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Abstract. The global-in-time existence of bounded weak solutions to a large class of
physically relevant, strongly coupled parabolic systems exhibiting a formal gradient-flow
structure is proved. The main feature of these systems is that the diffusion matrix may
be generally neither symmetric nor positive semi-definite. The key idea is to employ a
transformation of variables, determined by the entropy density, which is defined by the
gradient-flow formulation. The transformation yields at the same time a positive semi-
definite diffusion matrix, suitable gradient estimates as well as lower and/or upper bounds
of the solutions. These bounds are a consequence of the transformation of variables and
are obtained without the use of a maximum principle. Several classes of cross-diffusion
systems are identified which can be solved by this technique. The systems are formally
derived from continuous-time random walks on a lattice modeling, for instance, the motion
of ions, cells, or fluid particles. The key conditions for this approach are identified and
previous results in the literature are unified and generalized. New existence results are
obtained for population model with or without volume filling.
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1. Introduction

Many applications in physics, chemistry, and biology can be modeled by reaction-
diffusion systems with cross diffusion, which describe the temporal evolution of the densities
or mass fractions of a multicomponent system. Physically, we expect that the concentra-
tions are nonnegative or even bounded (examples are given in Section 2). Since generally
no maximum principle holds for parabolic systems, the proof of these bounds is a chal-
lenging problem. A second difficulty arises from the fact that in many applications, the
diffusion matrix is neither symmetric nor positive semi-definite.
In this paper, we present a general technique which allows us, under certain assumptions,

to prove simultaneously the global existence of a weak solution as well as its boundedness
from below and/or above. The key idea is to exploit the so-called entropy structure of the
parabolic system, which is assumed to exist, leading at the same time to gradient estimates
and lower/upper bounds. More specifically, we consider reaction-diffusion systems of the
form

(1) ∂tu− div(A(u)∇u) = f(u) in Ω, t > 0,

subject to the boundary and initial conditions

(2) (A(u)∇u) · ν = 0 on ∂Ω, t > 0, u(0) = u0 in Ω.

Here, u(t) = (u1, . . . , un)(·, t) : Ω → R
n is a vector-valued function (n ≥ 1), representing

the densities or mass fractions ui of the components of the system, A(u) = (aij(u)) ∈ R
n×n

is the diffusion matrix, and the reactions are modeled by the components of the function
f : Rn → R

n. Furthermore, Ω ⊂ R
d (d ≥ 1) is a bounded domain with Lipschitz boundary

and ν is the exterior unit normal vector to ∂Ω. The divergence div(A(u)∇u) and the
expression (A(u)∇u) · ν consist of the components

d∑

j=1

n∑

k=1

∂

∂xj

(
aik(u)

∂uk
∂xj

)
,

d∑

j=1

n∑

k=1

aik(u)
∂uk
∂xj

νj, i = 1, . . . , n,

respectively. Applications indicate that the solution u has values in an open set D ⊂ R
n.

When u models concentrations, we expect that D ⊂ (0,∞)n (positivity); when u models
mass fractions, we expect that the values of each component ui are between zero and one,
i.e. D ⊂ (0, 1)n (boundedness and positivity).
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Compared to previous results in the literature (see Section 1.3), we consider more general
cross-diffusion systems satisfying the main assumptions stated below. By identifying the
key elements of the existence analysis, we are able to extend significantly known results
and to state a unified method. Before summarizing the state of the art of cross-diffusion
systems and detailing our main results, we explain the key idea of our method and provide
an illustrating example.

1.1. Idea of the method. The main assumption in this paper is that system (1) possesses
a formal gradient-flow structure, i.e., (1) can be formulated as

∂tu− div

(
B∇δH

δu

)
= f(u),

where B is a positive semi-definite matrix and δH/δu is the variational derivative of the
entropy (or free energy) functional H[u] =

∫
Ω
h(u)dx. The function h : D → [0,∞)

is called the entropy density and it is assumed to be convex. Identifying δH/δu with
its Riesz representative Dh(u) (the derivative of h) and introducing the entropy variable
w = Dh(u), the above formulation can be understood as

(3) ∂tu− div(B(w)∇w) = f(u),

where B = B(w) = A(u)(D2h(u))−1 ∈ R
n×n and D2h(u) ∈ R

n×n is the Hessian of h. For
transforming back from the w- to the u-variable, we need to assume that Dh : D → R

n

is invertible such that u = (Dh)−1(w). Here and in the following, we identify the vectors
u, w ∈ R

n, linked by w = Dh(u), and the solution w to (3) with u = u(w) := (Dh)−1(w).
Equation (3) is parabolic in the sense of [3], since the diffusion matrix B(w) is positive semi-
definite and the matrix Du(w) = [D2h((Dh)−1(w))]−1 in ∂tu(w) = Du(w)∂tw is positive
definite.
The gradient-flow formulation has two important consequences. First, calculating the

formal time derivative of H, (3) and integrating by parts yields

(4)
dH
dt

=

∫

Ω

∂tu ·Dh(u)dx =

∫

Ω

∂tu · wdx = −
∫

Ω

∇w : B(w)∇wdx+
∫

Ω

f(u) · wdx,

where A : B =
∑

i,j aijbij for matrices A = (aij) and B = (bij). Thus, if f(u) · w ≤ 0

and since B(w) is assumed to be positive semi-definite, H is a Lyapunov functional. We
refer to H as an entropy and to the integral of ∇w : B∇w as the corresponding entropy
dissipation. Under certain conditions, it gives gradient estimates for u needed to prove the
global-in-time existence of solutions to (2) and (3).
We remark that the positive semi-definiteness of B(w) is in fact a consequence of the

existence of an entropy. It was shown in [20, 38] that both properties are equivalent and
moreover, B(w) may be even symmetric.
Second, supposing that there exists a weak solution w to (3), the invertibility of Dh :

D → R
n shows that the original variable u = (Dh)−1(w) satisfies u(·, t) ∈ D for t > 0.

Thus, if D is bounded, we automatically obtain L∞ bounds for u, without using a maximum
principle. If D is only a cone, for instance D = (0,∞)n, we conclude the positivity of u(t).
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We call the above technique the boundedness-by-entropy method since it provides lower
and/or upper bounds for the solutions to (1)-(2) by the use of the entropy density. Sum-
marizing, the method is based on two main hypotheses:

H1: There exists a function h ∈ C2(D; [0,∞)) whose derivative is invertible on R
n.

This yields the bound u(·, t) ∈ D.
H2: The matrix D2h(u)A(u) is positive semi-definite for all u ∈ D. This condition is
necessary to derive a priori estimates for u.

Note that the positive semi-definiteness of D2h(u)A(u) is equivalent to that of B(w) =
A(u)(D2h(u))−1 since for all z ∈ R

n, z⊤D2h(u)A(u)z = (D2h(u)z)⊤B(w)(D2h(u)z). Hy-
pothesis H2 avoids the inversion of D2h(u).
In fact, we need a stronger hypothesis than H2 since it does not allow us to infer gradient

estimates. We need to suppose that D2h(u)A(u) is positive definite in such a way that we
obtain L2 gradient estimates for umi , where m > 0 is some number. Moreover, we need
an estimate for the time derivative of ui which makes it necessary to impose some growth
conditions on the coefficients of A(u). We explain these requirements with the help of the
following example.

1.2. An illustrative example. We consider a multicomponent fluid consisting of three
components with mass fractions u1, u2, and 1 − u1 − u2 and equal molar masses under
isobaric, isothermal conditions. The model equals (1) with the diffusion matrix

(5) A(u) =
1

2 + 4u1 + u2

(
1 + 2u1 u1
2u2 2 + u2

)

where we have chosen particular diffusivities to simplify the presentation (see Section 2.1).
This example is already treated in [36] but well illustrates the key elements of our method.
Notice that the nonnegativity of u1 and u2 can be proved easily by a maximum principle
argument but the proof of upper bounds is less clear. The logarithmic entropy density

(6) h(u) = u1(log u1 − 1) + u2(log u2 − 1) + (1− u1 − u2)(log(1− u1 − u2)− 1)

for u = (u1, u2) ∈ D, where

(7) D = {(u1, u2) ∈ (0, 1)2 : u1 + u2 < 1}
satisfies Hypothesis H1, since the inverse transformation of variables gives

(8) u = (Dh)−1(w) =

(
ew1

1 + ew1 + ew2
,

ew2

1 + ew1 + ew2

)
∈ D,

where w = (w1, w2) ∈ R
2. Thus, once the existence of weak solutions w to the transformed

system (3) is shown, we conclude the bounds 0 < u1, u2 < 1 automatically by transforming
back to the original variable. In particular, no maximum principle is used. In fact, the
inverse transformation even shows that 1− u1 − u2 > 0, as required from the application.
Furthermore, the matrix

D2h(u)A(u) =
1

δ(u)

(
u2(1− u1 − u2) + 3u1u2 3u1u2

3u1u2 2u1(1− u1 − u2) + 3u1u2

)
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with δ(u) = u1u2(1−u1−u2)(2+4u1+u2) is symmetric and positive definite, thus fulfilling
Hypothesis H2.
However, the matrix B = A(u)(D2h(u))−1 degenerates at u1 = 0 or u2 = 0, and we

cannot expect to conclude gradient estimates for w from (4). Instead, it is more appropriate
to derive these estimates for the original variable u. Indeed, calculating the time derivative
of the entropy according to (4) and using ∇w = D2h(u)∇u, we find that

dH
dt

+

∫

Ω

∇u : D2h(u)A(u)∇udx =

∫

Ω

f(u) · wdx,

and the entropy dissipation can be estimated according to
∫

Ω

∇u : D2h(u)A(u)∇udx =

∫

Ω

1

2 + 4u1 + u2

( |∇u1|2
u1

+
2|∇u2|2
u2

+
3|∇(u1 + u2)|2
1− u1 − u2

)
dx

≥
∫

Ω

(
2|∇√

u1|2 + 4|∇√
u2|2

)
dx.

Thus, assuming that the integral involving the reaction terms can be bounded uniformly

in u, we obtain H1(Ω) estimates for u
1/2
1 and u

1/2
2 . Using the boundedness of ui, a priori

estimates for ∂tu1 and ∂tu2 can be proven, taking into account the particular structure of
A(u).
This example shows that we need additional assumptions on the nonlinearities of system

(1) in order to derive suitable a priori estimates, detailed in Section 1.4.

