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The Bounded-Storage Model in the Presence of a
Quantum Adversary

Robert T. Konig and Barbara M. Terhal

Abstract—An extractor is a function E that is used to extract
randomness. Given an imperfect random source X and a uniform
seed Y, the output E( X, V) is close to uniform. We study properties
of such functions in the presence of prior quantum information
about X, with a particular focus on cryptographic applications.
We prove that certain extractors are suitable for key expansion
in the bounded-storage model where the adversary has a limited
amount of quantum memory. For extractors with one-bit output
we show that the extracted bit is essentially equally secure as in
the case where the adversary has classical resources. We prove the
security of certain constructions that output multiple bits in the
bounded-storage model.

Index Terms—Bounded-storage model, cryptography, extrac-
tors, locking, privacy amplification, quantum information theory,
quantum key distribution, quantum memory, security proofs,
universal composability.

1. INTRODUCTION

HE aim of randomness extraction is to generate “almost
Tuniform” randomness given an imperfect source of ran-
domness X . The term “extractor” is generally used to describe a
procedure which accomplishes this task; more formally, an ex-
tractor is a (deterministic) function E : X x ) — Z which,
when applied to an imperfect source X and a uniform and inde-
pendent seed Y, yields an output Z := E(X,Y") which is close
to being uniformly distributed on Z. Such an extractor is charac-
terized by a number of parameters. Among these are the amount
of randomness Y that is required, the amount of randomness Z
produced, and, most importantly, the character of the sources
X which lead to almost uniform output. A very general class
of sources are the weak sources X, characterized by a lower
bound on the min-entropy Hoo (X)) := — log max, Px(x).Cor-
respondingly, a (k, €)-extractor [1] commonly refers to an ex-
tractor which, for any input distribution Px with H..(X) > k,
outputs e-uniform randomness Z.

Besides purifying randomness, extractors are an essential
tool in computer science, in particular in complexity theory and
cryptography. Correspondingly, the study of such extractors
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has been a major research topic in recent years, and much
understanding has been gained (see [2] for a review). For ap-
plications in computer science, the challenge is to find explicit,
efficiently computable extractors with good parameters.

In a cryptographic context, a certain variant of the concept of
a (k,e)-extractor is of particular importance. These are called
strong extractors; they have the additional property that even
the pair (Y,E(X,Y)) is e-close to uniform. This means for
example that (Y, E(X,Y")) can be used to encrypt a message
M = (M., M>) using a one-time pad [3] as C' = (C1,Cs) =
(My @ Y,M> & E(X,Y)). An adversary who learns the ci-
pher-text C' as well as the message M; (and thus the seed Y')
will be completely ignorant of the content of the remaining mes-
sage M,. Expressed differently, the pair (Y, E(X,Y")) is a key
with universally composable security [4], [5].

A more striking application of strong extractors in cryptog-
raphy is privacy amplification, introduced by Bennett, Brassard,
and Robert [6] and further analyzed in [7]. This refers to a tech-
nique that allows two parties, Alice and Bob, to generate a secret
key Z from a shared random variable X about which the adver-
sary has partial information F. The only assumption is that the
parties are connected by an authentic but otherwise completely
insecure channel. The key Z is then obtained as follows: Alice
generates an independent uniform seed Y and sends it over the
channel. Subsequently, both parties apply a strong extractor to
get Z := E(X,Y). The security of Z when used as a secret key
directly follows from the properties of the strong extractor, as-
suming a certain bound on the information E of the adversary.

Apparently related to privacy amplification, but conceptually
quite different, is Maurer’s bounded-storage model [8]. The first
security proof for general adversaries in this model was ob-
tained by Aumann, Ding, and Rabin [9] and essentially optimal
constructions were subsequently found in a sequence of papers
[10]-[12]. The aim of the honest parties in the bounded-storage
model is not key extraction but key expansion. In this setting, a
large amount of randomness X is publicly, but only temporarily
available. Alice and Bob use a previously shared (short) secret
key Y to obtain additional key bits Z = E(X,Y) using a strong
extractor. The seed Y remains hidden to the adversary until
(possibly) after the execution of the protocol. The adversary is
assumed to have only a bounded amount of storage (which may
be much larger than the honest parties’ memory). As a result,
his information £ about X is limited, once X becomes inac-
cessible, and by the properties of the extractor, Z can be shown
to be secure even if he later obtains the seed Y (this was referred
to as “everlasting security” in [9]).

