
The Bounded Retransmission Protocol
Must Be on Timex

P.R. D'Argenio a*, J.-P. Katoen b, T.C. Ruys a, and J. Tre tmans a

a Faculty of Computing Science. University of Twente.
P.O.Box 217. 7500 AE Enschede. The Netherlands.

{dargenio, ruys, tretmans }@cs. utwente, nl

b Lehrstuhl f/ir Informatik VII. University of Erlangen.
Martensstrasse 3. 91058 Erlangen. Germany.

kat oen@informatik .uni-erlangen. de

A b s t r a c t . This paper concerns the transfer of files via a lossy communi-
cation channel. It formally specifies this file transfer service in a property-
oriented way and investigates--using two different techniques--whether
a given bounded retransmission protocol conforms to this service. This
protocol is based on the well-known alternating bit protocol but allows
for a bounded number of retransmissions of a chunk, i.e., part of a file,
only. So, eventual delivery is not guaranteed and the protocol may abort
the file transfer. We investigate to what extent real-time aspects are im-
portant to guarantee the protocol's correctness and use SPIN and UPPAAL
model checking for our purpose.

1 Introduction

This paper concerns a file transfer service (FTS) and a given bounded retrans-
mission protocol (BRP), a protocol used in one of Philips' products. It addresses
the correctness of the BRP with respect to the FTS. The BRP is based on the
well-known al ternat ing bit protocol but is restricted to a bounded number of
retransmissions of a chunk, i.e., par t of a file. So, eventual delivery is not guar-
anteed and the protocol may abor t the file transfer. Timers are involved in order
to detect the loss of chunks and the abort ion of transmission. The protocol verifi-
cation is carried out by model checking. This technique facilitates the automat ic
verification of properties, usually s ta ted in some dialect of modal logic, with
respect to a protocol specified as a finite-state system. The tools used in this
paper are SPIN [13] for untimed and UPPAAL [4] for t imed systems.

The FTS is specified in a property-oriented way by providing relations be-
tween inputs and outputs of the service. This is done without using modal oper-
ators. We validate the consistency of this logical service specification against the
process algebraic "external behavior" specification of [9]. The BRP is modeled as
a network of t imed au t om a t a tha t communicate via handshaking (like in CCS).
This results in a compact and intuitively appealing protocol specification. Using

* Supported by the NWO/SION project 612-33-006.

417

UPPAAL we verify the correctness of the protocol by proving that it satisfies a
number of properties, specified as logical formulas. We indicate the importance of
real-time aspects for the correctness of the BRP. This complements the untimed
BRP verifications of [9, 10, 11, 14] that focussed on the data aspects of the BRP.
To investigate and compare the relevance of the modeling assumptions made by
others we check, using SPIN, the correctness of our protocol description when
omitting the timing aspects. Due to the recent improvements of UPPAAL this
paper contains substantially more complete verifications than reported earlier
by us [6]. In particular, we could obtain tight constraints on the timing aspects
of the BRP. The full report of this work appeared in [7].

2 Service specification

I : (d l , . . , d n) i s �9 : ((e l , i l) , . . , (e k , i k)) Si.?~ Iso~,; ,Ro~,'

I I / /
I I o

Schematic view of the FTS.

Signatures of the input and output:

Sin : l = (dl , . . . ,dn) for n > 0
So~ : i~ E { I_OK, I_NOK, I_DK }
Ro~: ((ez,Q), . . . , (ek,ik)) for 0 ~< k ~< n,

ij E { I_FST, I_INC, I_OK, I_NOK }
s

The FTS receives a large file from a sending client via port Sin. The file is
modeled as a list of small data chunks: I = (dr , . . . ,dn) with n > 0. The FTS
delivers the data to the receiving client as a list of chunks e l , . . . , ek. Chunks
may get lost, but are neither garbled nor received out of order. If a chunk is lost,
transfer is aborted. So the receiving client receives a (possibly empty, possibly
all) prefix of the list I. Both the sender and the receiver client obtain indications
about the success of the transfer. The sending client receives an indication is via
Sour, while the receiving client receives an indication ij with each chunk that is
delivered via Rout. Multiple file can be transfered with the FTS and we assume
that all outputs regarding previous lists have been completed when a next list
is input via Sin.

Table 1 specifies the FTS in a logical way, i.e., by stating properties that
should be satisfied by the service. These properties are relations between inputs
at Sin and outputs at Sour and Rout. A distinction is made between the case in
which the receiving client receives at least one chunk (k > 0) and the case that
it receives none (k = 0). A protocol (like the BRP) conforms to the FTS if it
satisfies all listed properties.