Remark 1 (Notion of entropy). There exists an intimate relation between the boundedness-
by-entropy method and non-equilibrium thermodynamics. In particular, the entropy vari-
able w = Dh(u) is related to the chemical potentials of a mixture of gases and the special
transformation (8) is connected with a special choice of thermodynamic activities; see Ap-
pendix A for details. The entropy density defined above equals the negative thermodynamic
entropy. Since the physical entropy is increasing and we wish to investigate nonincreasing
functionals, we have reversed the sign as usual in entropy methods. Moreover, the loga-
rithmic entropy (6) is motivated by Boltzmann’s entropy for kinetic equations. For these
reasons, we refer to the functional H[u] =

∫
Ω
h(u)dx as a (mathematical) entropy. We note

that in some applications, free energy may be a more appropriate notion. Furthermore, we
remark that the notion of entropy for parabolic systems, as used in this paper, is closely
related to the entropy in hyperbolic equations. For details, we refer to, e.g., [38]. �

1.3. State of the art. We have already mentioned that the analysis of cross-diffusion
systems is delicate since standard tools like maximum principles and regularity results
generally do not apply. For instance, there exist Hölder continuous solutions to certain
cross-diffusion systems which are not bounded, and there exist bounded weak solutions
which develop singularities in finite time [61]. In view of these counterexamples, it is
not surprising that additional conditions are required to prove that (local in time) weak
solutions are bounded and that they can be continued globally in time.
Ladyženskaya et al. [41, Chap. VII] reduced the problem of finding a priori estimates of

local-in-time solutions u to quasilinear parabolic systems to the problem of deriving L∞
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bounds for u and ∇u. Under some growth conditions on the nonlinearities, the global-in-
time existence of classical solutions was shown. A fundamental theory of strongly coupled
systems was developed by Amann [2]. He formulated the concept of W 1,p weak solutions
and their local existence and proved that the solutions exist globally if their L∞ and Hölder
norms can be controlled. The above mentioned counterexamples show that the control on
both norms is necessary. Le and Nguyen [44] proved that bounded weak solutions are
Hölder continuous if certain structural assumptions on the diffusion matrix are imposed.
The regularity of the solutions to systems with diagonal or full diffusion matrix was in-
vestigated in, for instance, [3, 28, 47, 55]. The global existence of classical solutions was
proved under certain conditions avoiding blow-up in some higher norms (which could be
possible in case of weak solutions).
The boundedness of weak solutions to strongly coupled systems has been proved using

various methods. Invariance principles were employed by Küfner [40] and Redlinger [56],
requiring severe restrictions on the initial data. Truncated test functions, which are nonlin-
ear in the solutions to 2×2 systems, were suggested by Le [42] who proved the boundedness
under some structural assumptions. In the work of Lepoutre et al. [45], the existence of
bounded solutions to strongly coupled systems with spatially regularized arguments in the
nonlinearities was shown using Hölder theory for nondivergence parabolic operators. Other
methods are based on the derivation of Lp bounds uniform in p and the passage to the
limit p→ ∞ (Moser-type or Alikakos-type iterations [1]).
The idea of proving the boundedness of weak solutions using the entropy density (6)

was, to our best knowledge, first employed by Burger et al. [9] in a size-exclusion model for
two species (see Section 2.1). It was applied to a tumor-growth model in [35] and extended
to Maxwell-Stefan systems for fluids with arbitrary many components [36]. A different
entropy density was suggested in [31] to prove L∞ bounds in one space dimension. In fact,
the idea of using entropy variables already appeared in the analysis of parabolic systems
from non-equilibrium thermodynamics [20], originally used to remove the influence from the
electric potential, and goes back to the use of so-called Slotboom variables in semiconductor
modeling [49, Section 3.2].
In this paper, we identify the key elements of this idea and provide a general global

existence result for bounded weak solutions to certain systems. Furthermore, the technique
is applied to a novel claess of cross-diffusion systems derived from a random-walk master
equation on a lattice, underlying the strength and flexibility of the method. The novelty
of the results is detailed in Section 1.5.

1.4. Main results. Our first main result concerns the existence of bounded weak solutions
to (1)-(2) under some general structural assumptions. Motivated by the comments in
Sections 1.1 and 1.2, we impose the following hypotheses:

H1: There exists a convex function h ∈ C2(D; [0,∞)) (D ⊂ R
n open, n ≥ 1) such

that its derivative Dh : D → R
n is invertible on R

n.
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H2’: Let D ⊂ (a, b)n for some a, b ∈ R with a < b and let α∗
i , mi > 0 (i = 1, . . . , n)

be such that for all z = (z1, . . . , zn)
⊤ ∈ R

n and u = (u1, . . . , un) ∈ D,

z⊤D2h(u)A(u)z ≥
n∑

i=1

αi(ui)
2z2i ,

where either αi(ui) = α∗
i (ui − a)mi−1 or αi(ui) = α∗

i (b− ui)
mi−1.

H2”: There exists a∗ > 0 such that for all u ∈ D and i, j = 1, . . . , n for which mj > 1,
it holds that |aij(u)| ≤ a∗|αj(uj)|.

H3: It holds A ∈ C0(D;Rn×n) and there exists Cf > 0 such that for all u ∈ D,
f(u) ·Dh(u) ≤ Cf (1 + h(u)).

Hypothesis H1 shows that the inverse transformation u = (Dh)−1(w) is well defined.
If w(t) is a weak solution to (3), we conclude that u(t) = (Dh)−1(w(t)) ∈ D, yielding
the desired L∞ bounds on u(t), since D is assumed to be bounded in Assumption H2’.
Assumption H2’, which implies H2, is employed to prove a priori estimates for ∇umi

i .
Hypothesis H2” is required to show a bound on ∂tui. The condition on f(u) in Hypothesis
H3 is needed to derive an a priori estimate for the solution. For instance, if the entropy
density is given by (6), we may choose fi(u) = uαi

i (1−u1−u2)βi for αi, βi > 0 and i = 1, 2.
It is related to the quasi-positivity assumption fi(u) ≥ 0 for all u ∈ (0,∞)2 with ui = 0 [5,
Section 6]. In contrast to the structural assumptions of [42], Hypotheses H1-H3 are easy
to verify as soon as an entropy density is found (often motivated from the application at
hand). Under the above conditions, the following result holds.

Theorem 2 (General global existence result). Let Hypotheses H1, H2’, H2”, and H3 hold
and let u0 ∈ L1(Ω;Rn) be such that u0(x) ∈ D for x ∈ Ω. Then there exists a weak solution
u to (1)-(2) satisfying u(x, t) ∈ D for x ∈ Ω, t > 0 and

u ∈ L2
loc(0,∞;H1(Ω;Rn)), ∂tu ∈ L2

loc(0,∞;H1(Ω;Rn)′).

The initial datum is satisfied in the sense of H1(Ω;Rn)′.

Note that since D is bounded by Hypothesis H2’, the theorem yields global L∞ bounds
on u. We remark that we may also assume the slightly weaker condition u0(x) ∈ D. Indeed,
we may approximate u0 by u0η(x) ∈ D satisfying u0η → u0 a.e., apply the theorem to u0η,
and perform the limit η → 0. We refer to [18] for details.
For the proof of Theorem 2, we first semi-discretize (3) in time with step size τ > 0

and regularize this equation by the expression ε(
∑

|α|=m(−1)mD2αw + w), where ε > 0,

D2α is a partial derivative of order 2|α|, and m ∈ N is such that Hm(Ω) →֒ L∞(Ω). This
regularization ensures that the approximate solution w(τ) is bounded. For the proof of
approximate solutions, we only need Hypotheses H1, H2, and H3. The discrete version of
the entropy identity (4) and Hypotheses H2’ and H2” yield uniform estimates for ∇u(τ) =
∇((Dh)−1(w(τ))) and the discrete time derivative of u(τ). Then, by the discrete Aubin
lemma from [27], the limit (τ, ε) → 0 can be performed yielding the existence of a weak
solution to (1)-(2).
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Assumptions H2’ and H2” may be too restrictive in certain applications. For instance,
it may be impossible to find a bounded set D ⊂ R

n satisfying H1 or the inequality in H2’
is not satisfied (see the examples in Section 2). However, we show that our technique can
be adapted to situations in which variants of Hypotheses H2’ and H2” hold. To illustrate
this idea, we choose a class of cross-diffusion systems modeling the time evolution of two
population species. These models are derived from a random-walk master equation in the
diffusive limit (see Appendix B).
We consider two situations. In the first case, we assume that volume limitations lead

to a limitation of the population densities (volume-filling case). Then the densities are
nonnegative and bounded by a threshold value which is normalized to one. This situa-
tion occurs, for instance, in the volume-filling Keller-Segel model [53] and in ion-channel
modeling [32]. The diffusion matrix in (1) reads as (see Appendix B)

(9) A(u) =

(
q(u3) + u1q

′(u3) u1q
′(u3)

βu2q
′(u3) β(q(u3) + u2q

′(u3))

)
,

where u1 and u2 are the densities of the species with bounded total density, u1 + u2 ≤ 1,
and u3 = 1−u1−u2. The function q is related to the transition probability of a species to
move from one cell to a neighboring cell, and β > 0 is the ratio between the transition rates
of both species. Biologically, q vanishes when the cells are fully packed, i.e. if u1 + u2 = 1,
so q(0) = 0 and q is nondecreasing. When only one species is considered, the diffusion
equation corresponds to the equation for the cell density in the volume-filling chemotaxis
model [66]. The special case q(u3) = u3 was analyzed by Burger et al. [9]. The novelty of
the following theorem is the extension to nonlinear functions q. For the sake of presentation,
we state the result for power functions q(u3) = us3 (s ≥ 1) but also more general functions
are allowed (see Theorems 6 and 9).

Theorem 3 (Volume-filling case). Let s ≥ 1, β > 0, and q(y) = ys for y ≥ 0. Furthermore,
let u0 = (u01, u

0
2) ∈ L1(Ω;R2) with u01, u

0
2 ≥ 0, u01 + u02 ≤ 1 in Ω. Then there exists a

bounded weak solution u = (u1, u2) to (1)-(2) with diffusion matrix (9) and f = 0 satisfying
0 ≤ u1, u2 ≤ 1 and u3 := 1− u1 − u2 ≥ 0 in Ω, t > 0,

uiq(u3)
1/2, q(u3)

1/2 ∈ L2
loc(0,∞;H1(Ω;R2)), ∂tui ∈ L2

loc(0,∞;H1(Ω;R2)′)

for i = 1, 2, and for all T > 0 and φ = (φ1, φ2) ∈ L2(0, T ;H1(Ω))2,

∫ T

0

〈∂tu, φ〉dt+
2∑

i=1

βi

∫ T

0

∫

Ω

(
q(u3)

1/2∇(q(u3)
1/2ui)

− 3q(u3)
1/2ui∇(q(u3)

1/2)
)
· ∇φidxdt = 0,(10)

where β1 = 1, β2 = β and 〈·, ·〉 is the dual product between H1(Ω;R2)′ and H1(Ω;R2). The
initial datum is satisfied in the sense of H1(Ω;R2)′.

