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The Bounded-Storage Model in the Presence of a
Quantum Adversary

Robert T. König and Barbara M. Terhal

Abstract—An extractor is a function that is used to extract
randomness. Given an imperfect random source X and a uniform
seedY , the output (X; Y ) is close to uniform. We study properties
of such functions in the presence of prior quantum information
about X , with a particular focus on cryptographic applications.
We prove that certain extractors are suitable for key expansion
in the bounded-storage model where the adversary has a limited
amount of quantum memory. For extractors with one-bit output
we show that the extracted bit is essentially equally secure as in
the case where the adversary has classical resources. We prove the
security of certain constructions that output multiple bits in the
bounded-storage model.

Index Terms—Bounded-storage model, cryptography, extrac-
tors, locking, privacy amplification, quantum information theory,
quantum key distribution, quantum memory, security proofs,
universal composability.

I. INTRODUCTION

THE aim of randomness extraction is to generate “almost
uniform” randomness given an imperfect source of ran-

domness . The term “extractor” is generally used to describe a
procedure which accomplishes this task; more formally, an ex-
tractor is a (deterministic) function which,
when applied to an imperfect source and a uniform and inde-
pendent seed , yields an output which is close
to being uniformly distributed on . Such an extractor is charac-
terized by a number of parameters. Among these are the amount
of randomness that is required, the amount of randomness
produced, and, most importantly, the character of the sources

which lead to almost uniform output. A very general class
of sources are the weak sources , characterized by a lower
bound on the min-entropy . Cor-
respondingly, a -extractor [1] commonly refers to an ex-
tractor which, for any input distribution with ,
outputs -uniform randomness .

Besides purifying randomness, extractors are an essential
tool in computer science, in particular in complexity theory and
cryptography. Correspondingly, the study of such extractors
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has been a major research topic in recent years, and much
understanding has been gained (see [2] for a review). For ap-
plications in computer science, the challenge is to find explicit,
efficiently computable extractors with good parameters.

In a cryptographic context, a certain variant of the concept of
a -extractor is of particular importance. These are called
strong extractors; they have the additional property that even
the pair is -close to uniform. This means for
example that can be used to encrypt a message

using a one-time pad [3] as
. An adversary who learns the ci-

pher-text as well as the message (and thus the seed )
will be completely ignorant of the content of the remaining mes-
sage . Expressed differently, the pair is a key
with universally composable security [4], [5].

A more striking application of strong extractors in cryptog-
raphy is privacy amplification, introduced by Bennett, Brassard,
and Robert [6] and further analyzed in [7]. This refers to a tech-
nique that allows two parties, Alice and Bob, to generate a secret
key from a shared random variable about which the adver-
sary has partial information . The only assumption is that the
parties are connected by an authentic but otherwise completely
insecure channel. The key is then obtained as follows: Alice
generates an independent uniform seed and sends it over the
channel. Subsequently, both parties apply a strong extractor to
get . The security of when used as a secret key
directly follows from the properties of the strong extractor, as-
suming a certain bound on the information of the adversary.

Apparently related to privacy amplification, but conceptually
quite different, is Maurer’s bounded-storage model [8]. The first
security proof for general adversaries in this model was ob-
tained by Aumann, Ding, and Rabin [9] and essentially optimal
constructions were subsequently found in a sequence of papers
[10]–[12]. The aim of the honest parties in the bounded-storage
model is not key extraction but key expansion. In this setting, a
large amount of randomness is publicly, but only temporarily
available. Alice and Bob use a previously shared (short) secret
key to obtain additional key bits using a strong
extractor. The seed remains hidden to the adversary until
(possibly) after the execution of the protocol. The adversary is
assumed to have only a bounded amount of storage (which may
be much larger than the honest parties’ memory). As a result,
his information about is limited, once becomes inac-
cessible, and by the properties of the extractor, can be shown
to be secure even if he later obtains the seed (this was referred
to as “everlasting security” in [9]).

From a cryptographic viewpoint, a natural generalization of
these scenarios is arrived at by allowing the adversary to have
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quantum information instead of only classical information
about . This modification is not merely of theoretical interest.
Indeed, the only construction proved to be secure [13]–[16]
for privacy amplification has found various applications in
quantum cryptography. Besides simplifying and improving
security proofs for quantum key distribution [16], [17], the
quantum version of privacy amplification has been used to
derive both possibility [18] and impossibility [19] results for
tasks such as bit commitment or oblivious transfer.

While the problem of constructing strong extractors is well-
studied, little is known about the security resulting from their
use in a quantum context. For the bounded-storage model,
Gavinsky, Kempe, and de Wolf [20] recently gave an example
of an extractor which yields a classically secure key, but
is completely insecure against an adversary with a similar
amount of quantum storage. There is no construction for the
bounded-storage model that is known to be secure against a
quantum adversary.