For k > 0 we have the following requirements. Normally each correctly re-
ceived chunk ej equals dj, the chunk sent via SiS. However, if the notification
ij indicates that an error occurred, no restriction is imposed on the accompa-
nying chunk, cf. (1.1). (1.2) through (1.4) address the constraints concerning
the received indications via Rout, i.e., ij. If the number n of chunks in l exceeds
one then iz = I_FST, indicating that ez is the first chunk of the file and more
will follow, cf. (1.2). The indications of all chunks, apart from the first and last
chunk, should equal I_INC, cf. (1.3). The requirement concerning the last chunk

418

Table 1. Formal specification of the FTS.

k > 0

(1.1) V O < j ~ < k : i # # I_NOK :=~ e j = d j (1.4.3) ik = I - N O K =~ k > l
(1.2) n > 1 =~ il = I_FST (1.5) i+ I_OK =:~ i~ = I_OK
(1.3) V l < j < k : i j =I_INC (1.6) is I_NOK ~ i k - - l - N O K

(1.4.2)(1"4"1) i~ik == I_OKI-OK V=c.ikk == I_NOKn (1.7) i+ I_DK =r k = n

k - - O

(2.1) i~ = I_DK r n = 1 I(2.2) is = LNOK r n > I

(ek, ik) consists of three parts. After this indication, the FTS is ready to trans-
mit a subsequent list. Indication ik can be either I_OK or]_NOK, cf. (1 .4.1) .
An I_OK indicates that all chunks have been received correctly, so k - n, see
(1.4.2) . The receiving client does not need to be notified in case an error occurs
before delivery of the first chunk, cf. (1 .4.3) . The sending client is informed
after t ransfer of the whole file, or when the transmission is aborted. This in-
dication can be I_OK, I_NOK, or i_DK. After an I_0K or an i_NOK indication,
the sender can be sure, tha t the receiver has the corresponding indication. This
corresponds to (1.5) and (1.6) . A "don' t know" indication i_DK may occur af-
ter delivery of the last-but-one chunk d~- l . This si tuation arises, because no
realistic implementat ion can ensure whether the last chunk got lost. The reason
is tha t information about a successful delivery has to be t ranspor ted back some-
how over the same unreliable medium. In case the last acknowledgment fails to
come, there is no way to know whether the last chunk dn has been delivered or
not. In this case the number of indications received by the receiving client must
equal n, see (1.7) (Either this last chunk is received correctly or not, and in
both cases an indication (+ chunk) is present at Rout.)

For k = 0 the sender should receive an indication I_DK if and only if the file
to be sent consists of a single chunk. This corresponds to the fact tha t a "don ' t
know" indication may occur after the delivery of the last-but-one chunk only.
For k = 0 the sender is given an indication LNOK if and only if n exceeds one.

3 Protocol specification

Informal description. The protocol consists of a sender S equipped with a t imer
T1, and a receiver R equipped with a t imer T2 which exchange da ta via two
unreliable (lossy) channels, K and L.

Sender S reads a file to be t ransmi t ted and sets the retry counter to 0. Then
it s tar ts sending the elements of the file one by one over K to R. Timer T1 is set
and a frame is sent into channel K. This frame consists of three bits and a da tum
(-- chunk). The first bit indicates whether the da tum is the first element of the
file. The second bit indicates whether the da tum is the last i tem of the file. The
third bit is the so-called al ternat ing bit, tha t is used to guarantee tha t da ta is not
duplicated. After having sent the frame, the sender waits for an acknowledgment

419

from the receiver, or for a t imeout. In case an acknowledgment arrives, the timer
T1 is reset and (depending on whether this was the last element of the file) the
sending client is informed of correct transmission, or the next element of the file
is sent. If t imer T1 times out, the frame is resent (after the counter for the number
of retries is incremented and the timer is set again), or the transmission of the
file is broken off. The latter occurs if the retry counter exceeds its maximum
value MAX.

Receiver R waits for a first frame to arrive. This frame is delivered at the
receiving client, t imer T2 is started and an acknowledgment is sent over L to S.
Then the receiver simply waits for more frames to arrive. The receiver remembers
whether the previous frame was the last element of the file and the expected value
of the alternating bit. Each frame is acknowledged, but it is handed over to the
receiving client only if the alternating bit indicates that it is new. In this case
t imer T2 is reset. Note that (only) if the previous frame was last of the file, then
a flesh frame will be the first of the subsequent file and a repeated frame will
still be the last of the old file. This goes on until T2 times out. This happens if
for a long time no new frame is received, indicating that transmission of the file
has been given up. The receiving client is informed, provided the last element
of the file has not just been delivered. Note that if transmission of the next file
starts before t imer T2 expires, the alternating bit scheme is simply continued.
This scheme is only interrupter after a failure.

Timer T1 times out if an acknowledgment does not arrive "in t ime" at the
sender. It is set when a frame is sent and reset after this frame has been ac-
knowledged. (Assume that premature t imeouts are not possible, i.e., a message
must not come after the timer expires.)

Timer T2 is (re)set by the receiver at the arrival of each new frame. It times
out if the transmission of a file has been interrupted by the sender. So its delay
must exceed MAX times the delay of T1.2 Assume that the sender does not start
reading and transmit t ing the next file before the receiver has properly reacted
to the failure. This is necessary, because the receiver has not yet switched its
alternating bit, so a new frame would be interpreted as a repetition.

This completes the informal description of the BRP (as adopted from [9]).
It is important to note tha t two significant assumptions are made in the above
description, referred to as (A1) and (A2) below.

(A1) Premature t imeouts are not possible

Let's suppose that the maximum delay in the channel K (and L) is TD and that
t imer T1 expires if an acknowledgment has not been received within T1 time
units since the first transmission of a chunk. Then this assumption requires that
T1 > 2 �9 TD + ~ where ~ denotes the processing t ime in the receiver R. (A1)
thus requires knowledge about the processing speed of the receiver.