Since we can write the expression in (10) for i = 1 as

q(u3)
1/2∇

(
q(u3)

1/2u1
)
− 3q(u3)

1/2u1∇
(
q(u3)

1/2
)
= q(u3)∇u1 +

1

2
u1∇q(u3)−

3

2
u1∇q(u3)
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= q(u3)∇u1 + u1q
′(u3)∇(u1 + u2) =

(
q(u3) + u1q

′(u3)
)
∇u1 + u1q

′(u3)∇u2,
and similarly for i = 2, we see that (10) is the weak formulation of (1) with matrix (9).
We may also consider reaction terms f(u) satisfying a particular structure; see Remark

8. The key idea of the proof is to introduce the entropy density

(11) h(u) = u1(log u1 − 1) + u2(log u2 − 1) +

∫ u3

c

log q(y)dy,

where u = (u1, u2) ∈ D = {(u1, u2) ∈ (0, 1)2 : u1 + u2 < 1} and 0 < c < 1. The use of this
entropy functional is new. A computation shows that Hypotheses H1 and H2 are satisfied
but not H2’. Indeed, we will prove in Section 4 (see (32)) that

∇u⊤D2h(u)A(u)∇u ≥ q(u3)

u1
|∇u1|2 +

q(u3)

u2
|∇u2|2,

and the factors degenerate at u1 + u2 = 1 since q(0) = 0. From this, we are able to
conclude a gradient estimate for u3 but not for u1 or u2. However, this is sufficient to infer
the existence of solutions, employing an extension of Aubin’s compactness lemma, which
was first used in [9] (see Appendix C).
In the second case, volume-filling effects are not taken into account. Then the diffusion

matrix reads as (see Appendix B)

(12) A(u) =

(
p1(u) + u1∂1p1(u) u1∂2p1(u)

u2∂1p2(u) p2(u) + u2∂2p2(u)

)
,

where p1 and p2 are related to the transition probabilities of the two species and ∂ipj =
∂pj/∂ui. Note that each row of A(u) is the gradient of a function such that

div(A(u)∇u)i = ∆(uipi(u)), i = 1, 2,

which allows for additional L2 estimates for u1 and u2, using the duality estimates of Pierre
and Schmitt [54]. This observation was exploited in [24].
When the transition probabilities depend linearly on the densities, pi(u) = αi0+αi1u1+

αi2u2 (i = 1, 2), we obtain the well-known population model of Shigesada, Kawasaki, and
Teramoto [59] with the diffusion matrix

(13) A(u) =

(
α10 + 2α11u1 + α12u2 α12u1

α21u2 α20 + α21u1 + 2α22u2

)
.

The maximum principle implies that u1 and u2 are nonnegative. Less results are known
concerning upper bounds. In fact, in one space dimension and with coefficients α10 = α20,
Shim [60] proved uniform upper bounds. Moreover, if cross-diffusion is weaker than self-
diffusion (i.e. α12 < α22, α21 < α11), weak solutions are bounded and Hölder continuous
[42]. Uniform in time L∞ bounds on the solution were derived in [37], imposing some
conditions on the diffusion coefficients. Upper bounds without any restrictions are not
known so far (at least to our best knowledge).
This model has received a lot of attention in the mathematical literature. One of the

first existence results is due to Kim [39] who neglected self-diffusion (α11 = α22 = 0)
and assumed equal coefficients (αij = 1). The tridiagonal case α21 = 0 was investigated
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by Amann [2], Le [43], and more recently, by Desvillettes and Trescaces [26]. Yagi [67]
proved an existence theorem under the assumption that the diffusion matrix is positive
definite (α12 < 8α11, α21 < 8α22, α12 = α21). The first global existence result without any
restriction on the diffusion coefficients (except positivity) was achieved in [31] in one space
dimension and in [15, 16] in several space dimensions. The case of concave functions p1
and p2, for instance,

(14) pi(u) = αi0 + ai1(u1) + ai2(u2), where ai1(u1) = αi1u
s
1, ai2(u2) = αi2u

s
2,

and i = 1, 2, u = (u1, u2), 0 < s < 1, was analyzed by Desvillettes et al. [24]. Global
existence results for small data in one space dimension for s > 1 were proved in [4]. We
are able to generalize these results to the case 1 < s < 4 and for “large” initial data but
we need to restrict the size of the cross-diffusion coefficients α12 and α21. More general
functions p1 and p2 are possible; see Section 5. The extension to n species is currently
under investigation.

Theorem 4 (No volume-filling case). Let (14) hold with 1 < s < 4 and (1− 1/s)α12α21 ≤
α11α22. Furthermore, let u0 = (u01, u

0
2) ∈ L1(Ω;R2) with u01, u

0
2 ≥ 0 in Ω and

∫
Ω
h(u0)dx <

∞, where h is defined in (15) below. Then there exists a weak solution u = (u1, u2) to
(1)-(2) with diffusion matrix (12) and f = 0 satisfying ui ≥ 0 in Ω, t > 0,

u
s/2
i , usi ∈ L2

loc(0,∞;H1(Ω;R2)), ui ∈ L∞
loc(0,∞;Ls(Ω;R2)),

∂tui ∈ L1
loc(0,∞;X ′), i = 1, 2,

where X = {ψ ∈ Wm,∞(Ω) : ∇ψ · ν = 0 on ∂Ω}, m > d/2, for all φ = (φ1, φ2) ∈
L∞(0, T ;X)2,

∫ T

0

〈∂tu, φ〉dt+
2∑

i=1

∫ T

0

∫

Ω

uipi(u)∆φdxdt = 0,

and u(0) = u0 in the sense of X ′.

Nonvanishing reaction terms f(u) can be treated if they satisfy an appropriate growth
condition such that f(u(τ)) is bounded in some Lp space with p > 1, where u(τ) is a solution
to an approximate problem. We leave the details to the reader.
The idea of the proof is to employ the entropy density

(15) h(u) =

∫ u1

c

∫ z

c

a′21(y)

y
dydz +

∫ u2

c

∫ z

c

a′12(y)

y
dydz

for u = (u1, u2) ∈ D = (0,∞)2, where c > 0. This functional was also employed in [24]
but under different conditions on the diffusivities. Hypothesis H2 is only satisfied if the
restriction (1 − 1/s)α12α21 ≤ α11α22 holds. It is an open problem whether there exists
another entropy density fulfilling Hypothesis H2 without any restriction on αij (except
positivity). In order to satisfy Hypothesis H1, we need to regularize the entropy density
(15) as in [24]:

hε(u) = h(u) + εu1(log u1 − 1) + εu2(log u2 − 1).
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This regularization is motivated from the population model with diffusion matrix (13), see
Section 2.2. The range of Dhε equals R

2, as required in Hypothesis H1. This regularization
makes necessary to regularize also the diffusion matrix (in a different way than in [24]),

Aε(u) = A(u) + ε

(
u2 0
0 u1

)
.

Then the regularized product D2hε(u)Aε(u) is positive semi-definite (Hypothesis H2) only
if s < 4. This restriction may be improved by developing a better regularization procedure.

1.5. Novelty of the results. As already mentioned, the transformation to exponential
entropy variables has been employed already in certain diffusion problems to prove the
global existence of weak solutions, but all these results concern particular diffusion sys-
tems. The key novelty of this paper is the unification of the entropy approach and the
generalization of these particular results. We are able to treat rather general classes of
diffusion matrices (being not diagonal and not triangular) and possible degeneracies, not
considered in the literature up to now.
Compared to the results in the literature (in particular [9, 15, 16, 20, 35]), we treat not

only much more general situations but also simplify the strategy of the existence proof. In
fact, the proof relies on the algebraic Hypotheses H1-H3 and the analytic approximation
procedure, thus separating in a clear way the algebraic and analytic parts of the existence
analysis.
The assumptions of Theorem 2 are satisfied for the tumor-growth model [35] and the

Maxwell-Stefan equations [36] – detailed in Section 2 –, including the example in Section
1.2. Furthermore, the diffusion matrix

(16) A(u) =

(
1− u1 −u1
−u2 1− u2

)

with entropy density (6) and domain (7) also satisfies Hypotheses H1, H2’, and H2”. The
model with this diffusion matrix describes the aggregation of two population species with
cross-diffusion terms related to the drift term of the Keller-Segel system. We stress the
fact that Theorem 2 provides a global existence results for all these models, thus unifying
known results and providing a general existence theorem. In fact, up to our knowledge, it
is the first existence result for bounded weak solutions to cross-diffusion systems with an
arbitrary number of equations under physically motivated hypotheses.
A special case of Theorem 3 is given by n = 2 and q(s) = s, modeling the ion transport

through nanopores [10]. We have been able to generalize the existence result of [9] to
a class of general nonlinear functions q (which model transition rates of the underlying
lattice model). Theorem 3 can be also seen as a generalization of the volume-filling Keller-
Segel model for one cell density [66] to two cell densities (but ignoring the equation for the
chemoattractant density). Finally, we mention that the compactness result in Lemma 13
slightly generalizes the corresponding result contained in [9] to the time-discrete case.
Theorem 4 provides a global existence result to generalizations of the population model

(13) of Shegasada, Kawasaki, and Teramoto. Existence results for functions (14) with
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s = 1 [15, 16] or 0 < s < 1 [24] are known. We have been able to extend these results to
the case 1 < s < 4. In fact, more general choices of these functions are possible; see (48).
Moreover, we provide the first (formal) derivation of the population model of [59] and its
extensions from a random-walk lattice model (see Appendix B).

Note. Since this work was submitted, further improvements of entropy methods for cross-
diffusion systems were made. We mention the paper [25] in which the population model
with diffusion matrix (12) and functions (14) was investigated and the global existence of
weak solutions for general s > 1 was shown. Furthermore, diffusion systems including both
nonlinear functions pi and q were analyzed in [68].
The paper is organized as follows. In Section 2, we consider some examples of cross-

diffusion systems, studied in the literature, and discuss the validity of our hypotheses. The
general existence Theorem 2 is shown in Section 3. The proofs of Theorems 3 and 4 are
presented in Sections 4 and 5, respectively. Some further results and open problems are
discussed in Section 6. The appendix is concerned with some relations of our method to
non-equilibrium thermodynamics; the derivation of a general population diffusion model,
containing the diffusion matrices (9) and (12) as special cases; and the proof of a variant
of the Aubin compactness lemma, needed in the proof of Theorem 3. To simplify the
presentation, we write in the following Lp(0, T ;Hk(Ω)) instead of Lp(0, T ;Hk(Ω;Rn)).

2. Examples

We present some diffusion problems from physical and biological applications and discuss
the validity of Hypotheses H1-H3. The examples illustrate that these hypotheses are not
just abstract conditions but that they are satisfied by a number of systems arising from
applications.

2.1. Examples with volume filling.

Volume-filling model of Burger. The transport of ions in biological cells or in multicompo-
nent fluid mixtures may be modeled by the Poisson-Nernst-Planck equations for the ion
concentrations and the electric potential. They can be derived from microscopic particle
models [50]. The rigorous derivation, however, is unclear when volume filling effects are
included, an issue which naturally arises in ion transport through channels and pores. In
[10], a modification of the classical Poisson-Nernst-Planck equations was formally derived
from a lattice-based hopping model. Neglecting electric effects (in order to concentrate on
cross-diffusive phenomena), the system consists of equation (1) with the diffusion matrix
A(u) = (aij(u)), where

aij(u) = Diui for i 6= j, aii(u) = Di(1− ρ+ ui), ρ =
n∑

j=1

uj,
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and Di > 0 are some constants. It was shown in [10] that the entropy with density

h(u) =
n∑

i=1

ui(log ui − 1) + (1− ρ)(log(1− ρ)− 1),

where u = (u1, . . . , un) ∈ D = {u ∈ (0,∞)n :
∑n

i=1 ui < 1}, is a Lyapunov functional
along solutions to (1) with f = 0. This entropy density satisfies Hypothesis H1 since
ui = ((Dh)−1(w))i = ewi/(1+

∑n
j=1 e

wj) ∈ D for w = (w1, . . . , wn) ∈ R
n. The case of n = 2

species was investigated in [9]. Then the diffusion matrix becomes

A(u) =

(
D1(1− u2) D1u1
D2u2 D2(1− u1)

)
,

which is a special case of (9) with q(u3) = u3 and β = D2/D1. A computation shows that
for z = (z1, z2) ∈ R

2,

z⊤D2h(u)A(u)z = D1(1− ρ)

(
z21
u1

+
z22
u2

)
+D1

2− ρ

1− ρ
(z1 + z2)

2

+ (D2 −D1)
u2

1− ρ

(
z1 +

1− u1
u2

z2

)2

.

