mal invariance, we may assume that the domain metric is flat), and dθ indicates that a Berezin integral has to
be taken.

Y has the following expansion
Y = φ(x) + ψα(x)θα + F(x)θ1θ2. (1.3)
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Here, φ is an ordinary map from the ordinary manifold M underlying the supermanifold Ms into N; in fact,
M, since 2-dimensional, is considered as a Riemann surface. ψ is an anticommuting spinor with values in the
pull-back tangent bundle φ−1T N. In fact, ψ is a real Euclidean Majorana spinor w.r.t. a real 2-dimensional
Euclidean representation of the Clifford algebra Cl(2, 0). The field F is needed to close the supersymmetry
algebra off-shell, but will not be of importance for our subsequent purposes.

Using this expansion and carrying out the θ-integral, the Lagrangian density in (1.2) becomes

1
2
‖dφ‖2 +

1
2
〈ψ,D/ψ〉 −

1
12
εαβεγδ〈ψα,R(ψβ, ψγ)ψδ〉. (1.4)

D/ is the Dirac operator along the map φ; it involves the ordinary Dirac operator ∂/ of M and the Levi-Civita
connection of N (see e.g. [6, 21]). ‖.‖ indicates again the metric of N, and R is its curvature. In fact, the
curvature term arises from the Berezin integration of the F-term, and again, we shall not need it in the sequel.

The reason why the spinor field ψ is taken as odd is that for an even ψ, 〈ψ,D/ψ〉 would vanish upon in-
tegration by parts. This in turn results from the fact that we are working with a Clifford algebra (Cl(2, 0)
in the present case) with a real representation. Were the representation imaginary, in contrast, the integral
of 〈ψ,D/ψ〉 would vanish for an odd, but no longer for an even ψ. Of course, Cl(2, 0) does not have such a
representation, but the Clifford algebra Cl(0, 2) does. This is the basis of the model of [6].

To be concrete, consider the representation of Cl(0, 2) with

e1 → γ1 =

(
0 i
i 0

)
, e2 → γ2 =

(
0 1
−1 0

)
, (1.5)

acting on spinors. For a spinor field ω : R2 → C2, we then have the Dirac operator

∂/ω =

(
0 i
i 0

) 
∂ω1
∂x1

∂ω2
∂x1

 +

(
0 1
−1 0

) 
∂ω1
∂x2

∂ω2
∂x2

 = 2i


∂ω2
∂z

∂ω1
∂z

 , (1.6)

that is, the Cauchy-Riemann operator. Let ω and ψ be two spinor fields with compact support on R2, we then
have the integration by parts formula ∫

〈ω, ∂/ψ〉 =

∫
〈∂/ω, ψ〉, (1.7)

that is, ∂/ is formally self-adjoint.

We can thus introduce the model of [6]. Let M be a Riemann spin surface, ΣM the spinor bundle over
M, N a compact Riemannian manifold without boundary. Let φ be a map from M to N, ψ a section of the
bundle ΣM ⊗ φ−1T N. Let ∇̃ be the connection induced from those on ΣM and φ−1T N. The Dirac operator D/
along the map φ is defined by D/ψ := γα · ∇̃γαψ, where γα is a local orthonormal frame on M. We consider the
functional

L(φ, ψ) :=
∫

M
(‖dφ‖2 + 〈ψ,D/ψ〉). (1.8)

Except for the curvature term (which we do not need as we are not concerned with supersymmetry), the
Lagrangian density here is formally the same as in (1.4). However, in (1.8), all fields are commuting.

The critical points (φ, ψ) of (1.8) are called Dirac-harmonic maps from M to N. They constitute the object
of our study in this paper.

The focus of our paper is on boundary conditions and boundary regularity for such Dirac-harmonic maps.
The first issue is the identification of the correct boundary conditions. In a certain sense, we are translating
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the boundary conditions of the non-linear supersymmetric sigma model, see [1, 2], into a geometric frame-
work. Our Riemannian geometric perspective will clarify some geometric aspects. Let M thus be a Riemann
surface with boundary ∂M. This boundary should be mapped to a D-brane. Geometrically, this means that
we have a submanifold S of N, and φ(∂M) should be contained in S in such a way that it is critical for (1.8)
w.r.t. to all such boundary values. This simply means that, in the absence of the field ψ, φ(∂M) should meet S
orthogonally. In the harmonic map literature, this is called a free boundary condition with support S. In ana-
lytic terms, this is a combination of Dirichlet and Neumann boundary conditions. Analytically, this is usually
treated by some reflection method, see e.g. [13, 20, 26]. That is, one doubles M to M̄ by reflection across
the boundary ∂M and extends φ to M̄ by reflection across the submanifold S. This clarifies the geometric
meaning of the tensor R utilized in [1, 2], as we shall explain in more detail below. In any case, the reflection
across S is particularly well controlled when S is a totally geodesic submanifold of N. This condition is also
required (in different terminology) in [1, 2]. In fact, we shall not need this condition for the formulation of
the boundary condition, nor for the proof of continuity of our solutions, but we shall need to require it in
order to get higher regularity of solutions at the boundary.

As our model couples the harmonic map equation to a Dirac type equation, besides the regularity theory
for harmonic maps, also the one for solutions of Dirac equations, in the interior and at the boundary, is
relevant. Some pertinent references are [3, 4, 5, 9, 23]. In our setting, for the spinor ψ we shall need a
chirality boundary condition (first introduced by Gibbons-Hawking-Horowitz-Perry [10]). We explain this
here only for the linear case. The coupling between the boundary conditions for the fields φ and ψ in the
non-linear case will be worked out in detail below. Mathematically, the chirality condition is explained in
[16]. We consider the chirality operator G = iγ1γ2, and we can decompose the spinor bundle ΣM of M into
the eigensubbundles of G for the eigenvalues ±1. Restricting to the boundary, we have the decomposition
S := ΣM|∂M = V+ ⊕V−. With −→n being the outward unit normal vector field on ∂M, the orthogonal projection
onto the eigensubbundle V±:

B± : L2(S) → L2(V±)

ψ 7→
1
2

(
I ± −→n G

)
ψ,

defines a local elliptic boundary condition for the Dirac operator ∂/ (see [16]). We say a spinor ψ ∈ W1,4/3(ΣM)
satisfies the boundary condition B± if

B± ψ|∂M = 0. (1.9)

Our main analytical results then are concerned with weak solutions of the field equations for (1.8), that is,
for weakly Dirac-harmonic maps (again, see the main text, e.g. Definition 2.1, for a precise definition) with
such boundary conditions. We shall prove

Theorem 1.1. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian
manifold, and S be a closed submanifold of N. Let (φ, ψ) be a weakly Dirac-harmonic map from M to N with
free boundary on S. Then for any α ∈ (0, 1),

φ ∈ C0,α(M,N).

Theorem 1.2. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian
manifold, and S be a closed, totally geodesic submanifold of N. Let (φ, ψ) be a weakly Dirac-harmonic map
from M to N with free boundary on S and suppose that φ ∈ C0,α(M,N) for any α ∈ (0, 1). Then there exists
some β ∈ (0, 1) such that

φ ∈ C1,β(M,N), ψ ∈ C1,β(ΣM ⊗ φ−1T N).
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In fact, we shall start by showing the regularity of weakly Dirac-harmonic maps in the interior of M. This
was shown independently by Wang-Xu [28] by a different method inspired by [24, 25]. Our methods will also
utilize the general strategy of Rivière [24] who had achieved an important generalization of the earlier results
of Wente [27] and Hélein [14, 15]. Rivière’s approach has been adapted to Dirichlet boundary regularity by
Müller-Schikorra [22], and this work will also be useful for our purposes.

We should like to thank the two referees of our paper for their detailed and helpful comments.

2. Interior regularity

Let M be a Riemann surface equipped with a conformal metric, which by conformal invariance of our
functionals can then be assumed Euclidean, and with a fixed spin structure, ΣM the spinor bundle, let φ be
a smooth map from M to another Riemannian manifold (N, g) of dimension d ≥ 2. Denote φ−1T N the pull-
back bundle of T N by φ and consider the twisted bundle ΣM ⊗ φ−1T N. On ΣM ⊗ φ−1T N there is a metric
induced from the metrics on ΣM and φ−1T N. Also we have a natural connection ∇̃ on ΣM ⊗ φ−1T N induced
from those on ΣM and φ−1T N. In local coordinates, the section ψ of ΣM ⊗ φ−1T N can be expressed by

ψ(x) =

d∑
j=1

ψ j(x) ⊗ ∂y j(φ(x)),

where ψ j is a spinor and {∂y j} is the natural local basis on N. ∇̃ can be expressed by

∇̃ψ =

d∑
i=1

∇ψi(x) ⊗ ∂yi(φ(x)) +

d∑
i, j,k=1

Γi
jk(φ(x))∇φ j(x) · ψk(x) ⊗ ∂yi(φ(x)).

Now we define the Dirac operator along the map φ by

D/ψ := γα · ∇̃γαψ

=
∑

i

∂/ψi(x) ⊗ ∂yi(φ(x)) +

d∑
i, j,k=1

Γi
jk(φ(x))∇γαφ

j(x)γα · ψk(x) ⊗ ∂yi(φ(x)),

where γ1, γ2 is the local orthonormal frame on M and ∂/ :=
∑2
α=1 γα · ∇γα is the usual Dirac operator.

Set
X(M,N) :=

{
(φ, ψ) | φ ∈ C∞(M,N) and ψ ∈ C∞(ΣM ⊗ φ−1T N)

}
.

On X(M,N), we consider the following functional

L(φ, ψ) :=
∫

M
[|dφ|2 + (ψ,D/ψ)]

=

∫
M

[gi j(φ)
∂φi

∂xα

∂φ j

∂xα
+ gi j(φ)(ψi,D/ψ j)].

(Recall that the domain metric can be taken as Euclidean.) The Euler-Lagrange equations of L(·, ·) are the
following ones:

τm(φ) −
1
2

Rm
li j(φ)(ψi,∇φl · ψ j) = 0, m = 1, 2, . . . , d, (2.10)

D/ψi = ∂/ψi + Γi
jk(φ)∂αφ jγα · ψ

k = 0, i = 1, 2, . . . , d, (2.11)

where τ(φ) is the tension field of the map φ. Solutions (φ, ψ) to (2.10) and (2.11) are called Dirac-harmonic
maps from M to N.
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Let (N′, g′) be another Riemannian manifold and f : N → N′ a smooth map. For any (φ, ψ) ∈ X(M,N)
we set

φ′ = f ◦ φ and ψ′ = f∗ψ.

It is clear that ψ′ is a spinor along the map φ′. Let A be the second fundamental form of f , i.e., A(X,Y) =

(∇Xd f )(Y) for any X,Y ∈ Γ(T N). The tension fields of φ and φ′ have the following relation

τ′(φ′) =

2∑
α=1

A(dφ(γα), dφ(γα)) + d f (τ(φ)). (2.12)

It is also easy to check that the Dirac operators D/ and D/ ′ corresponding to φ and φ′ respectively are related
by the following

D/ ′ψ′ = f∗(D/ψ) +A(dφ(γα), γα · ψ), (2.13)

whereA(dφ(γα), γα · ψ) := φi
αγα · ψ

j ⊗ A(∂yi, ∂y j). Furthermore, if f : N → N′ is an isometric immersion,
then A(·, ·) is the second fundamental form of the submanifold N in N′, and

∇′Xξ = −P(ξ; X) + ∇⊥Xξ, ∇′XY = ∇XY + A(X,Y)

∀X,Y ∈ Γ(T N), ξ ∈ Γ(T⊥N), where P(ξ; ·) denotes the shape operator. We can rewrite equations (2.10) (2.11)
in terms ofA and the geometric data of the ambient space N′.