In this paper, we study properties of strong extractors in a
context where the adversary has quantum information. Our main
focus is on the two cryptographic settings described. We give the
first constructions of extractors that are usable in the bounded-
storage model against a quantum adversary, and we show that
certain strong extractors generate secure key bits in the setting of
privacy amplification. This reduces the amount of randomness
needed in certain applications.

Outline: In Section II, we introduce the relevant definitions.
In Section III, we show that any strong extractor which outputs
a single bit yields essentially the same degree of security in a
cryptographic setting, irrespective of whether the adversary has
quantum or classical information. We then use a hybrid argu-
ment in Section IV to obtain extractors that output several bits.
In Section V, we explain how these extractors can be used in the
bounded-storage model. Finally, we show that general strong
extractors can be used in the setting of privacy amplification in
Section VI. We conclude in Section VII.

A. Notation

Throughout this paper, all logarithms are binary, i.e., to base
. For a random variable with range , we define the min-en-

tropy of as . More generally,
for a quantum state on a Hilbert space is the min-
entropy of the distribution of eigenvalues of . Analogously,
the max-entropy is defined as

and , respectively. Expressed
differently, can be understood as the number of qubits
constituting system . For a function , we denote by

the expectation of over a random choice of .
We also use the notation to refer to the joint distri-
bution of two independent random variables and , that is,

for all .
In the sequel, refers to a quantum system, whereas

and are assumed to be classical. Slightly

abusing notation, we sometimes refer to the Hilbert space
corresponding to a classical-quantum state (cq-state) by

. We denote the completely mixed state on by .
We will sometimes use cq-states with multipartite classical

parts, e.g., a ccq-state . For such a state , we say
that forms a Markov chain if it has the form

(1)

for some states on . A state with this property de-
fines a distribution , which defines the conditional distri-
butions and, for any function , the
distribution . The corresponding conditional states

are obtained by making the appropriate replacement
in (1), i.e.,

Similarly, we can define the cccq-state

which in turn gives rise to states such as .
We will use the trace norm for any op-

erator . We include the factor in this definition for conve-
nience. It ensures that the distance of two states and
is in the interval . Note that if and are cq-states
on , then

(2)

For two probability distributions and on , the trace norm
of their difference (when identifying the distribution with a state
via an orthonormal basis), i.e.,

is also known as the variational distance.
Let be a cq-state. Con-

sider a fixed positive operator-valued measure (POVM)
on . We denote by the joint distri-

bution of and the measurement outcome, i.e.,

for every and .
We will often encounter scalar quantities that are functions

of a given distribution or a quantum state, i.e., or
. In these cases, we use the shorthand or . Sim-

ilarly, we write instead of . More
generally, we will consider quantities that depend on a specific
bipartition of a state into and ; in these cases, we write

. Again, we use the notation
to denote the corresponding quantity for the conditional state

.
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II. EXTRACTORS AND SECRET KEYS

A. Classical Adversaries

Before reviewing the definition of strong extractors and a
number of their basic properties, let us introduce a shorthand
notation for the nonuniformity, a quantity which measures the
extent to which a probability distribution of a random variable

deviates from the uniform distribution, possibly given another
random variable :

Definition 1: Let be an arbitrary distribution. The
nonuniformity of given is defined as

Here is the marginal distribution of , and denotes
the uniform distribution on .

Note that is simply the distance of the distribution
from the uniform distribution. A strong extractor can then be
defined as follows.

Definition 2: A strong -extractor is a function
with the property that

(3)

for all distributions with . Here is indepen-
dent of and uniformly distributed on .

The definition implies that is close to being uni-
formly distributed on on average over the random choice of

(cf. (44)). In other words, if is chosen according to
and is uniformly distributed and independent of , then

is indistinguishable from uniform, even given .
In a cryptographic setting, the security of the extracted key

with respect to an adversary who is given is
exactly characterized by (3). Indeed, expression (3) quantifies
how distinguishable the real system (consisting of ) is
from the ideal system, in which is uniformly distributed and
independent of . This is easily generalized to a setting where
the adversary is given additional information about . The ad-
ditional information can be in the form of a classical random
variable (i.e., bits) that is jointly distributed with or a quantum
state (i.e., qubits).

In case the adversary has classical information about ex-
pressed by a random variable , one can show that this simply
reduces the min-entropy of . If gives little information about

it follows that even given and , the extracted bits look
random. This intuition is made explicit in the following propo-
sition (all proofs in this section can be found in Appendix B).

Proposition 1: Let be a strong -ex-
tractor. Let be a distribution with

(4)

Here the guessing-entropy of given is defined
as

(5)

where the maximum is taken over all random variables such
that forms a Markov chain. Then

where .

Note that if is trivial or independent of the guessing
entropy of given is equal to the min-entropy

of . The alternative expression

(6)

for the guessing entropy shows that it corresponds to a “reason-
able” definition of average min-entropy.