(A2) In case of abort, S waits before starting a new file
until R reacted properly to abort

2 Later on we will show that this lowerbound is not sufficient.

420

Since there is no mechanism in the BRP that notifies the expiration of timer T2
(in R) to the sender S this is a rather strong and unnatural assumption. It is
unclear how S "knows" that R has properly reacted to the failure, especially in
case S and R are geographically distributed processes. We, therefore, consider
(A2) as an unrealistic assumption. In the next section we ignore this assumption
and adapt the protocol slightly such that this assumption appears as a property
of the protocol (rather than as an assumption!).

Formal specification. The BRP consists of a sender S and a receiver R commu-
nicating through channels K and L, see the figure below. S sends chunk di via
F to channel K accompanied with an alternating bit ab, an indication b whether
di is the first chunk of a file (i.e., i = 1), and an indication b' whether di is
the last chunk of a file (i.e., i = n). K transfers this information to R via G.
Acknowledgments ack are sent via A and B using L.

I BL~ C h a n n e l K
C h a n n e l L

The signatures of A, B, F, and G axe:

F, G : (b, b', ab, d~)
with abE{O, 1},

b, b' E { true, false }
a n d 0 < i ~ n

A, B : ack

Schematic view of the BRP.

Our starting-point for modeling and verifying the BRP is a specification of
the BRP in terms of a network of t imed automata. A t imed automaton [1] is a
classical finite-state automaton equipped with clock variables and state invari-
ants. The state of a t imed automaton is determined by the system variables
and clock variables. The value of a system variable is changed explicitly by an
assignment that is carried out at a transition; the value of clock variables in-
creases implicitly as time advances. A state invariant constrains the amount of
t ime the system may idle in a state. Clock values may be tested (i.e., compared
with naturals) and reset. In the sequel we will use u through z to denote clock
variables.

A network of t imed automata consists of a number of processes (modeled as
t imed automata) that communicate with each other in a CCS-like manner.

Transitions consist of an (optional) guard and zero or more actions. Depend-
ing on the validity of the guard a transition is either enabled or disabled. In a
state the process selects non-deterministically between all enabled transitions, it
performs the (possibly empty) set of actions associated with the selected tran-
sition and goes to the next state. When there are no enabled transitions the
process remains in the same state (if allowed by the state invariant) and time
passes implicitly. If neither idling is allowed nor an enabled transition can be
taken, the system halts. Evaluation of a guard, taking a transition and execut-
ing its associated actions constitutes a single atomic event. Guards are boolean
expressions and may contain system and clock variables. For convenience, guards

421

1 Sender
�9 Sin?(d l,...,du)

xB~ (NC ~ O K
ab:-4

error
(x<-SYNC)

next frame wait ack re<MAX
(x<--0) F!(i==l,i~n,ab,di) (x<-T1) x~T1

rc:=O l:) ~ x:-0
i<n x < T! rc:-rc+l

i + l B?ack / / I
x:=0 / I I
ab:~-- - a b f / I rc--MAX

success rcBMAX I x~-T|
(x<-o) ~--TJ/ l i < , -

-i==ff"] South NOK
Sout!l_.DK] x : = 0 -
x:~0 - J

Fig. 1. Timed automaton for sender S.

tha t are equal to true are omitted. Possible actions are assignments to system
variables and resetting of clock variables.

We adopt the following notational conventions. States are represented by
labeled circles, the initial state as double-lined labeled circle. State invariants
are denoted in brackets. Transitions are denoted by directed, labeled arrows. A
list of guards denotes the conjunction of its elements.

Channels K and L are simply modeled as first-ln first-out queues of un-
bounded capacity with possible loss of messages. We assume that the maximum
latency of both channels is TD time units.

The sender S (see Figure 1) has three system variables: ab E (0, 1 } indicating
the alternating bit that accompanies the next chunk to be sent, i, 0 ~< i ~< n,
indicating the subscript of the chunk currently being processed by S, and rc,
0 <~ rc <. MAX, indicating the number of a t tempts undertaken by S to retransmit
di. Clock variable x is used. to model t imer T1 and to make certain transitions
urgent (see below). The reader can check that the automaton in Figure 1 behaves
as it was explained above.

Two remarks are in order. First, notice that transitions leaving state s, say,
with state invariant x ~< 0 are executed without any delay with respect to the
previous performed action, since clock x equals 0 if s is entered. Such transitions
are called urgent. Urgent transitions forbid S to stay in state s arbitrari ly long
and avoid that receiver R times out without abortion of the transmission by
sender S. Urgent transitions wilt turn out to be necessary to achieve the cor-
rectness of the protocol. They model a maximum delay on processing speed, cf.
assumption (A1) . Secondly, after a failure (i.e., S is in state error) an additional
delay of SYNC time units is incorporated. This delay is introduced in order to
ensure that S does not start t ransmitt ing a new file before the receiver has prop-
erly reacted to the failure. This t imer will make it possible to satisfy assumption
(A2) . In case of failure the alternating bit scheme is restarted.