Denote

R(φ, ψ) :=
1
2

Rm
li j(ψ

i,∇φl · ψ j) ⊗ ∂ym.

By the equation of Gauss, we have (see [6, 7, 19, 29])

R(φ, ψ) = Re P(A(dφ(γα), γα · ψ);ψ) + R′(φ, ψ). (2.14)

where P(A(dφ(γα), γα ·ψ);ψ) := P(A(∂yl, ∂y j); ∂yi)〈ψi, γα ·ψ
j〉φl

α. Therefore, by using (2.12) and (2.13), and
identifying φ with φ′ and ψ with ψ′, we can rewrite (2.10) and (2.11) as follows:

τ′(φ) = A(dφ(γα), dφ(γα)) + Re P(A(dφ(γα), γα · ψ);ψ) + R′(φ, ψ), (2.15)

D/ ′ψ = A(dφ(γα), γα · ψ). (2.16)

In order to introduce the notion of weak solutions of the Euler-Lagrange equations, we embed N isometrically
into some N′ = RK via the Nash-Moser embedding theorem. Then the above equations become

−∆φ = A(dφ, dφ) + Re P(A(dφ(γα), γα · ψ);ψ), (2.17)

∂/ψ = A(dφ(γα), γα · ψ). (2.18)

Denote
H1(M,N) :=

{
φ ∈ H1(M,RK) | φ(x) ∈ N a.e. x ∈ M

}
;

W1,4/3(ΣM ⊗ φ−1T N) :=
{
ψ ∈ Γ(ΣM ⊗ φ−1T N) |

∫
M
|∇ψ|4/3 < +∞,

∫
M
|ψ|4 < +∞

}
.

Here, ψ ∈ Γ(ΣM ⊗ φ−1T N), the spinor field along the map φ, should be understood as a K-tuple of spinors
(ψ1, ψ2, ..., ψK) satisfying∑

i

νiψ
i = 0, for any normal vector ν =

K∑
i=1

νiEi at φ(x),

where {Ei, i = 1, 2, ...,K} is the standard basis of RK . Denote

X
1,2
1,4/3(M,N) :=

{
(φ, ψ) ∈ H1(M,N) ×W1,4/3(ΣM ⊗ φ−1T N)

}
.

Critical points (φ, ψ) ∈ X1,2
1,4/3(M,N) of the functional L(·, ·) are called weakly Dirac-harmonic maps from M

to N (see [7]), equivalently,
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Definition 2.1. We call (φ, ψ) ∈ X1,2
1,4/3(M,N) a weakly Dirac-harmonic map from M to N if∫

M

[
〈dφ, dη〉 + 〈A(dφ, dφ) + ReP(A(dφ(γα), γα · ψ);ψ), η〉

]
= 0, (2.19)

∫
M

[
〈ψ, ∂/ξ〉 − 〈A(dφ(γα), γα · ψ), ξ〉

]
= 0, (2.20)

for all η ∈ H1
0 ∩ L∞(M,RK) and ξ ∈ W1,4/3

0 ∩ L∞(ΣM ⊗ RK).

Let us recall the following regularity result in two dimensional conformally invariant variational problems
by Rivière [24]. Denote B1 :=

{
(x1, x2) ∈ R2|x2

1 + x2
2 ≤ 1

}
the unit disk in R2 and write z = x1 + ix2.

Theorem A. Let u ∈ H1(B1,R
K) be a weak solution of

−∆u = Ω · ∇u. (2.21)

where Ω = (Ωi
j)1≤i, j≤K ∈ L2(B1, so(K) ⊗ R2). Then u is continuous.

To prove the smoothness of weakly Dirac-harmonic maps, it is sufficient to show the continuity of the map
(see [7]).

Theorem B. Let (φ, ψ) : B1 → N be a weakly Dirac-harmonic map, if φ is continuous, then (φ, ψ) is smooth.

When N = Sd, the continuity of weakly Dirac-harmonic maps was proved by Chen-Jost-Li-Wang in [7],
using Wente’s Lemma [27]. Zhu extended this result to the case that N is a compact hypersurface in the
Euclidean space Rd+1 [29]. The case of a general target N was shown independently by Wang-Xu [28],
where Hélein’s technique of moving frame [14, 15] and the Coulomb gauge construction, due to Rivière [24]
and Rivière-Struwe [25], are combined.

Here, following the notations in [29], we show that the extrinsic equations (2.17) in the case of a general
compact target can also be written in the same form as (2.21) and hence can be used to prove the continuity
of weakly Dirac-harmonic maps.

Theorem 2.1. Let M be a Riemann spin surface, N be any compact Riemannian manifold, (φ, ψ) a weakly
Dirac-harmonic map from M to N, then φ is continuous in the interior of M and consequently, (φ, ψ) is
smooth.

Proof. We follow the approach in [29]. We assume W.L.O.G that M = B1 and take the orthonormal basis
γ1 = ∂x1 , γ2 = ∂x2 . Fix a canonical coordinate (y1, y2, ..., yK) of RK . Let νl, l = d + 1, ...,K be an orthonormal
frame field for the normal bundle T⊥N to N (the target N considered is always assumed to be oriented).
Denote by νl the corresponding unit normal vector field along the map φ. We write

φ = φi∂yi, ψ = ψ j ⊗ ∂y j,

and denote φα := φ∗(γα) = φxα , α = 1, 2. Then, we proceed as in [29] to write (2.17) and (2.18) in the
following extrinsic form in terms of the orthonormal frame field νl, l = d + 1, ...,K, for T⊥N

−∆φm = φi
α

φ j
α

∂νi
l

∂y j ν
m
l − φ

j
α

∂νm
l

∂y j ν
i
l

 + φi
α〈ψ

k, γα · ψ
j〉

 ∂νi
l

∂y j (
∂νl

∂yk )>,m −
∂νi

l

∂yk (
∂νl

∂y j )>,m
 , (2.22)

/∂ψm =
∂νi

l

∂y j ν
m
l φ

i
αγα · ψ

j. (2.23)
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Here > denotes the orthogonal projection : RK → TyN and (·)i denotes the i-th component of a vector of RK .
Note that φα ∈ T N and ( ∂νl

∂y j )⊥ ∈ T⊥N, hence, we have∑
i

φi
α(
∂νl

∂y j )⊥,i = 0, ∀α, l, j. (2.24)

where ⊥ denotes the orthogonal projection : RK → T⊥y N. Decomposing the vector ∂νl
∂y j into tangent part and

normal part and then applying (2.24), we get

∂νi
l

∂y j φ
i
α = (

∂νl

∂y j )iφi
α =

(
(
∂νl

∂y j )>,i + (
∂νl

∂y j )⊥,i
)
φi
α = (

∂νl

∂y j )>,iφi
α. (2.25)

Thus, the equations (2.22) and (2.23) become

−∆φm = φi
α

φ j
α

∂νi
l

∂y j ν
m
l − φ

j
α

∂νm
l

∂y j ν
i
l

 + φi
α〈ψ

k, γα · ψ
j〉

(
(
∂νl

∂y j )>,i(
∂νl

∂yk )>,m − (
∂νl

∂yk )>,i(
∂νl

∂y j )>,m
)
, (2.26)

/∂ψm =
∂νi

l

∂y j ν
m
l φ

i
αγα · ψ

j. (2.27)

Denote

Ωm
i :=

(
λm

i
µm

i

)
, i,m = 1, 2, ...,K,

where

λm
i := (

∂νi
l

∂y j ν
m
l −

∂νm
l

∂y j ν
i
l)φ

j
1 +

(
(
∂νl

∂y j )>,i(
∂νl

∂yk )>,m − (
∂νl

∂yk )>,i(
∂νl

∂y j )>,m
)
〈ψk, γ1 · ψ

j〉,

µm
i := (

∂νi
l

∂y j ν
m
l −

∂νm
l

∂y j ν
i
l)φ

j
2 +

(
(
∂νl

∂y j )>,i(
∂νl

∂yk )>,m − (
∂νl

∂yk )>,i(
∂νl

∂y j )>,m
)
〈ψk, γ2 · ψ

j〉.

Then we can write (2.26) in the following form

−∆φm = Ωm
i · ∇φ

i.

It is easy to verify that Ω = (Ωm
i )1≤i,m≤K ∈ L2(B1, so(K) ⊗ R2). By Theorem A, we have φ ∈ C0(B1,N) and

consequently, (φ, ψ) is smooth. �

3. Free boundary problem for Dirac-harmonic maps

In this section, we shall study the free boundary problem for Dirac-harmonic maps.
First, we impose the free boundary condition for the map in the classical sense, namely, the boundary of

the domain is mapped freely into a submanifold of the target. Next, motivated by the supersymmetric sigma
model with boundaries (see Albertsson- Lindström-Zabzine [1, 2]), we impose the boundary condition for
the spinor field using a chirality operator.

To begin with, let us recall the chirality boundary conditions for the usual Dirac operator ∂/ (see [16]).

Chirality boundary conditions for the Dirac operator ∂/

Let M be a compact Riemannian spin surface with boundary ∂M , ∅. Then M admits a chirality operator
G = γ(ω2), the Clifford multiplication by the complex volume form ω2 = iγ1γ2. G is an endomorphism of
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the spinor bundle ΣM satisfying:

G2 = I, 〈Gψ,Gϕ〉 = 〈ψ, ϕ〉, (3.28)
∇X(Gψ) = G∇Xψ, X ·Gψ = −G(X · ψ). (3.29)

∀X ∈ Γ(T M), ψ, ϕ ∈ Γ(ΣM). Here I denotes the identity endomorphism of ΣM.
Denote

S := ΣM|∂M

the restricted spinor bundle with induced Hermitian product.
Let −→n be the outward unit normal vector field on ∂M. One can verify that −→n G : Γ(S) → Γ(S) is a

self-adjoint endomorphism whose square is the identity, namely

〈
−→n Gψ, ϕ〉 = 〈ψ,−→n Gϕ〉 (3.30)

(−→n G)2 = I. (3.31)

Hence, we can decompose S = V+ ⊕ V−, where V± is the eigensubbundle corresponding to the eigenvalue
±1. One verifies that the orthogonal projection onto the eigensubbundle V±:

B± : L2(S) → L2(V±)

ψ 7→
1
2

(
I ± −→n G

)
ψ,

defines a local elliptic boundary condition for the Dirac operator ∂/ (see [16]). We say a spinor ψ ∈ W1,4/3(ΣM)
satisfies the boundary condition B± if

B± ψ|∂M = 0. (3.32)

The following proposition was shown in [16]. For the sake of completeness, we present the proof here
using our notations.

Proposition 3.1. If ϕ, ψ ∈ W1,4/3(ΣM) satisfy the boundary condition B± then

〈
−→n · ψ, ϕ〉 = 0, on ∂M. (3.33)

In particular, ∫
∂M
〈
−→n · ψ, ϕ〉 = 0. (3.34)

Proof. Let ϕ, ψ ∈ W1,4/3(ΣM) satisfy the boundary condition B±, namely, B± ψ|∂M = B± ϕ|∂M = 0. Then
−→n Gψ = ∓ψ, −→n Gϕ = ∓ϕ.

Hence, applying the properties (3.28) - (3.31) of G, we get

〈
−→n · ψ, ϕ〉 = 〈G−→n · ψ,Gϕ〉 = 〈−−→n Gψ,−−→n−→n Gϕ〉 = (−1)2(∓1)2〈ψ,−→nϕ〉 = −〈−→n · ψ, ϕ〉.

(3.33) and (3.34) follow immediately. �

Let M be the upper-half Euclidean space R2
+. We identify the Clifford multiplication by the orthonormal

frame ∂x1, ∂x2 with the following matrices:

γ1 =

(
0 i
i 0

)
, γ2 =

(
0 1
−1 0

)
.