Proposition 1 can be applied in the bounded-storage model
because the limitation on the adversary’s storage implies
that his information about is bounded. More precisely, the
guessing probability has the following intuitive property. Any
(additional) piece of information does not increase the
success probability in guessing by a significant amount if the
size of is small. More trivially, independent information

does not affect the guessing probability. We express this
formally in Lemma 1; versions of this statement are implicit in
[1], and more explicitly given in [21].

Lemma 1: Consider a distribution with
and . Then

In particular, for every

with probability at least over .

B. Quantum Adversaries

Let us now discuss the challenge posed by quantum adver-
saries. Our aim is to show that, similarly as in the classical case,
the extracted bits are secure even if the adversary is
given . Such an adversary prepares a quantum state on
that depends on . To obtain maximal information about

, he performs a measurement on his quantum system
which depends on . As a result, his (classical) information
is no longer independent of . This means that we cannot

view this as merely a reduction of the entropy of the source .
Thus, we cannot directly prove a statement like Lemma 1 when

is replaced by a quantum system . In particular, due to the
effect of locking [22], we know that there exist short classical
keys that can unlock a lot of classical information (about

) stored in a quantum system . In the first part of this paper
we will show that if the extractor extracts a single bit, we can
preclude such locking effects (Theorem 1).

Before embarking on this analysis, we point out the following
straightforward result. If the adversary’s measurement does not
depend on we can essentially apply the classical security
proofs. That is, the adversary’s measurement produces some
classical information which can be viewed as reducing the
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entropy of the source . If is still large, then the
random variable does not give much information about and
therefore the extracted bits look random even to such an adver-
sary. This statement is expressed by Proposition 1 below.

An example of a situation where any measurement outcome
gives a little information about is the case where the size

of the quantum system is sufficiently small. We will express this
in a more quantitative form by Proposition 2 in Section V-A.

Note that we can generalize the guessing-entropy of
given to the case where is a quantum system. Let

be a cq-state. Then

(7)

where the maximum is taken over all POVMs
on . For a probability distribution with corresponding
cc-state , definition (7) coincides with the classical defini-
tion given in Proposition 1. This is because any POVM with
outcome is equivalent to a von Neumann measurement in
the computational basis followed by classical post-processing.
Thus, the measurement can be seen as a channel defining

a random variable as required.
We now state the nonadaptive quantum version of Proposition

1. It is a direct consequence of the reasoning above.

Proposition 1 : Let be a strong -ex-
tractor, and let be a POVM on . Then for all cq-states
with

we have

The reason we are considering a restricted adversary whose
measurement does not depend on as in Proposition 1 is not
because this is in itself an interesting adversary. In general, an
adversary’s measurement strategy will depend on nontriv-
ially. However, we will see in Section III that the case of a gen-
eral adversary can be reduced to the type of adversary studied
in Proposition 1 whenever the extractor outputs a single bit.

The guessing entropy used in the statement of Proposition 1
has properties analogous to the corresponding classical quan-
tity (5). The following is the quantum analogue of Lemma 1
(its proof can again be found in Appendix B). It states that a
short additional piece of classical information does not help
much in guessing if the quantum system depends only on

. Again, additional independent information does not help
either.

Lemma 1 : Consider a cccq-state with
and . Then

and with probability at least over , we have

We now state more precisely what we are aiming to prove
about strong extractors. Note that Proposition 1 only gives a
weak security guarantee for the extracted bits —they
are only shown to be secure against an adversary who measures
his quantum state before receiving . To discuss the stronger
type of security we aim for, we first state the definition of the
nonuniformity in the quantum case.

Definition 3: Let be an arbitrary cq-state on . The
nonuniformity of given is defined as

where denotes the completely mixed state on .

We describe a few basic properties of this definition in Ap-
pendix A. In a cryptographic setting, the condition

for some small means that the key is secure in a
setting where is controlled by the adversary; as explained in
[15] (see also [16], [23]); such a key is, with probability at least

, equivalent to a perfectly secure key.
Defining the security of cryptographic protocols is a very

subtle task, especially in the presence of quantum adversaries.
The concept of universal composability has received much at-
tention in quantum cryptography recently (cf. [15], [23]–[27]).
While a general discussion of security definitions and their prop-
erties is beyond the scope of this paper, we point out that Defi-
nition 3 simply says when a piece of classical information may
be regarded as a (universally composable) secure key, given a
distributed cq-state. (In the typical scenario involving three par-
ties, it is understood that Alice and Bob both hold while is
controlled by the adversary.) In contrast, security definitions for
interactive protocols are generally more involved. We refer the
reader to the relevant literature for more details, as our focus is
on generating keys which are secure according to Definition 3.
A discussion of the merits of this definition can be found in [23].

In the sequel, we aim to show that is
small for certain strong extractors and appropriate parame-
ters. This means that the extracted bits are secure even if the
adversary is given in addition to his quantum system.

In the next section, we will show that for extractors with bi-
nary output, the quantity of interest can in fact be bounded by
considering an adversary whose strategy does not depend on ,
i.e., he performs a measurement independent of as in Proposi-
tion 1 . We then use this result in Section IV to construct strong
extractors that output several bits.

