
THE BOUNDED KNAPSACK PROBLEM

WITH SETUPS

by

H. SURAL*

L.N. VAN WASSENHOVE**

and

C.N. POTTSt

97/71/TM

Research Assistant at INSEAD, Boulevard de Constance, Fontainebleau 77305 Cedex, France.

Professor of Operations Management and Operations Research at INSEAD, Boulevard de Constance,

Fontainebleau 77305 Cedex, France.

Professor at the University of Southampton, UK.

A working paper in the INSEAD Working Paper Series is intended as a means whereby a faculty researcher's

thoughts and findings may be communicated to interested readers. The paper should be considered preliminary

in nature and may require revision.

Printed at INSEAD, Fontainebleau, France.

The Bounded Knapsack Problem with Setups

Haldun Sural*, Luk N. Van Wassenhove* and Chris N. Potts**

* Technology Management Area, 1NSEAD, Fontainebleau, France

** Faculty ofMathematical Studies, University of Southampton, U.

Abstract

In the bounded knapsack problem with setups there are a limited number of copies of each

item and the inclusion of an item in the knapsack requires a fixed setup capacity. Analysis of

special cases of the problem allows us to derive the borderline between hard and easy

problems. We develop a branch and bound algorithm for the general problem and present

some computational results.

Keywords: knapsack, complexity, branch and bound

1 Introduction

The bounded knapsack problem with setups may be stated as follows. Given are a knapsack

of capacity b and n items, where each item i (i=1,...,n) has a limited number of copies mi.

Each copy of item i consumes one unit of capacity and has a contribution ci. In addition,

including , item i in the knapsack consumes a fixed setup of ai units of capacity. The problem

is to pack items into the knapsack so that the total contribution is maximized subject to the

capacity availability constraint. Mathematically, we can formulate the problem as

n

(P) Maximize z= E c.x.

1i=1 z

subject to E (x.+a.y.)^b ,
z

0^x
i
^m

i
y

i
,	 i=1,...,n,

x., integer, y. =0 or 1,	i=1,...,n.

where x i and y i are variables, and	ci, m i and b are nonnegative integers for all i=1,2,...,n.

We may assume, without loss of generality, that (m+a i)^b for all i, and E7_1(m +ai)>b

An application of problem P arises in the context of investment planning, especially in capital

budgeting. Consider, for instance, a decision maker who wants to allocate his capital among

several types of investment alternatives. Each alternative yields a return per unit of money

invested. The total amount that can be allocated to each type of investment is limited and

investing in it incurs an initial fixed cost, or sunk cost. Problem P maximizes total return.

Another application of P can be found in scheduling. The single machine scheduling problem

with setups to minimize the weighted number of late jobs, introduced by Kovalyov, Potts and

Van Wassenhove [6], is equivalent to P for the case of unit processing times and a common

1

due date. Hence, problem P also occurs when a large number of jobs belonging to a few

classes requiring a setup time have to be prepared for a shipment leaving at a given time.

Problem P also arises as a subproblem in many production planning problems where

resources need to be set up before a production run. For instance, Diaby, Bahl, Karwan and

Zionts [3], Kirca [5], and Sural [8] describe different versions of P in their algorithms for

solving the multi-item lot sizing problem with setup times. Goesmans [4] investigates the

polyhedral structure of the constraint set in P with the purpose of generating strong valid

inequalities. A problem similar to P, which occurs as a subproblem of a parallel machine

scheduling problem with setups, is studied by Chajakis and Guignard [2]. They are interested

in a knapsack problem for which an item is packed if the knapsack is set up for its family.

One can easily show that P is a special case of their problem.

Finally it is also interesting to state that P can be transformed to the multiple-choice knapsack

problem by introducing new variables. The multiple-choice knapsack problem is defined as

follows.

(MCP) Maximize z=p .x .
j=1 J J

k
subject tow .x . _̂b ,

j=1

E x .=1 ,
jEN.

•

x.=0 or 1,

i=1,...,n ,

for jelV i and i =1,...,n .

where x . is a variable and p . , w . and b are nonnegative integers for all j=1,...,k

Furthermore, all the Nis are disjoint and non-empty.