Then we can take the chirality operator G := iγ1γ2 =

(
1 0
0 −1

)
. Note that −→n = −∂x2 = −γ2 =

(
0 −1
1 0

)
,

and hence we can calculate B± = 1
2

(
I ± −→n ·G

)
= 1

2

(
1 ±1
±1 1

)
.
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By the standard chirality decomposition, we can write ψ =

(
ψ+

ψ−

)
, then the boundary condition (3.32)

becomes

ψ+ = ∓ψ− on ∂M.

Next, we will extend the chirality boundary condition to the Dirac operator along a map.

Chirality boundary condition for the Dirac operator D/ along a map φ

When ∂M , ∅, the Dirac operator D/ along a map φ is in general not formally self-adjoint. In fact, we have
the following property analogous to the usual Dirac operator ∂/.

Proposition 3.2. ∫
M
〈ψ,D/ϕ〉 =

∫
M
〈D/ψ, ϕ〉 −

∫
∂M
〈
−→n · ψ, ϕ〉,

for all ψ, ϕ ∈ C∞(ΣM ⊗ φ−1T N), where 〈ψ, ϕ〉 := gi j(φ)〈ψi, ϕ j〉.

Proof. Choose a local orthonormal frame {γα}2α=1 on M. Given ψ, ϕ ∈ C∞(ΣM ⊗ φ−1T N), define

f := 〈γα · ψ, ϕ〉γα,

then f is independent of the choice of such a frame γα and hence is globally defined. We calculate∫
M
〈ψ,D/ϕ〉 =

∫
M
〈D/ψ, ϕ〉 −

∫
M
γα〈γα · ψ, ϕ〉

=

∫
M
〈D/ψ, ϕ〉 −

∫
M

div f

=

∫
M
〈D/ψ, ϕ〉 −

∫
∂M

f · −→n

=

∫
M
〈D/ψ, ϕ〉 −

∫
∂M
〈γα · ψ, ϕ〉〈γα,

−→n 〉.

=

∫
M
〈D/ψ, ϕ〉 −

∫
∂M
〈
−→n · ψ, ϕ〉.

Here in the last step we have used the fact that −→n = 〈γα,
−→n 〉γα. �

To extend the chirality boundary condition to the Dirac operator D/ along a map from M to N, we need
some geometric structure on the target N.

Given a submanifold S of N. We assume that there is an endomorphism R(y) : TyN → TyN,∀y ∈ S. The
(1, 1) tensor R is called compatible if it preserves the metric on T N, namely,

〈R(y)V,R(y)W〉 = 〈V,W〉, ∀V,W ∈ TyN, ∀y ∈ S

and it squares to the identity, more precisely,

R(y)R(y)V = V, ∀V ∈ TyN, ∀y ∈ S.

Such compatible (1, 1) tensors on S always exist. For instance, we can take R ≡ ± id, where

id : TyN → TyN, ∀y ∈ S

denotes the identity endomorphism.
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Let S be a closed submanifold of N with a compatible (1, 1) tensor R and consider a map φ ∈ C∞(M,N)
satisfying the free boundary condition in the classical sense, namely, φ(∂M) ⊂ S. We denote by

Sφ :=
(
ΣM ⊗ φ−1T N

)
|∂M

the restricted (twisted) spinor bundle with the induced metric.
Let ψ ∈ C∞(Sφ). Given x ∈ ∂M, then φ(x) ∈ S. Choose a local orthonormal frame {Vi} on a neighborhood

of φ(x) (still denote by {Vi} the corresponding orthonormal frame along the map φ). Locally, we can write

ψ =
∑

i

ψi ⊗ Vi.

Denote by Id the identity endomorphism acting on C∞(φ−1T N|∂M). Then, one can verify that the endo-
morphism −→n G ⊗ R : C∞(Sφ)→ C∞(Sφ) defined by(

−→n G ⊗ R
)
ψ :=

∑
i

−→n Gψi ⊗ RVi, ∀ψ =
∑

i

ψi ⊗ Vi ∈ C∞(Sφ). (3.35)

is self-adjoint and its square is the identity, namely〈
(−→n G ⊗ R)ψ, ϕ

〉
=

〈
ψ, (−→n G ⊗ R)ϕ

〉
, ∀ψ, ϕ ∈ C∞(Sφ) (3.36)(

−→n G ⊗ R
)2

= I ⊗ Id. (3.37)

Hence, we can decompose the twisted bundle Sφ = V+
φ ⊕ V−φ , where V±φ is the eigensubbundle corresponding

to the eigenvalue ±1. One verifies that the orthogonal projection onto the eigensubbundle V±φ :

Bφ
± : C∞(Sφ) → C∞(V±φ )

ψ 7→
1
2

(
I ⊗ Id ± −→n G ⊗ R

)
ψ,

defines an elliptic boundary condition for the Dirac operator D/ along the map φ. We say a spinor field
ψ ∈ C∞(ΣM ⊗ φ−1T N) along a map φ satisfies the boundary condition B±φ if

B±φ ψ|∂M = 0. (3.38)

The following proposition generalizes the results of Proposition 3.1 to the case of spinor fields along a
map:

Proposition 3.3. If ϕ, ψ ∈ C∞(ΣM ⊗ φ−1T N) satisfy the chirality boundary condition B±φ , then

〈
−→n · ψ, ϕ〉 = 0, on ∂M. (3.39)

In particular, we have ∫
∂M
〈
−→n · ψ, ϕ〉 = 0. (3.40)

Proof. Let ψ, ϕ ∈ C∞(ΣM ⊗ φ−1T N) satisfying the chirality boundary condition B±φ , namely, B±φψ|∂M =

B±φϕ|∂M = 0. Choosing a local orthonormal frame {Vi} on a neighborhood of φ(x) for x ∈ ∂M, we can write

ψ =
∑

i

ψi ⊗ Vi, ϕ =
∑

j

ϕ j ⊗ V j.

Then the chirality boundary conditions B±φ for ψ and ϕ read:

ψ =
∑

i

ψi ⊗ Vi = ∓
∑

i

−→n Gψi ⊗ RVi, ϕ =
∑

j

ϕ j ⊗ V j = ∓
∑

j

−→n Gϕ j ⊗ RV j.
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At the point x, we can calculate

〈
−→n · ψ, ϕ〉 = (∓1)2

∑
i, j

〈
−→n−→n Gψi ⊗ RVi,

−→n Gϕ j ⊗ RV j〉

=
∑
i, j

〈
−→n−→n Gψi,−→n Gϕ j〉〈RVi,RV j〉

=
∑
i, j

〈−
−→nψi, ϕ j〉〈Vi,V j〉

=
∑
i, j

−〈
−→nψi ⊗ Vi, ϕ

j ⊗ V j〉

=
∑
i, j

−〈
−→n · ψ, ϕ〉.

Since the point x ∈ ∂M is arbitrary, we obtain (3.39) and (3.40). �

Free boundary conditions for Dirac-harmonic maps

Let S be a closed p-dimensional submanifold of N. It turns out that one can associate to it a natural (1, 1)
tensor R that is compatible.

To see this, we consider a tubular neighborhood Uδ :=
{
z ∈ N | distN(z,S) < δ

}
of S in N, where δ > 0 is

a constant small enough such that for any z ∈ Uδ, there exists a unique minimal geodesic γz connecting z and
z′ ∈ S which attains the distance from z to the submanifold S.

On Uδ, we can define the geodesic reflection σ as follows:

σ : Uδ → Uδ, z := expz′v 7→ σ(z) := expz′ (−v),

where v ∈ Tz′N is uniquely determined by z. Clearly, σ2 = id : Uδ → Uδ, and for δ small enough, the map σ
is a diffeomorphism. Associated to this σ, there is a (1, 1) tensor R on S defined by

R(z) := Dσ(z), ∀z ∈ S.

The (1, 1) tensor R is well defined on S, since σ|S = id and hence R(z) : TzN → TzN is an endomorphism
for z ∈ S. To show the compatibility of R, it is most convenient to take the adapted coordinates {yi}i=1,2,··· ,d in
some neighborhood U ⊂ Uδ of a given point P ∈ S, such that {ya}a=1,2,··· ,p are coordinates in S, {yλ}λ=p+1,··· ,d
are the directions normal to S and

S ∩ U = {y ∈ U|yp+1 = ... = yd = 0}.

In the sequel, the index ranges are:

1 ≤ a, b, · · · ≤ p, p + 1 ≤ λ, µ, · · · ≤ d, 1 ≤ i, j, k, · · · ≤ d.

Note that the adapted coordinates {yi}i=1,2,··· ,d are exactly the geodesic parallel coordinates for the subman-
ifold S. These coordinates also go under the name of Fermi coordinates in the literature. We refer to [12] for
more details. In such coordinates, the diffeomorphism σ|U : U→ U is given by

σ : (y1, ..., yp, yp+1, ..., yd)→ (y1, ..., yp,−yp+1, ...,−yd)

Consequently, we have

Dσ(∂yk) = ∂yk, k = 1, ..., p

Dσ(∂ym) = −∂ym, m = p + 1, ..., d.

The tensor R and the metric g take the following forms

R =

(
δa

b 0
0 −δλµ

)
, g =

(
gab 0
0 gλµ

)
.
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It is easy to verify that R is compatible. Moreover, R satisfies the following additional property:

R(z)|TzS = id, R(z)|T⊥z S = − id, ∀z ∈ S

where id denotes the identity endomorphism and T⊥z S is the subspace of TzN that is normal to TzS.

Given a closed p-dimensional submanifold S of N. In the sequel, we will always associate to it the
compatible (1, 1) tensor R constructed via the geodesic reflection σ for S. It turns out that this tensor is the
most natural one from a geometrical and analytical point of view.

Let φ ∈ C∞(M,N) satisfying the boundary condition that φ(∂M) ⊂ S and let ψ ∈ C∞(ΣM ⊗ φ−1T N). We
impose the free boundary condition for ψ as the chirality boundary condition corresponding to S, namely,

B±φ ψ|∂M = 0.

or in a local form

ψi = ∓ Ri
j
−→n Gψ j, i = 1, 2, · · · , d, on ∂M.

When M = R2
+, we identify the Clifford multiplication by ∂x1, ∂x2 with the matrices γ1, γ2, take the chiral-

ity operator G := iγ1γ2 and decompose ψ =

(
ψ+

ψ−

)
. Then, the chirality boundary condition B±φ corresponding

to S becomes:

ψi
+ = ∓ Ri

j ψ
j
−, i = 1, 2, · · · , d, on ∂M. (3.41)

Remark 3.1. In the physics literature (see [1]), the above coordinate system {yi}i=1,2,··· ,d is said to be adapted
to the brane S. And (3.41) is the fermionic boundary condition considered in [1], where it is a priori assumed
that there exists some compatible (1,1) tensor R defined on some region including S.

Set

X(M,N;S) :=
{
(φ, ψ)|φ ∈ C∞(M,N), φ(∂M) ⊂ S;ψ ∈ C∞(ΣM ⊗ φ−1T N),B±φ ψ|∂M = 0

}
.

Definition 3.1. (φ, ψ) ∈ X(M,N;S) is called a Dirac-harmonic map from M to N with free boundary on S if
it is a critical point of L(·, ·) in X(M,N;S).

Let (φ, ψ) be a Dirac-harmonic map from M to N with a free boundary on S ⊂ N.
First, we consider a family of (φt, ψt) ∈ X(M,N;S) with φt ≡ φ and dψt

dt |t=0 = ξ. Then we calculate

dL(φt, ψt)
dt

|t=0 =

∫
M

d
dt
〈ψt,D/ψt〉|t=0

=

∫
M
〈ξ,D/ψ〉 +

∫
M
〈ψ,D/ξ〉

= 2
∫

M
Re〈ξ,D/ψ〉 −

∫
∂M
〈
−→n · ψ, ξ〉.