Consequently, assuming without loss of generality that D2 > D1 (otherwise, change the
indices 1 and 2), Hypothesis H2 is satisfied but not Hypothesis H2’ since the quadratic
form degenerates at ρ = 1. Burger et al. have shown in [9] that a global existence analysis
is still possible. We generalize this result to general functions q in Theorem 3.
In the general case n > 2 and the case of equal diffusivity constants D1 = Di for all

i = 2, . . . , n, summing up all equations yields ∂tρ − ∆ρ = 0 in Ω with homogeneous
Neumann boundary conditions. Thus, by the classical maximum principle, ρ is bounded
from below and above, and this yields L∞ bounds for the components ui ≥ 0. The analysis
of different diffusivity constants and n > 2 is much more delicate and an open problem.

Tumor-growth model. Jackson and Byrne [34] derived a continuous mechanical model for
the growth of symmetric avascular tumors in one space dimension. They assumed that
the tumor-host environment consists of the tumor cells, the extracellular matrix (ECM),
and interstitial fluid (water). The mixture is supposed to be saturated, i.e., the volume
fractions of tumor cells u1, the ECM u2, and water u3 sum up to one, u1+u2+u3 = 1. The
model is derived from the mass balance equations and the momentum balance equations
for each phase, neglecting inertial and external forces. The pressures for the cell and ECM
phase are assumed to be proportional to their respective volume fraction. A nonlinearity is
introduced by supposing that the tumor cells increase the ECM pressure but not inversely.
For a small cell-induced pressure coefficient (i.e. θ = β = 1 in [34]), the resulting diffusion
matrix reads as

A(u) =

(
u1(1− u1)− u1u

2
2 −u1u2(1 + u1)

−u1u2 + u22(1− u2) u2(1− u2)(1 + u1)

)
.
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With the entropy density (6), defined in the domain D which is given by (7), we compute
for z = (z1, z2)

⊤ ∈ R
2,

z⊤D2h(u)A(u)z = z21 + (1 + u1)z
2
2 + u1z1z2 ≥

1

2
z21 +

(
1 + u1 −

1

2
u22

)
z22 .

Thus, since u2 ≤ 1, Hypotheses H1, H2’, and H2” are satisfied and the global existence
result follows from Theorem 3 if the reaction terms satisfy Hypothesis H3. This result was
first proven in [35].

Maxwell-Stefan equations. The dynamics of a multicomponent gaseous mixture with van-
ishing barycentric velocity can be described by the Maxwell-Stefan equations, which model
the diffusive transport of the components of the mixture. Applications arise in many fields,
e.g., in sedimentation, dialysis, respiratory airways, electrolysis, and chemical reactors [65].
Under some simplifying assumptions (ideal gas, isobaric and isothermal conditions, same
molar masses for all components), the equations for the molar concentrations u1, . . . , un
are given by the mass balance equations and the reduced force balances [6],

∂tui + div Ji = fi(u), ∇ui = −
∑

j 6=i

ujJi − uiJj
Dij

, i = 1, . . . , n,

where Dij > 0 are the binary diffusion coefficients. The variables ui satisfy
∑n

j=1 uj = 1.
The inversion of the flux-gradient relations is not straightforward since the linear system in
Ji has a singular matrix; see [5, 48]. The idea of [36] was to replace the last component un
by the remaining ones by un = 1−∑n−1

j=1 ui and to analyze the remaining n− 1 equations.

For n = 3 components, the inversion can be made explicit, leading to system (1) for the
remaining n− 1 = 2 equations with the diffusion matrix

(17) A(u) =
1

δ(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
,

where we abbreviated di+j−2 = Dij and δ(u) = d1d2(1 − u1 − u2) + d0(d1u1 + d2u2). The
diffusion matrix (5) in Section 1.2 is obtained after setting d0 = 3, d1 = 2, and d2 = 1.
Employing the entropy density (6) as in the previous example, we compute

z⊤D2h(u)A(u)z =
d2
u1
z21 +

d1
u2
z22 +

d0u1u2
1− u1 − u2

(z1 + z2)
2

for z = (z1, z2)
⊤ ∈ R

2. Therefore, Hypothesis H1 and H2 are fulfilled with the domain
D given by (7). Moreover, Hypothesis H2’ is satisfied with m1 = m2 = 1

2
, and also

Hypothesis H2” holds. Theorem 2 yields the existence of global bounded weak solutions to
this problem. It can be shown that this result holds true in the case of n > 3 components;
see [36].

Multispecies chemotaxis equations. In order to explore the movement of different cell types
in both crowded (dense) and uncrowded (dispersed) tissues, Painter assumed a hetero-
geneous tissue composed of two cell types defined on a discrete lattice [52]. The transi-
tion rates are chosen to describe a movement which takes place either through movement
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unimpeded into neighboring unoccupied space or by an active cell, which pulls forward,
displacing a passive cell, that is pulled back, in neighboring occupied space via “location-
swapping”. The diffusion limit in the master equations leads to a cross-diffusion system
for the cell densities u1 and u2 with a (simplified) matrix of the form

A(u) =

(
α1(1− u2) + u2 (α1 − 1)u1

(α2 − 1)u2 α2(1− u1) + u1

)
,

where α1, α2 > 0 are some parameters. In the model, we have neglected the chemotactic
signal to simplify the presentation. The diffusion system possesses the entropy density (6)
and it holds

∇u⊤1 h′′(u)A(u)∇u2 =
a1|(1− u2)∇u1 + u1∇u2|2

u1(1− u1 − u2)
+
a2|u2∇u1 + (1− u1)∇u2|2

u2(1− u1 − u2)

+ 4|∇√
u1u2|2,

In particular Hypotheses H1 and H2 are satisfied. Moreover, we obtain an L2 bound for
∇√

u1u2. However, it is unclear how to derive a gradient estimate for u1 and u2 in the
spirit of H2’. The global existence of weak solutions to (1), (2) with the above diffusion
matrix is an open problem.

2.2. Models without volume filling.

Population model of Shigesada, Kawasaki, and Teramoto. Shigesada, Kawasaki, and Ter-
amoto [59] suggested a population model to describe the spatial segregation of interacting
populations and to study the coexistence of two similar species. The authors assumed that
the populations of two species prefer the same environment and that they are influenced by
intra-specific and inter-specific population pressures. Formally, the equations can be de-
rived from a random-walk lattice model with transition rates which depend linearly on the
population densities u1 and u2 (see Appendix B). The diffusion system has the diffusion
matrix

A(u) =

(
α10 + 2α11u1 + α12u2 α12u1

α21u2 α20 + α21u1 + 2α22u2

)
,

where the coefficients αij are nonnegative. Introducing the entropy density

h(u) =
u1
α12

(log u1 − 1) +
u2
α21

(log u2 − 1), u = (u1, u2) ∈ D = (0,∞)2,

a computation shows that Hypothesis H2 is satisfied, i.e. for all z = (z1, z2)
⊤ ∈ R

2,

z⊤D2h(u)A(u)z =

(
2
α11

α12

+
α10

α12u1

)
z21 +

(
2
α22

α21

+
α20

α21u2

)
z22 +

(√
u2
u1
z1 +

√
u1
u2
z2

)2

.

Thus, we see that Hypothesis H2’ with mi =
1
2
or mi = 1 and Hypothesis H2” hold true.

Since D = (0,∞)2 is not bounded, we cannot apply Theorem 2. However, as the coefficients
of A(u) depend only linearly on u, the proof of Theorem 4 can be adapted to this case
and we conclude the existence of global nonnegative weak solutions to this problem. This
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statement was first proved in [15] using a different approximation procedure. In Theorem
4 we generalize this result.

Semiconductor model with electron-hole scattering. In high-injection situations, the carrier
transport through semiconductors is strongly affected by electron-hole scattering, i.e. by
collisions between electrons and so-called defect electrons. This scattering needs to be taken
into account on the mesoscopic level by electron-hole collision operators in the semicon-
ductor Boltzmann equations [57]. Then, performing the diffusion limit in the Boltzmann
system for electrons and holes, drift-diffusion equations can be derived which include cross-
diffusion terms arising from the interaction of the electrons and holes. The equations for
the electron density u1 and the hole density u2 possess the diffusion matrix

A(u) =
1

1 + µ2u1 + µ1u2

(
µ1(1 + µ2u1) µ1µ2u1
µ1µ2u2 µ2(1 + µ1u2)

)
,

where µ1 and µ2 denote the (positive) mobility constants for the electrons and holes,
respectively. The global existence of weak solutions to this model was shown in [17].
Introducing the entropy density

h(u) = u1(log u1 − 1) + u2(log u2 − 1),

where u = (u1, u2) ∈ D = (0,∞)2, we obtain for z = (z1, z2)
⊤ ∈ R

2,

z⊤D2h(u)A(u)z =
1

1 + µ2u1 + µ1u2

(
µ1

u1
z21 +

µ2

u2
z22 + µ1µ2(z1 + z2)

2

)
.

Thus, Hypothesis H2 is satisfied but not H2’ since the quadratic form is not uniformly
positive. However, as shown in [17], bounds on the electron and hole masses (i.e. the
integrals of u1 and u2) together with estimates from the entropy dissipation yield an H1

bound for u
1/2
1 and u

1/2
2 . Then, with the entropy variables wi = ∂h/∂ui = log ui, the

existence of global weak solutions was proved in [17].

3. Proof of Theorem 2

The proof is based on the solution of a time-discrete and regularized problem, for which
only Hypotheses H1, H2, and H3 are needed.
Step 1. Solution of an approximate problem. Let T > 0, N ∈ N, τ = T/N , m ∈ N

with m > d/2, and τ > 0. Let wk−1 ∈ L∞(Ω;Rn) be given. (If k = 1, we define
w0 = Dh(u0) which is possible since we assumed that u0(x) ∈ D for x ∈ Ω.) We wish to
find wk ∈ Hm(Ω;Rn) such that

1

τ

∫

Ω

(u(wk)− u(wk−1)) · φdx+
∫

Ω

∇φ : B(wk)∇wkdx

+ ε

∫

Ω

( ∑

|α|=m

Dαwk ·Dαφ+ wk · φ
)
dx =

∫

Ω

f(u(wk)) · φdx(18)
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for all φ ∈ Hm(Ω;Rn), where α = (α1, . . . , αn) ∈ N
n
0 with |α| = α1 + · · · + αn = m is a

multiindex and Dα = ∂m/(∂xα1
1 · · · ∂xαn

n ) is a partial derivative of order m, and u = u(w) =
(Dh)−1(w). We observe that m is chosen in such a way that Hm(Ω) →֒ L∞(Ω).