2

Introducing mi new binary variables for each i in P, whose (wi, pi) values (jeNi) are (ai+1, ci),

(ai+2, 2ci), ..., (ai+m i, m ici), respectively, and one variable whose (wj, pi)= (0, 0), we

transform P to an equivalent MCP having n sets and k=n+Er_imi items.

It follows that problem P occurs both in its own right and as a subproblem in several more

complex production planning and scheduling problems. In the latter case, problem P needs to

be solved repeatedly as a subroutine. It therefore makes sense to study problem P in more

detail and to design adequate (i.e., reasonably fast) algorithms.

In this paper, we first develop complexity results for P and its special cases, thereby

establishing the boundary between NP-hard and polynomially solvable problems. A simple

algorithm for the well-solvable cases is given in Section 2. A branch and bound algorithm

and heuristic procedure for problem P are discussed in Section 3. In Section 4 we outline and

discuss our computational experiments. Section 5 concludes the article.

2 Complexity analysis of problem P

Problem P is (binary) NP-hard as can easily be seen by putting m1-1 for i=1,...,n. All setup

variables yi can now be removed from P and the knapsack constraint can be written as

En 1+a
/

1 .)x. ^b where xi = 0 or 1 for i=1,...,n. Hence the problem reduces to the well-known
i=ik

NP-hard regular 0-1 Knapsack problem.

It can easily be verified that the following dynamic programming recursion provides a

pseudo-polynomial algorithm for problem P. For i=1,...,n, define

zi (d)= ax
i	i
E c .x ,.: E (x . +a c y -̂ d,x <m v

i_._ 1 i J j_i .1	j j	j – i. , i ,x i ^ 0,y j .---- 0, j =1,_.,i•

3

for d=0, 1,..., b. Then, zn(b)=z(b) denotes the optimal solution to problem P. Let zo(d) =0 for

d=0,1,..., b. The following recursion is computed for each i, where i=1,...,n-1:

z ._1(d)

zi(d)={:
max	{z i_ I (d) cixi+zi_i(d—ai—xj)

}
0<xi ^mi

for 0<_d <a.

for a. <d ^b

For i=n we have z(b)=max 0<rn<mizn_ 1 (b), cnxn+zn_1(b-an-xn)}.

For each i, computation of zi(d) requires 0(b2) time. Hence the time complexity for solving

problem P is 0(nb2). The space complexity is 0(nb) since storage of the state vector

corresponding to zi(d) for each i would be sufficient.

Special cases

Since problem P is NP-hard, it is worthwhile to consider its special cases in order to clearly

define the boundary between easy and hard problems. The first case where ci=1 for all i is

equivalent to the single machine scheduling problem with setups to minimize the number of

late items with unit processing times and a common due date. Kovalyov, Potts and Van

Wassenhove [6] show that the latter problem is NP-hard. For convenience, a direct proof is

given below.

Theorem 1 The bounded knapsack problem with setups where c1=1 for all i is NP-hard.

Proof. The decision version of our problem is NP-complete by transformation from the NP-

complete Partition problem: Given positive integers cci,...,an, is there a subset S of the index

n

set { I, ..., n }, such that 1 a . = A /2 where A= E a . ?
isS 1	 i=1 1

Given any instance of Partition, we can construct the following instance of our problem.

There are n items with c11, m i=c- ci al=ai for all i, and b=A. We show that there exists a set S

4

for which E1ssai=A/2 if and only if there is a bounded knapsack solution whose objective

function value is at least A/2.

If there is a subset S for which Z iescc1==A/2, then leaving exactly A/2 units for setups, we can

insert all copies of the items of S into the knapsack without exceeding b. Conversely, if there

is a bounded knapsack solution with objective function value at least equal to A/2, there must

be at least A/2 copies in the knapsack. Since m i=ai=c- ci for all i, the capacity requirement for

setups is at least equal to the capacity taken by the copies of items. Thus, in a solution with

A/2 copies in the knapsack, the total setup capacity is A/2 and hence these copies correspond

to a set S for which Eicsaf---A/2.

Theorem 2 The bounded knapsack problem with setups where a 1=1 for all i is NP-hard.