From a cryptographic viewpoint, a natural generalization of
these scenarios is arrived at by allowing the adversary to have
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quantum information () instead of only classical information £/
about X . This modification is not merely of theoretical interest.
Indeed, the only construction proved to be secure [13]-[16]
for privacy amplification has found various applications in
quantum cryptography. Besides simplifying and improving
security proofs for quantum key distribution [16], [17], the
quantum version of privacy amplification has been used to
derive both possibility [18] and impossibility [19] results for
tasks such as bit commitment or oblivious transfer.

While the problem of constructing strong extractors is well-
studied, little is known about the security resulting from their
use in a quantum context. For the bounded-storage model,
Gavinsky, Kempe, and de Wolf [20] recently gave an example
of an extractor which yields a classically secure key, but
is completely insecure against an adversary with a similar
amount of quantum storage. There is no construction for the
bounded-storage model that is known to be secure against a
quantum adversary.

In this paper, we study properties of strong extractors in a
context where the adversary has quantum information. Our main
focus is on the two cryptographic settings described. We give the
first constructions of extractors that are usable in the bounded-
storage model against a quantum adversary, and we show that
certain strong extractors generate secure key bits in the setting of
privacy amplification. This reduces the amount of randomness
needed in certain applications.

Outline: In Section II, we introduce the relevant definitions.
In Section III, we show that any strong extractor which outputs
a single bit yields essentially the same degree of security in a
cryptographic setting, irrespective of whether the adversary has
quantum or classical information. We then use a hybrid argu-
ment in Section IV to obtain extractors that output several bits.
In Section V, we explain how these extractors can be used in the
bounded-storage model. Finally, we show that general strong
extractors can be used in the setting of privacy amplification in
Section VI. We conclude in Section VII.

A. Notation

Throughout this paper, all logarithms are binary, i.e., to base
2. For arandom variable X with range X', we define the min-en-
tropy of X as Ho(X) := —log max, Px(x). More generally,
for a quantum state pg on a Hilbert space Q, Ho.(Q) is the min-
entropy of the distribution of eigenvalues of pg. Analogously,
the max-entropy is defined as Hy(X) := log |supp(Px)| =
log |X| and Ho(Q) := logrank(pg), respectively. Expressed
differently, Ho(Q) can be understood as the number of qubits
constituting system (. For a function g : X — R, we denote by

reX

the expectation of g(X) over a random choice of z «— Pyx.
We also use the notation Px - Py to refer to the joint distri-
bution of two independent random variables X and Y/, that is,
Pr[X =z,Y =y] = Px(z) - Py(y) forall (z,y) € X x ).
In the sequel, @) refers to a quantum system, whereas
E VW X,Y, and Z are assumed to be classical. Slightly

abusing notation, we sometimes refer to the Hilbert space
corresponding to a classical-quantum state (cq-state) px¢ by
X ® Q. We denote the completely mixed state on X by pys.,. .
We will sometimes use cq-states with multipartite classical
parts, e.g., a ccq-state pxy . For such a state pxy ¢, we say
that Y «— X < (Q forms a Markov chain if it has the form

pxvq =Y Pxy(z,y)lzy)(zy| @ pa (D

T,y

for some states {p, }zcx on Q. A state with this property de-
fines a distribution Pxy-, which defines the conditional distri-
butions Py |y—, and, for any function f: A XY — Z the
distribution P x y)xy- The corresponding conditional states
PxQ|Y=y are obtained by making the appropriate replacement
in (1), i.e.,

PXQ|Y=y = ZPX|Y=y($)|$><J5| @ Pz
T
Similarly, we can define the cccq-state

PFXYIXYQ = Z Pxy (z, y)If (z,y)zy)(f(z,y)zy| @ po

which in turn gives rise to states such as pr(x y)xQ | vy=y-

We will use the trace norm [|A|| := 2tr(v/ A A) for any op-
erator A. We include the factor % in this definition for conve-
nience. It ensures that the distance ||p — || of two states p and o
is in the interval [0, 1]. Note that if px ¢ and ox/ are cq-states

on X ® Q, then

loxq —oxoll = Y IIPx(2)ps — Pxr(x)oal. (2
rEX

For two probability distributions P and ) on X', the trace norm
of their difference (when identifying the distribution with a state
via an orthonormal basis), i.e.,

1P~ Qll = 5 " 1P@) - Q)

rEX

is also known as the variational distance.