Note that ψ, ξ satisfy the boundary condition B±φ , hence, it follows from Proposition 3.3 that
∫
∂M〈
−→n ·ψ, ξ〉 = 0.

Next, we consider a family of (φt, ψt) ∈ X(M,N;S) with dφt
dt |t=0 = η and ψt = ψi

t ⊗ ∂yi(φt), ψi
t ≡ ψ

i. Then
we have

dL(φt, ψt)
dt

|t=0 =

∫
M

2〈dφ, dη〉 +
∫

M
〈ψ,

d
dt

D/ψt〉|t=0

=

∫
M

2〈dφ, dη〉 +
∫

M
2〈R(φ, ψ), η〉 +

∫
M
〈ψ,D/(ψi ⊗ ∇∂t∂yi)〉

=

∫
M

2〈−τ(φ), η〉 +
∫

M
2〈R(φ, ψ), η〉 +

∫
M
〈D/ψ, ψi ⊗ ∇∂t∂yi〉

+

∫
∂M

2〈φ−→n , η〉 −
∫
∂M
〈
−→n · ψ, ψi ⊗ ∇∂t∂yi〉.



THE BOUNDARY VALUE PROBLEM FOR DIRAC-HARMONIC MAPS 13

Here φ−→n =
∂φ

∂−→n
. Note that, for simplicity, we used the local expression of ψ, namely, ψ = ψi ⊗ ∂yi, where yi is

a local coordinate of N. By using the expression ψi ⊗ ∇∂t∂yi = η jΓk
jiψ

i ⊗ ∂yk and requiring the vanishing of
the boundary integral, we have

0 =

∫
∂M

2〈φ−→n , η〉 −
∫
∂M
〈
−→n · ψ, ψi ⊗ ∇∂t∂yi〉 =

∫
∂M

gm j

(
2φm
−→n
− gnm〈

−→n · ψl, ψi〉Γk
ingkl

)
η j.

Since η =
dφt
dt |t=0 is arbitrary, it follows that(

2φm
−→n
− gnm〈

−→n · ψl, ψi〉Γk
ingkl

)
∂m ⊥ S, (3.42)

here and in the sequel, for simplicity, we write ∂i := ∂
∂yi , ∂λ := ∂

∂yλ , and ∂a := ∂
∂ya etc..

From the free boundary conditions for the spinor fields:

ψi = ∓Ri
j
−→n Gψ j, on ∂M

where R = (Ri
j) =

(
δa

b 0
0 −δλµ

)
, one easily verifies that

〈
−→n · ψa, ψb〉 = 0, 〈

−→n · ψλ, ψµ〉 = 0, on ∂M

for a, b = 1, 2, · · · , p and λ, µ = p + 1, · · · , d.
Let us continue to consider (3.42). We note that

gmngklΓ
k
in〈
−→n · ψl, ψi〉 = gmngλlΓ

λ
in〈
−→n · ψl, ψi〉 + gmngalΓ

a
in〈
−→n · ψl, ψi〉

= gmngλµΓλin〈
−→n · ψµ, ψi〉 + gmngabΓa

in〈
−→n · ψb, ψi〉

= gmngλµΓλan〈
−→n · ψµ, ψa〉 + gmngabΓa

λn〈
−→n · ψb, ψλ〉

= gmngλµΓλan〈
−→n · ψµ, ψa〉 + gmngλµΓ

µ
bn〈ψ

b,−→n · ψλ〉,

namely,
gmngklΓ

k
in〈
−→n · ψl, ψi〉 = 2gmngλµΓλan〈

−→n · ψµ, ψa〉, m = 1, 2, · · · , d.

Using this we have(
2φm
−→n
− gnm〈

−→n · ψl, ψi〉Γk
ingkl

)
∂m ⊥ S ⇔

(
2φc
−→n
− gnc〈

−→n · ψl, ψi〉Γk
ingkl

)
∂c = 0

⇔ 2φc
−→n
∂c − gdc〈

−→n · ψl, ψi〉Γk
idgkl∂c = 0

⇔ (
∂φ

∂−→n
)> − gcdΓλadgλµ〈−→n · ψµ, ψa〉∂c = 0.

On the other hand, for the second fundamental form AS(·, ·) of S in N, it holds that AS(∂a, ∂d) =
(
∇∂a∂d

)⊥
=

Γ
µ
ad∂µ, using this in (3.42), we obtain(

2φm
−→n
− gnm〈

−→n · ψl, ψi〉Γk
ingkl

)
∂m ⊥ S ⇔

(
∂φ

∂−→n

)>
= gcd〈AS(∂a, ∂d), ∂µ〉〈−→n · ψµ, ψa〉∂c

= gcd〈AS(ψ>, ∂d),−→n · ψ⊥〉∂c

= gcd〈PS(−→n · ψ⊥;ψ>), ∂d〉∂c

= PS(−→n · ψ⊥;ψ>).

Here PS(·; ·) is the shape operator of S in N. Therefore, we have

Proposition 3.4. The condition (3.42) is equivalent to(
∂φ

∂−→n

)>
= PS(−→n · ψ⊥;ψ>),
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in particular, if S is a totally geodesic submanifold in N, this reads
∂φ

∂−→n
⊥ S.

Remark 3.2. The condition ∂φ

∂−→n
⊥ S is exactly the orthogonality condition in the theory of minimal surfaces

with free boundaries (see the survey paper by Hildebrandt [17] and the references therein). In the case
of Dirac-harmonic maps with free boundaries, the orthogonality condition appears when the supporting
submanifold S is totally geodesic or the spinor field vanishes, namely ψ ≡ 0.

The above discussions lead to the following equivalent definition of Dirac-harmonic maps with a free
boundary on S.

Definition 3.2. (φ, ψ) ∈ X(M,N;S) is called a Dirac-harmonic map from M to N with free boundary S ⊂ N
if (φ, ψ) is Dirac-harmonic in M, namely,

τ(φ) = R(φ, ψ),
D/ψ = 0,

and satisfies the following free boundary conditions:
i) (

∂φ

∂−→n

)>
= PS(−→n · ψ⊥;ψ>), on ∂M

ii)

B±φ ψ|∂M = 0.

Weakly Dirac-harmonic maps with free boundary on S

In order to define the free boundary conditions for weakly Dirac-harmonic maps, we shall use the isometric
embedding N ↪→ RK . Using the orthogonal decomposition RK

y = TyN ⊕T⊥y N, for any y ∈ N, we can consider
the bundles ΣM ⊗φ−1T N and Sφ =

(
ΣM ⊗ φ−1T N

)
|∂M as subbundles of ΣM ⊗φ−1RK and

(
ΣM ⊗ φ−1RK

)
|∂M ,

respectively. Moreover, we denote

L2(Sφ) :=
{
ψ|∂M | ψ ∈ W1,4/3(ΣM ⊗ φ−1T N)

}
.

Let VδN be a tubular neighborhood of N in RK with a projection P : VδN → N (see [15]), we define

R̃(y) := D(σ ◦ P)(y), y ∈ S.

For y ∈ S, since R(y) = Dσ(y), we have R̃(y) = D(σ ◦ P)(y) = Dσ(y) ◦ (DP)(y) = R(y) ◦ (DP)(y). Moreover,
for all V,W ∈ TyN and y ∈ S, there holds DP(y)V = V and hence〈
R̃(y)V, R̃(y)W

〉
RK

y
= 〈R(y)[(DP)(y)V],R(y)[(DP)(y)W]〉RK

y
= 〈R(y)V,R(y)W〉TyN = 〈V,W〉TyN = 〈V,W〉RK

y
.

On the other hand, since (σ ◦ P) ◦ (σ ◦ P) = (σ ◦ σ ◦ P) = P = id on Uδ ⊂ N, we get

R̃(y)R̃(y)V = V, ∀V ∈ TyN,∀y ∈ S.

Therefore, we can define, in analogy to the case of smooth sections, an endomorphism
−→n G ⊗ R̃ : L2(Sφ)→ L2(Sφ),

which is self-adjoint and squares to the identity. Also, we can decompose Sφ = V+
φ ⊕V−φ and define an elliptic

boundary condition
B̃±φ : L2(Sφ)→ L2(V±φ )

for D/ . For convenience of notation, we still denote B̃±φ by B±φ .
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One easily verifies that the results in Proposition 3.3 hold for W1,4/3 sections of the bundle ΣM ⊗ φ−1T N
with φ ∈ H1(M,N). More precisely, we have

Proposition 3.5. If ϕ, ψ ∈ W1,4/3(ΣM ⊗ φ−1T N) satisfy the chirality boundary condition B±φ , then

〈
−→n · ψ, ϕ〉 = 0, a.e. on ∂M.

In particular, we have ∫
∂M
〈
−→n · ψ, ϕ〉 = 0.

Now we introduce the class X1,2
1,4/3(M,N;S) of admissible fields (φ, ψ) with free boundary on the support-

ing submanifold S ⊂ N as follows:

X
1,2
1,4/3(M,N;S) :=

{
(φ, ψ)|φ ∈ H1(M,N), φ(∂M) ⊂ S;ψ ∈ W1,4/3(ΣM ⊗ φ−1T N),B±φ ψ|∂M = 0

}
where “φ(∂M) ⊂ S” means that the L2-trace φ|∂M of φ mapsH1-almost all of ∂M into S and “B±φ ψ|∂M = 0”
means that the L2-traces B±φ ψ|∂M vanish onH1-almost all of ∂M.

Definition 3.3. (φ, ψ) ∈ X1,2
1,4/3(M,N;S) is called a weakly Dirac-harmonic map with free boundary S if it is

a critical point of the action functional L(·, ·) in X1,2
1,4/3(M,N;S).

One verifies, similarly to Wang-Xu [28], that a Dirac-harmonic map with free boundary on S is invari-
ant under a totally geodesic, isometric embedding of the target. Therefore, adapting Hélein’s enlargement
argument (see [14, 15]), we assume W.L.O.G. that there exists a global orthonormal frame {V̂i}

d
i=1 on N. Set

Vi(x) = V̂i(φ(x)), i = 1, 2, ..., d, then {Vi} is an orthonormal frame along the map φ. The spinor field ψ along
φ can be written as

ψ =

d∑
i=1

ψi ⊗ Vi,

Using the frame {V̂i}
d
i=1, it is not difficult to derive (similarly to the calculations in [6, 28]) the following

two propositions (proofs omitted):

Proposition 3.6. Let (φ, ψ) ∈ X1,2
1,4/3(M,N) be a weakly Dirac-harmonic map. Then∫

M
dφ · ∇V +

∫
M

〈
ψi, γα · ψ

j
〉 〈

Vi,R(φ) (V, φ∗(γα)) V j

〉
= 0,

∫
M
〈ψ,D/ξ〉 = 0,

for all compactly supported V ∈ H1 ∩ L∞(M, φ−1T N) and for all compactly supported ξ ∈ W1,4/3 ∩ L∞(ΣM ⊗
φ−1T N).

Proposition 3.7. Let (φ, ψ) ∈ X1,2
1,4/3(M,N;S) be a weakly Dirac-harmonic map with free boundary on S.

Then ∫
M

dφ · ∇V +

∫
M

〈
ψi, γα · ψ

j
〉 〈

Vi,R(φ) (V, φ∗(γα)) V j

〉
= 0,

∫
M
〈ψ,D/ξ〉 = 0,

for all V ∈ H1 ∩ L∞(M, φ−1T N) such that V(x) ∈ Tφ(x)S for a.e.x ∈ ∂M and for all ξ ∈ W1,4/3 ∩ L∞(ΣM ⊗
φ−1T N) such that B±φ ξ|∂M = 0.
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The rest of this section will be devoted to studying the regularity of weakly Dirac-harmonic maps with
free boundary on S. For simplicity, we will locate our problem in a small neighborhood of a boundary point.
To this end, we consider the case that the domain M is B+

1 :=
{
(x1, x2) ∈ R2|x2

1 + x2
2 ≤ 1, x2 ≥ 0

}
and the free

boundary portion is I :=
{
(x1, 0) ∈ R2| − 1 ≤ x1 ≤ 1

}
. Moreover, we identify ∂xα with γα, α = 1, 2.