Proof. We show that the decision version of the bounded knapsack problem with unit setups

is NP-complete by transformation from the Equal Cardinality Partition problem: Given

positive integers	is there a subset S of the index set {1,...,2k}, such that SI =lc and

2k
Eissa1A/2, where A= 1, a . ?

i./

Given any instance of Equal Cardinality Partition, we can construct the following instance of

the bounded knapsack problem with unit setups, where we, for simplicity, assume that ci can

be real. There are n=2k items, c,---(A+a)/(A+cc,-1) and m i=A+a,-1 for all i, and b=(n+1)A/2.

We show that there exists a set S for which I S I =k and Zi sai=Al2 if and only if there is a

solution to the bounded knapsack problem with unit setups such that z^(n+1)2 2.

5

First, suppose there is a subset S for which I S I =k and E icsocrA/ 2. In the knapsack problem,

set x,=A+arl and y1=1 for isS, and xry i=0 for iE {1,...,21c} \S. Since Eiss (x i+y i)=kA+ Al2=b,

this solution is feasible. Moreover, z=lies (A+ai)=(n+1)A/2.

Conversely, suppose that there is a solution to the bounded knapsack problem with unit setups

such that z^(n+1)Al2. Let S={i: yr-11. We show first that Is I .̂ /c. If I SI <k, then z=

(1+1/(A+ccr1))x i	Eiss m i+ I Si	(n12-1)A+A, which contradicts the assumption that

z^(n+1)Al2.

We now show that x1= m i for isS. Suppose that this is not the case. Note that this analysis

applies when I S I >k: since Eics mi>(n12+1)A>b, it follows that xi<m i for some isS. Since the

knapsack constraint implies that E tas xj5(n+1)Al2- i S I , we obtain z=Eics (1+1/(A+ar1))xi

^(n+1)Al2- I S I +E iEss xj/(A+ar 1). Since xi<A+ccr 1 for some isS, we deduce that z<(n+1)A/2,

which again contradicts the assumption that z^(n+1)Al2. Therefore, xi=A+ar 1 for isS,

and I SI=k.

The knapsack constraint can be expressed as Eirsoci.̂ A/2. Moreover, the inequality

z_̂ (n+1)A/2 can be written as EiEsoci^Al2. Thus, Eicsa.,=Al2, and S defines a solution to Equal

Cardinality Partition.

Efficient algorithms are available if further restrictions are placed on the problem parameters.

For instance, if two out of the three parameters are equal for all items, P can be solved by

packing the items in an order implied by the following dominance concept.

We say that if item i dominates item k, then in an optimal solution

6

(a) yi ŷk, and (b) ifyi=yk=1, then xi-ml and 0<xk^mk.

Lemma 1 Item i dominates item k if c imi _̂ckmin{m i+ai, mk}, ci^ck, ai^ak and at least one

equality is strict.

Proof. To show that the first part of the dominance condition is valid, we suppose to the

contrary that there exists an optimal solution to P, where yk=1 and yi=0. The condition that at

least one inequality is strict yields three cases; either (i) cimi>ckmin{mi+ai, mk}, or (ii) ci>ck,

or (iii) a1<ak. In each case, one can easily show that setting up for i and increasing xi, and

decreasing xk until xi=mi or xk=0 (and yk=0 in turn) would either improve the objective

function, or yield an alternate optimum. The proof for the validity of the second part of the

dominance condition- similarly follows.

By Lemma 1, setting two out of the three sets of parameters m i and a1 equal, we are able to

find a dominance relation between each pair of items. Thus, all items can be ranked. In case

of a tie, of course, items are ranked arbitrarily. It follows that packing items into the knapsack

in that rank order solves the special cases where two sets of parameters are equal. If the items

are indesced in rank order, an optimal solution to the problem is of the form E';=-1(mi+ai)^b

and r" (m +a)>b , and can be characterized by the critical rth item and those items whichi=/

dominate the rest of n-r items. The crucial step is to determine the first r items rather than

their mutual order. It is possible to pick the r items to be included in the knapsack without

sorting using an idea by Balas and Zemel [1]. Steps of this algorithm can be found in

Martello and Toth [7] and can easily be adapted to our problems by adding an inevitable step

that inserts copies of item r into the knapsack until it is completely filled.

Theorem 3 The Balas and Zemel algorithm which runs in 0(n) time solves problem P where

for each i (i=1,...,n) (a) c l=c and m 1=m, or (b) cr--c and a i=a, or (c) mi=m and ai=a.

