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Abstract

We show that the bounded proper forcing axiom BPFA implies that there is

a well-ordering of P(ω1) which is ∆1 definable with parameter a subset of ω1.
Our proof shows that if BPFA holds then any inner model of the universe of sets

that correctly computes ℵ2 and also satisfies BPFA must contain all subsets of
ω1. We show as applications how to build minimal models of BPFA and that

BPFA implies that the decision problem for the Härtig quantifier is not lightface
projective.

1 Introduction

Forcing axioms are natural combinatorial statements which decide many of the ques-
tions left open by the usual axioms ZFC of set theory. The study of these axioms was
started by Martin and Solovay [13] who introduced Martin’s axiom MA as an abstrac-
tion of Solovay and Tennenbaum’s approach to solving Suslin’s problem [17], a question
about uncountable trees. It was soon realized that MA together with the negation of
the continuum hypothesis CH provides a rich structure theory for the reals. MA states
a form of saturation of the universe of sets under possible sets added by forcing no-
tions that satisfy the countable chain condition. As the method of forcing was further
developed, generalizations of MA to larger classes of forcing posets were considered
as well, most notably the proper forcing axiom PFA introduced by Baumgartner and
Shelah (see for example Baumgartner’s survey paper [3]) and Martin’s maximum MM,
the provably strongest forcing axiom, introduced by Foreman, Magidor and Shelah [7].

In recent years, bounded versions of traditional forcing axioms have received a con-
siderable amount of attention as they have many of the same consequences, yet require
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much smaller large cardinal assumptions. These statements were first considered by
Goldstern and Shelah in [8] who showed that the bounded proper forcing axiom BPFA

is equiconsistent with a relatively modest large cardinal axiom, the existence of a Σ1-
reflecting cardinal. An appealing formulation of bounded forcing axioms as principles
of generic absoluteness was provided by Bagaria [1]. Namely, suppose K is a class of
forcing notions. The bounded forcing axiom BFA(K) is the statement asserting that
for every P ∈ K,

(Hℵ2
,∈) ≺Σ1

(V P ,∈).

Here Hℵ2
denotes the collection of all sets whose transitive closure has size at most

ℵ1. Thus, BFA(K) states that for every Σ0 formula ψ(x, a) with parameter a ∈ Hℵ2
, if

some forcing notion from K introduces a witness x for ψ(x, a), then such an x already
exists. For example, MAℵ1

is BFA(ccc), BPFA is BFA(Proper) and BMM is BFA(K)
where K is the class of forcing notions that preserve stationary subsets of ω1.

One of the key questions left open by ZFC and resolved by forcing axioms is the
value of the continuum c. Thus, Foreman, Magidor and Shelah [7] showed that MM

implies that c = ℵ2. The same conclusion was obtained from the weaker proper forcing
axiom PFA by the second author [21] and Todorčević [4]. In [22] Woodin identified
a statement ψAC which follows from both Woodin’s Pmax-axiom (∗) and from MM,
and implies that c = 2ℵ1 = ℵ2 and that there is a well-ordering of the reals definable
with parameters in (Hℵ2

,∈). Moreover, Woodin showed that BMM together with the
existence of a measurable cardinal implies that the continuum is ℵ2. The assumption
of the existence of a measurable cardinal was later eliminated by Todorčević [20] who
deduced these consequences of ψAC from a statement he called θAC that he showed
follows from BMM. Recently, Moore [14] introduced the mapping reflection principle
MRP and deduced it from PFA. Although MRP does not follow from BPFA, Moore [14]
used similar ideas to show that BPFA implies a certain statement υAC which in turn
implies that there is a well ordering of the reals, and in fact of P(ω1), of order type ω2

which is ∆2-definable in the structure (Hℵ2
,∈) with parameter a subset of ω1.

This paper continues this line of research. Our results were motivated by an attempt
to extend the result of the second author [21] who showed that if MM holds and M
is an inner model such that ωM

2 = ω2, then P(ω1) ⊆ M . The interest in this study
comes from the question, initially considered by Laver and Carlson (unpublished), of
whether PFA can be preserved by some forcing notion in a nontrivial way. The best
published result in this direction is the result of König and Yoshinobu [11, Theorem
6.1] who showed that PFA is preserved by ω2-closed forcing. The same holds for BPFA.
In fact, BPFA is preserved by any proper forcing that does not add subsets of ω1. In
this paper we use some of the ideas introduced by Moore [14] and design a robust
coding of reals by triples of ordinals smaller than ω2. This allows us to show (Theorem
1) that if M is an inner model, BPFA holds in both M and V , and ℵM

2 = ℵ2, then
P(ω1) ⊆ M . This answers the question considered by Laver and Carlson negatively.
Moreover, our coding allows us to show (Theorem 2) that BPFA implies the existence
of a well ordering of the reals of optimal complexity, namely, ∆1 with parameter a
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subset of ω1. We then use these ideas to build a minimal model of BPFA and to show
that under PFA the set of validities of the logic with the Härtig quantifier is not ordinal
definable in L(R). This last application was suggested to us by Jouko Väänänen in
private communication.

Our notation is mostly standard. If κ is an infinite cardinal, then Hκ is the family
of sets whose transitive closure has cardinality smaller than κ, i.e.,Hκ = {x : |tc(x)| <
κ }, where tc(·) denotes transitive closure. We use V P to denote the extension of V by
the forcing notion P . A forcing Q is a factor of P iff V Q ⊆ V P , i.e., iff every P-generic
extension of V contains an object Q-generic over V . In this case, there is a forcing
B ∈ V Q such that ro(P) ∼= ro(Q) ∗ Ḃ, and we write B ∼= ro(P)/ro(Q). We may
on occasion abuse language and write P instead of ro(P), etc. Here, ro(P) denotes
the regular open algebra of P , i.e., the unique complete Boolean algebra into which
P embeds densely. Suppose V ⊆ M ⊆ V P where M |= ZFC. Then there is a factor
Q of P such that M = V Q ([10, Lemma 15.43]). By a real we mean an element of
the Cantor set 2ω. If X is a set and (X,∈) satisfies extensionality, we let π : X → X̄
denote the Mostowski collapse of X, i.e., the unique isomorphism between X and its
transitive collapse. For all other notation, an introduction to set theory, and forcing
see [10] to which we also refer for all concepts not defined explicitly in this paper.