III. EXTRACTORS WITH BINARY OUTPUT

We will first sketch the arguments in this section. For an ex-
tractor with binary output the nonunifor-
mity of the extracted bit given and the quantum
system can be directly related to the success probability in
distinguishing two quantum states and , for each .
For a given , these are the (generally mixed) states of the adver-
sary, conditioned on the extracted bit being or , respectively.
We modify an argument by Barnum and Knill [28] to bound
the optimal success probability in distinguishing from for
a given in terms of the success probability resulting from the
use of a pretty good measurement [29] . On the other hand,
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we will show that there exists a POVM which refines all the
pretty good measurements simultaneously; i.e., the
outcome of the measurement can be obtained by applying

and classical post-processing. This POVM is a pretty good
measurement defined by the states , the conditional
states of given , or, in the bounded-storage model,
the states that the adversary prepares upon seeing . Since the
refined measurement does not depend on , we know that it
cannot be superior to any classical strategy, see Proposition 1 ,
and we obtain the main result of this section, Theorem 1.

In the next lemma, we bound the nonuniformity of
a cq-state with binary classical
part using a pretty good measurement.

Lemma 2: Let be a cq-state
with binary classical part. Then

(8)

where is the pretty good measurement defined by ,
i.e., the POVM elements of this measurement are

for

Proof: By definition

(9)

Let and let with
be the decomposition of into a nonnegative and a

negative part. Then

where is the projector onto the support of . We will do
some work to show that

(10)

where is the pretty good measurement that distinguishes
and . By noting that

we obtain the desired result, (8). Consider thus the quantity
. We can bound

(11)

by applying the operator Cauchy–Schwarz inequality to the
operators

However

(12)

where we used the fact that and the fact that
is nonnegative. On the other hand, by the definition of the pretty
good measurement we have

(13)

Here we have used the definition of the success probability
, and the fact

that and in the last step. Note that the
probability of success for a fixed POVM is the same
as the probability of successfully distinguishing an instance
drawn from the distribution of measurement outcomes when
applying to and , respectively, with a priori probabilities

and . The latter task corresponds to the binary decision
problem with states (or random variables) and
priors . Now we invoke Helstrom’s theorem [30] which
says that the success probability of distinguishing two quantum
states and with priors and using an optimal POVM

is equal to . We apply
this theorem for and write

(cf. (9)). Combining this with (11), (12), and (13) yields (10),
as desired.

Now the goal is to bound the nonuniformity
for extractors with binary output when is a quantum

system which depends on . For this we consider the cccq-state
which has the form

(14)

where for every . For this state, one can
express the nonuniformity as (cf. (2))

(15)

Note that is or , depending on whether or
not . It is straightforward to verify that

(16)



754 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008

where we introduced for each and the density
matrix

(17)

with the normalising factor

(18)

The state is the state of conditioned on ;
for any given , the two states and have a priori
probabilities with . From this definition, it is clear
that

(19)

which is independent of . This observation will be essential in
the proof of the following theorem.

Applying Helstrom’s theorem gives an intuitive interpretation
of the quantity of interest (which we state, but do not need later
in the proof): is the maximal average
success probability when distinguishing and with a priori
probabilities and , over random . This follows by
combining (19) with (15) and (17), (18).

We are ready to derive the main result of this section:

Theorem 1: Let be a strong -ex-
tractor. Then for all with

we have

where .
Proof: By (2) (cf. (44)) we can express

(20)

We can apply the pretty good measurement bound of Lemma 2
for each to the state ,
where the density matrices and their associated probabilities

are defined in (17) and (18). We get

for every . Taking the expectation over again
and using the convexity of the square root gives

(21)

by (2) (see also (43)). Since

the second term in (21) is upper-bounded by . Let us now con-
sider the details of the pretty good measurement . The mea-
surement is determined by the POVM
elements

(22)

where, as argued above (19)

(23)

is independent of . This fact allows us to define a new pretty
good measurement which does not depend on , but is equally
good or better in estimating from and . This new pretty
good measurement has POVM elements

Expressed differently, is simply the pretty good measurement
defined by the ensemble . From (16), (22), and (23)
above one can see that

(24)

In other words, the results of the measurements
can in fact be obtained by first estimating by measuring the
quantum system with . Then we infer for a
given by computing . On a more technical level,
one needs to show that for every , the nonuniformity given
the measurement outcome of the measurement is smaller
than or equal to the nonuniformity given the outcome of the re-
fined measurement . We have summarized these technical de-
tails in Lemma 6 proved in Appendix C. Formally, we have

Taking the expectation over gives (cf. (44))

Since does not depend on we have reduced our problem to
the simple scenario where the quantum system is measured be-
fore the adversary obtains . Thus, we can apply Proposition 1

(25)

We conclude with (21) that

hence, the claim follows.