7

Proof. The proof follows from setting	for (a), X t=mt for (b), and X 1=c1 for (c), and

defining the weights at used in the sum sets as arat+m t for all i in Theorem 1 of Balas and

Zemel [1].

From the above discussion, it follows that problem P is hard even if one set of parameters

(i.e., al's, m l's, or ci's) are equal. It is easy when two sets of parameters are equal.

3 Branch and bound algorithm for solving P

In the knapsack problem literature, branch and bound algorithms are widely used to find an

optimal solution, especially for large n. We describe such an algorithm to solve problem P. It

is an extension of the Horowitz-Sahni algorithm for the 0-1 knapsack problem (see, Martello

and Toth [7]).

Upper bound

A simple upper bound on the problem is found by solving the LP (linear programming)

relaxation of P. The LP relaxation of the problem can be derived from Dantzig's solution to

the continuous knapsack problem. Let qr-cfintl(m t+ad denote the contribution rate of item i

and reorder the items such that q	2^,..., _̂q n . An optimal solution is y t= 1 for i=1,..., r-1,

yr ={b–E;:l(mi +ai)11(mr +a r), and y1=0 for i=r+1,...,n where r = min{ k:Elh(mi+ai)>b}

is called the critical item index. Hence, xt=m tyt for all i and u= E'il_jcixi constitutes an upper

bound for P. Naturally, an LP solution can be determinedg from the critical index in 0(n)

time.

The LP based upper bound can be improved with a little effort. For convenience, suppose that

items are still in the same order q j _̂q	,^q n . If, for example, yr, the binary variable

corresponding to the critical index r, is not integral in the LP optimal solution, it can be forced

8

to be integral (i.e., either to be zero or one) by imposing an integrality constraint. Obviously,

the resultant value would be at least as good as the initial value.

Let u=r:-.1c m and b =bEr=-Ami +ai). When we impose yr=0, the variable(s) r+1,r+2,...,n1=1

would take turns at filling the knapsack until the residual capacity is used up. Then the new

critical index s would be s=min k:Eil"r+I(m.+a.)>b} and the new bound would be equal to

u =u+Elq=- .14.icmi i-csmsy s . Note that this corresponds to solving the relaxed problem P0

with an additional constraint y r=0 to optimality. In case of imposing yr=1, however, we use a

heuristic to avoid increasing the computational burden. Let mr be the necessary number of

copies to be added for item r given that yr=1. The new upper bound subject to the additional

constraint is

1	if qr-i ^Cr and b ^ a,,
'

uI	r q=u-F(C -	Ir-1 mr+qr--1(i)-a), where mr= b-arr	if qr-i ^ c and b> a r
m	otherwiser

Here the idea is simply as follows. Imposing y r=1 means, in general, that at least one copy

of item r should be inserted in the knapsack, or more if it improves, but at most mr. For

instance, when qr_p̂ cr and b ar , the optimal solution is to fill the residual capacity by item r

after its setup capacity is reduced. On the other hand, when qr_ j^cr and b .̂ ar , the maximum

necessary copies of item r to be inserted is one and the minimum necessary value to be

excluded from the solution is a	for its setup. This brings one unit contribution of cr but

reduces u at least by qr_1 (1+ar -b) .In case of qr_i<cr, inserting all copies of r improves the

9

solution. In order to add c". we, however, have to remove at least qr_j (mr —b— -Far) from

the solution. Ultimately, the new upper bound is equal to max {up, un.

The following theorem characterizes the optimal solution to the original problem P and

provides a basis for both our heuristic procedure and branch and bound algorithm.

Theorem 4 There exists an optimal solution to problem P in which every variable x 1, except

at most one, is either at its upper bound or zero.

Proof. Suppose that, in an optimal solution to P, there exist two variables, x1 and x1, such that

0<x1<m 1 and 0<x<tn - and c->c- In such a solution, increasing xi and decreasing x- until x,=mi,
P	1-- j-

or ;TO (and yi=0 in turn) would improve the objective function if ci>cf. This contradicts

optimality. Clearly, ci=cf indicates an alternate optimum.

We deduce the following corollary.

Corollary 1 The variable, whose value is neither at its upper bound nor zero in an optimal

solution, has the smallest contribution of all non-zero variables.