This paper is organized as follows. In section 2 we reduce Theorem 1 and Theorem
2 to the verification of two facts. The proof of these two facts occupies sections 3 and
4. Sections 5 and 6 contain applications of Theorem 1. In section 5 we build a minimal
model of BPFA, solving a question of Sy Friedman. In section 6 we show that the set
VI of validities of the logic with the Härtig quantifier is not lightface projective under
BPFA and not even ordinal definable in L(R) under PFA; this last result follows from
a suggestion by Hugh Woodin that allowed us to improve our original result that PFA

implies that VI is not definable in L(R) without parameters.
The main results, Theorem 1 and Theorem 2, were obtained during the Fall of 2004,

while the second author was visiting the Erwin Schrödinger Institute in Vienna. The
results in section 5 and 6 were obtained during the Spring of 2005 while the first author
was visiting the Université Denis-Diderot in Paris. We want to thank our respective
hosts for their hospitality and generosity. We would also like to thank Jouko Väänänen
for many useful conversations involving the content of this paper and Hugh Woodin
for his suggestions on section 6.

2 Coding reals

The main results of this paper can be seen as consequences of Moore’s mapping reflec-

tion principle MRP introduced in [14]. In [14, Theorem 1.1] it is shown that MRP is a
consequence of PFA. Although BPFA is not sufficient to imply the full version of MRP

we argue that it does imply the relevant consequences of MRP and thus we obtain the
desired conclusions.

We start by describing a coding of reals by sets of ordinals reminiscent of Moore’s
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υAC. We fix a C-sequence ~C = (Cξ : ξ < ω1 a limit ordinal ), i.e., Cξ is an unbounded
subset of ξ of order type ω for all limit ordinals ξ < ω1. Given x, y, z sets of natural
numbers, define an equivalence relation ∼x on ω \ x by setting n ∼x m (for n ≤ m)
iff [n,m]∩ x = ∅. Thus the equivalence classes of ∼x are simply the intervals between
the consecutive members of x. Let (Ik)k≤t (t ≤ ω) be the natural enumeration of those
equivalence classes which intersect both y and z. In the cases that interest us t will be
finite, but, in general, t = ω is possible. Let the oscillation of x, y, z be the function
o(x, y, z) : t → 2 defined by letting for all k < t,

o(x, y, z)(k) = 0 iff min(Ik ∩ y) ≤ min(Ik ∩ z).

Let ω1 < β < γ < δ be fixed limit ordinals and suppose N ⊆M ⊆ δ are countable
sets of ordinals. Assume that {ω1, β, γ} ⊂ N , that sup(ξ ∩ N) < sup(ξ ∩ M) and
sup(ξ ∩M) is a limit ordinal, for every ξ ∈ {ω1, β, γ, δ}. Then the pair (N,M) codes
a finite binary sequence as follows: Take the transitive collapse M̄ of M and let π be
the collapsing map. Let αM = π(ω1), βM = π(β), γM = π(γ), δM = M̄ , each of these is
a countable limit ordinal. Let the height of αN = sup(π[ω1 ∩N ]) in αM be the integer

n = n(N,M) = card(αN ∩ CαM
).

Define three sets x, y and z of integers by

x = { card(π(ξ) ∩ CβM
) : ξ ∈ β ∩N }

and similarly for y and z with γ and δ, respectively, instead of β. Notice that x, y, z
are finite by our assumption on N and M . Now, we look at the oscillation of x \ n,
y \ n and z \ n, which is a binary sequence, and if its length is at least n then we let

sβγδ(N,M) = o(x \ n, y \ n, z \ n) ↾ n.

In all other cases we let sβγδ(N,M) = ∗. We similarly write sβγδ(N,M) ↾ l = ∗ if
l > n(N,M).

Remark 1 Notice that there is a finite T ⊂ N such that for any S ⊂ N , if T ⊂ S then
s(S,M) = s(N,M). In effect, it suffices that T contains {ω1, β, γ}, π−1[αN ∩ CαM

],
one point of N for each interval in β ∩M determined by π−1[CβM

] that N meets, and
similarly for γ and δ.

Finally, we say that the triple (β, γ, δ) codes a real r if there is a continuous in-
creasing sequence (Nξ : ξ < ω1) of countable sets whose union is δ such that for every
countable limit ordinal ξ there is ν < ξ such that

r =
⋃

ν<η<ξ

sβγδ(Nη, Nξ).

We are going to show that BPFA implies the following two facts:
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(1) Given ordinals ω1 < β < γ < δ < ω2 of cofinality ω1 there is an increasing
continuous sequence (Nξ : ξ < ω1) of countable sets whose union is δ such that for
every limit ordinal ξ < ω1 and every integer n there is ν < ξ and sn

ξ ∈ {0, 1}n∪{∗}
such that sβγδ(Nη, Nξ) ↾ n = sn

ξ for every η such that ν < η < ξ.

(2) For each real r there are ordinals ω1 < β < γ < δ < ω2 of cofinality ω1 such that
the triple (β, γ, δ) codes r.

Remark 2 Notice that in (1) we are not claiming that for a fixed n the values of sn
ξ

cohere as ξ varies. However, by the way we have defined our coding it follows that for
a fixed limit ordinal ξ the values of sn

ξ (other than ∗) cohere as n varies.

Before we proceed to the proof that BPFA implies (1) and (2) let us point out some
consequences.

Theorem 1 Assume M is an inner model, BPFA holds in both M and V , and ωM
2 =

ω2. Then P(ω1) ⊂M .

Proof: We claim that the theorem follows from (1) and (2). To see this, assume that
M is an inner model of V , that BPFA holds in both M and V and ωM

1 = ω1. Fix a C-
sequence in M to carry out the codings just described. Suppose ω1 < β < γ < δ < ωM

2

are ordinals of cofinality ω1 and the triple (β, γ, δ) codes in V a real r. Let (Nξ : ξ < ω1)
be a continuous increasing sequence of countable sets with union δ witnessing this. In
M there is a sequence (Pξ : ξ < ω1) witnessing (1) for (β, γ, δ). There is a club C ⊆ ω1

in V such that Nξ = Pξ, for every ξ ∈ C . Then it follows that for any ξ which is a
limit point of C , r =

⋃
n s

n
ξ , as computed in M relative to the sequence (Pξ : ξ < ω1).