Let pxg = > ,cx Px(z)|z)(2| ® p, be a cq-state. Con-
sider a fixed positive operator-valued measure (POVM) £ =
{E.}.cz on Q. We denote by Pxz = pxe() the joint distri-
bution of X and the measurement outcome, i.e.,

Pz x=:(2) = tr(E.ps)

forevery z € Zandz € X.

We will often encounter scalar quantities d that are functions
of a given distribution or a quantum state, i.e.,d = d(Px)ord =
d(pg)- In these cases, we use the shorthand d(X) or d(Q). Sim-
ilarly, we write d(Q |W = w) instead of d(pq |w=w). More
generally, we will consider quantities that depend on a specific
bipartition of a state p g into Z and F; in these cases, we write
d(Z «— E). Again, we use the notation d(Z — E|W = w)
to denote the corresponding quantity for the conditional state
PZE|W=w-
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II. EXTRACTORS AND SECRET KEYS

A. Classical Adversaries

Before reviewing the definition of strong extractors and a
number of their basic properties, let us introduce a shorthand
notation for the nonuniformity, a quantity which measures the
extent to which a probability distribution of a random variable
Z deviates from the uniform distribution, possibly given another
random variable E:

Definition 1: Let Pzp be an arbitrary distribution. The
nonuniformity d(Z — E) of Z given E is defined as

d(Z — E) = “PZE _PUZ PEH

Here Pg is the marginal distribution of Pz g, and Py, denotes
the uniform distribution on Z.

Note that d(Z) is simply the distance of the distribution Py
from the uniform distribution. A strong extractor can then be
defined as follows.

Definition 2: A strong (k, €)-extractor is a function E : X' X
Y — Z with the property that

dEX,Y) —Y) =|Pexyy — Puz - Puy|| <2 )

for all distributions Px with Ho,(X) > k. Here Y is indepen-
dent of X and uniformly distributed on ).

The definition implies that E(X,y) is close to being uni-
formly distributed on Z on average over the random choice of
y < Py (cf. (44)). In other words, if X is chosen according to
Px and Y is uniformly distributed and independent of X, then
E(X,Y) is indistinguishable from uniform, even given Y.

In a cryptographic setting, the security of the extracted key
7 := E(X,Y’) with respect to an adversary who is given Y is
exactly characterized by (3). Indeed, expression (3) quantifies
how distinguishable the real system (consisting of (Z,Y)) is
from the ideal system, in which Z is uniformly distributed and
independent of Y. This is easily generalized to a setting where
the adversary is given additional information about X . The ad-
ditional information can be in the form of a classical random
variable (i.e., bits) that is jointly distributed with X or a quantum
state (i.e., qubits).

In case the adversary has classical information about X ex-
pressed by a random variable F, one can show that this simply
reduces the min-entropy of X . If E gives little information about
X it follows that even given E and Y, the extracted bits look
random. This intuition is made explicit in the following propo-
sition (all proofs in this section can be found in Appendix B).

Proposition 1: LetE : X x Y — Z be a strong (k,)-ex-
tractor. Let Px g be a distribution with

Hy(X — E)>k+logl/e. 4)

Here the guessing-entropy Hg (X «— E) of X given F is defined
as

Hy(X «— E) := —logmax Pr[X = X] 5)
X

where the maximgm is taken over all random variables X such
that X < F < X forms a Markov chain. Then

d(E(X,Y) —YE) <2

where PYXE = Pz,{y . PXE'

Note that if E is trivial or independent of X the guessing
entropy Hg(X «+— E) of X given E is equal to the min-entropy
H,.(X) of X. The alternative expression

Hy(X — E) = —logE.p,[max Px | p=c(z)]  (6)

for the guessing entropy shows that it corresponds to a “reason-
able” definition of average min-entropy.

Proposition 1 can be applied in the bounded-storage model
because the limitation on the adversary’s storage implies
that his information about X is bounded. More precisely, the
guessing probability has the following intuitive property. Any
(additional) piece of information W does not increase the
success probability in guessing by a significant amount if the
size of W is small. More trivially, independent information
V' does not affect the guessing probability. We express this
formally in Lemma 1; versions of this statement are implicit in
[1], and more explicitly given in [21].

Lemma 1: Consider a distribution Pxv v g with Pxy = Px-
Py and VW «— X < E.Then

Hy(X — VWE) > Hg(X «— E) — Ho(W).
In particular, for every ¢ > 0

H (X —E|V=0v,W=uw)
> Hy(X «— E)— Ho(W) —log1l/e

with probability at least 1 — ¢ over (v, w) «— Pyw.