Lower bound

A continuous LP solution to P can be converted to an integer one by considering the critical

item r. For instance, if b—EMm+ai)<ar , then item r can simply be taken out, otherwise

some copies can be taken out until its setup becomes feasible. However, in some cases, the

resulting feasible solution might be arbitrarily bad. Consider, for instance, a two-item

problem where b=k+1, c1 =2, c2 =k, m i =1, m2 =1, a 1 =1, and a2 =k where k>2. A feasible

solution derived from LP yields zLp=2. Item 2 corresponds to item r. On the other hand, the

optimal solution is Z0pT=1C. Unfortunately, as k increases the ratio ZLP/ZOPT approaches zero.

10

In some circumstances, however, even a small adjustment to the LP solution might yield an

improvement. We next present such a heuristic procedure.

Let N be the index set of all items, SgN, and P(S) an instance of problem P defined for a

subset S. y*(1) and x*(i) denote the optimal solution values of P(S) for icS. The output sol

denotes the resulting (feasible) solution value for P while fractional, k and 1 are auxiliary

variables. Additionally, R, F and A are auxiliary index sets.

procedure heuristic procedure:

begin comment initialization,

S: =N; R: = 0; fractional:=',5,es ",-

comment adjustment to the LP solution,

repeat

find the LP solution of P(S);

F:={i.-x*(1)=m(i), isS} ; b: =b-EieFrnw+aw;

A:={i:m(i)+a(i)>b, isSIF}; R:= RUF; S: =S1{ FUA };

until S:= 0 or b:=0;

begin

k:=argminieR {c(z)}; b:=b+m (k)+a(k);

sol:=EieR viox*(z)c(i); R: =N1R;

solve P(RU{k}) with additional constraint EieR y(i)^1;

sol:=sol+EicRx*(040+x*(1c)c(k);

for each isR do

begin

if x*(i):=m(i) then fractionak="no" and 1:=i

11

end;

if fractional: ="no" and y*(k):=0 then

begin

R: =R1{1}; b:=b-m(1)-a(1);

solve P(R);

sol:=sol+EisRx*(z)c(i)

end;

end

end.

In the above procedure we solve both integer P(S)'s by total enumeration, which is done in

0(n) time since at most two items can enter into the solution. The overall time complexity of

the procedure is also 0(n).

Algorithm

The branch and bound algorithm we propose is based on a depth-first strategy and the setup

variables are chosen for branching. Initially, by using the lower and upper bound procedures

we compute both of these bounds on the solution at the very first node of the branch and

bound tree. If the lower bound is greater than or equal to the upper bound we halt the

algorithm since it gives the optimal solution. Otherwise, we save it as a best solution at hand

and go through the algorithm.

The algorithm proceeds with two types of moves, i.e., a forward move and backtrack. Based

on Theorem 4 and its corollary, we begin with sorting all items in the order of c 1^c2^,...,^cn.

At a forward move, we insert an item into the current solution either at its upper bound or

zero, except the last one. The last item to be inserted into the solution just before the capacity

expires, is inserted at an in-between value determined by the residual capacity. If an item is

12

inserted at zero into the current solution, an upper bound on the current solution is computed

by using the upper bound procedure. But the bound is computed just for the last item if more

items are successively inserted at zero level. If the bound is less than or equal to the value of

the best solution on hand, we fathom this node and backtrack. Clearly, a backtrack move is

performed to take out the last item, inserted at a non-zero level, from the current solution.

Otherwise, i.e., if the upper bound is not worse than the best solution, a forward move occurs;

we thus consider the next item that can be inserted into the current solution. Consideration of

the nth item completes the current solution and updating of the best solution at hand is

checked. We halt the algorithm whenever a further backtracking move is not possible. The

steps of the algorithm are given in Appendix.

4 Computational experiments

The computational behaviour of the branch and bound algorithm is analyzed on sets of

randomly generated test problems. We consider two types of problem sets, namely,

• uncorrelated (U):	and a1 are randomly distributed on U[1,101];

• correlated: values of two of the parameters c1, m 1, and all of which are randomly

distributed on U[1,101], are paired in a special way while those of the remaining

parameter are kept as they are. The idea is to increase the expected difficulty of a problem

instance. Accordingly, three types of construction are possible;

Generate n-item data where	and a1 randomly distributed on U[1,101]. To construct a

problem instance in (C), sort and renumber m 1 and al's according to non-increasing order;

in (M), sort and renumber c1 and a l's according to non-increasing order; and in (A), sort and

renumber c1's in non-increasing order and mi's in non-decreasing order. Note that, in each

case we keep the data in the original order just for a single parameter.