The reader can check that the receiver specified in Figure 2 represents the
behaviour explained in the previous paragraph. System variable exp_ab E (O, 1 }
in receiver R models the expected alternating bit. Clock z is used to model t imer
T2 that determines transmission abortions of sender S, while clock w is used to
make some transitions urgent. Notice that if t imer z expires (i.e., z -- TR), it
may be the case that the communication has been lost. Thus, in case R did not
just receive the last chunk of a file an indication LNOK (accompanied with an

422

Receiver

Rout t (I_NOK~

idle ~'~
(z<-TR

first safe frame rab=~exp ab new_file G?(rbl,rbN,rab,d) (w<=0) - rbN~l
Z:=0)) w:~Z'6)~O Rout!(I_OK,d)

!
!~,:TR exp ab:=rab I / rabmexp_ab_ " ~ frame reported
"ur~nl z<TR - .I. / ml=.V, rl~r~--4J k (w < - . O)

G?(rb 1,rbN,rab,d) W Rout !(l_lNC,d)
t-----w,-o ,Q
' \ f...mme(rec'~ived

exp_ab<>rab (7 "0) k rbl=l,rab=='exp-abrbN==0 / / 1 [
~-.~_ Alack ~ ~ Rout!(l_FST,d) ~]

Alack
exp_ab:=l -exp ab
Z:~0

Fig. 2. Timed automaton for receiver R.

arbi t rary chunk "*") is sent via Rout indicating a failure, and in case R just
received the last chunk, no failure is reported.

Most of the transitions in R are made urgent in order to be able to fulfill
assumption (A1) .

4 UP P AAL

UPPAAL [4] is a tool suite for symbolic model checking of real-time systems. Sys-
tems in UPPAAL are described as networks of timed automata [1] like described
in Section 3. UPPAAL reduces the verification problem to solving a (simple) set
of constraints on clock variables. Experimental results indicate that these tech-
niques have a good performance (both in space and time) compared t o other
verification techniques for t imed automata [4]. The UPPAAL verifier can be used
to determine the satisfaction of a given property with respect to a network of
t imed automata. If a property is not satisfied, a diagnostic trace can be generated
that indicates how the property is violated. UPPAAL also provides a simulator
tha t allows a graphical visualization of possible dynamic behaviours of a sys-
tem description (i.e., a symbolic trace). This last tool becomes powerful when
combined with the diagnostic information provided by the verification tool.

In the current version (i.e., ~-release 1.91), UPPAAL is able to check only
reachability properties. Properties are terms of the form V[:3r or q<>r where r
is a propositional formula with atoms being either a state of a component, i.e.,
one of the states of any of the t imed automata, or a simple linear constraint
on clocks or integer variables. The use of data in UPPAAL 1.91 is restricted to
clocks and integers (rather than system variables of arbi t rary type) and value
passing at synchronization is not supported (but can be mimicked using shared
variables).

Protocol model in UPPAAL. The UPPAAL models of sender S and receiver R are a
straightforward adaptat ion of the specifications given in Section 3; see Figure 3.
(Nomenclature is similar to Section 3 except for minor changes; e.g., Sout_LOK?
instead of Sout?LOK). Channels K and L are reduced from unbounded queues
to one-place buffers. Below we will derive a constraint under which this simplifi-
cation is justified. In addition, the following considerations have been taken into
account.

423

Sender Sin? i - - n
i : - i next f r a m e ~ r b N 2 ~ ' l ~ ~x~it--~ k x - - T I

idle b l := l (x<,;-O) / ' ~ ,c:ntest ~ - i rc<MAX

�9 ~ xi-O
/ ~ ~' ~ b ~ ' = 0 ~ / ~ ' ~ ' - ~ rc : - rc+l
' I i<n rc:=0 x g<Tl / /

i := i+ l B , / /
�9 ~ , i==n bl:-O x:=O * / /

x==S[YNC ~ _ Sout I OKI . . ab.~.l~abq-I /
a b ' = O ~ ----4 ~ (~

I success x - - T l / x==T1

" / error ~ '] ' - = ~ n D K I / l<n -
~ . (x < = S Y N C) . / Sout I SOut_I_NOK!

x:=~ ~ x:-O

first safe frame
R e c e i v e r new_file G? (w<7.0) -

Z:-0

z - -TR rab--0 b - - I
rbN--0 ~ z - -TR exp_ab!-0 e.xp ab:-I r~h,. ~
Rout l ~OK! rbN--I I / - ex; al~--O

- - t z<TR k] ~ e - " ~ - - "

w%

\ ~. exp ab-=O / / rbl==l [rbl--O rbN==l
I ~ ~ _ A! - ~ / rbN==0l rbN==C Rout I OK!
t \ rab--O / Rout_I_IFST! Rout I2INC! - - [

~ . exp ab:-- 1 *exp_ab+ 1 j 1 ~ f r a m e mporled
z: =o ~ ~'w-~ Zo ~

o,.-u~,,~.av ~ "~'~'=~[~ ' = ==o ~ ? ~ - ~ , ~ a b - ~ b,--~.~bN--l.~-I b'' ,l '~'~.a~
rb'l'=O, rbN'2~, rbl:=0,] bN:-l, iab:=l rbl:-l, :bN:=l, rab:-O

[. ,~ u>0, u<, ,TD u>0. u, ,=TD u>O, u<=TD B<. t'TD. u>O[F[. bl--0 IN--0 al ~1 b l ~ l ~N==O ab.--0 b l - -1 ,bN~l ,ab~ A p v>O
u<-gO u =0 G~ ' ' O! ' '] O! v>O v : f f 0

l rb'l:-O, bN:-O, r; b:-l rbl:=l, bN:-O,[rab:-O rbl:=l, rbN:=l, rab:-I v<-TD :
/ /

/ u>o u<JrD u>0 ~<-~ I i
\ . J bl=:-0 ~N--I ab-=0] bl='lJbN==0, ab--1

(v~=TD)

Fig. 3. The protocol in UPPAAL.