B. Quantum Adversaries

Let us now discuss the challenge posed by quantum adver-
saries. Our aim is to show that, similarly as in the classical case,
the extracted bits E(X,Y") are secure even if the adversary is
given Y. Such an adversary prepares a quantum state p,, on Q
that depends on X = z. To obtain maximal information about
E(X,Y), he performs a measurement on his quantum system
(@ which depends on Y. As a result, his (classical) information
FE is no longer independent of Y. This means that we cannot
view this as merely a reduction of the entropy of the source X.
Thus, we cannot directly prove a statement like Lemma 1 when
FE is replaced by a quantum system (). In particular, due to the
effect of locking [22], we know that there exist short classical
keys (Y") that can unlock a lot of classical information (about
X) stored in a quantum system (). In the first part of this paper
we will show that if the extractor E extracts a single bit, we can
preclude such locking effects (Theorem 1).

Before embarking on this analysis, we point out the following
straightforward result. If the adversary’s measurement does not
depend on Y we can essentially apply the classical security
proofs. That is, the adversary’s measurement produces some
classical information E which can be viewed as reducing the
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entropy of the source X . If Hy(X « F) is still large, then the
random variable F does not give much information about X and
therefore the extracted bits look random even to such an adver-
sary. This statement is expressed by Proposition 1’ below.

An example of a situation where any measurement outcome
E gives a little information about X is the case where the size
of the quantum system is sufficiently small. We will express this
in a more quantitative form by Proposition 2’ in Section V-A.

Note that we can generalize the guessing-entropy of X
given () to the case where () is a quantum system. Let
PXQ = Y pex Px(x)|z)(z| ® p, be a cq-state. Then

Hy(X « Q) :=—log max Z Px(z)tr(Ezpz)  (7)

zeX

where the maximum is taken over all POVMs & := {E,}.cx
on Q. For a probability distribution Py with corresponding
cc-state px g, definition (7) coincides with the classical defini-
tion given in Proposition 1. This is because any POVM with
outcome X is equivalent to a von Neumann measurement in
the computational basis followed by classical post-processing.
Thus, the measurement can be seen as a channel Py | ; defining

a random variable X as required.
We now state the nonadaptive quantum version of Proposition
1. It is a direct consequence of the reasoning above.

Proposition 1': LetE : X x Y — Z be a strong (k, €)-ex-
tractor, and let 7 be a POVM on Q. Then for all cq-states px¢
with

Hy(X Q) >Fk+logl/e
we have

d(E(X,Y) = YF(Q)) < 2.

The reason we are considering a restricted adversary whose
measurement does not depend on Y as in Proposition 1 is not
because this is in itself an interesting adversary. In general, an
adversary’s measurement strategy will depend on Y nontriv-
ially. However, we will see in Section III that the case of a gen-
eral adversary can be reduced to the type of adversary studied
in Proposition 1’ whenever the extractor outputs a single bit.

The guessing entropy used in the statement of Proposition 1’
has properties analogous to the corresponding classical quan-
tity (5). The following is the quantum analogue of Lemma 1
(its proof can again be found in Appendix B). It states that a
short additional piece of classical information W does not help
much in guessing X if the quantum system () depends only on
X. Again, additional independent information V' does not help
either.

Lemma 1': Consider a cceq-state pxvwe with pxv = px®
py and VW — X « Q. Then

Hy(X « VWQ) 2 Hg(X — Q) — Ho(W)
and with probability at least 1 — e over (v, w) < Py, we have

Hy (X —Q|V=0v,W=w)
> Hy(X «— Q) — Ho(W) —log1/e.

We now state more precisely what we are aiming to prove
about strong extractors. Note that Proposition 1’ only gives a
weak security guarantee for the extracted bits E(X, Y)—they
are only shown to be secure against an adversary who measures
his quantum state before receiving Y. To discuss the stronger
type of security we aim for, we first state the definition of the
nonuniformity in the quantum case.

Definition 3: Let pz¢ be an arbitrary cq-state on Z® Q. The
nonuniformity d(Z — Q) of Z given Q is defined as

d(Z = Q) = llpzq = pu= @ rell
where py. denotes the completely mixed state on Z.

We describe a few basic properties of this definition in Ap-
pendix A. In a cryptographic setting, the condition d(Z
Q) < e for some small € means that the key Z is secure in a
setting where () is controlled by the adversary; as explained in
[15] (see also [16], [23]); such a key is, with probability at least
1 — €, equivalent to a perfectly secure key.