It follows that r ∈ M . If, moreover, ω2 = ωM
2 , then any real is coded in V by some

triple of ordinals less than ωM
2 , thus all reals are in M . But then P(ω1) ⊆ M , since,

given any ω1-sequence in M of almost disjoint reals, BPFA, and in fact MAℵ1
, allows

us to code any subset of ω1 via this sequence and a real. 2

Recall that Moore showed in [14] that BPFA, in fact, the coding principle he named
υAC, implies that 2ℵ0 = 2ℵ1 = ℵ2. Since BPFA implies MAℵ1

, this also follows from our
result.

Theorem 2 BPFA implies that there is a ∆1 well ordering of P(ω1) with parameter a

subset of ω1. The length of the well ordering is ω2.

Proof: Fix as parameter a C-sequence ~C = (Cξ : ξ < ω1 a limit ordinal). Let T

be the theory “ZFC−Power set+MAℵ1
+ (1) + (2) + ∀x (|x| ≤ ℵ1)”. Notice that any

transitive model M of T which contains ~C is uniquely determined by Ord ∩M . In
effect, notice that since ~C ∈ M , M computes ω1 correctly. Suppose a real r is coded
by some triple (β, γ, δ) of ordinals in M . Then, arguing as in the proof of Theorem
1, we see that r ∈ M . Notice that we are not claiming that M knows that (β, γ, δ)
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codes r, just that r ∈ M . Since M also satisfies (2) it follows that the reals in M are
precisely the reals coded by some triple of ordinals which belong to M . Since MAℵ1

holds in M it follows that P(ω1)
M is completely determined as well. Namely, from ~C

we can define a canonical ω1-sequence ~r of almost disjoint reals, and we can use the
standard almost disjoint coding to code a subset of ω1 by the sequence ~r and a real.
Now, for an ordinal θ < ω2, let Mθ be the unique transitive model M of T containing
~C such that Ord ∩M = θ, if it exists; otherwise let Mθ = ∅. Notice that the function
θ 7→Mθ is ∆1 in the parameter ~C.

Now, let <∗ be the antilexicographic ordering on the class [Ord]3 of increasing
triples of ordinals. For a real r let θr be the least θ such that r ∈Mθ and let (βr, γr, δr)
be the <∗-least triple of ordinals smaller than θr such that Mθr |= (βr, γr, δr) codes r.
Finally, let r � s iff either θr < θs or θr = θs and (βr, γr, δr) <∗ (βs, γs, δs).

We can now define a well ordering of P(ω1) as follows. First, from ~C we can define
a canonical ω1-sequence ~r = (rα :α < ω1) of almost disjoint reals. Then we can use
the standard almost disjoint coding to code a subset of ω1 by the sequence ~r and a
real. Finally, for a and b subsets of ω1, we define a ≺ b iff the �-least real coding a is
�-smaller than the �-least real coding b. By an argument similar to the above, ≺ is
also ∆1 in the parameter ~C .

As an additional bonus, notice that the set of possible parameters in the definition
of the well ordering, i.e., the set of C-sequences, is ∆0 in the parameter ω1. 2

Remark 3 The readers familiar with [14] may find in order a few words contrasting our
Theorems 1 and 2 with the results in [14], specifically Moore’s result that BPFA implies
that there is a well-ordering of P(ω1) definable over (Hℵ2

,∈,NSω1
) from a C-sequence.

In [14] the principle υAC is introduced and shown to follow from BPFA. From υAC it
follows that each equivalence class [S] ∈ P(ω1)/NSω1

is coded by an ordinal δ < ω2 of
cofinality ω1, where NSω1

denotes the nonstationary ideal on ω1. This corresponds to
the statement we numbered (2) above. The statement corresponding to (1), namely
that any such δ codes some equivalence class [S], is also a consequence of BPFA as can
be easily seen from the arguments in [14] even though it is not explicitly mentioned
there, alternately one can argue as in section 3 below. However, it seems that these
versions of (1) and (2) do not suffice to prove Theorem 1. The standard way in which
P(ω) is coded once we have υAC (or Woodin’s ψAC, or Todorčević’s θAC) consists of

fixing a partition ~S = (Sn :n < ω) of ω1 into stationary sets and assigning to a real
r ∈ 2ω the ordinal corresponding to [Sr], where Sr =

⋃
r(n)=1 Sn.

Suppose that M is an inner model of V , that ωM
2 = ω2, and that BPFA holds in

both M and V . Suppose that a partition ~S ∈ M as above is given such that for each
n, Sn is still stationary in V . Such partitions actually exist, as Larson shows in [12].

In V let r be a real and let δ be an ordinal coding r relative to the partition ~S. In
M , δ codes the equivalence class of some set A. It follows that in V , the symmetric
difference of A and Sr is nonstationary. However, this is not enough to conclude that
r ∈ M . Namely, for any n such that r(n) = 0, Sn \ A is stationary in M since it is
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stationary in V , but, for some n such that r(n) = 1, it may be a priori that Sn \ A
is a stationary set in M whose stationarity is destroyed in V . This means that in M ,
we may not be able to recover r from A. And even if r ∈M , it may be that A \ Sr is
stationary in M but not in V , so we may fail to identify correctly in M the ordinals
that code r in V .

These considerations lead us to look for a coding of reals by triple of ordinals similar
to the one given by υAC but not so explicitly dependent on NSω1

, and this ultimately
resulted in the versions of (1) and (2) mentioned above.

Now consider the complexity of the well-ordering obtained in Theorem 2 and the
one obtained in [14]. Using υAC and fixing a partition ~S of ω1 into stationary sets, for
each real r let δr be the least ordinal which codes the equivalence class of Sr. We say
r < s iff δr < δs. To say that r < s one needs to express that there is an ordinal δ
which codes Sr (this part is Σ1) and such that for all ordinals µ < δ the set coded by
µ is not equal to Ss modulo NSω1

. The point is that this second part adds another
quantifier, since expressing that the symmetric difference of the set coded by µ and Ss

is stationary is a Π1 statement.

Remark 4 It is open whether even MM implies that there is a definable well ordering
of the reals without parameters.

Corollary 1 Assume BPFA holds and ω1 = ωL
1 . Then there is a projective well-

ordering of the reals.