Lemma 5 (Existence for the regularized system (18)). Let Assumptions H1, H2, H3 hold.
Let u0 ∈ L∞(Ω;Rn) be such that u0(x) ∈ D for x ∈ Ω, and let 0 < τ < 1/Cf , where Cf > 0
is defined in H3. Then there exists a weak solution wk ∈ Hm(Ω;Rn) to (18) satisyfing
u(wk(x)) ∈ D for x ∈ Ω and the discrete entropy-dissipation inequality

(1− Cfτ)

∫

Ω

h(u(wk))dx+ τ

∫

Ω

∇wk : B(wk)∇wkdx+ ετ

∫

Ω

( ∑

|α|=m

|Dαw|2 + |w|2
)
dx

≤ τCfmeas(Ω) +

∫

Ω

h(u(wk−1))dx.(19)

Proof. Let y ∈ L∞(Ω;Rn) and δ ∈ [0, 1] be given. We solve first the following linear
problem:

(20) a(w, φ) = F (φ) for all φ ∈ Hm(Ω;Rn),

where

a(w, φ) =

∫

Ω

∇φ : B(y)∇wdx+ ε

∫

Ω

( ∑

|α|=m

Dαw ·Dαφ+ w · φ
)
dx,

F (φ) = − δ
τ

∫

Ω

(
u(y)− u(wk−1)

)
· φdx+ δ

∫

Ω

f(u(y)) · φdx.

The forms a and F are bounded on Hm(Ω;Rn). The matrix B(y) = A(u(y))(D2h)−1(u(y))
is positive semi-definite since, by Assumption H2,

z⊤B(y)z = ((D2h)−1z)⊤(D2h)A(u(y))((D2h)−1z) ≥ 0 for all z ∈ R
n.

Hence, the bilinear form a is coercive:

a(w,w) ≥ ε

∫

Ω

( ∑

|α|=m

|Dαw|2 + |w|2
)
dx ≥ εC‖w‖2Hm(Ω) for w ∈ Hm(Ω;Rn).

The last inequality follows from the generalized Poincaré inequality for Hm spaces [63,
Chap. II.1.4, Formula (1.39)], and C > 0 is some constant only depending on Ω. Therefore,
we can apply the Lax-Milgram lemma to obtain the existence of a unique solution w ∈
Hm(Ω;Rn) →֒ L∞(Ω;Rn) to (20). This defines the fixed-point operator S : L∞(Ω;Rn) ×
[0, 1] → L∞(Ω;Rn), S(y, δ) = w, where w solves (20).
It holds S(y, 0) = 0 for all y ∈ L∞(Ω;Rn). We claim that the operator S is continuous.

Indeed, let δη → δ in R and yη → y strongly in L∞(Ω;Rn) as η → 0 and set wη = S(yη, δη) ∈
Hm(Ω;Rn). Then, by continuity, u(yη) → u(y), B(yη) → B(y), and f(u(yη)) → f(u(y))
strongly in L∞(Ω;Rn), and the above coercivity estimate gives a uniform bound for (wη)
in Hm(Ω;Rn). This implies that, for a subsequence which is not relabeled, wη ⇀ w weakly
in Hm(Ω;Rn). Then, performing the limit η → 0 in (20), it follows that w = S(y, δ). In
view of the compact embedding Hm(Ω;Rn) →֒ L∞(Ω;Rn), we infer that for a subsequence,
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S(yη, δη) = wη → w = S(y, δ) strongly in L∞(Ω;Rn). Since the limit w is unique, the
whole sequence (wη) is converging which shows the continuity. Furthermore, the compact
embedding Hm(Ω;Rn) →֒ L∞(Ω;Rn) yields the compactness of S.
It remains to prove a uniform bound for all fixed points of S(·, δ) in L∞(Ω;Rn). Let

w ∈ L∞(Ω;Rn) be such a fixed point. Then w solves (20) with y replaced by w. With the
test function φ = w, we find that

δ

τ

∫

Ω

(u(w)− u(wk−1)) · wdx+
∫

Ω

∇w : B(w)∇wdx

+ ε

∫

Ω

( ∑

|α|=m

|Dαw|2 + |w|2
)
dx = δ

∫

Ω

f(u(w)) · wdx.(21)

The convexity of h implies that h(x) − h(y) ≤ Dh(x) · (x− y) for all x, y ∈ D. Choosing
x = u(w) and y = u(wk−1) and using Dh(u(w)) = w, this gives

δ

τ

∫

Ω

(u(w)− u(wk−1)) · wdx ≥ δ

τ

∫

Ω

(
h(u(w))− h(u(wk−1))

)
dx.

Taking into account the positive semi-definiteness of B(w) and Assumption H3, (21) can
be estimated as follows:

δ

∫

Ω

h(u(w))dx+ ετ

∫

Ω

( ∑

|α|=m

|Dαw|2 + |w|2
)
dx

≤ Cfτδ

∫

Ω

(1 + h(u(w)))dx+ δ

∫

Ω

h(u(wk−1))dx.

Choosing τ < 1/Cf , this yields an H
m bound for w uniform in δ (not uniform in τ or ε).

The Leray-Schauder fixed-point theorem shows that there exists a solution w ∈ Hm(Ω;Rn)
to (20) with y replaced by w and δ = 1. �

Step 2. Uniform bounds. By Lemma 5, there exists a weak solution wk ∈ Hm(Ω;Rn) to
(18). Because of the boundedness of D, a < ui(w

k) < b for i = 1, . . . , n. We need a priori
estimates uniform in τ and ε. For this, let w(τ)(x, t) = wk(x) and u(τ)(x, t) = u(wk(x)) for
x ∈ Ω and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N . At time t = 0, we set w(τ)(·, 0) = Dh(u0) and

u(τ)(·, 0) = u0. Let u(τ) = (u
(τ)
1 , . . . , u

(τ)
n ). Furthermore, we introduce the shift operator

(στu
(τ))(·, t) = u(wk−1(x)) for x ∈ Ω, (k − 1)τ < t ≤ kτ , k = 1, . . . , N . Then u(τ) solves

the equation

1

τ

∫ T

0

∫

Ω

(u(τ) − στu
(τ)) · φdxdt+

∫ T

0

∫

Ω

∇φ : B(w(τ))∇w(τ)dxdt

+ ε

∫ T

0

∫

Ω

( ∑

|α|=m

Dαw(τ) ·Dαφ+ w(τ) · φ
)
dxdt =

∫ T

0

∫

Ω

f(u(τ)) · φdxdt(22)

for piecewise constant functions φ : (0, T ) → Hm(Ω;Rn). We note that this set of functions
is dense in L2(0, T ;Hm(Ω;Rn)) [58, Prop. 1.36], such that the weak formulation also holds
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for such functions. By Assumption H2’ and ∇w(τ) = D2h(u(τ))∇u(τ), we find that
∫

Ω

∇w(τ) : B(w(τ))∇w(τ)dx =

∫

Ω

∇u(τ) : D2h(u(τ))A(u(τ))∇u(τ)dx

≥
n∑

i=1

∫

Ω

αi(u
(τ)
i )2|∇u(τ)i |2dx =

n∑

i=1

∫

Ω

|∇α̃i(u
(τ)
i )|2dx,

where α̃′
i = αi. Then either α̃i(y) = (α∗

i /mi)(y − a)mi or α̃i(y) = (α∗
i /mi)(b − y)mi . It

follows from (19) that

(1−Cfτ)

∫

Ω

h(u(wk))dx+ τ
n∑

i=1

∫

Ω

|∇α̃i(ui(w
k))|2dx

+ ετ

∫

Ω

( ∑

|α|=m

|Dαwk|2 + |wk|2
)
dx ≤ Cfτmeas(Ω) +

∫

Ω

h(u(wk−1))dx.

Adding these equations and dividing by 1 − Cfτ (recall that we assumed τ < 1/Cf ), we
infer that

∫

Ω

h(u(wk))dx+
τ

1− Cfτ

k∑

j=1

n∑

i=1

∫

Ω

|∇α̃i(ui(w
j))|2dx

+
ετ

1− Cfτ

k∑

j=1

∫

Ω

( ∑

|α|=m

|Dαwj|2 + |wk|2
)
dx

≤ Cfkτ

1− Cfτ
meas(Ω) +

1

1− Cfτ

∫

Ω

h(u(w0))dx+
Cfτ

1− Cfτ

k−1∑

j=1

∫

Ω

h(u(wj))dx.

By the discrete Gronwall inequality, we obtain for kτ ≤ T ,

∫

Ω

h(u(wk))dx+ τ
k∑

j=1

n∑

i=1

∫

Ω

|∇α̃i(ui(w
j))|2dx+ ετ

k∑

j=1

∫

Ω

( ∑

|α|=m

|Dαwj|2 + |wj|2
)
dx ≤ C,

where C > 0 depends on Cf , meas(Ω), T , and ‖h(u0)‖L1(Ω). Together with the L∞ bounds

for u(τ), this gives the following uniform bounds:

(23) ‖α̃(u(τ))‖L2(0,T ;H1(Ω)) ≤ C,
√
ε‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ C,

where C > 0 denotes here and in the following a generic constant independent of τ and ε.
For mi ≤ 1 (appearing in α̃i), we have

‖∇u(τ)i ‖L2(0,T ;L2(Ω)) = ‖αi(u
(τ)
i )−1∇α̃i(u

(τ)
i )‖L2(0,T ;L2(Ω))

≤ (α∗
i )

−1(b− a)1−mi‖∇α̃i(u
(τ)
i )‖L2(0,T ;L2(Ω)) ≤ C.(24)
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If mi > 1, it follows that either

(25)
‖∇(u

(τ)
i − a)mi‖L2(0,T ;L2(Ω)) = (α∗

i )
−1‖∇α̃i(u

(τ)
i )‖L2(0,T ;L2(Ω)) ≤ C or

‖∇(b− u
(τ)
i )mi‖L2(0,T ;L2(Ω)) = (α∗

i )
−1‖∇α̃i(u

(τ)
i )‖L2(0,T ;L2(Ω)) ≤ C.

In order to derive a uniform estimate for the discrete time derivative, let φ ∈ L2(0, T ;
Hm(Ω;Rn)). Then

1

τ

∣∣∣∣
∫ T

τ

∫

Ω

(u(τ) − στu
(τ)) · φdxdt

∣∣∣∣

≤ ‖A(u(τ))∇u(τ)‖L2(0,T ;L2(Ω))‖∇φ‖L2(0,T ;L2(Ω))

+ ε‖w(τ)‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω)) + ‖f(u(τ))‖L2(0,T ;L2(Ω))‖φ‖L2(0,T ;L2(Ω)).

The first term on the right-hand side is uniformly bounded since, by Assumption H2”,

‖(A(u(τ))∇u(τ))i‖2L2(0,T ;L2(Ω)) ≤
n∑

j=1, mj>1

∥∥∥∥∥
aij(u

(τ))

αj(u
(τ)
j )

∥∥∥∥∥

2

L∞(0,T ;L∞(Ω))

‖∇α̃j(u
(τ)
j )‖2L2(0,T ;L2(Ω))

+
n∑

j=1, mj≤1

‖aij(u(τ))‖2L∞(0,T ;L∞(Ω))‖∇u
(τ)
j ‖2L2(0,T ;L2(Ω))

≤ C,

using (23) and (24). Thus, by the L∞ bound for u(τ) and (23),

(26)
1

τ

∣∣∣∣
∫ T

τ

∫

Ω

(u(τ) − στu
(τ)) · φdxdt

∣∣∣∣ ≤ C
(√

ε‖φ‖L2(0,T ;Hm(Ω)) + ‖φ‖L2(0,T ;H1(Ω))

)
,

which shows that

(27) τ−1‖u(τ) − στu
(τ)‖L2(τ,T ;(Hm(Ω))′) ≤ C.