Defining the security of cryptographic protocols is a very
subtle task, especially in the presence of quantum adversaries.
The concept of universal composability has received much at-
tention in quantum cryptography recently (cf. [15], [23]-[27]).
While a general discussion of security definitions and their prop-
erties is beyond the scope of this paper, we point out that Defi-
nition 3 simply says when a piece of classical information may
be regarded as a (universally composable) secure key, given a
distributed cg-state. (In the typical scenario involving three par-
ties, it is understood that Alice and Bob both hold Z while Q) is
controlled by the adversary.) In contrast, security definitions for
interactive protocols are generally more involved. We refer the
reader to the relevant literature for more details, as our focus is
on generating keys which are secure according to Definition 3.
A discussion of the merits of this definition can be found in [23].

In the sequel, we aim to show that d(E(X,Y) «— YQ) is
small for certain strong extractors E and appropriate parame-
ters. This means that the extracted bits are secure even if the
adversary is given Y in addition to his quantum system.

In the next section, we will show that for extractors with bi-
nary output, the quantity of interest can in fact be bounded by
considering an adversary whose strategy does not depend on Y,
i.e., he performs a measurement independent of Y as in Proposi-
tion 1’. We then use this result in Section IV to construct strong
extractors that output several bits.

III. EXTRACTORS WITH BINARY OUTPUT

We will first sketch the arguments in this section. For an ex-
tractor e : X x ) — {0, 1} with binary output the nonunifor-
mity of the extracted bit Z = e(X,Y) given Y and the quantum
system () can be directly related to the success probability in
distinguishing two quantum states pjj and pY, for each y € ).
For a given y, these are the (generally mixed) states of the adver-
sary, conditioned on the extracted bit being 0 or 1, respectively.
We modify an argument by Barnum and Knill [28] to bound
the optimal success probability in distinguishing p§ from p} for
a given y in terms of the success probability resulting from the

use of a pretty good measurement [29] £4,,,,. On the other hand,
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we will show that there exists a POVM F which refines all the
pretty good measurements {€Y,,, },ey simultaneously; i.e., the
outcome of the measurement £Y,,,, can be obtained by applying
JF and classical post-processing. This POVM F is a pretty good
measurement defined by the states {p, }.cx, the conditional
states of ) given X = z, or, in the bounded-storage model,
the states that the adversary prepares upon seeing X . Since the
refined measurement F does not depend on y, we know that it
cannot be superior to any classical strategy, see Proposition 1/,
and we obtain the main result of this section, Theorem 1.

In the next lemma, we bound the nonuniformity d(Z — Q) of
acq-state pzqQ = D¢ (9,1} P=|2) (2| ® p- with binary classical
part using a pretty good measurement.

Lemma 2: Let pzq := 3. c(o.1y P=|2) (2| ® p- be acg-state
with binary classical part. Then

d(Z Q) <\[20(Z — Epe(@) +d(Z) ()

where & is the pretty good measurement defined by pz(),
i.e., the POVM elements of this measurement are

E, = pzpél/zpzpél/z, for z € {0,1}.

Proof: By definition

1

Az —=Q) =)

z=0

1
PPz — §PQH = |lpopo — p1p1ll. (9

Let A := pgpo — p1p1 and let A =: AT — A~ with AT > 0,
A~ > 0 be the decomposition of A into a nonnegative and a
negative part. Then

lpopo — prnll = 5 (br(A*) + tr(47))
— tr(At) — %tr(A)

— tr(PA) — %(po —p1)

where P is the projector onto the support of A*. We will do
some work to show that

tr(PA) < /24(Z — Egm(Q)) (10)

where Eq1, is the pretty good measurement that distinguishes
p1 and p;. By noting that

1 1
_§(p0 —pl) < §|P0 —p1| = d(Z)7

we obtain the desired result, (8). Consider thus the quantity

tr(PA). We can bound
tr(PA) < 4/tr(AtA)tr(BTB) (11)

by applying the operator Cauchy—Schwarz inequality to the
operators

A= /’29/4“)922/4
B.— pc_21/4Apc_21/4'

However
tr(ATA) = tr(py) P P)

< tr(pg "Ppg”)
< tr(pg) = 1 (12)
1/25 1/2

where we used the fact that P < 1 and the fact that pg "Ppg
is nonnegative. On the other hand, by the definition of the pretty
good measurement £, = {Fy, E1} we have

tr(B'B) = tr(pg"* Apg % A)

= tr(EoA) - tr(E’lA)

= Psucc(gpgm) - Pltr(Eol)l) - pOtr(EIPO)