Guards in UPPAAL (i.e., constraints labeling the transitions) are conjunctions
of a tomic constraints which have the form x ~ n where x is a variable (a clock or
an integer), n a non-negative integer, and wE { <, 4 , = , ~>, > }3. Thus, conditions
like tab # exp_ab are not possible. For this reason some transit ions are splitted
(compare, for example, the acknowledgement transitions outgoing from state
frame_received in the receiver R of Figure 2 and 3).

We have said tha t UPPAAL is not a data-oriented tool. If we had included
da ta in our model, we would have had an explosion of the amount of states and
transitions. This induces two main problems. Firstly, the original simple speci-

a Notice that in Figure 3, values like n, TD or MAX have not yet been instantiated,
but they must get a concrete value for each UPPAAL verification run. (See the last
paragraph of this sec t ion .)

424

fication would become too cumbersome and quite difficult to understand. Sec-
ondly, although UPPAAL uses quite efficient compositional techniques to attack
the problem of state space explosion (or, more accurate, region space explosion),
it is anyway sensible to the amount of locations, clocks, and variables. There-
fore, we decided to remove the chunks to be t ransmit ted keeping only the control
data, i.e., the indication of the first and last chunk, and the alternating bit.

In UPPAAL assignments to clock x should be of the form x := 0, while
assignments to integer variable i must have the form i :-- nl *i +n2. Notice that
for the lat ter assignments the variable on the right-hand side of the assignment
should be the same as the variable on the left-hand side. UPPAAL does also not
include mechanisms for value passing. We modeled value passing by means of
assignments. Due to the above mentioned restriction on integer assignments,
however, we had to explode some transitions. For example, for channel K a
transition had to be introduced for each combination of values for bl, bN, and
ab tha t can be received via G; this resulted in 8 transitions, see Figure 3.

We use the so-called committed locations [3]. Committed locations are states
which introduce the notion of atomicity. On the one hand, a committed location
forbids interference in the activity that is taking place around such a location,
i.e., the execution of the ingoing and outgoing actions of a committed location
cannot be interleaved with actions of other t imed automata. On the other hand,
actions outgoing from a committed location are executed urgently, that is, no
t ime elapses between its execution and the execution of the previous action. We
made locations R.report and S.ntest committed (indicated with a c: prefix) since
they originate from splitting transitions of the original specification (compare
with Figures 1 and 2).

Deducing time constraints. In this section we derive a constraint under which the
modeling of channels K and L as one-place buffers is justified. In addition, we
present timing conditions under which assumptions (A1) and (A2) are fulfilled.

To justify the simplified modeling of K and L we slightly changed the chan-
nels by adding location BAD. This location can only be reached when in location
in_transit a new message is out in the channel. Location B A D can thus only be
reached if the channel capacity is insufficient, that is, when S and R are sending
messages to K and L, respectively, too fast. We could check that a B A D state
is never reached, i.e., properties

V [] -~ K . B A D and V [] -~ L .BAD

are satisfied, only under the condition that T1 > 2 �9 TD. Moreover, under this
condition, the following property

V O -i (K.in_transit A L.in_transit) (1)

could be verified. This means that under the condition that T1 > 2 �9 TO, it
is impossible to have both a frame and an acknowledgment in transit at the
same time. This property is of interest, since it allows one to verify the protocol
more efficiently by changing the process K[[L, where [] denotes independent
parallelism, into a smaller process with one state and one clock less.

425

Assumption (A1) states that no premature t imeouts should occur. It c a n
easily be seen that t imer T1 (i.e., clock x) 'o f sender S does not violate this if it
respects the two-way transmission delay (i.e., T1 > 2 �9 TD) plus the processing
delay of the receiver R (which due to the presence of urgency equals 0). It remains
to be checked under which conditions timer T2 of receiver R does not generate
premature timeouts. This amounts to checking that R times out whenever the
sender has indeed aborted the transmission of the file. Observe that a premature
t imeout appears in R if it moves from state idle to state new_/ile although there
is still some frame of the previous file to come. We therefore check that in state
/irst_safe~rame receiver R can only receive first chunks of a file (i.e., rbl = 1)
and not remaining ones of previous files:

V [] (R./irsLsaTe_frame ~ rbl = 1) (2)

We have checked that this property holds whenever TR >~ 2. MAX. T1 + 3. TD.
Assumption (A2) states that sender S starts the transmission of a new file

only after R has properly reacted to the failure. For our model this means that
if S is in state error, eventually, within SYNC time units, R resets and is able to
receive a new~le. Although this cannot be expressed in UPPAAL logic, we can
check a weaker property:

V[~ ((S.error A x = SYNC) ~ R.new_file) (3)

This property turns aut to be equivalent to what we want to prove since the
sender S keeps idling in state error while clock x evolves from 0 to SYNC. Prop-
erty (3) is satisfied under the condition that SYNC >t TR. This means that (A2)
is only fulfilled if this condition on the values SYNC and TR is respected.