The reflection principle

The following Lemma, analogous to Lemma 3.1 in [26], shows that the image of φ over a sufficiently small
neighborhood of a boundary point is contained in a tubular neighborhood of the supporting submanifold S.
Therefore, we can use the geodesic reflection σ to reflect the two fields (φ, ψ) across S when restricted to a
sufficiently small domain.

Lemma 3.1. Let N be a compact Riemannian manifold, isometrically embedded in RK and S a closed
submanifold in N. Then there is an ε0 = ε0(N) > 0 such that for all weakly Dirac-harmonic maps (φ, ψ) ∈
X

1,2
1,4/3(B+

1 ,N;S) with a free boundary on S and∫
B+

1

(
|dφ|2 + |ψ|4

)
≤ ε0, (3.43)

it holds dist(φ(x),S) ≤ Cε1/2
0 for all x ∈ B+

1/4 with a constant C = C(N). Moreover, there is a Q ∈ S such that
φ(x) ∈ BCε1/2

0
(Q) for all x ∈ B+

1/4 with a constant C = C(N).

Proof. To prove this Lemma, it is sufficient to prove an interior estimate for Dirac-harmonic maps on surfaces.
More precisely, let x0 ∈ B+

1/4\∂R
2
+ be an arbitrary point and set R := 1

3 dist(x0, ∂R
2
+). Given x ∈ B2R(x0), one

can verify that BR(x) ⊂ B+
1 . Define

φ̃(z) := φ(x + Rz), ψ̃(z) := R
1
2ψ(x + Rz), z ∈ B1.

Then by assumption (3.43), we have∫
B1

(
|dφ̃|2 + |ψ̃|4

)
=

∫
BR(x)

(
|dφ|2 + |ψ|4

)
≤

∫
B+

1

(
|dφ|2 + |ψ|4

)
≤ ε0.

Provided that ε0 is sufficiently small, then we can apply the ε-regularity for Dirac-harmonic maps from
surfaces (see Theorem 3.2 in [7] or Theorem 4.3 in [6]) to get

‖ dφ̃ ‖L∞(B1/2)≤ C ‖ dφ̃ ‖L2(B1)≤ C
√
ε0.

where C > 0 is a constant depending only on the geometry of N. Note that dφ̃(0) = R · dφ(x). Hence,

|dφ(x)| =
|dφ̃(0)|

R
≤

C
√
ε0

R
.

for all x ∈ B2R(x0).
The rest of the proof can use the same arguments as in the proof of Lemma 3.1 in [26]. Therefore we

obtain

|φ(x0) − φ| ≤ C
√
ε0

and

dist(φ,S) ≤ C[R2−n
∫

B+
5R(x1)

|dφ|2]1/2 ≤ C
√
ε0,

where φ := −
∫

B+
5R(x1) φ.

Furthermore, since S is compact, then there is a point Q ∈ S such that dist(φ,S) = dist(φ,Q). Hence we
have

dist(φ(x0),Q) ≤ |φ(x0) − φ| + dist(φ,Q) ≤ C
√
ε0.
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This completes the proof. �

The above lemma shows that

φ(B+
1/4) ⊂ Uδ := {z ∈ N : distN(z,S) < δ}

for some δ > 0, provided that the energy of φ over the half disk is sufficiently small.

Let (φ, ψ) ∈ X1,2
1,4/3(B+

1 ,N;S) be a weakly Dirac-harmonic map with free boundary on S. By the conformal
invariance of weakly Dirac-harmonic maps from surfaces, we can W.L.O.G assume that φ(B+

1 ) ⊂ Uδ.
Denote

Σ(x) := Dσ(φ(x)), x ∈ B+
1

Define a morphism T±φ : W1,4/3(ΣB+
1 ⊗ φ

−1T N)→ W1,4/3(ΣB+
1 ⊗ (σ ◦ φ)−1T N) by

T±φ := ±iγ1 ⊗ Σ.

Here T±φ corresponds to B±φ . In the sequel, we will only consider the case of (B+
φ ,T

+
φ ) and omit the symbol

“ + ”, because the case of (B−φ ,T
−
φ ) is analogous.

For x = (x1, x2), denote x∗ := (x1,−x2). Then, we extend the two fields (φ, ψ) to the lower half disc
B−1 := {(x1, x2) ∈ R2|x2

1 + x2
2 < 1, x2 ≤ 0} as follows (and still denote them by (φ, ψ)):

φ(x∗) := σ(φ(x)), x∗ ∈ B−1 ,

ψ(x∗) := Tφ(x)ψ(x), x∗ ∈ B−1 ,

The extension for (φ, ψ) is well defined. To see this, we verify that for a.e. x ∈ I the following hold:

φ(x) = σ(φ(x)), ψ(x) =
(
−
−→n G ⊗ R(x)

)
ψ(x) = (iγ1 ⊗ Σ(x))ψ(x) = Tφ(x)ψ(x).

Using the extended map φ, we can extend Σ(x) to B1. Since σ = σ−1, one verifies that (see also [26])

Σ−1(x) = Dσ(φ(x))−1 = Dσ(σ(φ(x))) = Dσ(φ(x∗)) = Σ(x∗), (3.44)

namely, Σ(x)Σ(x∗) = Id(φ(x)). Moreover, we can extend Tφ to some morphism (still denoted by Tφ):
W1,4/3(ΣB1 ⊗ φ

−1T N) → W1,4/3(ΣB1 ⊗ (σ ◦ φ)−1T N). Note that for ψ ∈ W1,4/3(ΣB1 ⊗ φ
−1T N), if we write

ψ(x) = ψi(x) ⊗ Vi(x), x ∈ B1, then

ψ(x∗) = Tφ(x)ψ(x) = iγ1ψ
i(x) ⊗ Σ(x)Vi(x), x∗ ∈ B1

One checks that Tφ(x)Tφ(x∗)ψ(x∗) = ψ(x∗) for any ψ ∈ W1,4/3(ΣB1 ⊗ φ
−1T N).

Remark 3.3. We note that our reflection for Dirac-harmonic maps is a natural generalization of the one for
harmonic maps considered by Gulliver-Jost [13] and Scheven [26].

Using the geodesic reflection σ, we are able to extend the metric on the bundle φ−1T N → B+
1 to some

metric h on the bundle φ−1T N → B1 with the extended map φ as follows:

〈V(x),W(x)〉h :=
{
〈V(x),W(x)〉 , x ∈ B+

1 ,
〈Σ(x)V(x),Σ(x)W(x)〉, x ∈ B−1 ,

where V,W ∈ Γ(B1, φ
−1T N). Consequently, the induced metrics on ΣB+

1 ⊗ φ
−1T N, T B+

1 ⊗ φ
−1T N and T ∗B+

1 ⊗

φ−1T N extend to metrics (with respect to h) on ΣB1 ⊗ φ
−1T N, T B1 ⊗ φ

−1T N and T ∗B1 ⊗ φ
−1T N.

Lemma 3.2. For ψ, ϕ ∈ W1,4/3(ΣB1 ⊗ φ
−1T N), there holds

〈ψ(x), ϕ(x)〉h =
〈
Tφ(x)ψ(x),Tφ(x)ϕ(x)

〉
, ∀x ∈ B−1 .
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Proof. Given ψ, ϕ ∈ W1,4/3(ΣB1 ⊗ φ
−1T N), we write ψ(x) = ψi(x) ⊗ Vi(x) and ϕ(x) = ϕ j(x) ⊗ V j(x). Then for

x ∈ B−1 ,

〈ψ(x), ϕ(x)〉h =
〈
ψi(x), ϕ j(x)

〉 〈
Σ(x)Vi(x),Σ(x)V j(x)

〉
=

〈
iγ1ψ

i(x), iγ1ϕ
j(x)

〉 〈
Σ(x)Vi(x),Σ(x)V j(x)

〉
=

〈
Tφ(x)ψ(x),Tφ(x)ϕ(x)

〉
.

Thus, we have proved the lemma. �

Note that given a vector field V(x) ∈ Tφ(x)N, x ∈ B1, there holds Σ(x)V(x) = Dσ(φ(x))V(x) ∈ Tσ◦φ(x)N. We
define the covariant derivative ∇h with respect to h as follows (see also [26])

∇h
X(x)V(x) :=

{
∇φ∗(X(x))V(x), x ∈ B+

1 ,
Σ(x∗)∇(σ◦φ)∗(X(x))(Σ(x)V(x)) = Σ(x∗)∇Σ(x)φ∗(X(x))(Σ(x)V(x)), x ∈ B−1 .

where X ∈ Γ(T B1), V ∈ Γ(B1, φ
−1T N) and ∇ is the Levi-Civita connection on N (also denote the induced

connection for φ−1T N by ∇). One easily verifies that ∇h is compatible with h, namely,

d
(
〈V(x),W(x)〉h

)
=

〈
∇hV(x),W(x)

〉
h

+
〈
V(x),∇hW(x)

〉
h
, x ∈ B1. (3.45)

Moreover, we define the tensor Rh(φ) (with symmetries similar to the Riemann curvature tensor R(φ)):

Rh(φ)(V(x),W(x))U(x) :=
{

R(φ)(V(x),W(x))U(x), x ∈ B+
1 ,

Σ(x∗)R(φ) (Σ(x)V(x),Σ(x)W(x)) (Σ(x)U(x)), x ∈ B−1 .

Recall that the Dirac operator along the map φ can be written as:

D/ = ∂/ ⊗ Id + γα ⊗ ∇φ∗(γα).

Now we define the Dirac operator along the extended map φ with respect to the extended metric h as follows:

D/h := ∂/ ⊗ Id + γα ⊗ ∇
h
γα
.

The following lemma gives a relation between D/h and D/:

Lemma 3.3. For any ξ ∈ W1,4/3(ΣB1 ⊗ φ
−1T N), denote ξ∗(x) := Tφ(x∗)ξ(x∗),∀x ∈ B1, then there holds

D/h
x∗ξ(x∗) = Tφ(x)D/xξ

∗(x), ∀x ∈ B1.

Proof. Write ξ = ξi ⊗ Vi. Then, ∀x ∈ B1, we calculate

Tφ(x)D/xξ
∗(x) = Tφ(x)D/x

(
iγ1ξ

i(x∗) ⊗ Σ(x∗)Vi(x∗)
)

= Tφ(x)
{
∂/x(iγ1ξ

i(x∗)) ⊗ Σ(x∗)Vi(x∗) + γα(iγ1)ξi(x∗) ⊗ ∇φ∗(∂xα)(Σ(x∗)Vi(x∗))
}

= (iγ1)∂/x(iγ1ξ
i(x∗)) ⊗ Σ(x)Σ(x∗)Vi(x∗) + (iγ1)γα(iγ1)ξi(x∗) ⊗ Σ(x)∇φ∗(∂xα)(Σ(x∗)Vi(x∗))

= ∂/x∗ξ
i(x∗) ⊗ Vi(x∗) + γαξ

i(x∗) ⊗ Σ(x)∇Σ(x∗)φ∗(∂x∗α)(Σ(x∗)Vi(x∗)). (3.46)

Here, we have used the fact that

(iγ1)∂/x(iγ1ξ
i(x∗)) = ∂/x∗ξ

i(x∗)

and the following identities (which can be verified using φ(x) = σ(φ(x∗))):

φ∗(∂x1) = Σ(x∗)φ∗(∂x∗1), φ∗(∂x2) = −Σ(x∗)φ∗(∂x∗2),

On the other hand, by definition of D/h, we have that ∀x∗ ∈ B1,

D/h
x∗ξ(x∗) = ∂/x∗ξ

i(x∗) ⊗ Vi(x∗) + γαξ
i(x∗) ⊗ ∇h

∂x∗α
(Vi(x∗))

= ∂/x∗ξ
i(x∗) ⊗ Vi(x∗) + γαξ

i(x∗) ⊗ Σ(x)∇Σ(x∗)φ∗(∂x∗α)(Σ(x∗)Vi(x∗)). (3.47)

Combining (3.46) and (3.47) proves the lemma. �
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Theorem 3.1. Let (φ, ψ) ∈ X1,2
1,4/3(B+

1 ,N;S) be a weakly Dirac-harmonic map with free boundary on S. We
extend the two fields (φ, ψ) to the whole disk B1 as before. Then∫

B1

dφ ·h ∇hV +

∫
B1

〈
ψi, γα · ψ

j
〉 〈

Vi,Rh(φ) (V, φ∗(∂xα)) V j

〉
h

= 0,

∫
B1

〈
ψ,D/hξ

〉
h

= 0,

for all compactly supported V ∈ H1 ∩ L∞(B1, φ
−1T N) and all compactly supported ξ ∈ W1,4/3 ∩ L∞(ΣB1 ⊗

φ−1T N).