= 2Psucc(gpgm) -1 (13)
Here we have used the definition of the success probability
Poyec({Eo, F1}) = potr(Eopo) + pitr(E1p1), and the fact
that Ko+ £1 = 1 and pg + p1 = 1 in the last step. Note that the
probability of success Pyyc.(€) for a fixed POVM € is the same
as the probability of successfully distinguishing an instance
drawn from the distribution of measurement outcomes when
applying £ to pg and p1, respectively, with a priori probabilities
po and pq. The latter task corresponds to the binary decision
problem with states (or random variables) £(pg), £(p1), and
priors pg, p1. Now we invoke Helstrom’s theorem [30] which
says that the success probability of distinguishing two quantum
states og and o1 with priors pg and p; using an optimal POVM
Eopt 18 equal t0 Puyec(Eopt) = % + ||pooo — p1o1]|. We apply
this theorem for 0. = &,gm(p-) and write

1
Psucc(gpgm) = 5 + d(Z — gpgm(Q))
(cf. (9)). Combining this with (11), (12), and (13) yields (10),

as desired. O

Now the goal is to bound the nonuniformity d(e(X,Y) «
Y Q) for extractors e with binary output when @ is a quantum
system which depends on X . For this we consider the cccq-state
pPzxyQ = pe(x,v)xyq Which has the form

>

2y, 2=e(z,y)

PZXYQ = Px (z) Py (y)|zzy) (zey| @ p.  (14)

where Py (y) = %I for every y € ). For this state, one can
express the nonuniformity d(Z «— Y Q) as (cf. (2))

>

z€{0,1}

1

Z Pz x—ay=y(2)Px(%)ps — 5P

E,—p, 5

xr

15)

Note that Pz| x—y=y(2) is 1 or 0, depending on whether or
not e(z,y) = z. It is straightforward to verify that

pip? = Z Pz y=y(2) Px |y =y,z==()pz
rEX

= Z Py | X —a,y=y(2) Px(2)ps
rzeX

(16)
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where we introduced for each y € ) and z € {0, 1} the density
matrix

pLi=Y Px|y—yz—:(%)ps (17)

TEX

with the normalising factor
pY =Py y—y(z) = J_)Ijx[e(%y) = z]. (18)

The state pY is the state of @ conditioned on e(X,y) = z;
for any given y € Y, the two states p and pY have a priori
probabilities p¥ with z € {0, 1}. From this definition, it is clear
that

> plel = Px(z)ps = pg (19)

which is independent of y. This observation will be essential in
the proof of the following theorem.

Applying Helstrom’s theorem gives an intuitive interpretation
of the quantity of interest (which we state, but do not need later
in the proof): 1 + d(e(X,Y) « Y Q) is the maximal average
success probability when distinguishing pf and p¥ with a priori
probabilities p§ and pY, over random y < Py-. This follows by
combining (19) with (15) and (17), (18).

We are ready to derive the main result of this section:

Theorem I: Lete : X x Y — {0,1} be a strong (k, €)-ex-
tractor. Then for all pxq with

Hy(X — Q) >k+logl/e
we have
d(e(X,Y) = YQ) < 32

where pyxq = puy, ® pxq-
Proof: By (2) (cf. (44)) we can express
d(e(X,Y) = YQ) = Eyp, [de(X,y) = Q). (0)
We can apply the pretty good measurement bound of Lemma 2
for each y € Y to the state pe(x,y)Q = Zze{(]?l} pY]2){(z| ® pY,
where the density matrices p¥ and their associated probabilities
pY are defined in (17) and (18). We get

d(e(X,y) — Q) < \/2d(e(X7 Y) — Erem(Q)) + d(e(X, y))

for every y € ). Taking the expectation over y «— Py again
and using the convexity of the square root gives

de(X,Y) = YQ) < \/E,p, 2d(e(X.1) — Eem(Q))]
+d(e(X,Y)—Y) (21)

by (2) (see also (43)). Since

Hoo(X) 2 Hg(X — Q)

the second term in (21) is upper-bounded by . Let us now con-
sider the details of the pretty good measurement &Y. The mea-

surement €Y., = {EY}.c(0,1) is determined by the POVM
elements

EY = pi(G¥) 2l (GY) 2 (22)
where, as argued above (19)
GV =" pint=rq (23)

z€EZ

is independent of y. This fact allows us to define a new pretty
good measurement F which does not depend on y, but is equally
good or better in estimating Z from () and Y. This new pretty
good measurement F = {F, },.cx has POVM elements
—1/2  —1/2
F, = Px(x)pQ / PzPq / .
Expressed differently, F is simply the pretty good measurement

defined by the ensemble { Px (), p; }. From (16), (22), and (23)
above one can see that