Summarizing, we were able to check with UPPAAL that assumptions (A1)
and (A2) are fulfilled only if the following constraints hold

T I > 2 . T D and SYNC>~TR/>2-MAX-TI+3 'TDI (4)

(Remark that SYNC is a constant in the sender S, while TR is a constant used
in receiver R.) These results show the importance of timing aspects for the
correctness of the BRP.

Protocol verification. In order to verify that the protocol satisfies the FTS spec-
ification of Section 2, we consider the clients at each side of the protocol and a
simple check automaton, called File, which indicates whether the receiving client
R C and the sending client SC are dealing with the same file. The File process
checks the condition k > 0. The auxiliary automata are depicted in Figure 4.

When trying to verify the correctness of the BRP using UPPAAL we encounter
the following problems. Firstly, the properties constituting the FTS specification
of Section 2 are relations between inputs and outputs related to the transmission
of a single file. Therefore, these properties are not invariant and can hardly be
expressed using the property language of UPPAAL that requires an always ([3)
or ever (O) modal operator at "top" level. Secondly, since we decided to remove

426

SClient

START I ,,~ Soul 1 OK?

START! dk Sout_I_DK?
...... C) (

T! n~ok Soat 1

scnd_n~,[Sin! file_req

File

COM24_STAT ?

same START?

C O M e ' o t h e r

START?

RCllent
ok ROut_I_OK7 Rout I_OK?

NC?

RouLI_OK? nok Rout [_NOK?

Fig. 4. Auxiliary automata (general).

I= s@ I1=
~;0 ,_l o~: soot ~_NOK~ yr:-~-'-

[I
Fig. 5. Auxiliary automata (bounded retransmission).

the data from our specification, we are unable to check properties concerning
the t ransmit ted data, like property (1.1).

The properties that we checked are enumerated in Table 2. There, we abbrevi-
ate SC.idle = (SC .ok V S C . d k V S C . n o k) a n d R C . i d l e = (R C . o k V R C . n o k) .

Properties 1. and 2. are weakened versions of properties (1.5) and (1.6), respec-
tively. Proper ty 3. is related to (2.1) and (2.2). Properties 4. and 5. relate the
sender o ~ and the sending client, while 6. relates the receiver R and the receiving
client. In particular, when we take n = 1 we proved properties 7. and 8. which
are related to (1 .4 .3) and (2.2).

Properties 9. and 10. address the fact that the sending and receiving client,
respectively, are involved in the transfer of a file for only a bounded amount of
time (T and T t, respectively). For this purpose, we changed the clients accord-
ing to Figure 5. The clients have only two locations: trans indicates that the
respective client recognized that a file transfer is currently in progress; start is
the state in which a file transfer can be started.

The properties were proven in the following setting:

TD = 1 MAX E { 1 , 2 , 3 } TR = 2. M A X . T I + 3 . T D

T1 = 3 n e {1, 2, 3} S Y N C = T R

For properties 9. and 10., and fixing n = 3 and MAX = 3, we obtain 34 and 42
as minimal values for T and T t respectively.

Table 2. Properties in UPPAAL.

1. V[2 File.same ~ -~ (SC.ok A RO.nok)

2. Y:] File.same ~ -~ (SC.nok A RC.ok)

3. V:] -~ (File.other A SC.ok)

4. V~ SC.idle ~ (S.idle V S.error)

5. V[3 (S.idle V S.error) ~ -~ SC.tile_req

6. VO R.new_file ~ RC.idle

7. VD -7 SC.nok (if n = 1)

8. VD -. RC.nok (if n = 1)

9. VD-~(SC.trans A y, > T)

10. VD -= (RC.erans A y~ > T')

427

5 SPIN

SPIN is a validation tool for classical finite-state automata, called processes, tha t
communicate via channels. It is capable of verifying assertions over data and
simple linear-time temporal logic formulas (so-cailed never claims). SPIN uses
the dedicated modeling language PROMELA [13]. It is able to perform random or
interactive simulations of the system's execution or to generate a C program that
performs an exhaustive validation of the system's state space. Large validation
runs, for which an exhaustive validation is not feasible, can be validated in SPIN
with a bit-state hashing technique [13] at the expense of completeness.

To get confidence in the service specification from Section 2, we have written a
PROMELA specification for the FTS. Each requirement of Section 2 is translated
into a sequence of PROMELA statements involving assertions, which are boolean
conditions attached to a state that must be fulfilled when a process reaches that
state. For example, requirement (1.1) is translated into the PROMELA assertion:

byte j=O;
do :: j++ ;

if :: (j>k) -> break

:: (j<=k) -> if :: (e[j] .lad != Inok) -> asser~(e[j].val == d[j])

:: else -> skip

fi

fi

od

Figure 6 shows an overview of our validation model used in SPIN. Either the
FTS or the BRP description in PROMELA can be "plugged" into this model.
The Environment process inputs the file to be transferred at Sin (i.e., the list of
chunks) and receives the indications at Sou~ and Ro~,~. When all indications of
the transmission of a single file have been produced, the Environment process
checks the validity of the indications.

Sin Sout .
_ Environme

BRP
Service / Protocol

Fig. 6. SPIN's validation model of
the BKP and FTS.

Environment

I Senders I ch~kTi t I Reoeiv~-RI

. f S
SyncWait

..................................

Pig. 7. Structure of the BRP in PROMELA.

The FTS description in PROMELA is obtained by a straightforward transla-
tion of the "external behavior" specification of [9] given in the process algebra
#CRL. Below we have included the PROMELA p r o c t y p e definition of the Service
process.