Proof: The argument is very similar to the one in [5], so we only sketch the main

points. Just notice that in L there is a C-sequence ~C that is ∆1
2 in the codes. By

Shoenfield absoluteness, ~C is still ∆1
2 in V and, since ω1 = ωL

1 , it is still a C-sequence.

From ~C , we can define a well-ordering of R by looking at ordinals in Sω2

ω1
, but they can

be coded as subsets of ω1, which can be coded by reals using almost disjoint forcing, for
this we can use a ∆1

2 sequence in L of almost disjoint reals as the ω1-sequence relative
to which the almost disjoint coding takes place. As shown in [5], these codings are
projective. 2

Remark 5 The well ordering obtained in Corollary 1 is in general not optimal. Fried-
man has shown the consistency of BPFA together with a Σ1

3 well ordering of the reals
by class forcing techniques, see [6].

3 Open partitions

The purpose of this section is to show that BPFA implies (1). We start by recalling
the relevant definitions from [14].

Definition 1 ([14, Definition 2.1]) Let θ be a regular cardinal, let X be uncount-

able, and let M ≺ Hθ be countable such that [X]ω ∈ M . A subset Σ of [X]ω is

M-stationary iff for all E ∈M such that E ⊆ [X]ω is club, Σ ∩E ∩M 6= ∅.
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Recall that the Ellentuck topology on [X]ω is obtained by declaring a set open iff
it is the union of sets of the form

[x,N ] = {Y ∈ [X]ω : x ⊆ Y ⊆ N}

where N ∈ [X]ω and x ⊆ N is finite. When we say ‘open’ in this paper we refer to this
topology.

Definition 2 ([14, Definition 2.3]) A set mapping Σ is open stationary iff there

is an uncountable set X = XΣ and a regular cardinal θ = θΣ such that [X]ω ∈ Hθ,

dom(Σ) is a club in [Hθ]
ω and Σ(M) ⊆ [X]ω is open and M-stationary, for every M

in the domain of Σ.

Recall the Mapping Reflection Principle (MRP) introduced in [14].

If Σ is an open stationary set mapping whose domain is a club, there is a
continuous ∈-chain ~N = (Nξ : ξ < ω1) of elements in the domain of Σ such
that for all limit ordinals ξ < ω1 there is ν < ξ such that Nη ∩XΣ ∈ Σ(Nξ)
for all η such that ν < η < ξ.

If (Nξ : ξ < ω1) satisfies the conclusion of MRP for Σ then it is said to be a reflecting

sequence for Σ. It is shown in [14] that MRP is a consequence of PFA. In fact, what
is proved in [14] is that for a given open stationary set mapping Σ there is a proper
forcing notion which introduces a reflecting sequence for Σ.

Lemma 1 Assume MRP. Suppose that for each α < ω1 we have a partition α =
K0

α ∪ K1
α into clopen sets in the standard order topology on α. Then there a club

C ⊂ ω1 such that for every limit point ξ of C there is i ∈ 2 such that C \Ki
ξ is bounded

in ξ. Moreover, this conclusion follows from BPFA.

Proof: Let X = ω1 and let θ be a sufficiently large regular cardinal. Notice that
ω1 is a closed subset of [ω1]

ω in the Ellentuck topology and the relativization of this
topology to ω1 is just the usual order topology on ω1.

Let M ≺ Hθ be countable and let α = M ∩ ω1. We claim that one of the Ki
α

(i ∈ 2) is M-stationary. Otherwise, there are E0, E1 ∈M club subsets of ω1 such that
Ei ∩ Ki

α = ∅ (i ∈ 2) and therefore E0 ∩ E1 = ∅ by elementarity. Define Σ by letting
Σ(M) = [ω1]

ω \Ki
α for the i such that K1−i

α is M-stationary. Now, applying MRP we
obtain a reflecting sequence (Nξ : ξ < ω1) for Σ. Let C = {Nξ ∩ ω1 : ξ < ω1}. It is
clear that C is as required. To see that the conclusion follows from BPFA notice that
the existence of C as stated is a Σ1 statement with parameter (Ki

α :α < ω1, i ∈ 2).
Since any particular instance of MRP can be forced by a proper forcing it follows that
BPFA implies the conclusion of the lemma. 2

Lemma 2 Assume BPFA. Then (1) holds.
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Proof: Fix a triple of ordinals ω1 < β < γ < δ < ω2, each of cofinality ω1. We first
find an increasing continuous sequence (Nξ : ξ < ω1) of countable sets with union δ.
By thinning out the sequence, if necessary, we may assume that {ω1, β, γ} ⊆ N0, that
sup(ρ ∩ Nξ) is a limit ordinal and sup(ρ ∩ Nη) < sup(ρ ∩ Nξ), for every η < ξ < ω1

and ρ ∈ {ω1, β, γ, δ}. Fix an integer n and define, for each countable limit ordinal ξ, a
partition of ξ into 2n + 1 disjoint sets, ξ =

⋃
s∈2n∪{∗}K

s
ξ by

η ∈ Ks
ξ iff sβγδ(Nη, Nξ) ↾ n = s.

By Remark 1 each piece of the partition is open in the order topology on ω1 and since
the pieces are disjoint and cover ξ they are also closed. By applying Lemma 1 we find
a closed unbounded subset Cn of ω1 and for each limit point ξ of Cn, an element sn

ξ of
2n ∪{∗} such that there is ν < ξ such that sβγδ(Nη, Nξ) ↾ n = sn

ξ for every η ∈ Cn such
that ν < η < ξ. Finally, let C =

⋂
n Cn. Then the sequence (Nξ : ξ ∈ C) witnesses (1)

for the triple (β, γ, δ). 2

4 Playing games

Now we show that BPFA implies (2). As before we first show that MRP implies (2)
and then argue that BPFA suffices. In order to show that the appropriate set mapping
is open stationary we shall use a game argument reminiscent of [21, Lemma 3.7]. For a
given algebra F : [ω4]

<ω → ω4, we define a sequence of games GF
ν indexed by countable

ordinals ν. These are ω-length perfect information games between two players I and
II playing alternately. We show that these games are determined and that player II
has a winning strategy for almost all of them. Playing against these strategies allows
us to build models where any desired oscillation pattern occurs. This implies that for
every real r a certain map Σr to be defined below is open stationary, from which (2)
follows immediately in the presence of MRP. We then argue as in Lemma 1 to show
that BPFA is sufficient to imply (2). The game GF

ν is defined as follows:

I β0 γ0 δ0 β1 γ1

II κ0, ε0 λ0, ϑ0 µ0, ̟0 κ1, ε1 . . .