Eg = Z Pz|X:_1:,Y=y(Z)F93'
reEX

(24)

In other words, the results of the measurements {EY,., }yey
can in fact be obtained by first estimating = by measuring the
quantum system ) with F = {F, },c~. Then we infer z for a
given y by computing z = e(x,y). On a more technical level,
one needs to show that for every y € ), the nonuniformity given
the measurement outcome of the measurement £J,,,, is smaller
than or equal to the nonuniformity given the outcome of the re-
fined measurement F. We have summarized these technical de-
tails in Lemma 6 proved in Appendix C. Formally, we have

d(e(X,y) — E5,m(Q)) < d(e(X,y) — F(Q)).
Taking the expectation over y «— Py gives (cf. (44))

Since F does not depend on y we have reduced our problem to
the simple scenario where the quantum system is measured be-
fore the adversary obtains y. Thus, we can apply Proposition 1’

d(e(X,Y) — YF(Q)) < 2e. (25)
We conclude with (21) that

de(X,Y) —YQ)<2/e+e¢
hence, the claim follows. O

We point out that the proof of Theorem 1 reveals that

max d(e(X,Y) —YQ) <3

max d(e(X,Y) — YE).
{pz}e

B|X

In this inequality, the maximums are over all families of condi-
tional states {p, = pg| x=a }cex and conditional distributions
Pg | X defining states p x ¢ and distributions Py g, respectively,
with

Hy(X — Q),Hy(X — E) > k+logl/e.

?
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This shows that the security of a single extracted bit is only
quadratically worse with respect to an adversary that has a sim-
ilar amount of quantum instead of classical information.

We now show that even if the adversary is given additional
information V' which is independent of X and a short bit string
W which might depend on X, the extracted bit looks secure.
This statement will be used below to prove that certain extrac-
tors which output several bits can also safely be used in a cryp-
tographic context (cf. Theorem 2).

Corollary 1: Lete : X x ) — {0,1} be a strong (k, €)-ex-
tractor. Let pxvwq be a cceg-state with pxv = px ® py,
VW « X « @, and

Hg(X — Q) >k + Ho(W) +2log1/e.

Then
de(X,Y) = YVIVQ) < 4/

where py xvwq = puy @ pxvwe-
Proof: Let a := d(e(X,Y) «— YVWQ) be the quantity
of interest. Then by (2) (see also (43))

@ = [E(v,w)<—va [d(e(X7 Y) =YQ | V=uW= w)]

where the term in brackets is the nonuniformity of e(X, Y") with
respect to the conditional state pxq | v=v,w=w- By Lemma 1 r
we have

Hy(X —Q|V=v,W=w)>k+logl/e (26)
with probability at least 1 — & over random (v, w) < Py . For
any (v, w) for which (26) is satisfied, we have

d(e(X,Y) = YQ|V =0,W = w) < 3z
by Theorem 1. Thus
a < 3Ve+e,

and the claim follows. O

IV. EXTRACTORS WITH NONBINARY OUTPUT

In this section, we will consider strong extractors which
output several bits. We first show how to use independent seeds
Y1, -- ., Ym to extract m bits. The security of the extracted bits
in the quantum setting will follow from applying our bound for
binary extractors, Theorem 1, in combination with a quantum
version of the so-called hybrid argument. By a similar tech-
nique, we will show how to extract more bits under stronger
assumptions. Let us first discuss the hybrid argument.

Consider a cqg-state of the form pzg, where Z =
(Z1,...,Zm) is an m-bit string. We aim to find a bound
on d(Z < Q) in terms of nonuniformities of binary random
variables.

By definition, we have
d(Z — Q) = HpZQ — pl(gj:ol,l} ® pQH .

Let us define for 2 = 0, ..., m the states

(z) @m—i

P =g, ©0zig

on {0,1}™ ® Q, where we use the abbreviation 2% :=

(21,...,2) to refer to the first 7 bits of z € {0,1}™. Clearly,

we have ™) = pzq and p(0) = pM{O ., ® pq. We use the
“telescoping” sum

which, by the triangle inequality, implies that

d(Z — Q) < Z HP(Hl @
But
ot — e T @ Pz = T @ pzia |
= “pZ“rlQ ~ Py © pZ?QH
= “/’ZiHZiQ ~ PUgoy © /’ZiQH .