Step 3. The limit (τ, ε) → 0. The uniform estimates (27) and either (24) or (25) allow
us to apply the Aubin lemma in the version of [27, Theorem 1] (if mi ≤ 1) or in the version

of [19, Theorem 3a] (if mi > 1; apply the theorem to v
(τ)
i = u

(τ)
i − a or v

(τ)
i = b − u

(τ)
i ),

showing that, up to a subsequence which is not relabeled, as (τ, ε) → 0,

u(τ) → u strongly in L2(0, T ;L2(Ω)) and a.e. in Ω× (0, T ).

Because of the boundedness of u
(τ)
i in L∞, this convergence even holds in Lp(0, T ;Lp(Ω)) for

any p < ∞, which is a consequence of the dominated convergence theorem. In particular,
A(u(τ)) → A(u) strongly in Lp(0, T ;Lp(Ω)). Furthermore, by weak compactness, for a
subsequence,

A(u(τ))∇u(τ) ⇀ U weakly in L2(0, T ;L2(Ω)),

τ−1(u(τ) − στu
(τ))⇀ ∂tu weakly in L2(0, T ;Hm(Ω)′),

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)).
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We claim that U = A(u)∇u. Indeed, observing that α̃i(u
(τ)
i ) → α̃i(ui) a.e., it follows

that

∇α̃i(u
(τ)
i )⇀ ∇α̃i(ui) weakly in L2(0, T ;L2(Ω)).

Let mj > 1. Since the quotient aij(u
(τ))/αj(u

(τ)
j ) is bounded, by Assumption H2”, a

subsequence converges weakly* in L∞. Taking into account the a.e. convergence of (u(τ)),

this implies that aij(u
(τ))/αj(u

(τ)
j ) ⇀∗ aij(u)/αj(uj) weakly* in L∞(0, T ;L∞(Ω)) and a.e.

and hence strongly in any Lp(0, T ;Lp(Ω)) for p < ∞. Furthermore, if mj ≤ 1, since aij
is continuous in D and u(τ)(x, t) ∈ D, aij(u

(τ)) → aij(u) strongly in Lp(0, T ;Lp(Ω)) for all
p <∞. We conclude that

(A(u(τ))∇u(τ))i =
n∑

j=1, mj>1

aij(u
(τ))

αj(u
(τ)
j )

∇α̃j(u
(τ)
j ) +

n∑

j=1, mj≤1

aij(u
(τ))∇u(τ)j

⇀
n∑

j=1 mj≤1

aij(u)

αj(uj)
∇α̃j(uj) +

n∑

j=1, mj≤1

aij(u)∇uj = (A(u)∇u)i

weakly in Lq(0, T ;Lq(Ω)) for all q < 2. Thus proves the claim. Finally, we observe that
f(u(τ)) → f(u) strongly in Lp(0, T ;Lp(Ω)) for p <∞. Therefore, we can pass to the limit
(τ, ε) → 0 in (22) to obtain a solution to

∫ T

0

〈∂tu, φ〉dt+
∫ T

0

∫

Ω

∇φ : A(u)∇udxdt =
∫ T

0

∫

Ω

f(u) · φdxdt

for all φ ∈ L2(0, T ;Hm(Ω;Rn)). In fact, performing the limit ε→ 0 and then τ → 0, we see
from (26) that ∂tu ∈ L2(0, T ;H1(Ω)′), and consequently, the weak formulation also holds
for all φ ∈ L2(0, T ;H1(Ω)). Moreover, it contains the homogeneous Neumann boundary
conditions in (2)
It remains to show that u(0) satisfies the initial datum. Let ũ(τ) be the linear interpolant

ũ(τ)(t) = uk − (kτ − t)(uk − uk−1)/τ for (k − 1)τ ≤ t ≤ kτ , where uk = u(wk). Because of
(27),

‖∂tũ(τ)‖L2(0,T−τ ;Hm(Ω)′) ≤ τ−1‖u(τ) − στu
(τ)‖L2(τ,T ;Hm(Ω)′) ≤ C.

This shows that (ũ(τ)) is bounded in H1(0, T ;Hm(Ω)′). Thus, for a subsequence, ũ(τ) ⇀ w
weakly in H1(0, T ;Hm(Ω)′) →֒ C0([0, T ];Hm(Ω)′) and, by weak continuity, ũ(τ)(0)⇀ w(0)
weakly in Hm(Ω;Rn)′. However, ũ(τ) and u(τ) converge to the same limit since

‖ũ(τ) − u(τ)‖L2(0,T−τ ;Hm(Ω)′) ≤ ‖u(τ) − στu
(τ)‖L2(τ,T ;Hm(Ω)′) ≤ τC → 0

as τ → 0. We infer that w = u and u0 = ũ(τ)(0) ⇀ u(0) weakly in Hm(Ω;Rn)′. This
shows that the initial datum is satisfied in the sense of Hm(Ω;Rn)′ and, in view of u ∈
H1(0, T ;H1(Ω)′), also in H1(Ω;Rn)′.
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4. Proof of Theorem 3

We impose more general assumptions on q than in Theorem 3: Let q ∈ C1([0, 1]) be
positive and nondecreasing on (0, 1) such that

(28) q(0) = 0, ∃κ > 0 : ∀y ∈ [0, 1] : 1
2
yq′(y) ≤ q(y) ≤ κq′(y)2.

For instance, the functions q(y) = y/(1 + y)s with 0 ≤ s ≤ 1 and q(y) = ys with 1 ≤ s ≤ 2
fulfill (28). The case q(y) = ys with any s ≥ 1 is also possible, see Theorem 9.

Theorem 6. Let β > 0 and let q ∈ C1([0, 1]) be positive and nondecreasing on (0, 1). We
assume that (28) holds and that A(u) is given by (9). Let u0 = (u01, u

0
2) ∈ L1(Ω) with

0 < u01, u
0
2 < 1 and u01 + u02 < 1. Then there exists a solution u to (1)-(2) with f = 0

satisfying

0 ≤ ui, u3 ≤ 1 in Ω, t > 0, ∂tui ∈ L2(0, T ;H1(Ω)′),

q(u3)
1/2, q(u3)

1/2ui ∈ L2(0, T ;H1(Ω)), i = 1, 2,

where u3 = 1 − u1 − u2 ≥ 0, the weak formulation (10) holds for all φ ∈ L2(0, T ;H1(Ω)),
and u(0) = u0 in the sense of H1(Ω;R2)′.

Proof. First we observe that we may assume that β ≥ 1 since otherwise we rescale the
equations by t 7→ βt, which removes this factor in the second equation but yields the
factor 1/β > 1 in the first equation.
Step 1: Verification of Assumptions H1-H2. We claim that Assumptions H1 and H2 are

satisfied for the entropy density

h(u) = u1(log u1 − 1) + u2(log u2 − 1) +

∫ u3

1/2

log q(s)ds

for u ∈ D = {(u1, u2) ∈ (0, 1)2 : u1 + u2 < 1}. Indeed, the Hessian D2h is positive definite
on D. Therefore, h is strictly convex. We claim that Dh : D → R

2 is invertible. For
this, let (w1, w2) ∈ R

2 and define g(y) = (ew1 + ew2)q(1 − y) for 0 < y < 1. Since q is
nondecreasing, g is nonincreasing. Furthermore, g(0) > 0 and g(1) = 0 using q(0) = 0.
By continuity, there exists a unique fixed point 0 < y0 < 1 such that g(y0) = y0. Then
we define ui = ewiq(1 − y0) > 0 (i = 1, 2) which satisfies u1 + u2 = g(y0) = y0 < 1.
Consequently, u = (u1, u2) ∈ D. We set u3 = 1 − u1 − u2 = 1 − y0 which gives wi =
log(ui/q(u3)) = (∂h/∂ui)(u). Hence, Assumption H1 is satisfied.
To verify Assumption H2, we show the following lemma.

Lemma 7 (Positive definiteness of (D2h)A). The matrix (D2h)A is positive semi-definite.
Moreover, if yq′(y) ≤ 2q(y) holds for all 0 ≤ y ≤ 1 (see (28)), it holds

(29) z⊤(D2h)Az ≥ q(u3)

u1
z21 +

q(u3)

u2
z22 +

q′(u3)
2

q(u3)
(z1 + z2)

2 for z = (z1, z2)
⊤ ∈ R

2.

Proof. Set (D2h)A =M0 + (β − 1)M1, where

M0 =

(
q(u3)/u1 0

0 q(u3)/u2

)
+
q′(u3)

q(u3)

(
2q(u3) + (u1 + u2)q

′(u3)
)(1 1

1 1

)
,
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M1 =

(
0 q′(u3)

q′(u3) q(u3)/u2 + 2q′(u3)

)
+
q′(u3)

2u2
q(u3)

(
1 1
1 1

)
.

A straightforward computation shows that

z⊤M0z =
q(u3)

u1
z21 +

q(u3)

u2
z22 +

q′(u3)

q(u3)

(
2q(u3) + (1− u3)q

′(u3)
)
(z1 + z2)

2,

z⊤M1z = u2q(u3)

(
q′(u3)

q(u3)
z1 +

(
1

u2
+
q′(u3)

q(u3)

)
z2

)2

≥ 0

for all z = (z1, z2)
⊤ ∈ R

2. If yq′(y) ≤ 2q(y) holds, we find that 2q(u3) + (1 − u3)q
′(u3) ≥

q′(u3) from which we infer the result. �

Step 2: A priori estimates. By Lemma 5, there exists a sequence (wk) of weak solutions
to (18) satisfying the entropy-dissipation inequality (19) with Cf = 0. Taking into account
the identity B(wk)∇wk = A(uk)∇uk, where uk = u(wk), wk is a solution to

1

τ

∫

Ω

(uk − uk−1) · φdx+
∫

Ω

∇φ : A(uk)∇ukdx

+ ε

∫

Ω

( ∑

|α|=m

Dαwk ·Dαφ+ wk · φ
)
dx = 0(30)

for all φ ∈ Hm(Ω;R2). Furthermore, because of

∇wk : B(wk)∇wk = ∇uk : (D2h)(uk)A(uk)∇uk

and (29), the discrete entropy inequality (19) can be written as
∫

Ω

h(uk)dx+ 4τ

∫

Ω

q(uk3)
2∑

i=1

|∇(uki )
1/2|2dx+ 4τ

∫

Ω

|∇q(uk3)1/2|2dx

+ ετ

∫

Ω

( ∑

|α|=m

|Dαwk|2 + |wk|2
)
dx ≤

∫

Ω

h(uk−1)dx,(31)

where uk = (uk1, u
k
2) and u

k
3 = 1− uk1 − uk2. Resolving the recursion as in the second step of

the proof of Theorem 2, we infer that
∫

Ω

h(uk)dx+ 4τ
k∑

j=1

∫

Ω

q(uj3)
2∑

i=1

|∇(uji )
1/2|2dx+ 4τ

k∑

j=1

∫

Ω

|∇q(uj3)1/2|2dx

+ ετ
k∑

j=1

∫

Ω

( ∑

|α|=m

|Dαwj|2 + |wj|2
)
dx ≤ C.(32)

Using the generalized Poincaré inequality [63, Chap. II.1.4], we deduce that

(33) ετ

k∑

j=1

‖wj
i ‖2Hm(Ω) ≤ C, i = 1, 2.
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The assumption q(y) ≤ κq′(y)2 (see (28)) implies an H1 estimate for uk3:

τ
k∑

j=1

∫

Ω

|∇uj3|2dx ≤ κτ
k∑

j=1

∫

Ω

q′(uj3)
2

q(uj3)
|∇uj3|2dx dt = 4κτ

k∑

j=1

∫

Ω

|∇q(uj3)1/2|2dx dt ≤ C.