As indicated in the diagram, player I plays, alternately, ordinals βi, γi or δi such that
(βi)i, (γi)i and (δi)i are increasing sequences of ordinals in ω2, ω3 and ω4 respectively.

Player II responds in turn by playing, alternately,

• ordinals κi, εi such that βi ≤ κi ≤ εi < ℵ2.

• ordinals λi, ϑi such that γi ≤ λi ≤ ϑi < ℵ3.

• ordinals µi, ̟i such that δi ≤ µi ≤ ̟i < ℵ4.

We also require, although this is not really essential, that
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• εi < βi+1, ϑi < γi+1 and ̟i < δi+1, for all i < ω.

The first player to violate these rules loses. Otherwise, let

X = clF ({κn, λn, µn :n < ω} ∪ ν),

where clF denotes closure under F . Then we say that player II wins iff

• X ∩ ω1 = ν,

• X ∩ [βn, βn+1) ⊆ [βn, εn) for all n,

• X ∩ [γn, γn+1) ⊆ [γn, ϑn) for all n, and

• X ∩ [δn, δn+1) ⊆ [δn, ̟n) for all n.

It follows that if player I wins a particular run of GF
ν then this happens at some finite

stage. By the Gale-Stewart theorem GF
ν is determined, for all ν. We now show that

player II wins GF
ν for club many ν. Let

AF = { ν < ω1 : I has a winning strategy in GF
ν }.

Lemma 3 AF is nonstationary.

Proof: This is similar to [21, Lemma 3.7]. Assume towards contradiction that AF

is stationary and fix, for each ν ∈ AF , a winning strategy σν for I in GF
ν . Since AF

has cardinality ℵ1 there is a strategy σ which dominates all the σν . Namely, at any
given position when it is player I’s turn, σ looks at what the strategies σν would play,
for ν ∈ AF , and plays the supremum of these ordinals. Then clearly σ is a winning
strategy for I in GF

ν for all ν ∈ AF . Moreover, we can assume that at every stage when
it is player I’s turn to play an ordinal γn < ω3 the move played by σ does not depend
on the previous move of player II. This is possible since there are only ℵ2 possible
previous moves of player II, so we look at what σ would play against each of them and
play the supremum of these ordinals. Similarly, we may assume that at every stage
when it is player I’s turn to play an ordinal δn < ω4, the move played by σ does not
depend on the two previous moves of player II. We call this property of σ stability.

We now describe a play of II against σ. Fix a sufficiently large regular cardinal θ
and build an increasing continuous chain

P0 ≺ P1 ≺ · · · ≺ Pξ ≺ · · · ≺ Hθ, ξ < ω1 · ω

of elementary submodels of Hθ of size ℵ1 such that F,AF , σ ∈ P0. Let Nn = Pω1·n.
Notice that the ordinals ζn = sup(Nn ∩ω2), ηn = sup(Nn ∩ ω3) and θn = sup(Nn ∩ω4)
all have cofinality ω1 and Nn contains an ω1-club in each of these ordinals, for all n.
Since we assumed that AF is stationary we can find a countable M ≺ N such that
{ζn, ηn, θn}n ⊆ M , F, σ, AF ∈ M and α = M ∩ ω1 ∈ AF . We describe a run of GF

α
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in which player I plays following σ. We consider the game as consisting of rounds of
three moves of each player, one in each of ω2, ω3 and ω4.

Suppose that we are at the start of the n-th round, the current position is pn−1 =
〈β0, (κ0, ε0), . . . , δn−1, (µn−1, ̟n−1)〉, and we have arranged that pn−1 ∈ Nn. Player I
then plays βn = σ(pn−1). Since σ, pn−1 ∈ Nn it follows that βn ∈ Nn. Player II picks
an ordinal κn ∈ M ∩ Nn+1 such that ζn ≤ κn < ω2. Let εn = sup(M ∩ Nn+1 ∩ ω2).
Since M is countable and ζn+1 = sup(Nn+1 ∩ ω2) has cofinality ω1 it follows that
εn < ζn+1. In fact, since Nn+1 contains a club in ζn+1 it follows that εn ∈ Nn+1. Player
II then plays (κn, εn). Player I responds by playing σ(pn−1̂〈βn, (κn, εn)〉) = γn. By
elementarity of Nn and stability of σ it follows that γn ∈ Nn. Player II then picks
some λn ∈ M ∩ Nn+1 such that ηn ≤ λn < ω3. Let ϑn = sup(M ∩ Nn+1 ∩ ω3).
By the same argument as above, ϑn < ηn+1 and ϑn ∈ Nn+1. Player II then plays
(λn, ϑn). Player I responds by playing δn = σ(pn−1̂〈βn, (κn, εn), γn, (λn, ϑn)〉). Again,
by elementarity of Nn and stability of σ it follows that δn ∈ Nn. Player II picks some
ordinal µn ∈ M ∩ Nn+1 such that θn ≤ µn < ω4. Let ̟n = sup(M ∩ Nn+1 ∩ ω4).
Again, we have that ̟n < θn+1 and, in fact, ̟n ∈ Nn+1. Player II then plays (µn, ̟n).
Let pn = pn−1̂〈βn, (κn, εn), γn, (λn, ϑn), δn, (µn, ̟n)〉. It follows that pn ∈ Nn+1. This
completes the inductive construction of the play. Let

X = clF ({κi, λi, µi : i < ω} ∪ α).

Notice that X ⊆ M . This implies that X ∩ ω1 = α. Also since βn+1 ∈ Nn+1 and
εn = sup(M ∩Nn+1 ∩ ω2) it follows that X ∩ [βn, βn+1) ⊆ [βn, εn), for all n. Similarly,
we have that X ∩ [γn, γn+1) ⊆ [γn, ϑn), and X ∩ [δn, δn+1) ⊆ [δn, ̟n), for all n. Thus,
player II has won this run of GF

α , a contradiction. 2

Lemma 4 Assume BPFA. Then for every real r there is a triple of ordinals less than

ω2 coding r, i.e., (2) holds.