We point out that the proof of Theorem 1 reveals that

In this inequality, the maximums are over all families of condi-
tional states and conditional distributions

defining states and distributions , respectively,
with
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This shows that the security of a single extracted bit is only
quadratically worse with respect to an adversary that has a sim-
ilar amount of quantum instead of classical information.

We now show that even if the adversary is given additional
information which is independent of and a short bit string

which might depend on , the extracted bit looks secure.
This statement will be used below to prove that certain extrac-
tors which output several bits can also safely be used in a cryp-
tographic context (cf. Theorem 2).

Corollary 1: Let be a strong -ex-
tractor. Let be a cccq-state with

and

Then

where .
Proof: Let be the quantity

of interest. Then by (2) (see also (43))

where the term in brackets is the nonuniformity of with
respect to the conditional state . By Lemma 1 ,
we have

(26)

with probability at least over random . For
any for which (26) is satisfied, we have

by Theorem 1. Thus

and the claim follows.

IV. EXTRACTORS WITH NONBINARY OUTPUT

In this section, we will consider strong extractors which
output several bits. We first show how to use independent seeds

to extract bits. The security of the extracted bits
in the quantum setting will follow from applying our bound for
binary extractors, Theorem 1, in combination with a quantum
version of the so-called hybrid argument. By a similar tech-
nique, we will show how to extract more bits under stronger
assumptions. Let us first discuss the hybrid argument.

Consider a cq-state of the form , where
is an -bit string. We aim to find a bound

on in terms of nonuniformities of binary random
variables.

By definition, we have

Let us define for the states

on , where we use the abbreviation
to refer to the first bits of . Clearly,

we have and . We use the
“telescoping” sum

which, by the triangle inequality, implies that

But

We thus arrive at the following conclusion:

(27)

where .
Let us now state and prove the main theorem.

Theorem 2: Let be a strong -ex-
tractor, and let

Then for all cq-states with

(28)

we have

where .
Proof: We use (27) to get

(29)

where . Observe that is in-
dependent of , which by (45) gives

(30)

But
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where . Applying Corollary 1 to
yields

(31)

for every . We have made use of the fact that
by definition. The claim then

follows from (29), (30), and (31).

In the next section, we study the implications of Theorem 2
for the bounded-storage model. We will see that the bound on
the storage of the adversary translates into an upper bound on the
guessing probability, as required (cf. (28)). We will then give a
concrete example of an extractor for the bounded-storage model
with quantum adversaries.

Before continuing, however, let us point out that in certain sit-
uations, we can use the hybrid argument to show that the seed

can be reused several times. This gives more efficient ran-
domness extractors (under stronger assumptions about the inital
cq-state ). Following similar terminology in the literature
on extractors, we introduce the following notion.

Definition 4: A cq-state where
consists of parts is a -blockwise state if for all

We will now show how to extract multiple bits from such a
cq-state by reusing the seed. This is interesting for several rea-
sons. First, -blockwise states arise naturally in realistic situa-
tions such as the bounded-storage model. We will discuss this
in more detail below (cf. Section V-C). Second, extractors for

-blockwise probability distributions are often used to construct
(classical) extractors by transforming the input distribution to a

-blockwise distribution. It might therefore be possible to ob-
tain extractor constructions for the quantum case using similar
lines of reasoning.

Theorem 3: Let be a strong -ex-
tractor, and let

where is defined as in Theorem 2.
Then

for all -blockwise states on ,
where .

Proof: With (27) we get

(32)

where . Since is a function of
and since applying functions does not increase the

trace distance, we obtain

(33)

But , and
. Moreover

by assumption. Thus, we can apply Theorem 2 and the claim
follows.

V. THE BOUNDED-STORAGE MODEL WITH A

QUANTUM ADVERSARY

A. Bounded Storage, Guessing Entropy, and Extractors

In the classical version of the bounded-storage model, the se-
curity of the extracted bits is a direct consequence of the prop-
erty of the extractor given in Proposition 1 and the fact that
an adversary has limited information about . The latter fact
is expressed by the following well-known proposition, whose
proof we omit, as it is trivial. It states that an adversary who has

bits of storage cannot predict well, and is also known
as “chain-rule for min-entropy.”

Proposition 2: Let be an arbitrary distribution. Then

Together with Lemma 1, it follows that a strong -extractor
has the property that for all with

Thus, the security of the extracted key can be directly derived
from the strong extractor property and the bounded-storage as-
sumption. The main challenge is to construct strong extractors
which satisfy all the additional requirements for applicability in
the bounded-storage model (see Section V-B).

What about quantum storage? We show that a similar rea-
soning applies; given an extractor which is characterized by the
guessing-entropy , the storage bound can be trans-
lated into a security guarantee. We first show that cannot be
guessed by measuring when the number of qubits constituting

is limited.