Proof. First, given a compactly supported vector field V ∈ H1 ∩ L∞(B1, φ
−1T N). We proceed as in [26] to de-

compose the vector field V into the equivariant and the antiequivariant part with respect to the diffeomorphism
σ, namely, V = Ve + Va, where for x ∈ B1

Ve(x) :=
1
2

[V(x) + Σ(x∗)V(x∗)], Va(x) :=
1
2

[V(x) − Σ(x∗)V(x∗)]

Since Σ(x)Σ(x∗) = Id(φ(x)), one checks

Ve(x∗) = Σ(x)V(x), Va(x∗) = −Σ(x)Va(x)

By (3.44), we have for x0 ∈ I

Ve(x0) =
1
2

[V(x0) + Σ(x0)V(x0)] ∈ Tφ(x0)S.

Hence, Ve|B+
1

is an admissible variation vector field for φwith respect to the free boundary condition φ(I) ⊂ S.
It follows from Proposition 3.7 that∫

B+
1

dφ · ∇Ve +

∫
B+

1

〈
ψi, γα · ψ

j
〉 〈

Vi,R(φ) (Ve, φ∗(∂xα)) V j

〉
= 0. (3.48)

Applying the equivariance of Ve and the symmetry properties of ∇h (see its definition), one verifies∫
B−1

dφ ·h ∇hVe =

∫
B+

1

dφ · ∇Ve. (3.49)

In view of the antiequivariance of Va, we calculate analogously and obtain∫
B−1

dφ ·h ∇hVa = −

∫
B+

1

dφ · ∇Va. (3.50)

Recall that ψ(x∗) = (iγα)ψi(x) ⊗ Σ(x)Vi(x). We claim that the following two identities hold:∫
x∗∈B−1

〈
(iγ1)ψi(x), γα · (iγ1)ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ)

(
Ve, φ∗(∂x∗α)

)
Σ(x)V j(x)

〉
h

=

∫
x∈B+

1

〈
ψi(x), γα · ψ j(x)

〉 〈
Vi(x),R(φ) (Ve(x), φ∗(∂xα)) V j(x)

〉
, (3.51)∫

x∗∈B−1

〈
(iγ1)ψi(x), γα · (iγ1)ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ)

(
Va, φ∗(∂x∗α)

)
Σ(x)V j(x)

〉
h

= −

∫
x∈B+

1

〈
ψi(x), γα · ψ j(x)

〉 〈
Vi(x),R(φ) (Va, φ∗(∂xα)) V j(x)

〉
. (3.52)

If the claim is true, then combining (3.48) - (3.52) gives∫
B1

dφ ·h ∇hV +

∫
B1

〈
ψi, γα · ψ

j
〉 〈

Vi,Rh(φ) (V, φ∗(∂xα)) V j

〉
h

= 0.
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Now it is sufficient to prove the claim. Let x = (x1, x2) ∈ B+
1 , then x∗ = (x1,−x2) ∈ B−1 . Since φ(x∗) =

σ(φ(x)), we have

φ∗(∂x∗1) = Σ(x)φ∗(∂x1), φ∗(∂x∗2) = −Σ(x)φ∗(∂x2).

Hence, we calculate〈
(iγ1)ψi(x), γα · (iγ1)ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ)

(
Ve(x∗), φ∗(∂x∗α)

)
Σ(x)V j(x)

〉
h

=
〈
(iγ1)ψi(x), γ1 · (iγ1)ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ) (Σ(x)Ve(x),Σ(x)φ∗(∂x1)) Σ(x)V j(x)

〉
h

+
〈
(iγ1)ψi(x), γ2 · (iγ1)ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ) (Σ(x)Ve(x),−Σ(x)φ∗(∂x2)) Σ(x)V j(x)

〉
h

=
〈
ψi(x), γα · ψ j(x)

〉 〈
Σ(x)Vi(x),Rh(φ) (Σ(x)Ve(x),Σ(x)φ∗(∂xα)) Σ(x)V j(x)

〉
h

=
〈
ψi(x), γα · ψ j(x)

〉 〈
Σ(x)Vi(x),Σ(x)R(φ) (Ve(x), φ∗(∂xα)) V j(x)

〉
h

=
〈
ψi(x), γα · ψ j(x)

〉 〈
Vi(x),R(φ) (Ve(x), φ∗(∂xα)) V j(x)

〉
.

Integrating the above identity for x∗ ∈ B−1 and changing variables x∗ → x, we have (3.51). Similarly, using
the fact that Va(x∗) = −Σ(x)Va(x), one checks (3.52).

Next, given a compactly supported ξ ∈ W1,4/3 ∩ L∞(ΣB1 ⊗ φ
−1T N). We have (recall that −→n = −γ2)∫

B+
1

〈ψ,D/hξ〉h =

∫
B+

1

〈D/ψ, ξ〉 −
∫

I
〈(−γ2) · ψ, ξ〉.

By Lemma 3.2 and Lemma 3.3, we calculate∫
x∗∈B−1

〈
ψ(x∗),D/h

x∗ξ(x∗)
〉

h
=

∫
x∗∈B−1

〈
Tφ(x∗)ψ(x∗),Tφ(x∗)D/h

x∗ξ(x∗)
〉

=

∫
x∈B+

1

〈ψ(x),D/xξ
∗(x)〉

=

∫
x∈B+

1

〈D/ψ(x), ξ∗(x)〉 −
∫

I
〈(−γ2) · ψ(x), ξ∗(x)〉.

Hence, ∫
B1

〈ψ,D/hξ〉h =

∫
B+

1

〈D/ψ, ξ + ξ∗〉 −

∫
I
〈(−γ2) · ψ, ξ + ξ∗〉. (3.53)

For x ∈ I, one verifies that

Bφ(ξ + ξ∗)(x) =
1
2

(I ⊗ Id − iγ1 ⊗ Σ) (ξ + ξ∗)

=
1
2

(I ⊗ Id − iγ1 ⊗ Σ) (ξ + iγ1 ⊗ Σξ)

=
1
2

[
(I ⊗ Id)ξ −

(
(iγ1)2 ⊗ Σ2

)
ξ
]

= 0.

Therefore, ξ + ξ∗ satisfies the following chirality boundary condition on I:

Bφ(ξ + ξ∗)|I = 0.

Recall that, by assumption, ψ satisfies the same chirality boundary condition. Hence, by Proposition 3.5,∫
I
〈
−→n · ψ, ξ + ξ∗〉 =

∫
I
〈(−γ2) · ψ, ξ + ξ∗〉 = 0.
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Note that D/ψ = 0 in B+
1 , we get from (3.53) that∫

B1

〈ψ,D/hξ〉h = 0.

This completes the proof. �

Continuity of weakly Dirac-harmonic maps at a free boundary

Starting with the global orthonormal frame Vi(x) = V̂i(φ(x)), i = 1, 2, ..., d on φ−1T N, we can apply the
orthonormalization procedure by Gram-Schmidt to construct an H1-tangent frame ei(x) ∈ Tφ(x)N that is
orthonormal with respect to h (see [26]). This construction gives the following estimate

sup1≤i≤d |∇ei(x)| ≤ C|dφ(x)|, x ∈ B1. (3.54)

where C = C(S,N) is a constant.
Define

Rlm :=
∑
i, j,α

〈
ψi(x), γα · ψ j(x)

〉 〈
ei,Rh(φ) (el, em) e j

〉
h

dxα,

then, by the symmetry properties of Rh(φ), one can verify (similarly to [28]) that Rlm = −Rml and Rlm = Rlm,
for 1 ≤ l,m ≤ d. Moreover, we get

Proposition 3.8.

R = (Rlm) ∈ L2(B1, so(d) ⊗ ∧1R2).

Using Rlm, we can write〈
ψi(x), γα · ψ j(x)

〉 〈
ei,Rh(φ) (el, φ∗(∂xα)) e j

〉
h

=
〈
ψi(x), γα · ψ j(x)

〉 〈
ei,Rh(φ) (el, (φ∗(∂xα) ·h em)em) e j

〉
h

= (φ∗(∂xα) ·h em)
〈
ψi(x), γα · ψ j(x)

〉 〈
ei,Rh(φ) (el, em) e j

〉
h

= Rlm · (dφ ·h em).

Note that here dφ = φ∗(∂xα)dxα and dφ ·h em = (φ∗(∂xα) ·h em)dxα.
Given any ϕ ∈ C∞0 (B1). Fix 1 ≤ i ≤ d and take V = ϕei in Theorem 3.1, we get

0 =

∫
B1

dφ ·h ∇h(ϕei) +

∫
B1

〈
ψl(x), γα · ψm(x)

〉 〈
el,Rh(φ) ((ϕei), φ∗(∂xα)) em

〉
h

=

∫
B1

(dφ ·h ei)dϕ +

∫
B1

(∇hei ·h e j)(dφ ·h ei)ϕ +

∫
B1

Ri j · (dφ ·h e j)ϕ,

Since ϕ ∈ C∞0 (B1) is arbitrary, we have

d∗(dφ ·h ei) =
(
(∇hei ·h e j) + Ri j

)
(dφ ·h e j). (3.55)

Note that ei(x) ∈ Tφ(x)N is an H1-tangent frame that is orthonormal with respect to h and ∇h is compatible
with h, one verifies that (∇hei ·h e j) is antisymmetric with respect to the indices i and j. Moreover, we have

Proposition 3.9.

(∇hei ·h e j)i, j ∈ L2(B1, so(d) ⊗ ∧1R2).

To proceed, let us recall the Coulomb gauge construction theorem due to Rivière [24] and Rivière-Struwe
[25] (we only need to consider the case that the domain is two dimensional and hence we use the norm L2

instead of M2,2).
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Lemma 3.4. There exist ε1 > 0 and C > 0 such that if Ω ∈ L2(B1, so(d) ⊗ ∧1R2) satisfies

‖ Ω ‖L2(B1)≤ ε1,

then there exist P ∈ H1(B1, S O(d)) and ζ ∈ H1(B1, so(d) ⊗ ∧2R2) such that

P−1dP + P−1ΩP = d∗ζ in B1,

dζ = 0 in B1,

ζ = 0 on ∂B1.

Moreover, ∇P and ∇ζ belong to L2(B1) with

‖ ∇P ‖L2(B1) + ‖ ∇ζ ‖L2(B1)≤ C ‖ Ω ‖L2(B1)≤ Cε1.

The above lemma can be applied to study the regularity of weakly Dirac-harmonic maps with free bound-
ary when the two fields are extended to the whole disc.