13

The problem sizes are chosen as n=25, 50, 100. We generate 25 test problems for each size

and construction, and conduct our experiments for two different values of capacity,

b= 0.5 E (in. +a1) and 400. Note that we have got enough capacity to pack about half of items
1=1

in the former case while very few items might enter into the knapsack in the latter case.

The computational experiments are performed on a PC-Pentium with 120 MHz for 600

problem instances in total. The sorting needed by the algorithm is done with a subroutine

given in Martello and Toth [7]. We compare the Fortran implementation of the algorithm

with Lindo. Results are reported in Table 1 for each problem class, U, C, M, and A, and each

value of b and n. The average execution times, including sorting times, are expressed in

seconds in the table (cpu(a) and cpu(1), respectively) but neither the input nor the output times

are included in these times. In addition, the average number of nodes and backtracks are

given for our algorithm. Furthermore, we provide two types of results for the heuristic

procedure; the average percentage error and the number of times that the procedure has found

the optimal solution, which are denoted by "% error"and"#", respectively. The expression of

the average percentage error is 100*(optimal-lower bound)/optimal.

As shown by results in Table 1, both methods solve the problems relatively quickly, but our

algorithm clearly outperforms Lindo. For all n, the algorithm yields considerably smaller

execution times for b=400 than for b= 0.5 E (m. +a.), as expected, because a small knapsack
i=1

is packed by very few items. Furthermore, as n grows larger the average execution times

grow fairly rapidly.

14

Table 1 Computational results

case capacity n node(backtrack) % error(#) cpu (a) cpu (1)

25 27(12) 1.736(10) 0.000 0.322

400 50 67(30) 0.853(10) 0.002 1.450

C 100 133(59) 0.977(7) 0.002 3.608

•

25 79(38) 0.653(8) 0.000 0.282

05E1/ (mi +ai) 50 147(71) 0.228(6) 0.004 0.979

100 534(254) 0.090(5) 0.008 3.445

25 45(22) 1.378(13) 0.002 0.196

400 50 99(46) 1.497(8) 0.005 0.340

U 100 160(74) 0.971(10) 0.004 1.044

25 100(49) 0.313(11) 0.002 0.211

0.5r1_ / (mi +a i) 50 571(279) 0.336(6) 0.006 0.650

100 2584(1268) 0.093(3) 0.042 3.730

25 82(38) 0.717(14) 0.000 0.627

400 50 294(135) 0.705(13) 0.002 2.854

M 100 375(170) 0.119(14) 0.004 10.774

25 156(76) 0.391(7) 0.002 0.427

05E7_4mi +ai) 50 945(459) 0.216(6) 0.004 1.925

100 10023(4885) 0.072(2) 0.121 20.976

25 140(66) 1.306(13) 0.000 0.291

400 50 430(199) 1.332(11) 0.004 0.952

A 100 1164(537) 0.855(6) 0.009 2.395

25 259(129) 0.499(10) 0.004 0.309

0.5E7_ / (mi +a i) 50 1420(703) 0.266(6) 0.022 1.081

100 5242(2598) 0.110(9) 0.123 4.720*

* Average solution time for Lindo is given for 24 problems; one problem could not be solved within the pivot

limit 10 million we set.

15

The heuristic procedure does reasonably well. Both the average percentage error and the

number of times that the optimal solution is found decrease as n grows. The average

percentage error over 600 problems is 0.654.

Apart from the above experiments, we have tested the performance of the algorithm on certain

large-size instances of P. We only considered the A and M type test problems, which appear

to be the "harder" ones. We set n=400 and b= 0.5 E (m.+a.)). The average solution times
i=1

z

over 25 test problems are 0.28 and 1.64 minutes while the average percentage errors of the

heuristic procedure are 0.016 and 0.045 for A and M type test problems, respectively.

5 Concluding remarks

We have introduced the bounded knapsack problem with setups. To our knowledge, this is

the first attempt to examine the problem although a variety of knapsack problems have been

well studied in the literature.