The boundedness of (uki ) in L∞ yields an L2 estimate for (uki ) and hence, also for (uk3).
Therefore,

(34) τ
k∑

j=1

‖uj3‖2H1(Ω) ≤ C.

We cannot perform the simultaneous limit (τ, ε) → 0 as in the proof of Theorem 2 since
we need a compactness result like in Lemma 13 (see Appendix C) in which the discrete
time derivative is uniformly bounded in H1(Ω)′ and not in the larger space Hm(Ω)′ with
m > d/2. Therefore, we pass to the limit in two steps.

Step 3: Limit ε→ 0. We fix k ∈ {1, . . . , N} and set u
(ε)
i = uki for i = 1, 2, 3, w

(ε)
i = wk

i for

i = 1, 2, and u(ε) = (u
(ε)
1 , u

(ε)
2 ). The uniform L∞ bounds for (u

(ε)
i ) and estimates (33)-(34)

as well as the compact embedding H1(Ω) →֒ L2(Ω) show that there exist subsequences
which are not relabeled such that, as ε→ 0,

u
(ε)
i ⇀∗ ui weakly* in L∞(Ω), i = 1, 2,

u
(ε)
3 ⇀ u3 weakly in H1(Ω),

u
(ε)
3 → u3 strongly in L2(Ω),

εw
(ε)
i → 0 strongly in Hm(Ω).

Moreover, since u
(ε)
3 = 1 − u

(ε)
1 − u

(ε)
2 , we find that in the limit ε → 0, u3 = 1 − u1 − u2.

Since u
(ε)
3 → u3 a.e. in Ω and q is continuous, we have q(u

(ε)
3 )1/2 → q(u3)

1/2 a.e. in Ω. The

sequence (q(u
(ε)
3 )1/2) is bounded in L∞(Ω). Therefore, by dominated convergence,

(35) q(u
(ε)
3 )1/2 → q(u3)

1/2 strongly in Lp(Ω), p <∞.

Thus, the L2 bound for (∇q(u(ε)3 )1/2) from (32) shows that, up to a subsequence,

(36) ∇
(
q(u

(ε)
3 )1/2

)
⇀ ∇

(
q(u3)

1/2
)

weakly in L2(Ω).

Furthermore, in view of

∇
(
q(u

(ε)
3 )1/2u

(ε)
i

)
= u

(ε)
i ∇(q(u

(ε)
3 )1/2) + 2(u

(ε)
i )1/2q(u

(ε)
3 )1/2∇

(
(u

(ε)
i )1/2

)
,

estimate (32) and the L∞ bounds show that for i = 1, 2,
∫

Ω

∣∣∇
(
q(u

(ε)
3 )1/2u

(ε)
i

)∣∣2dx ≤ 2

∫

Ω

(u
(ε)
i )2|∇(q(u

(ε)
3 )1/2)|2dx+ 8

∫

Ω

u
(ε)
i q(u

(ε)
3 )|∇(u

(ε)
i )1/2|2dx

≤ C

∫

Ω

|∇(q(u
(ε)
3 )1/2)|2dx+ C

∫

Ω

q(u
(ε)
3 )|∇(u

(ε)
i )1/2|2dx ≤ C.(37)
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It follows that

(38) ‖q(u(ε)3 )1/2u
(ε)
i ‖H1(Ω) ≤ C.

We conclude, again up to a subsequence, that q(u
(ε)
3 )1/2u

(ε)
i converges weakly in H1(Ω)

and, because of the compact embedding H1(Ω) →֒ L2(Ω), strongly in L2(Ω) (and in fact,

in every Lp(Ω)) to some function y ∈ H1(Ω). As q(u
(ε)
3 )1/2 → q(u3)

1/2 strongly in Lp(Ω)

and u
(ε)
i ⇀ ui weakly in Lp(Ω) for all p < ∞, we obtain q(u

(ε)
3 )1/2u

(ε)
i ⇀ q(u3)

1/2ui weakly
in Lp(Ω). Consequently, y = q(u3)

1/2ui and

q(u
(ε)
3 )1/2u

(ε)
i → q(u3)

1/2ui strongly in Lp(Ω), p <∞,(39)

∇
(
q(u

(ε)
3 )1/2u

(ε)
i

)
⇀ ∇

(
q(u3)

1/2ui
)

weakly in L2(Ω).(40)

We wish to pass to the limit ε→ 0 in

(A(u(ε))∇u(ε))i = q(u
(ε)
3 )∇u(ε)i + u

(ε)
i q′(u

(ε)
3 )∇(1− u

(ε)
3 )

= q(u
(ε)
3 )1/2∇

(
q(u

(ε)
3 )1/2u

(ε)
i

)
− 3q(u

(ε)
3 )1/2u

(ε)
i ∇

(
q(u

(ε)
3 )1/2

)
.

Taking into account (35) and (40), the first term converges weakly in L1(Ω) to q(u3)
1/2

×∇(q(u3)
1/2ui). By (36) and (39), the second term converges weakly in L1(Ω) to−3q(u3)

1/2

×ui∇(q(u3)
1/2). Thus, performing the limit ε→ 0 in (30) and setting uki := ui (i = 1, 2, 3),

we find that u = (u1, u2) solves

1

τ

∫

Ω

(uk − uk−1) · φdx+
2∑

i=1

βi

∫

Ω

q(uk3)
1/2

(
∇(q(uk3)

1/2uki )− 3uki∇(q(uk3)
1/2)

)
· ∇φidx = 0

for all φ = (φ1, φ2) ∈ Hm(Ω;R2), where we recall that β1 = 1 and β2 = β. By a density
argument, this equation also holds for all φ ∈ H1(Ω;R2). Because of the weak convergence
(40) and estimate (37), the limit q(uk3)

1/2uki satisfies the bound

(41) τ

k∑

j=1

‖q(uj3)1/2uji‖2H1(Ω) ≤ C,

where C > 0 depends on Tk = kτ but not on τ . Furthermore, by (32) and (34),

(42) τ
k∑

j=1

‖uj3‖2H1(Ω) ≤ C.

Step 4: Limit τ → 0. Let u(τ)(x, t) = uk(x) for x ∈ Ω and t ∈ ((k−1)τ, kτ ], k = 1, . . . , N .
At time t = 0, we set u(τ)(·, 0) = u0. Then u(τ) solves the equation

1

τ

∫ T

τ

∫

Ω

(u(τ) − στu
(τ))φdxdt

+
2∑

i=1

βi

∫ T

τ

∫

Ω

q(u
(τ)
3 )1/2

(
∇(q(u

(τ)
3 )1/2u

(τ)
i )− 3u

(τ)
i ∇(q(u

(τ)
3 )1/2)

)
· ∇φidxdt = 0(43)
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for all φ = (φ1, φ2) ∈ L2(0, T ;H1(Ω;R2)) and estimates (41) and (42) give

(44) ‖q(u(τ)3 )1/2u
(τ)
i ‖L2(0,T ;H1(Ω)) + ‖u(τ)3 ‖L2(0,T ;H1(Ω)) ≤ C, i = 1, 2,

where C > 0 is independent of τ . Clearly, we still have the L∞ bounds:

‖u(τ)i ‖L∞(0,T ;L∞(Ω)) + ‖u(τ)3 ‖L∞(0,T ;L∞(Ω)) ≤ C, i = 1, 2.

We claim that the discrete time derivative of u
(τ)
3 is also uniformly bounded. Indeed, since

∫ T

0

∥∥q(u(τ)3 )1/2
[
∇(q(u

(τ)
3 )1/2u

(τ)
i )− 3u

(τ)
i ∇(q(u

(τ)
3 )1/2)

]∥∥2

L2(Ω)
dt

≤ C

∫ T

0

‖∇(q(u
(τ)
3 )1/2u

(τ)
i )‖2L2(Ω)dt+ C

∫ T

0

‖∇(q(u
(τ)
3 )1/2)‖2L2(Ω)dt ≤ C,

we find that

τ−1‖u(τ)i − στu
(τ)
i ‖L2(0,T ;H1(Ω)′)

≤ C‖q(u(τ)3 )1/2(∇(q(u
(τ)
3 )1/2u

(τ)
i )− 3u

(τ)
i ∇(q(u

(τ)
3 )1/2))‖L2(0,T ;L2(Ω)) ≤ C,(45)

which immediately yields

(46) τ−1‖u(τ)3 − στu
(τ)
3 ‖L2(τ,T ;H1(Ω)′) ≤ C.

Then (44) and (46) allow us to apply the Aubin lemma in the version of [27] to conclude
(up to a subsequence) the convergence

u
(τ)
3 → u3 strongly in L2(0, T ;L2(Ω))

as τ → 0. Since (q(u
(τ)
3 )1/2) is bounded in L∞ and q(u

(τ)
3 )1/2 → q(u3)

1/2 a.e., the dominated
convergence theorem implies that

q(u
(τ)
3 )1/2 → q(u3)

1/2 strongly in Lp(0, T ;Lp(Ω)), p <∞.

In particular, (q(u
(τ)
3 )1/2) is relatively compact in L2(0, T ;L2(Ω)). Furthermore, by (44)

and (45),

q(u
(τ)
3 )1/2 ⇀ q(u3)

1/2 weakly in L2(0, T ;H1(Ω)),

τ−1(u
(τ)
i − στu

(τ)
i )⇀ ∂tui weakly in L2(0, T ;H1(Ω)′), i = 1, 2.

Since (u
(τ)
i ) converges weakly in Lp(0, T ;Lp(Ω)) and (q(u

(τ)
3 )1/2) converges strongly in

Lp(0, T ; Lp(Ω)) for all p <∞, we have

q(u
(τ)
3 )1/2u

(τ)
i ⇀ q(u3)

1/2ui weakly in Lp(0, T ;Lp(Ω)), p <∞.

In fact, we can prove that this convergence is even strong. Indeed, applying Lemma 13 in

Appendix C to yτ = q(u
(τ)
3 )1/2 and zτ = u

(τ)
i , we infer that, up to a subsequence,

q(u
(τ)
3 )1/2u

(τ)
i → q(u3)

1/2ui strongly in Lp(0, T ;Lp(Ω)), p <∞.
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The above convergence results show that

q(u
(τ)
3 )1/2∇(q(u

(τ)
3 )1/2u

(τ)
i )− 3q(u

(τ)
3 )1/2u

(τ)
i ∇(q(u

(τ)
3 )1/2)

)

⇀ q(ui)
1/2∇(q(u3)

1/3ui)− 3q(u3)
1/2ui∇(q(u3)

1/2)

weakly in L1(0, T ;L1(Ω)). Thus, passing to the limit τ → 0 in (43) yields (10). This
finishes the proof. �

Remark 8. We may allow for nonvanishing reaction terms f(u) in (1) if f depends linearly

on u1 and u2 and (possibly) nonlinearly on u3 = 1−u1−u2, since in the above proof (u
(τ)
1 )

and (u
(τ)
2 ) converge weakly in Lp, whereas (u

(τ)
3 ) converges strongly in Lp (p <∞). �

Functions q(y) = ys with s > 2 can also be considered.