Lemma 3.5. There exists ε2 > 0 such that if (φ, ψ) ∈ X1,2
1,4/3(B+

1 ,N;S) is a weakly Dirac-harmonic map with
free boundary on S satisfying

‖ dφ ‖2L2(B+
1 ) + ‖ ψ ‖4L4(B+

1 )≤ ε
2
2 ,

then φ ∈ C0,α(B+
1/2,N), for any α ∈ (0, 1). Moreover, we have

[φ]C0,α(B+
1/2) ≤ C ‖ dφ ‖L2(B+

1 ) .

Remark 3.4. The scheme of proof will be similar to the ones of [25, 28], however we need to present the
details here in order to set up our framework for the extended metric h.

Proof. First we extend the two fields (φ, ψ) to the whole disk B1 as before. Then, combing Proposition 3.8
and Proposition 3.9 gives Ω = (Ωi j) :=

(
(∇hei ·h e j) + Ri j

)
∈ L2(B1, so(d) ⊗ ∧1R2). Moreover, (3.54) gives

‖ Ω ‖L2(B1)≤ C[‖ dφ ‖L2(B+
1 ) + ‖ ψ ‖2L4(B+

1 )] ≤ Cε2 ≤ ε1,

where ε1 > 0 is the same constant as in Lemma 3.3 and ε2 > 0 is chosen to be sufficiently small. Hence, it
follows from Lemma 3.3 that there are P ∈ H1(B1, S O(d)) and ζ ∈ H1(B1, so(d) ⊗ ∧2R2) satisfying

P−1dP + P−1ΩP = d∗ζ in B1, (3.56)
dζ = 0 in B1,

ζ = 0 on ∂B1.

and

‖ ∇P ‖L2(B1) + ‖ ∇ζ ‖L2(B1)≤ C ‖ Ω ‖L2(B1)≤ Cε2.

We write P = (Pi j), P−1 = (P ji), and ζ = (ζi j). Since P ∈ H1(B1, S O(d)) and hence P−1P = PT P = Id, we
have dP−1 = −P−1dPP−1. Using (3.55) and (3.56), we calculate

d∗

P−1


dφ ·h e1

...
dφ ·h ed


 =

(
dP−1P + P−1ΩP

)
· P−1


dφ ·h e1

...
dφ ·h ed

 = −d∗ζ · P−1


dφ ·h e1

...
dφ ·h ed


Equivalently, we have

−d∗(P ji(dφ ·h e j)) = d∗ζil · (Pml(dφ ·h em)), i = 1, 2, ..., d, in B1. (3.57)

For any 0 < R ≤ 1/4, let BR ⊂ B1/2 be an arbitrary disc of radius R and τ ∈ C∞0 (B1/2) satisfying
0 ≤ τ ≤ 1, τ ≡ 1 in BR, τ ≡ 0 outside B2R, and |∇τ| ≤ 4/R. Denote φ̃ := τ(φ − φR), where φR := −

∫
BR
φ.
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For each 1 ≤ i ≤ d, the 1-form Σd
j=1P ji(dφ̃ ·h e j) ∈ L2(R2,∧1R2), extended by 0 outside of B2R, admits a

Hodge-de Rham decomposition of the following form

Σd
j=1P ji(dφ̃ ·h e j) = d fi + d∗gi + hi, (3.58)

where fi ∈ H1
0(BR), gi ∈ H1

0(BR,∧
2R2) is a closed 2-form, namely, dgi = 0 in BR, and hi ∈ L2(BR,∧

1R2) is a
harmonic 1-form (we refer to Iwaniec-Martin [18] for more details of the Hodge decomposition of forms in
Sobolev spaces).

Taking first d∗ and then d of both sides of (3.58) and applying (3.57) gives for 1 ≤ i ≤ d,

−∆ fi = d∗ζil(P jl(dφ ·h e j)) in BR,

∆gi = dP ji ∧ (dφ ·h e j) + P jidφ ∧h de j in BR.

For 1 < p < 2, let q = p/(p− 1) be the conjugate exponent. By the duality characterization of ‖ ∇ f ‖Lp(BR)

for f ∈ W1,p
0 (BR), we get

‖ ∇ f ‖Lp(BR)≤ C sup
{∫

BR

∇ f · ∇ϕdx : ϕ ∈ W1,q
0 (BR), ‖ ∇ϕ ‖Lq(BR)≤ 1

}
. (3.59)

Since q > 2, by the Sobolev embedding theorem, we have W1,q
0 (BR) ↪→ C0,1−2/q(BR) and for ϕ ∈ W1,q

0 (BR)
with ‖ ∇ϕ ‖Lq(BR)≤ 1 the following estimate holds

‖ ϕ ‖L∞(BR)≤ CR1−2/q, ‖ ∇ϕ ‖L2(BR)≤ CR1−2/q. (3.60)

For any such ϕ, we can estimate fi (similarly to Rivière-Struwe [25] and Wang-Xu [28]) as follows:∫
BR

d fi · dϕ = −

∫
BR

∆ fi · ϕ =

∫
BR

d∗ζil · (P jl(dφ ·h e j)) · ϕ

=

∫
BR

d∗ζil · (P jl(dφ · ê j)) · ϕ

= −

∫
BR

d∗ζil · d(P jl̂e jϕ)φ̃

≤ C ‖ d∗ζil · d(P jl̂e jϕ) ‖H1(R2) [φ]BMO(BR)

≤ C ‖ ∇ζ ‖L2(BR)

‖ ∇P ‖L2(BR) +
∑

j

‖ ∇̂e j ‖L2(BR)

 ‖ ϕ ‖L∞(BR) [φ]BMO(BR)

+C ‖ ∇ζ ‖L2(BR)‖ ∇ϕ ‖L2(BR) [φ]BMO(BR)

≤ C ‖ ∇ζ ‖L2(BR)

(
‖ ∇P ‖L2(BR) + ‖ dφ ‖L2(BR)

)
‖ ϕ ‖L∞(BR) [φ]BMO(BR)

+C ‖ ∇ζ ‖L2(BR)‖ ∇ϕ ‖L2(BR) [φ]BMO(BR)

≤ Cε2

[
‖ ϕ ‖L∞(BR) + ‖ ∇ϕ ‖L2(BR)

]
[φ]BMO(BR)

≤ Cε2R2/p−1[φ]BMO(BR),

where we have used the notations dφ ·h e j = dφ · (h jlel), ê j := h jlel, (3.54) and the following estimates:∑
j

|̂e j| ≤ C
∑

j

|e j|,
∑

j

‖ ∇̂e j ‖L2(BR)≤ C ‖ dφ ‖L2(BR) .

By (3.59), we get (
Rp−2

∫
BR

|∇ fi|p
)1/p

≤ Cε2[φ]BMO(BR). (3.61)
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Similarly, for any ϕ ∈ W1,q
0 (BR) satisfying (3.60), we can estimate gi as follows

∫
BR

dgi · dϕ = −

∫
BR

∆gi · ϕ

= −

∫
BR

[
dP ji ∧ (dφ ·h e j) + P jidφ ∧h de j

]
ϕ

= −

∫
BR

[
dP ji ∧ (dφ · ê j) + P jidφ ∧ (h jldel)

]
ϕ

=

∫
BR

[
dP ji ∧ d(ϕ̂e j) + d(P jih jlϕ) ∧ del

]
φ̃

≤ C
[
‖ dP ji ∧ d(ϕ̂e j) ‖H1(R2) + ‖ d(P jih jlϕ) ∧ del ‖H1(R2)

]
[φ]BMO(BR)

≤ C ‖ ∇P ‖L2(BR)

‖ ∇ϕ ‖L2(BR) +
∑

j

‖ ∇̂e j ‖L2(BR)‖ ϕ ‖L∞(BR)

 [φ]BMO(BR)

+C

∑
l

‖ ∇el ‖L2(BR)

 (‖ ∇ϕ ‖L2(BR) +(‖ ∇P ‖L2(BR) + ‖ ∇h ‖L2(BR)) ‖ ϕ ‖L∞(BR)

)
[φ]BMO(BR)

≤ C ‖ ∇P ‖L2(BR)

(
‖ ∇ϕ ‖L2(BR) + ‖ dφ ‖L2(BR)‖ ϕ ‖L∞(BR)

)
[φ]BMO(BR)

+C ‖ dφ ‖L2(BR)

(
‖ ∇ϕ ‖L2(BR) + ‖ ∇P ‖L2(BR)‖ ϕ ‖L∞(BR) + ‖ ϕ ‖L∞(BR)

)
[φ]BMO(BR)

≤ Cε2R2/p−1[φ]BMO(BR).

Again, using (3.59), we have

(
Rp−2

∫
BR

|∇gi|
p
)1/p

≤ Cε2[φ]BMO(BR). (3.62)

To estimate the harmonic 1-form hi, we apply the classical Campanato estimates for harmonic functions
(see Giaquinta [11]) , (3.61) and (3.62) to get that for any 0 < r < R,

rp−2
∫

Br

|hi|
p ≤ C

( r
R

)p
(
Rp−2

∫
BR

|hi|
p
)

≤ C
( r
R

)p
(
Rp−2

∫
BR

|P ji(dφ̃ ·h e j) − d fi − d∗gi|
p
)

≤ C
( r
R

)p
(
Rp−2

∫
BR

|dφ|p + |∇ fi|p + |∇gi|
p
)

≤ C
( r
R

)p
(
Rp−2

∫
BR

|dφ|p + ε
p
2 [φ]p

BMO(BR)

)

To proceed, we note that by the definition of the extended metric h, there holds (we may need to take δ > 0
small enough so that the tubular neighborhood Uδ of S is sufficiently close to S)

|dφ| ≤ C(N,S)
∑

i

|dφ ·h ei|,
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Then using dφ̃ ·h e j = Pi j(d fi + d∗gi + hi) and P ∈ H1(B1, S O(d)), we can estimate

rp−2
∫

Br

|dφ|p ≤ Crp−2
∫

BR

(|∇ fi|p + |∇gi|
p) + Crp−2

∫
Br

|hi|
p

≤ Crp−2
∫

BR

(|∇ fi|p + |∇gi|
p) + C

( r
R

)p
(
Rp−2

∫
BR

|dφ|p + ε
p
2 [φ]p

BMO(BR)

)
≤ C

( r
R

)p
{

Rp−2
∫

BR

|dφ|p +

( r
R

)−2
ε

p
2 [φ]p

BMO(BR)

}
.

An iteration argument (see [25, 28] for more details), combined with Morrey’s decay lemma (see [11]),
implies that φ ∈ C0,α(B1/2), for any α ∈ (0, 1) and [φ]C0,α(B1/2) ≤ C ‖ dφ ‖L2(B1). Since φ is extended to B1 by
reflection, it follows that [φ]C0,α(B+

1/2) ≤ C ‖ dφ ‖L2(B1)≤ C ‖ dφ ‖L2(B+
1 ). Thus, we have completed the proof. �

Theorem 3.2. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian
manifold, and S be a closed submanifold of N. Let (φ, ψ) be a weakly Dirac-harmonic map from M to N with
free boundary on S. Then for any α ∈ (0, 1),

φ ∈ C0,α(M,N).

Proof. Applying Lemma 3.5 and rescaling the two fields (φ, ψ) if necessary. �

Higher regularity of continuous weakly Dirac-harmonic maps at a free boundary

Let (φ, ψ) be a weakly Dirac-harmonic map from M to N with free boundary on S ⊂ N and suppose
that φ ∈ C0,α(M,N) for any α ∈ (0, 1). For simplicity, we assume that M = B+

1 and consider the higher
regularity of φ at the boundary point 0 ∈ I. As before, we take the adapted coordinates {yi}i=1,2,··· ,d in some
neighborhood U ⊂ Uδ of the point φ(0) ∈ S. By conformal invariance and continuity of φ, we assume
W.L.O.G. φ(B+

1 ) ⊂ U ⊂ Uδ. Denote

ηi :=
{

1, i = 1, ..., p,
−1, i = p + 1, ..., d.