Proof: Fix a real r. As before we will first derive the desired conclusion from MRP

and then argue that it also follows from BPFA. We start by defining an open stationary
set mapping Σr. Fix a sufficiently large regular cardinal θ. For a countable elementary
submodel M of Hθ define

Σr(M) = {N ∈ [ω4]
ω
:N ⊆M and sω2ω3ω4

(N,M ∩ ω4) is an initial segment of r }.

By Remark 1, Σr(M) is open in the Ellentuck topology. We will show that it is also
M-stationary. Assume this for a moment and let us see how to finish the proof.

Assume first MRP and let (Mξ : ξ < ω1) be a reflecting sequence for Σr. Let
M =

⋃
ξ<ω1

Mξ, let M̄ be the transitive collapse of M and let π be the collapsing
map. Let β = π(ω2), γ = π(ω3) and δ = π(ω4). Then ω1 < β < γ < δ < ω2 and
cof(β) = cof(γ) = cof(δ) = ω1. Let Nξ = π(Mξ ∩ ω4). Note that sβγδ(Nη, Nξ) =
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sω2ω3ω4
(Mη ∩ ω4,Mξ ∩ ω4) for every η < ξ < ω1. Moreover, for ξ a limit ordinal,

Nξ =
⋃

η<ξ Nη and therefore limη<ξ n(Nη, Nξ) = ω. It follows that

r =
⋃

η<ξ

sβγδ(Nη, Nξ).

Therefore the triple (β, γ, δ) codes r as desired. To see that the same conclusion follows
from BPFA note that there is a proper forcing notion adding a reflecting sequence for
Σr and the existence of a triple coding r is a Σ1 statement in parameter the C-sequence
used for the coding and the real r. Therefore the existence of such a triple of ordinals
follows from BPFA. To complete the proof of Lemma 4 it remains to show the following:

Lemma 5 Σr is a stationary set mapping.

Proof: Let M be a countable elementary submodel of Hθ. We have to show that
Σr(M) is M-stationary. We work in M and fix an algebra F on ω4. By Lemma 3 we
can find a club C in ω1 and for every ν ∈ C a winning strategy σν for player II in
GF

ν . We show that we can fix an ordinal ν ∈ C ∩M and play finitely many moves of
the game GF

ν with ordinals inside M such that if T is the finite set of relevant ordinals
played by player II and X = clF (T ∪ ν) then sω2ω3ω4

(X,M ∩ ω4) is an initial segment
of r. We will never leave M , even though we refer to objects which do not belong to
M to assist us with our choices.

Let M̄ be the transitive collapse of M and let π be the collapsing map. Let αM =
π(ω1), βM = π(ω2), γM = π(ω3) δM = π(ω4). Recall that we have fixed a C-sequence
(Cξ : ξ < ω1). If ρ ∈ M ∩ ω4, the height of ρ in ωi, htωi

(ρ), is card(π(ρ) ∩ Cπ(ωi)), for
i = 1, . . . , 4. Of course, the height of ρ in ωi is known only outside of M , however we
only need to refer to the heights of finitely many ordinals.

Now, look at what the strategies σν do at the first step when player I plays 0.
For each ν ∈ C , σν(〈0〉) = (κν

0, ε
ν
0) is a pair of ordinals below ω2 with κν

0 ≤ εν
0. Let

ε0 ∈ ω2 ∩M be the supremum of all the εν
0. Similarly, let (λν

0 , ϑ
ν
0) = σν(〈0, σν(〈0〉), 0〉),

and let ϑ0 ∈M ∩ ω3 be the supremum of all the ϑν
0. Define ̟0 analogously. Stepping

out of M for a moment, look at the height of ε0 in ω2 and similarly with ϑ0 and ̟0.
Let k be the largest of these integers. We now choose ν ∈ C ∩M be such that its
height in ω1, say n, is bigger than k. We are going to play the game GF

ν and player II
is going to use his winning strategy σν.

The first round of the play, consisting of three moves for each player, is a bit special.
In it, player I simply plays 0 three times and player II responds according to σν. Let
us say that the three moves of player II in this round are (κ0, ε0), (λ0, ϑ0) and (µ0, ̟0).
By the choice of ν we have that the height of ε0 in ω2, the height of ϑ0 in ω3 and the
height of ̟0 in ω4 are all smaller than n.

Suppose we have played rounds 0, . . . , i − 1 and the moves of player II in the last
round are (κi−1, εi−1), (λi−1, ϑi−1) and (µi−1, ̟i−1). In the next round we have to code
r(i− 1). Player I first chooses βi such that

htω2
(βi) > max{htω3

(ϑi−1), htω4
(̟i−1), n}.
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Player II responds using σν and plays, say, (κi, εi). We have βi ≤ κi ≤ εi. Then there
are two cases.

Case 1 r(i− 1) = 0. Player I then chooses γi such that htω3
(γi) > htω2

(εi). Player II
follows σν and plays, say, (λi, ϑi). Of course, we have that γi ≤ λi ≤ ϑi. Player I then
plays δi such that htω4

(δi) > htω3
(ϑi) and player II, using σν, plays, say, (µi, ̟i). Of

course, we have δi ≤ µi ≤ ̟i. Therefore, the height in ω2 of any point of the interval
[βi, εi) is smaller than the height in ω3 of any point of the interval [γi, ϑi) which in turn
is smaller than the height in ω4 of any point of the interval [δi, ̟i).

Case 2. r(i − 1) = 1. First fix an ordinal ξ ∈ ω4 ∩M such that htω4
(ξ) > htω2

(εi).
Now we go back to the ω3-board. For each move, say, γ < ω3 of player I, suppose
the strategy σν responds by (λ(γ), ϑ(γ)). Now, suppose that if player I then plays
ξ the strategy σν responds by (µ(γ), ̟(γ)). Let ̟ = sup{̟(γ) : γ < ω3}. Player I
then plays some γi ∈ ω3 ∩M such that htω3

(γi) > htω4
(̟). Player II then responds

according to σν and player I then plays ξ and player II responds by using σν and plays,
say, (µi, ̟i). In this way we ensure that htω3

(γi) > htω4
(̟i). Therefore, the height in

ω2 of any point of the interval [βi, εi) is smaller than the height in ω4 of any point of
the interval [δi, ̟i) which is smaller than the height in ω3 of any point of the interval
[γi, ϑi).