Proposition 2 : Let be a cq-state. Then

Proof: Consider a POVM on that max-
imizes the expression defining (cf. (7)). Then

The statement then follows from the fact that
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By combining Proposition 2 with Theorem 2, we obtain a
way of constructing strong extractors for the bounded-storage
model in the presence of quantum adversaries: the statement of
Theorem 2 holds when (28) is replaced by the stronger condition

(34)

Before applying this result to obtain a concrete construction,
let us elaborate on a recent example which shows that not every
strong extractor yields secure bits in the bounded-quantum-
storage model.

Remark 1: Gavinsky, Kempe , and de Wolf [20] consider the
function

where denotes bitwise addition modulo and where is
the set of pairs of distinct indices .
They then study the function restricted to the set

, where is the subset of disjoint -tuples. Let
us call this restriction and let be uniform on . In
our terminology, they show the following. There is an

such that for large enough and , the quan-
tity is small for any classical random
variable with , whereas

is large if is quantum and is polylogarithmic
in .

This statement does not contradict Theorem 2 which cannot
be applied in this situation. This is because the function does
not have the required form. While Theorem 1 tells us that the
difference between classical and quantum prior information is
limited in the case of extractors with binary output, this example
shows that the case of general extractors which output several
bits is more subtle.

B. Extractors for the Bounded-Storage Model: An Explicit
Example

In this subsection, we give a concrete example of a function
which can be used in the

bounded-storage model in the presence of a quantum adversary.
Let us first discuss what additional requirements such a function
has to satisfy.

Typical parameters of the bounded-storage model are as
follows: For some and

. Here, the parameter is called the min-entropy
rate, whereas is referred to as the storage rate. The amount
of memory available to the honest parties, Alice and Bob, on
the other hand, is supposed to be much more limited. Typically,
it is assumed that they have only bits of storage.
Expressed differently, the scheme should be secure even if the
adversary is significantly more powerful than the participating
honest parties.

The fact that Alice and Bob have only bits of
memory implies that the strong extractor must have seed length

of that order. Moreover, the extractor has to be
(efficiently) computable with limited memory. This is the case
if is -local, meaning that it only depends on a small number

(instead of ) physical bits of its first argument, where the
bit locations are determined by the second argument. Note that
a different solution to the latter problem was suggested by Lu
[11], who considers so-called on-line computable functions.

Due to these requirements, finding explicit, efficiently
computable constructions for the bounded-storage model is
a rather intricate problem, which has been studied for some
time [8]–[12]. Here we consider a construction by Vadhan. By
choosing the output to be a single bit, Theorem 8.5 in [12] gives
an -local strong -extractor
with

(35)

(36)

for every . (We set in [12,
Theorem 8.5] for convenience—this parameter controls the
number of randomizer bits read.) The term refers to
the iterated logarithm of , which is defined recursively as

for and otherwise.
Suppose we want to achieve an error , using The-

orem 2. Then the error for the one-bit-extractor must be
upper-bounded by . Inserting this into (35) and (36)
gives the following.

Corollary 2: For any , there is
an -local function

with

such that for all with

where .

In terms of the min-entropy rate and the storage-rate , our
result implies that for any , there is an extractor which
uses bits of initial key, outputs bits
with security , and reads bits from
the randomizer . (This follows under the assumption
for some constant —we typically have
in the bounded-storage model.) In comparison, the best known
classical construction [12] uses bits of key
and reads from .

Note that the extractor of Corollary 2 outputs fewer bits than
the number of initial key bits it uses. We stress that it still
achieves key expansion in the bounded storage model, even if
the output is chosen to be a single bit . This is be-
cause the pair is a universally composable key. The
construction of [10] for the bounded storage model with a clas-
sical adversary is the first which achieves significant key expan-
sion (i.e., ). It is an open problem to find strong extrac-
tors which output more secure bits than the number of key bits
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consumed in the presence of prior quantum information. In the
next subsection, we show how to extract more bits under slightly
stronger assumptions.

C. Independent Randomizers

In the so-called satellite scenario [8], the randomizer is as-
sumed to consist of a sequence of random bits that are publicly
broadcast in sequence. In this situation, it is clear that if we par-
tition into blocks , the random variables
corresponding to the blocks are independent. What is more in-
teresting is that if the adversary is allowed to prepare a quantum
system adaptively, the resulting cq-state is a -blockwise
state. This is a consequence of the fact that taking the previous
blocks into account when storing and retrieving information
about does not help the adversary if is independent
of . We can express this formally by the following result, with
the set corresponding to all states on a Hilbert space of limited
dimension in the bounded-storage model.

Lemma 3: Let be a probability distribution
of independent random variables and let be a set of states.
Then

(37)

where the minima are over all states of the form

with and

respectively.
Proof: Let be a family of states such that the

corresponding state achieves the minimum on the left-
hand side (LHS) of (37). Then

However

where the latter expression denotes the guessing entropy of
given in the state

The claim directly follows from this.