Then the two extended fields (φ, ψ) can be written as follows for k = 1, 2, ..., d:

φk(x) =

{
φk(x), x ∈ B+

1 ,
ηkφ

k(x∗), x ∈ B−1 .

and

ψk
+(x) =

{
ψk

+(x), x ∈ B+
1 ,

ηkψ
k
−(x∗), x ∈ B−1 .

ψk
−(x) =

{
ψk
−(x), x ∈ B+

1 ,
ηkψ

k
+(x∗), x ∈ B−1 .

One can verify that

∂yk(φ(x∗)) = ηk Dσ(φ(x)) ∂yk(φ(x)) = ηk Σ(x) ∂yk(φ(x)), x ∈ B1, k = 1, 2, · · · , d.

For convenience of notation, we shall henceforth also denote the extended metric h by g̃.
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Now we define some geometric data associated to the extended metric g̃ as follows for x ∈ B1:

g̃i j(φ(x)) :=
〈
∂yi(φ(x)), ∂y j(φ(x))

〉
g̃

Γ̃k
i j(φ(x)) :=

 g̃kl(φ(x))
〈
∇∂yi(φ(x))∂y j(φ(x)), ∂yl(φ(x))

〉
g̃
, x ∈ B+

1

g̃kl(φ(x))
〈
Σ(x∗)∇Σ(x)∂yi(φ(x))Σ(x)∂y j(φ(x)), ∂yl(φ(x))

〉
g̃
, x ∈ B−1

R̃mli j(φ(x)) :=
〈
∂y j(φ(x)),Rh(φ)(∂ym(φ(x)), ∂yl(φ(x)))∂yi(φ(x))

〉
g̃

R̃m
li j(φ(x)) := g̃mk(φ(x))R̃i jlk(φ(x)),

where
(̃
gmk(φ(x))

)
mk

is the inverse matrix of (̃gmk(φ(x)))mk. Then, we have

Lemma 3.6.

g̃i j(φ(x)) =

{
gi j(φ(x)), x ∈ B+

1 ,
ηiη jgi j(φ(x∗)), x ∈ B−1 .

Γ̃k
i j(φ(x)) =

{
Γk

i j(φ(x)), x ∈ B+
1 ,

ηiη jηkΓ
k
i j(φ(x∗)), x ∈ B−1 .

R̃mli j(φ(x)) =

{
Rmli j(φ(x)), x ∈ B+

1 ,
ηiη jηlηmRmli j(φ(x∗)), x ∈ B−1 .

R̃m
li j(φ(x)) =

 Rm
li j(φ(x)), x ∈ B+

1 ,

ηiη jηlηmR̃m
li j(φ(x∗)), x ∈ B−1 .

Proof. By definition of h and Rh(φ), it is sufficient to consider the case of x ∈ B−1 . For this, we calculate

g̃i j(φ(x)) =
〈
∂yi(φ(x)), ∂y j(φ(x))

〉
g̃

=
〈
Σ(x)∂yi(φ(x)),Σ(x)∂y j(φ(x))

〉
=

〈
ηi∂yi(φ(x∗)), η j∂y j(φ(x))

〉
= ηiη jgi j(φ(x∗)).

It is easy to verify that g̃i j(φ(x)) = ηiη jgi j(φ(x∗)). Moreover, we have

Γ̃k
i j(φ(x)) = g̃kl(φ(x))

〈
Σ(x)Σ(x∗)∇Σ(x)∂yi(φ(x))Σ(x)∂y j(φ(x)),Σ(x)∂yl(φ(x))

〉
= ηkηlgkl(φ(x∗))ηiη jηl

〈
∇∂yi(φ(x∗))∂y j(φ(x∗)), ∂yl(φ(x∗))

〉
= ηiη jηkΓ

k
i j(φ(x∗)).

R̃mli j(φ(x)) =
〈
∂y j(φ(x)),Rh(φ)(∂ym(φ(x)), ∂yl(φ(x)))∂yi(φ(x))

〉
g̃

=
〈
Σ(x)∂y j(φ(x)),Σ(x)Σ(x∗)R(φ)(Σ(x)∂ym(φ(x)),Σ(x)∂yl(φ(x)))Σ(x)∂yi(φ(x))

〉
=

〈
η j∂y j(φ(x∗)),R(φ)(ηm∂ym(φ(x∗)), ηl∂yl(φ(x∗)))ηi∂yi(φ(x∗))

〉
= ηiη jηlηmRmli j(φ(x∗)).

and

R̃m
li j(φ(x)) = g̃mk(φ(x))R̃i jlk(φ(x)) = ηmηkηkηlηiη jgmk(φ(x∗))Ri jlk(φ(x∗)) = ηiη jηlηmRm

li j(φ(x∗)).

�

Remark 3.5. In the adapted coordinates {yi}, we have gi j(y) = 0, for y ∈ U, i ∈ {1, 2, ..., p}, j ∈ {p + 1, ..., d}.
Hence, both g̃i j(φ) and g̃i j(φ) are continuous (they are in fact Lipschitz, see also [13]).
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Now we can write the equations of the extended fields (φ, ψ) in terms of the data g̃i j, Γ̃k
i j and R̃m

li j.

Proposition 3.10. Assumptions and notations as before. The extended fields (φ, ψ) satisfy in B1

∆φm + Γ̃m
i j(φ)φi

αφ
j
α −

1
2

R̃m
li j(φ)〈ψi,∇φl · ψ j〉 = 0, m = 1, 2, · · · , d,

∂/ψi + Γ̃i
jk(φ)∂αφ jγα · ψ

k = 0, i = 1, 2, · · · , d,

Proof. Note that φ(B+
1 ) ⊂ U, the proposition follows from applying Lemma 3.6 and Theorem 3.1 with

Vi(x) = ∂yi(φ(x)),V(x) = g̃m j(φ(x))η j(x)⊗∂ym(φ(x)), ξ = g̃mk(φ(x))ξk(x)⊗∂ym(φ(x)), where η j ∈ H1
0 ∩L∞(B1)

and ξk ∈ W1,4/3
0 ∩ L∞(ΣB1) are arbitrarily chosen. �

Proposition 3.11. Assumptions and notations as before. If in addition we assume that S is totally geodesic,
then for all m, i, j ∈ {1, 2, ..., d} and any γ ∈ (0, 1),

Γ̃m
i j(φ) ∈ C0,γ(B1).

Proof. By definition, we have Γ̃m
i j(φ(x)) = ηiη jηmΓm

i j(φ(x∗)), for x ∈ B+
1 . Note that both Γm

i j and φ are

continuous, hence, to prove the continuity of Γ̃m
i j(φ), it is sufficient to show that the following terms

Γ⊥>>, Γ>>⊥, Γ⊥⊥⊥ (3.63)

vanish on S. Here and in the sequel, > denotes the tangential index {1, 2, ..., p} and ⊥ denotes the normal
index {p + 1, p + 2, ..., d}. To verify this, firstly we note that (see [12])

g⊥⊥ ≡ 1, on U (3.64)
g>⊥ ≡ 0, on U

It follows that
g⊥⊥,⊥ = g⊥⊥,> = g>⊥,⊥ = g>⊥,> ≡ 0, on U.

Next, we calculate

Γ⊥>> =
1
2

g⊥⊥
(
g⊥>,> + g⊥>,> − g>>,⊥

)
= −

1
2

g⊥⊥g>>,⊥ on U

Γ>>⊥ =
1
2

g>>
(
g>⊥,> + g>>,⊥ − g>⊥,>

)
=

1
2

g>>g>>,⊥ on U

Γ⊥⊥⊥ =
1
2

g⊥⊥g⊥⊥,⊥ = 0, on U

Since S is totally geodesic, we have Γ⊥>> = 0 on S. Therefore,

Γ⊥>> = −
1
2

g⊥⊥g>>,⊥ = 0, on S.

By (3.64), it follows that

Γ>>⊥ =
1
2

g>>g>>,⊥ = 0, on S

Now we have verified that all the terms in (3.63) vanish on S and hence Γ̃m
i j(φ) ∈ C0. Moreover, we can write

Γ̃m
i j(φ(x)) =

{
Γm

i j(φ(x)), x ∈ B+
1 ,

Γm
i j(φ(x∗)), x ∈ B−1 .

Note that φ(B+
1 ) ⊂ U, Γm

i j ∈ C1(U) and φ ∈ C0,γ(B+
1 ) for any γ ∈ (0, 1). Therefore, for any γ ∈ (0, 1), we have

‖ Γ̃m
i j(φ) ‖C0,γ(B1)≤ 2 ‖ Γm

i j(φ) ‖C0,γ(B+
1 )< +∞. This completes the proof. �
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Theorem 3.3. Let M be a compact Riemann spin surface with boundary ∂M, N be any compact Riemannian
manifold, and S be a closed, totally geodesic submanifold of N. Let (φ, ψ) be a weakly Dirac-harmonic map
from M to N with free boundary on S and suppose that φ ∈ C0,α(M,N) for any α ∈ (0, 1). Then there exists
some β ∈ (0, 1) such that

φ ∈ C1,β(M,N), ψ ∈ C1,β(ΣM ⊗ φ−1T N).

Proof. Combining Lemma 3.6, Proposition 3.10, Proposition 3.11 and applying similar arguments as in the
proof of Theorem 2.3. [7], we get φ ∈ C1,β(M,N) and ψ ∈ C1,β(ΣM ⊗ φ−1T N) for some β ∈ (0, 1). �

Remark 3.6. Following the same strategy as in the proof of Theorem 2.3. [7], we take G = (G1,G2, ...Gd),
where

Gm(x, φ, dφ) := Γ̃m
i j(φ)φi

αφ
j
α −

1
2

R̃m
li j(φ)〈ψi,∇φl · ψ j〉,

then using the formulas in Lemma 3.6, we have the following pointwise estimate (used in (2.41), page 70, [7])

|∇G| ≤ C(N,S)
(
|dφ|3 + |ψ||∇ψ||dφ| + |ψ|2|dφ|2 + |∇2φ||dφ| + |∇2φ||ψ|2

)
, a.e. in B1.

4. Dirichlet boundary problem for Dirac-harmonic maps

In this section, we shall study Dirichlet boundary problem for weakly Dirac-harmonic maps.
To proceed, we recall that the regularity up to the boundary for weak solutions satisfying (2.21) with

continuous boundary trace was established by Müller-Schikorra [22]. More precisely, they proved that

Theorem C. Let D ⊂ R2 be a simply connected domain with C2 boundary ∂D. Let u ∈ H1(D,RK), f ∈
Ls(D,RK), s > 1 satisfying

−∆u = Ω · ∇u + f , u|∂D ∈ C0,

where Ω = (Ωi
j)1≤i, j≤K ∈ L2(D, so(K) ⊗ R2), then u is continuous up to the boundary.

In view of the extrinsic equation (2.26) in the proof of Theorem 2.1, we can apply Theorem C to obtain
the following Dirichlet boundary regularity for weakly Dirac-harmonic maps:

Theorem 4.1. Let (φ, ψ) be a weakly Dirac-harmonic map from B1 to a compact Riemannian manifold N. If
φ satisfies the following Dirichlet boundary value condition:

φ|∂B1 ∈ C0,

then φ is continuous up to the boundary ∂B1.

Proof. We proceed as in the proof of Theorem 2.1. Recall that the equations for the map φ can be written in
the following form

−∆φm = Ωm
i · ∇φ

i.

with some Ω = (Ωm
i )1≤i,m≤K ∈ L2(B1, so(K) ⊗ R2). Applying Theorem C gives that φ is continuous up to the

boundary ∂B1. �
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