428

proc~ype Service (chan Sin, Sour, Rout)
{ byte j,k ;

do :: Sin?(dCl],...,dEn]) -> j=O; k=O;

do :: j++ ;

if :: skip -> k++;

if :: (j==n) -> Rout!(Iok,d[j])

:: (j!=n) &~ (k==l) -> Rout!(Ifst,d[j])

:: (j!=n) a& (k>l) -> Rout!(Iinc,d[j])

fi ;
if :: (j==n) -> if :: skip -> Sout!Iok; break

:: skip -> Sout!Idk; break

fi

fi

:: (j!=n) -> if

fi

fi

:: skip -> if :: (k==O) -> if

:: skip -> skip

:: skip -> Sou~!Inok; k§ Rou~!Inok; break

: : (j==n) -> Sout!Idk

: : (j!=n) -> Sout!Inok

fi

:: (k>O) -> k++;

if :: (j==n) -> SoutJldk; Rout!Inok

:: (j!=n) -> Sout!Inok; Rout!Inok

fi

fi ;
break

od
od

PROMELA can handle data more easily than UPPAAL. UPPAAL, e.g., only
supports synchronization of processes without value passing. Therefore, a pro-
tocol like the BRP where the transmission of data is crucial, is more easily
modeled and can be more extensively verified in PROMELA than in UPPAAL. On
the other hand, PROMELA (SPIN version 2.7.7) lacks one important ingredient
for the realistic modeling of the BRP: the notion of time. The BRP descrip-
tion in PROMELA is based on the formal protocol description from Section 3.
Like for our UPPAAL verification we modeled channels K and L as one-place
buffers. Figure 7 shows the structure of the BRP PROMELA description in terms
of processes (represented as boxes) and channels (represented as arrows).

We used "tricks", analogous to [9] (and others, see Section 6), to model the
impact of the timers T1 and T2. These "tricks", in fact, are needed to fulfill
the assumptions (A1) and (A2) . Timers T1 and T2 that are used in the sender
S and receiver R, respectively, are modeled as follows: Timer T1 expires when
an acknowledgment does not arrive in t ime at the sender S. So, if a frame is
lost in channel K or its acknowledgment is lost in channel L, the t imer T1 in
S will t imeout, eventually. In the PROMELA model, channel ChtmkTimeout is
used between sender S and channels K and L. A message is either successfully
transmitted, or it is lost, in which case S is notified via ChunkTimeout. To
illustrate this, we include the PROMELA code for the process that models L:

bi~ b ;
do :: A?b -> if :: B!b

:: skip -> ChunkTimeout!l

fi
od

429

Receiver R uses timer T2 that expires when the transmission of file has been
aborted by sender S. According to assumption (A2) "the sender does not start
reading and transmitting the next file before the receiver has properly reacted
to the failure". In UPPAAL, we implemented this assumption using two timers:
one at the sender's side and one at the receiver's side. When either one of the
timers expires, the process at hand will wait sufficiently long (i.e., SYNC time
units) to be sure that the other process has timed out as well. In PROMELA we
forced this assumption using a handshake channel SyncWalt between processes S
and R. After a failure, the failing process will offer a handshake synchronization
on this channel. Eventually, the other process will engage in this rendez-vous
synchronization.

For the verification of the BRP we used the following parameters: n = 3
(with up to 3 different data items) and MAX = 2. For the validation of the
BRP with PROMELA we used the same computer on which we carried out our
UPPAAL verification. This machine proved to be adequate for a complete reach-
ability analysis of the FTS and the protocol model; SPIN managed to explore
the complete state space and reported no errors with respect to the properties
on Table 1.

6 Further discussions

Other verifications o] the BRP. The modeling and verification of the BRP has
been the subject of several other papers. Groote & v.d. Pol [9] specify the BRP
in #CRL, a combination of process algebra and abstract data types, and prove
this specification to be branching bisimulation equivalent (a Strong notion of
weak bisimulation) to an external behaviour specification, also given in #CRL.
Part of the proofs were checked using the proof-assistant Coq.

Helmink, Sellink & Vaandrager [11] analyze the BRP in the setting of I/O-
automata, automata that distinguish between input, output, and internal actions
and which allow all possible inputs in each state. Refinement, in particular in-
clusion of fair traces, is used as a correctness criterion. In addition, they prove
that the BRP is deadlock-free. The safety part of the proofs were mechanically
checked using Coq.

Havelund & Shankar [10] use a combination of model checking and theorem
proving techniques for proving the correctness of the BRP. They first analyze a
scaled-down version of the BRP using Murr a state exploration tool, 'translate'
this description into the theorem prover PVS and generalize the result to the
full BRP, and finally, abstract from this complete specification (while preserv-
ing some essential properties) so as to facilitate model checking. By means of
abstraction the unboundedness of the message data, retransmission bound, and
file length is eliminated. They used SMV, Mute, and an extension of PVS with
the modal #-calculus for the final model checking.

Mateescu [14] translated the #CRL specifications of [9] into the process al-
gebra LOTOS, and proved that the FTS and BRP specifications are branching
bisimulation equivalent using the ALDI~BARAN tool. In addition, he checked some

430

protocol invariants, encoded in ACTL (an action-based variant of CTL), using
the prototype model checker XTL.