If the randomizer consists of several independent parts
which satisfy for all

, we can therefore use our hybrid construction (Theorem 3) in
conjunction with Corollary 2. As an example, consider the case

where each of the blocks consists of bits with min-entropy
rate . We then obtain an extractor

which uses bits of
initial key, reads bits from and
gives an -secure output in the presence of an adversary with
storage rate . In particular, this construction can extend
the key of the honest parties by more than the number of initial
key bits. This implies that Alice and Bob end up with a longer
key even if the adversary later learns the initial key .

VI. TOMOGRAPHY-BASED APPROACH TO

GENERAL EXTRACTORS

The results of Section III imply that the security of a single
extracted bit is similar with respect to an adversary that has
quantum instead of classical resources.

This is not true for general extractors which output several
bits, as shown in [20] by an explicit counterexample. It is, how-
ever, possible to give constructions that extract multiple bits in
a useful way, as we have shown in the previous section.

Which constructions give rise to “useful” extractors in a
quantum context? In this section, we elaborate on this question,
showing that general extractors can be used in the setting of
privacy amplification if the adversary’s memory is limited.
Note that the setting of privacy amplification imposes less
stringent requirements on the extractor than the setting of the
bounded-storage model. Nevertheless, the only construction
known to work in the quantum setting has been two-universal
hashing [13]–[16].

While two-universal hashing has the advantage that it extracts
all the randomness present in the source (i.e., the number of ex-
tracted bits can be as large as ), it requires a
long seed . Viewed as an extractor, two-universal hashing has
the form , i.e., the seed is of
the same length as the source . When applied to privacy am-
plification, this means that bits need to be communicated from
Alice to Bob. We will show below that by considering general
extractors, the amount of communication can be reduced to the
same order of magnitude as the number of qubits the adversary
controls. This statement will be made more precise below.

We use a measurement-based approach which bounds the
trace distance in terms of the outcomes of a tomographic mea-
surement. More precisely, we use will use the following lemma,
whose proof can be found in Appendix D.

Lemma 4: Let be a Hermitian operator on . Then there
is a POVM such that

(38)

where for some orthonormal
basis of .

We point out that Lemma 4 is in general far from optimal and
trivial for certain operators . However, it has the advantage that
the POVM is independent of . A few possible improvements
are discussed in Appendix D.

We can use Lemma 4 to show the following.
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Lemma 5: Let be a strong -extractor.
Then

(39)

for all cq-states with

Proof: By definition and (2)

where is the conditional state for all
. By Lemma 4, we get

and thus by taking the expectation over with (2) (see
also (44))

The claim then follows from Proposition 1 .

This lemma shows that in principle, any strong -ex-
tractor with suitable parameters can be used for privacy ampli-
fication. While the bound (39) will not give a nontrivial state-
ment for parameters typical to the bounded-storage model (as
it is based on Lemma 4), it allows us to reduce the amount
of communication required in the setting of privacy amplifica-
tion. We illustrate this using a construction by Srinivasan and
Zuckerman [31] for simplicity, but we point out that using con-
structions from [32], it is possible to reduce the randomness
required for privacy amplification even further. An efficiently
computable strong -extractor

is constructed in [31] for any with
, where . Applying this

to a situation where the adversary is given at most
qubits of storage, we obtain an efficiently computable function

which uses only

(40)

bits of seed and satisfies whenever

(41)

For certain parameters (i.e., sublinear bounds on the adver-
sary’s storage), this construction is more efficient in terms of
the seed length than the local extractor described in Corollary
2. Note that, generally, we will have , hence the
number (40) of random bits used in this construction is domi-
nated by the number of qubits the adversary controls, contrary
to the two-universal hashing construction.

VII. CONCLUSION

While Holevo’s celebrated theorem implies that quantum
bits cannot be used to store more than classical bits reli-
ably, this result is in general not applicable in cryptography,

where even partial information can make a difference. Indeed,
numerous examples are known where quantum bits are more
powerful than the same number of classical bits (see e.g., [33],
[34], [14], [20]). In this light, it is natural to study the potential
advantage offered by quantum information with respect to spe-
cific tasks.

We have taken a step in this direction by showing that cer-
tain schemes for the bounded-storage model which are secure in
the presence of classical adversaries are also secure in the pres-
ence of adversaries who are in control of quantum storage. Sur-
prisingly, the corresponding security parameters are almost the
same for the quantum and the classical case when only a single
bit is extracted. It is straightforward to extend and reformulate
this result in terms of communication complexity. It then states
that there cannot be a large separation between the one-way av-
erage-case quantum and classical communication complexities
of a Boolean function.

This is in sharp contrast to the case of extractors which
output several bits. There are extractors that provide security in
the classical bounded-storage model, but cannot safely be used
against quantum adversaries [20]. Nevertheless, it is possible
to give a family of constructions that yield secure bits; this is
our main contribution.

While our extractors provide security against quantum adver-
saries, their parameters are far from optimal. Future work can
focus on improving these constructions.