We thus arrive at the following conclusion:

m—1
AZ— Q)<Y d(Ziyr — Z'Q) 27)
=0
where 2 = (Z1,...,%;).
Let us now state and prove the main theorem.
Theorem 2: Lete : X x Y — {0,1} be a strong (k, £)-ex-

tractor, and let
E™: X x Y™ —{0,1}"
(.91, ym) — (e(z,91), .-
Then for all cg-states px¢g with

(2, Ym))-

Hg(X < Q) > k+m+2logl/e (28)
we have
dE™(X,Y™) — Y™Q) < d4mr/e
where pymxq = Putym & PXQ-
Proof: We use (27) to get
m—1 )
dEMX,Y™) —Y™Q) < S d(Zigs — ZIY™Q)  (29)
=0
where Z™ = E™(X,Y"™). Observe that (Y;4o,...,Y,,) is in-
dependent of Zi+1Y*+1(), which by (45) gives
A(Ziy1 — Z'Y™Q) = d(Ziy1 «— Z'Y'LQ). (30)

But
d(Zip1 = Z'Y'™MQ) = d(Zig1 — Y Z'Y'Q)
=d(e(X,Y) — YE(X,YHY'Q)
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where '}7 = Y;+1. Applying Corollary 1 to (V,W) =
(Y E'(X,Y?)) yields

A Zip1 — Z'YV' Q) < 4y 31)
forevery ¢ = 0,...,m — 1. We have made use of the fact that
Ho(W) = Ho(E'(X,Y")) < m by definition. The claim then
follows from (29), (30), and (31). (|

In the next section, we study the implications of Theorem 2
for the bounded-storage model. We will see that the bound on
the storage of the adversary translates into an upper bound on the
guessing probability, as required (cf. (28)). We will then give a
concrete example of an extractor for the bounded-storage model
with quantum adversaries.

Before continuing, however, let us point out that in certain sit-
uations, we can use the hybrid argument to show that the seed
Y can be reused several times. This gives more efficient ran-
domness extractors (under stronger assumptions about the inital
cg-state px ). Following similar terminology in the literature
on extractors, we introduce the following notion.

Definition 4: A cg-state px¢g where X = (Xyq,...,Xp)
consists of m parts is a k-blockwise state if for all i =

Hy(Xip1 — X'Q) > k.

We will now show how to extract multiple bits from such a
cg-state by reusing the seed. This is interesting for several rea-
sons. First, k-blockwise states arise naturally in realistic situa-
tions such as the bounded-storage model. We will discuss this
in more detail below (cf. Section V-C). Second, extractors for
k-blockwise probability distributions are often used to construct
(classical) extractors by transforming the input distribution to a
k-blockwise distribution. It might therefore be possible to ob-
tain extractor constructions for the quantum case using similar
lines of reasoning.

Theorem 3: Lete : X x Y — {0,1} be a strong (k, ¢)-ex-
tractor, and let

E" . xf x ym — {0,1}Em
'7$L7y) = (Em(xlly)77Em(xLy))

where E™ : X x Y™ — {0,1}™ is defined as in Theorem 2.
Then

(:I?l,..

d(E"(XL,Y) — YQ) < ALm/z

for all (k + m + 2log 1/¢)-blockwise states pxq on XL ® Q,
where pyxq = pu, ® pxq-
Proof: With (27) we get
-1
dE (XVY) = YQ) £ 3 d(Zis1 — 2'Y Q)
i=0

(32)

where ZF' = EX(XT,Y). Since (Z%,Y) is a function of
(X%,Y) and since applying functions does not increase the

trace distance, we obtain
L—1

dE"(XLY) = YQ) < Y d(Zis1 — X'YQ).
=0

(33)

But d(Ziy1 — X'YQ) = d(E™(Xi11,Y) « YX'Q), and
PYX 1 XiQ = Py ® px,,, xiq- Moreover

Hg(Xiy1 — XQ) > k+m+2logl/e.

by assumption. Thus, we can apply Theorem 2 and the claim
follows. (]

V. THE BOUNDED-STORAGE MODEL WITH A
QUANTUM ADVERSARY

A. Bounded Storage, Guessing Entropy, and Extractors

In the classical version of the bounded-storage model, the se-
curity of the extracted bits is a direct consequence of the prop-
erty of the extractor given in Proposition 1 and the fact that
an adversary has limited information about X. The latter fact
is expressed by the following well-known proposition, whose
proof we omit, as it is trivial. It states that an adversary who has
H(E) bits of storage c