The boundary between easy and hard problems is established by examining special cases of

the problem. It is shown that P remains NP-hard for the special cases where (i) all the upper

bounds, or (ii) all the contributions, or (iii) all the setups are equal to 1. We provide an 0(n)

algorithm for special cases of P where two sets of parameters are equal. We develop a branch

and bound algorithm to solve P to optimality and propose a lower bound procedure to find a

heuristic solution. Our computational experiments indicate that both the algorithm and the

heuristic perform quite well.

Acknowledgement

The research by the first author was partially supported by the Scientific and Technical

Research Council of Turkey, NATO Advance Fellowship. The authors wish to thank

16

Professor Omer Kirca of the Middle East Technical University, Turkey for his helpful

comments on an earlier phase of the research.

Appendix

The steps of the branch and bound algorithm to solve P are as follows. Here z denotes the

optimal objective function value while y*(i) and x*(i) denote the optimal values of the current

best solution at hand for i=1,...,n. zstar, ch, y(i) and x(i) (i=1,...,n), k, and j are auxiliary

variables.

procedure branch and bound algorithm:

begin comment initialization and bounding,

compute a lower bound z and an upper bound 4 by using procedures;

if z ^ then return;

zstar: =0; ch:=b; c(n+1):=0; a(n+1):=09; m(n+1):=0; i=1;

comment performing forward move;

Ll: while a(i)+1^ch do

begin

if m(i)-Fa(i)^ch then

begin

y(i):= I ; x(i):=m(i);

ch:=ch-a(i)-x(i); zstar:=zstar+c(i)*x(0;

i:=i+1

end

else

17

begin

y(i):=1 ; ch:=ch-a(i); x(i):=ch;

ch:=0; zstar:=zstar+c(i)*x(i); is =i+1;

go to L3

end

• end;

L2: while i571 and a(i)+1>ch do

begin

y(z):=0; x(i):=0; is =i+1

end;

if i=n then go to L1;

comment updating the best solution so far;

L3: if i>n or ch:=0 and z<zstar then

begin

z:=zstar; j: =min{i-1, n};

for k:=1 toj do y*(k):=y(k); x*(k):=x(k);

for k: j+1 to n do y*(k):=0; x*(k):=0;

i:=n; go to L5

end;

L4: begin

compute an upper bound 4 by using upper bound procedure for

free items on the tree if ch>0, o/w go to L5;

if z ^ zstar+E then go to L5 else go to Ll

end;

comment backtracking;

L5: find j: =max(k<i: y(k)=1);

if no such j then return;

ch:=ch+x0+a0; zstar:=zstar-c0*x(I); y6):=0,- x0:=0; i:=j+1;

go to L2;

end.

References

[1] Balas, E. and E. Zemel, "An Algorithm for Large Zero-One Knapsack Problems", Operations Research

28(5), 1130-1154 (1980).

[2] Chajakis, E., D. and M. Guignard, "Exact Algorithms for the Setup Knapsack Problem", INFOR 32 (3), 124-

142 (1994).

[3] Diaby, M., H.C. Bahl, M.H. Karwan, and S. Zionts, "Capacitated Lot Sizing and Scheduling by Lagrangean

Relaxation", European Journal of Operational Research 59, 444-458 (1992).

[4] Goesmans, S., "Valid Inequalities and Separation for Mixed 0-1 Constraints with Variable Upper Bounds",

Operations Research Letters 8, 315-322 (1989).

[5] Kirca, 0., "A Heuristic Procedure for the Dynamic Lot Size Problem with Setup Time", Technical Report

89-13, METU, Ankara (1989).

[6] Kovalyov, M.Y., C.N. Potts, and L.N. Van Wassenhove, "Single Machine Scheduling with Set-ups to

Minimize the Number of Late Items: Algorithms, Complexity and Approximation", Working Paper 96//TM,

INSEAD, Fontainebleau (1996).

[7] Martello, S. and P. Toth, Knapsack Problems, Algorithms and Computer Implementations, John Wiley and

Sons, New York (1990).

[8] Sural, H., Multi-Item Lot Sizing Problem with Setup Times, Ph.D. thesis, METU, Ankara (1996).

19

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