We play this game for n + 1 rounds and code in this way the first n digits of r.
Finally, let X = clF ({κi, λi, µi : i ≤ n + 1} ∪ ν). Since σν is a winning strategy for
player II in GF

α , by our construction it follows that sω2ω3ω4
(X,M ∩ ω4) = r ↾ n. Thus,

X ∈ Σr(M). Since F is an arbitrary algebra on ω4 and X is closed under F it follows
that Σr(M) is M-stationary. This completes the proof of Lemma 5 and Lemma 4. 2

5 A minimal model of BPFA

Let φ be a sentence in the language of set theory. Let us say that a model M of ZFC+φ
is minimal for φ iff for any inner model N ⊆M with the same ordinals, if N is also a
model of ZFC + φ then N = M .

Recall ([8]) that an uncountable regular cardinal κ is Σ1-reflecting (or Hκ-reflecting)
iff for every a ∈ Hκ and every formula ϕ(x), if there is a regular cardinal θ such that
Hθ |= ϕ(a) then there is a θ′ < κ such that a ∈ Hθ′ and Hθ′ |= ϕ(a).

In [8, Theorem 2.11], Goldstern and Shelah show that if κ is Σ1-reflecting, then
there is a countable support iteration of length κ of proper forcing notions of size
smaller than κ that forces BPFA. For future reference, we sketch the construction.
We define a countable support iteration of proper forcing notions of size less than κ,
〈Pα; Q̇α :α < κ〉, and let Pκ be the limit. At stage α we have some Σ1 formula and
a parameter which is a subset of ω1, and ask if there is a proper poset which adds
a solution to this formula. If the answer is yes then, since κ is Σ1-reflecting, there
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is such a poset of size less than κ and we choose one as Qα. We do this using some
standard bookkeeping device so every subset of ω1 appearing along the iteration and
every Σ1 formula are considered at cofinally many stages. We will refer to this Pκ as
the standard iteration for BPFA. Conversely, by [8, Theorem 4.1], if BPFA holds then
ℵ2 is Σ1-reflecting in L.

Let κ be the smallest Σ1-reflecting cardinal in L and let G be generic for the
standard iteration Pκ for BPFA. We argue in this section that there is an inner model
M of L[G] which is a minimal model for BPFA. This answers a question of Sy Friedman
(private communication).

Theorem 3 Suppose that κ is a Σ1-reflecting cardinal in V and that Pκ is the standard

iteration for BPFA. Let M = V (P(ω1)
V Pκ

). Then M |= BPFA.

Proof: Recall that if N is an inner model of the universe V and X is a set, then
N(X) =

⋃
α L(Nα ∪ tc({X})), where Nα = N ∩ Vα and the union is over all the

ordinals. This is a model of ZF. In particular, M is a model of ZF. It is in fact a
model of Choice, by the argument of Theorem 2. Let Q be the complete subalgebra
of ro(Pκ) such that V Q = M . Then Q is proper. Let a ⊆ ω1 (so a ∈M) and let ϕ be
a Σ1 formula, say ϕ is ∃xψ(x, a), where ψ is Σ0. Since Pκ is κ-cc, there is an α < κ
such that a ∈ V Pα and a has size ℵ1 there. The formula ϕ and the parameter a are
considered at some stage β > α of the iteration. Notice that V Pβ ⊆ V Q. Since the tail
of the iteration Pκ/Pβ is proper in V Pβ and Q/Pβ is a factor of it, Q/Pβ is proper in
V Pβ , as well. It follows that if there is a proper forcing R ∈M adding to M a witness
to ϕ(a) then, since Q/Pβ ∗ Ṙ is proper, at stage β there was a proper forcing adding
a witness to ϕ(a). Therefore, Qα was chosen to add such a witness. It follows that M
satisfies BPFA. 2

Corollary 2 In L, let κ be the smallest Σ1-reflecting cardinal and let Pκ be the stan-

dard iteration for BPFA of length κ. Let M = L(P(ω1))
LPκ

. Then M is a minimal

model of BPFA.

Proof: By Theorem 3, M is a model of ZFC + BPFA. Assume that N is an inner
model of M and that N |= BPFA. By minimality of κ, ωN

2 = κ = ωM
2 , so Theorem 1

applies, and P(ω1)
M ⊂ N , so N = M . 2

Remark 6 Let κ be Σ1-reflecting over V and suppose that Pκ is given by the standard
iteration for BPFA. Let G be Pκ-generic over V . It would be interesting to know
whether V (P(ω1)

V [G]) is actually different from V [G]. Notice that the forcing extending
V (P(ω1)

V [G]) to V [G] is ω-distributive and ω2-cc. If the ground model is L, it is even
ω1-distributive. The problem is that, even though the initial parts Gα = G∩Pα of the
genericG belong to V (P(ω1)), they may not be the only Pα-generic filters in V (P(ω1)).
The question is whether we can glue them together to get the whole generic G, i.e. we
have to choose generic filters for initial segments of the iteration which cohere.
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Working over L, or any other definable generically invariant class with definable
well-orderings, like, for example, the Dodd-Jensen core model KDJ , one can modify
slightly the forcing Pκ so that it has in addition a certain amount of rigidity: if in
V there are two different Pκ-generic filters over L then ωL

1 is collapsed. We use the
following fact that we proved in section 4. Given a C-sequence and any real r, there is a
proper forcing Pr of size ℵℵ0

4 collapsing ℵ4 to ℵ1 such that in V Pr the triple (ωV
2 , ω

V
3 , ω

V
4 )

codes r.
Let κ be a reflecting cardinal. We define 〈Pα; Q̇α :α < κ〉 and let Pκ be their

countably support limit. At stage α odd we proceed as before, i.e., we choose the
forcing Qα of least Pα-name in the sense of the natural well ordering of L. If α is
even, Qα does the following. Let λ be |Pα|L, so λ < κ. We first collapse λ to ω1 with
countable conditions. Now, the whole generic up to this point, including the collapse,
can be coded by a subset aα of ω1, and then using almost disjoint coding relative to a
fixed definable sequence of almost disjoint reals in L, we code aα by a real, say r = rα.
We know the values of ℵ2, ℵ3 and ℵ4 of this model (actually we know all the cardinals,
but we only need these ones), since they are just the L-successors of λ. For simplicity
let us call them β < γ < δ. We then force with Pr. It is easy to see that Pκ thus
obtained forces BPFA.