Our SPIN validation--though using a new logical service specification--can
be considered to be similar to all above mentioned approaches, since it focuses
on the data aspects of the BRP (as all others). In order to mimic the timers of
the BRP in an untimed setting strong assumptions, cf. (A1) and (A2), must be
made, and "tricks" must be applied in order to fulfill these assumptions. This
holds for all untimed verifications discussed above. Our analysis with UPPAAL
shows that these assumptions only hold if certain relations between time-out val-
ues are established. This shows that timing is crucial for the correct functioning
of the BRP.

Concluding remarks. This paper reported on the analysis and verification of a
bounded retransmission protocol (BRP) using the protocol validation tool SPIN
[13], and the real-time verification tool UPPAAL [4]. We used a Sun Sparc station
with 96 MB of internal memory.

UPPAAL was used to check the timed automaton model of the protocol against
the FTS requirements. Due to the restrictions of the property language of UP-
PAAL (e.g., restricted use of variables) some FTS requirements had to be adapted.
Apart from some small modifications (basically due to the use of committed lo-
cations and restrictions on conditions, variables, and value passing in UPPAAL)
the protocol model could be obtained in a straightforward way from our formal
BRP specification of Section 3. We were able to find tight constraints under
which the unbounded channels between the sending and receiving side can be
faithfully modeled as one-place buffers. Most importantly, we could show that
two assumptions in the informal protocol description are easily invalidated by
choosing wrong time-out values. We provided tight timing constraints for which
these assumptions are fulfilled (and so, they become valid assumptions).

With SPIN both the service and the protocol were verified. For the service we
checked our requirements specification against a behavioral model in PROMELA
(the modeling language for SPIN), which was straightforwardly derived from the
~CRL service description in [9]. The main goal was to check the consistency
of our service description against the #CRL description. The behavioral model
as well as the requirements were easily expressed in PROMELA. Subsequently,
a protocol model in PROMELA was built, and verified against the requirements
description of the service. The main problem with SPIN was that it cannot deal
with the real-time aspects of the protocol, so tricks and assumptions about timer
behavior and resynchronization had to be made in the same way as in other
verifications of the BRP in an untimed setting [9, 10, 11, 14].

Using different tools with different characteristics turned out to be advanta-
geous, and the tools should not be considered as competing, but as complemen-
tary. Describing the protocol in different formalisms gives extra insight, and it
certainly helps in distinguishing between problems caused by the protocol, and
problems which are modeling problems, specific to a particular formalism.

Altogether, the BRP turned out to be an interesting exercise in protocol
verification. Its timing intricacies make it an interesting example, especially for
real-time verification tools such as RT-SPIN [15], KRONOS [8], and HYTECH [12].

431

A c k n o w l e d g e m e n t s : We would like to thank Paul Pettersson, Kim Larsen
and Wang Yi for keeping us up to date on the developments of UPPAAL and for
suggestions.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Th. Comp. Sc., 126:183-235,
1994.

2. R. Alur, T. Henzinger and E.D. Sontag, editors. Hybrid Systems III, LNCS 1066,
Springer-Verlag, 1996.

3. J. Bengtsson, D. Griitioen, K. Kristoffersen, K.G. Larsen, F. Larsson, P. Petters-
son, and W. Yi. Verification of an audio protocol with bus collision using UPPAAL.
In R. Alur and T.A. Henzinger, editors, Proc. of CATE'96, LNCS 1102, pages 244-
256. Springer-Verlag, 1996.

4. J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - - a tool
suite for the automatic verification of real-time systems. In [2], pages 232-243.

5. Z. Brezocnik and T. Kapus, editors. Proceedings of COST 247 Int. Workshop on
Applied Formal Methods in System Design. University of Maribor Press, 1996.

6. P.R. D'Argenio, J-P. Katoen, T. Ruys, and J. Tretmans. Modeling and Verifying
a Bounded Retransmission Protocol. In [5], pages 114-128.

7. P.R. D'Argenio, J-P. Katoen, T. Ruys, and J. Tretmans. The Bounded Retrans-
mission Protocol must be on time!. Report CTIT 97-03, University of Twente,
1997.

8. C. Daws, A. Olivero, S. Tripakis and S. Yovine. The Tool KRONOS. In [2], pages
208-219.

9. J.F. Groote and J. van de Pol. A bounded retransmission protocol for large data
packets. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software
Technology, LNCS 1101, pages 536-550. Springer-Verlag, 1996.

10. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In M-C. Glaudel and J. Woodcock, editors, Proc. of
FME'96, LNCS 1051, pages 662-681. Springer-Verlag., 1996.

11. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof checking a data link
protocol. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs,
LNCS 806, pages 127-165. Springer-Verlag, 1994.

12. T.H. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In
E. Brinksma et. al, editors, Proc. of TACAS'95, LNCS 1019, pages 41-71. Springer-
Verlag, 1995.

13. G.J. Holzmann. Design and validation of computer protocols. Prentice Hall, En-
glewood Cliffs, 1991.

14. R. Mateescu. Formal description and analysis of a bounded retransmission proto-
col. In [5], pages 98-114.

15. S. Tripakis and C. Courcoubetis. Extending PROMELA and SPIN for real time.
In T. Margaria and B. Steffen, editors, Proc. of TACAS'96, LNCS 1055, pages
329-348. Springer-Verlag, 1996.