APPENDIX A
PROPERTIES OF THE NONUNIFORMITY

We summarize a few properties of the nonuniformity in this
section. The nonuniformity of given can be
viewed as the average distance of the conditional distribution

to the uniform distribution, for a random choice of
, that is

(42)

More generally, for a ccq-state , where and are not
necessarily independent, the nonuniformity of given can
be written as an average of the corresponding nonuniformities
with respect to the conditional states . This is a direct
consequence of (2). In formula, we have

(43)

In particular, we can write

(44)

where the term in brackets is equal to when
and are independent (which is usually the case in this paper).

Finally, we point out that conditioning on independent
random variables leaves the nonuniformity invariant, that is

(45)

if . This follows from (43).
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APPENDIX B
PROOFS OF SECTION II

Proof: (of Proposition 1) Consider a random variable
defined by a channel which takes a value for which

with certainty, for every .
Clearly, we have (cf. (6))

By Markov’s inequality, this implies that

The result then follows by convexity, using (4) and the fact that

because of (42).

Lemma 1 can be seen as a special case of Lemma 1 . Their
proofs are analogous, but we include both here, as the classical
proof is instructive for the quantum generalization.

Proof: (of Lemma 1) Let
for all . By definition

In particular

But by summing over

and thus

where we used the independence of and in the second
step and the definition of to obtain the last identity.
We conclude that

It is easy to see that

which proves our first claim. We then use Markov’s inequality
to obtain

which is our second claim.

Proof: (of Lemma 1 ) By assumption, has the
form

For every , let be
the POVM which maximizes the expression in the definition
of . We define the operators

by

It is easy to see that forms a POVM for every
, and the operator inequality holds.

In particular

(46)

for all . Let us introduce the abbreviation

(47)

for every . By definition and (46)

We thus have

(48)

But for every

(49)

by the assumption that , and the definition of
the latter quantity. Combining (49) with (48) and (47) gives

and the first claim follows. The second claim follows from
Markov’s inequality, as in the Proof of Lemma 1.

APPENDIX C
PROOF OF REFINEMENT LEMMA

In the proof of Theorem 1, we have used the fact that applying
classical post-processing after a measurement does not in-
crease the nonuniformity. We state this as a lemma; the proof is
trivial and follows from the triangle inequality.

Lemma 6: Let be a channel, and let
be a POVM on . Define the operators
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for every . Then is a POVM, and for any
cq-state

Proof: It is trivial to check that is indeed a POVM. By
definition

(50)

where

By the definition of and the triangle inequality

Combining this with (50) gives the claim.

APPENDIX D
INFORMATIONALLY COMPLETE POVMS AND THE TRACE NORM

In this appendix, we give a proof of Lemma 4 and discuss
possible improvements. We will use an informationally com-
plete POVM, i.e., a family of operators which is both a POVM
and a basis of the set of Hermitian operators on . Note that the
latter set forms a real -dimensional Hilbert space with inner
product . In particular, there is a well-defined
notion of a dual space. We will use the following terminology.
A family of Hermitian operators is dual to a family of
Hermitian operators if

(51)

for all Hermitian operators . This identity implies that every
operator is completely specified by the values ,
and these depend linearly on . In [35, Lemmas III.5–III.8],
pairs of families and satisfying (51)
are constructed for any dimension with the additional property
that is a POVM and

for all (52)

Lemma 4 now directly follows from (51), (52), and the triangle
inequality (we bound by for convenience).

The statement of Lemma 4 can be improved in several ways
under additional assumptions. For example, if so-called sym-
metric informationally complete POVMs exist in , then the
exponent in (38) can be improved from to (cf. [35, Lem-
ma 3.2]). We have recently learned [36] that this improvement
can be obtained for general dimension using the -design con-
structions by Ambainis and Emerson [37]. In our application,

this reduces the required amount of seed (40) and min-entropy
(41), but does not affect the qualitative nature of our results.

Here we would like to point out that Lemma 4 can be gener-
alized to a situation where part of the operator is “classical.”
The corresponding statement then has the following form.

Lemma 4 : Let be an orthonormal basis of
, and let be a Hermitian operator on of

the form . Then there is a POVM
such that

(53)

where

for some orthonormal basis of .

This variation of Lemma 4 is obtained simply by setting
, where is the POVM used previously.

It is then easy to see to (51) holds for all operators of the
specified form with replaced by . The
claim follows since .

Lemma 4 implies that giving the adversary classical in-
formation in addition to does not increase the distance

by more than what is implied by the
amount of prior information . In particular, we
obtain the following generalization of Lemma 5.

Lemma 5 : Let be a strong -extractor.
Then

(54)

for all ccq-states with

As expected, classical information “behaves classically” with
respect to extractors. We do not elaborate on this further, as
this is not the main focus of our work. We emphasize, how-
ever, that the case of hybrid classical-quantum prior informa-
tion is implicitly already covered by our results. In concrete sit-
uations, the analysis boils down to obtaining estimates on the
quantity , where may consist of both classical
and quantum parts.
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