Notice that at any even stage α, the real coded by (β, γ, δ) cannot change in any
outer model with the same ω1, as being a club in ω1 is upwards absolute between
models with the same ω1, and this real is seen to be r in the extension by Pκ. In fact,
this coding will be done anyway at some triple (not necessarily (β, γ, δ)) when we force
BPFA in the usual way, but the point is that we code the whole generic up to stage
α by these three ordinals which moreover we can identify in the ground model. Now,
in the end, the generic G will actually be definable without parameters, as it can be
reconstructed inductively from its initial segments, which can be recovered using the
reals rα. Moreover, G will be unique in any outer model which has the same ω1 as L.
It follows that V = L(P(ω1)) holds in L[G].

The canonicity in the choice of Qα for odd stages α and a careful choice of book-
keeping gives us that if λ < κ is a smaller reflecting cardinal in L, then the λth stage
of the iteration Pλ also forces BPFA over L. In particular, L[G] will not be a minimal
model for BPFA unless κ is the L-least reflecting cardinal. This leads naturally to
the question of whether if M is a minimal model for BPFA, then κ = ωM

2 is the least
reflecting cardinal in L. The argument above does not answer this question, as there
may be of course a poset Q ∈ L forcing BPFA or even BPFA +V = L(P(ω1)) but such
that no Pκ as above is a factor of Q.

6 The complexity of the logic with the Härtig quantifier

In this section we present as an application of the main result, an observation suggested
by Jouko Väänänen on the complexity of the set of validities of the Härtig quantifier.

Definition 3 The logic L(I) is obtained by augmenting first-order logic with the Härtig
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quantifier I; this is a binary quantifier. Formulas in L(I) are defined recursively as in

first-order logic, with the additional clause:

• If ϕ(x, ~z) and ψ(y, ~z) are formulas in L(I), then so is Ixy (φ(x, ~z), ψ(y, ~z)), where

x and y are considered bound variables.

The semantics of L(I) is defined recursively as in first-order logic, with the additional

clause:

• M = (M, . . .) |= Ixy (φ(x,~a), ψ(y,~a)) iff |{ b ∈ M :M |= φ(b,~a) }| = |{ c ∈
M :M |= ψ(c,~a) }|.

In a straightforward fashion, we can assign Gödel numbers to the formulas in L(I).
Let VI be the set of validities of the logic L(I), i.e., the set of (Gödel numbers for)
sentences in L(I) valid in all models. We refer the reader to [9] for an introduction
to the Härtig quantifier and for the results we mention in the argument below. This
proof is closely modeled on the argument given in [9] that VI is neither Σ1

2 nor Π1
2.

Corollary 3 Suppose that BPFA holds. Then VI is not lightface projective.

Proof: We show that in fact VI is not first-order definable (without parameters) over
N = LℵV

2
(P(ω1)) so, in particular, it is not lightface projective.

Let n be a sufficiently large integer and denote by ZFCn the finitely axiomatizable
theory that results from restricting the replacement schema of ZFC to Σn-formulas.
The integer n is chosen so Theorem 1 is provable in ZFCn and also the argument below
goes through.

Let ϕ be a first order sentence without parameters in the language of set theory.
We find an L(I)-formula ψϕ such that N |= ϕ iff ψϕ ∈ VI . Since ϕ is arbitrary, it
follows that VI cannot be first order definable over N .

Our sentence ψϕ has the form φ → θϕ, where θϕ is a first order sentence (in
the language of set theory) expressing the statement N |= ϕ. φ will be such that its
models are precisely the well-founded models of ZFCn+BPFA whose transitive collapse
correctly computes ℵ2. Suppose M is such a model. Then, by Theorem 1, it correctly
computes N , and the equivalence follows.

All that remains is to exhibit φ. In [9] it is explained how to produce, for any finite
extension T of a sufficiently strong fragment of ZFC, an L(I)-sentence φT such that a
structure (M,E) is a well-founded model of T iff it admits an expansion to a model of
φT . Let φN(x), φω1

(x) and φω2
(x) be the first order formulas stating, respectively, that

x is a natural number, that x is a countable ordinal, and that x is an ordinal below ω2.
Our φ is the conjunction of φZFCn+BPFA and ¬Ixy(φN(x), φω1

(y))∧¬Ixy(φω1
(x), φω2

(y)),
and it is easy to see that φ is as wanted. This completes the proof. Notice that the
map ϕ 7→ ψϕ is recursive. 2

Remark 7 It is easy to see by condensation and a similar argument, that V = L
implies that VI is not Σm

n for any n and any m < ω (or even Σα
n for any n and any

α < ωCK
1 ). This has also been observed by Väänänen (private communication).
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Assume now that PFA holds; what follows incorporates a suggestion of Woodin that
strengthens the result we originally obtained and simplifies our original argument. By
the covering lemma and Todorčević’s result [19] that PFA implies ¬�κ for all κ ≥ ω1,
it follows that X♯ exists for all sets X. In particular, R

♯ exists. By Theorem 1, if N is
an inner model of BPFA (N may be a set) that correctly computes ω2, then Hℵ2

⊆ N .
If N is also a model of PFA then there is an X ∈ N such that N |= X = R

♯, but
then X really is R

♯ (see [16] for the definition and basic properties of R
♯, from which

this follows). Since R
♯ codes the theory of L(R), this easily implies as above that the

theory of L(R) without parameters is recursive in VI and therefore VI is not definable
in L(R) without parameters.

But something stronger in fact holds. By Steel [18], PFA implies that ADL(R) holds.
Solovay [16] has shown that ADL(R) and the existence of R

♯ imply that there is a real
which is ordinal definable in L(R♯) but not ordinal definable in L(R). Since the least

such real in the natural well-ordering of HODL(R♯) is obviously recursive in VI by the
arguments above, it follows that VI itself cannot be ordinal definable in L(R).

Corollary 4 Assume PFA. Then VI is not ordinal definable in L(R). 2
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