Theorem 9. Let β > 1 and q(y) = ys with s ≥ 1. Let u0 ∈ L1(Ω) with 0 < u0 < 1 in Ω.
Then there exists a weak solution to (1)-(2) satisfying the weak formulation (10), u(0) = u0

in H1(Ω;R2)′, and

0 ≤ ui, u3 ≤ 1 in Ω, t > 0, ∂tui ∈ L2(0, T ;H1(Ω)′),

u
α/2
3 , u

α/2
3 ui ∈ L2(0, T ;H1(Ω)), i = 1, 2.

Proof. It is sufficient to consider the case s > 2 since the case s ≤ 2 is contained in Theorem
6. Assumptions H1 and H2 hold since this requires only q(0) = 0 and q′(s) ≥ 0. By Lemma
5, there exists a sequence (wk) of weak solutions to (18) satisfying the entropy-dissipation
inequality (31), which reads as

∫

Ω

h(uk)dx+ 4τ

∫

Ω

(uk3)
s

2∑

i=1

|∇(uki )
1/2|2dx+ sτ

∫

Ω

((2− s)uk3 + s)(uk3)
s−2|∇uk3|2dx

+ ετ

∫

Ω

( ∑

|α|=m

|Dαwk|2 + |wk|2
)
dx ≤

∫

Ω

h(uk−1)dx.

Observing that

((2− s)uk3 + s)(uk3)
s−2|∇uk3|2 =

4

s2
(2uk3 + s(1− uk3))|∇(uk3)

s/2|2

≥ 4

s2
min{2, s}|∇(uk3)

s/2|2,
we infer, after resolving the above recursion, the uniform estimates

τ
k∑

j=1

2∑

i=1

‖(uj3)s/2∇(uji )
1/2‖2L2(Ω) + τ

k∑

j=1

‖(uj3)s/2‖2H1(Ω) + ετ
k∑

j=1

‖wj‖2H1(Ω) ≤ C.

Compared to the proof of Theorem 2, we cannot conclude an H1 bound for uk3 but only for

(uk3)
s/2. Set u

(ε)
i = uki for i = 1, 2, 3. The function z 7→ z2/s for z ≥ 0 is Hölder continuous

since s > 2. Therefore, by the lemma of Chavent and Jaffre [14, p. 141],

‖u(ε)3 ‖W 2/s,s(Ω) ≤ C‖(u(ε)3 )s/2‖H1(Ω) ≤ C.



28 ANSGAR JÜNGEL

Since the embedding W 2/s,s(Ω) →֒ Ls(Ω) is compact, we conclude the existence of a sub-
sequence (not relabeled) such that

u
(ε)
3 → u3 strongly in Ls(Ω).

At this point, we can proceed as in Step 3 of the proof of Theorem 2.

For the limit τ → 0, we need another compactness argument. Let u
(τ)
i be defined as in

the proof of Theorem 2. We have the uniform estimates

‖(u(τ)3 )s/2u
(τ)
i ‖L2(0,T ;H1(Ω)) + ‖(u(τ)3 )s/2‖L2(0,T ;H1(Ω)) ≤ C,

τ−1‖u(τ)3 − στu
(τ)
3 ‖L2(0,T ;H1(Ω)′) ≤ C.

Then, by the generalization of the Aubin lemma in [19, Theorem 3], we obtain, up to a
subsequence, as τ → 0,

u
(τ)
3 → u3 strongly in Ls(0, T ;Ls(Ω)).

The remaining proof is exactly as Step 4 of the proof of Theorem 2. �

Remark 10 (Generalization of Theorem 9). Let q ∈ C1([0, 1]) be positive and nondecreas-
ing on (0, 1) such that there exist 0 < κ0 < 1 and κ1 > 0 such that for all 0 ≤ z ≤ 1,

2q(y) ≥ (y − 1 + κ0)q
′(y) and either q(y) ≤ κ1q

′(y)2 or q(y) ≤ κ1y
2−sq′(y)2,

where s > 2. This includes q(y) = ys with s > 2 (0 ≤ y ≤ 1). Indeed, let κ0 = 2/s < 1
and κ1 = 1/s2. Then 2q(y) ≥ (y − 1 + κ0)q

′(y) is equivalent to y ≤ 1 which is true, and
q(y) = ys ≤ κ1y

2−sq′(y)2 = ys. The third term of the entropy-dissipation inequality (31)
can be estimated as

∫

Ω

q′(uk3)

q(uk3)

(
2q(uk3) + (1− uk3)q

′(uk3)
)
|∇uk3|2dx ≥ κ0

∫

Ω

q′(uk3)
2

q(uk3)
|∇uk3|2dx

= 4κ0

∫

Ω

|∇q(uk3)1/2|2dx,

and we conclude the estimate

τ
k∑

j=1

‖q(uj3)1/2‖H1(Ω) ≤ C.

In case q(y) ≤ κ1q
′(y)2, it follows that

τ
k∑

j=1

∫

Ω

|∇uj3|2dxdt ≤ κ1τ
k∑

j=1

∫

Ω

q′(uj3)
2

q(uj3)
|∇uj3|2dxdt

= 4κ1τ
k∑

j=1

∫

Ω

|∇q(uj3)1/2|2dxdt ≤ C.
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In the other case q(y) ≤ κ1y
2−sq′(y)2, we find that

τ
k∑

j=1

∫

Ω

|∇(uj3)
s/2|2dxdt ≤ s2

4
κ1τ

k∑

j=1

∫

Ω

q′(uj3)
2

q(uj3)
|∇uj3|2dxdt ≤ C.

This allows us to apply the generalized Aubin lemma and we proceed as in the above
proof. �

5. Proof of Theorem 4

We prove a slightly more general result than stated in Theorem 4 by allowing for more
general functions p1 and p2. We suppose that

(47) pi(u) = αi0 + ai1(u1) + ai2(u2), i = 1, 2,

where α10, α20 > 0 are positive numbers, a12, a21 are continuously differentiable, and a11,
a22 are continuous functions on [0,∞). Assume that there exist constants αij > 0 such
that

(48) a11(y) ≥ α11y
s, a22(y) ≥ α22y

s, a′12(y) ≥ α12y
s−1, a′21(y) ≥ α21y

s−1

for all y ≥ 0, where 1 < s < 4, and that there exist C > 0 and σ < 2s(1 + 1/d) − 1 such
that for all u = (u1, u2) ∈ (0,∞)2 and i = 1, 2, it holds that pi(u) ≤ C(1 + |u1|σ + |u2|σ).
Since the entropy density h(u), defined in (15), may not fulfill Hypothesis H1, we need

to regularize:

hε(u) = h(u) + ε
(
u1(log u1 − 1) + u2(log u2 − 1)

)
, ε > 0.

Then

Dhε(u) = Dh(u) + ε(log u1, log u2)
⊤,

and the range of Dhε is R
2. The Hessian of hε equals

(49) Hε = D2hε(u) =

(
a′21(u1)/u1 + ε/u1 0

0 a′12(u2)/u2 + ε/u2

)
,

showing that each component of Dhε is strictly increasing, and thus, (Dhε)
−1 : R2 → D =

(0,∞)2 is well defined. Hence, hε fulfills Hypothesis H1. We also regularize the diffusion
matrix by setting

(50) Aε(u) = A(u) + ε

(
u2 0
0 u1

)
.

The entropy density is regularized similarly in [24] but the diffusion matrix is regularized
here in a different way.
Step 1: Verification of Hypotheses H1 and H2. Set H = D2h(u). First, we show that

HA and HεAε are positive definite under additional conditions on the functions aij.
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Lemma 11 (Positive definiteness of HA and HεAε). Let H = D2h(u), where h is defined
by (15), and let A = A(u) be given by (12) with pi as in (47). If for some s ≥ 1,
sa12(u2) ≥ u2a

′
12(u2), sa21(u1) ≥ u1a

′
21(u1), and a

′
11(u1)a

′
22(u2) ≥ (1 − 1/s)a′12(u2)a

′
21(u1)

for all u1, u2 ≥ 0, then HA is positive definite and for all z = (z1, z2)
⊤ ∈ R

2,

z⊤HAz ≥ α10 + a11(u1)

u1
a′21(u1)z

2
1 +

α20 + a22(u2)

u2
a′12(u2)z

2
2 .

Furthermore, if additionally 4a21(u1) ≥ u1a
′
21(u1) ≥ 0 and 4a12(u2) ≥ u2a

′
12(u2) ≥ 0 for all

u1, u2 ≥ 0, then HεAε is positive definite and for all z = (z1, z2)
⊤ ∈ R

2,

z⊤HεAεz ≥ z⊤HAz + ε

(
α10 + a11(u1)

u1
z21 +

α20 + a22(u2)

u2
z22

)
.

If p1 and p2 are given by (14), HA is positive definite if s ≥ 1, α11α22 ≥ (1− 1/s)α12α21,
and HεAε is positive definite if additionally s ≤ 4. The proof also works in the case s < 1;
in this situation the restriction α11α22 ≥ (1− 1/s)α12α21 is not needed.

Proof. We have

HA =

(
(p1/u1 + a′11)a

′
21 a′12a

′
21

a′12a
′
21 (p2/u2 + a′22)a

′
12

)
.

Then, for z = (z1, z2)
⊤ ∈ R

2,

z⊤HAz =
1

s
a′12a

′
21

(√
u2
u1
z1 +

√
u1
u2
z2

)2

+

(
α10 + a11

u1
+

1

u1

(
a12 −

1

s
u2a

′
12

))
a′21z

2
1

+

(
α20 + a22

u2
+

1

u2

(
a21 −

1

s
u1a

′
21

))
a′12z

2
2

+ 2

(
1− 1

s

)
a′21a

′
12z1z2 + a′11a

′
21z

2
1 + a′12a

′
22z

2
2 .

The last three terms are nonnegative for all z1, z2 ∈ R if and only if a′11a
′
21 ≥ 0 and

a′12a
′
22 ≥ (1− 1/s)a′21a

′
12. This shows the first statement of the lemma.

Next, we compute

HεAε = HA+ ε

(
1/u1 0
0 1/u2

)
A(u) + εH

(
u2 0
0 u1

)
+ ε2

(
u2/u1 0
0 u1/u2

)

= HA+ ε

(
p1/u1 + a′11 + a′21(u2/u1) a′12

a′21 p2/u2 + a′22 + a′12(u1/u2)

)

+ ε2
(
u2/u1 0
0 u1/u2

)
.

The first and the third matrix on the right-hand side are positive definite. Therefore, we
need to analyze only the second matrix, called M :

z⊤Mz =

(
p1
u1

+ a′11 + a′21
u2
u1

)
z21 +

(
p2
u2

+ a′22 + a′12
u1
u2

)
z22 + (a′21 + a′12)z1z2
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=
1

2
a′21

(√
2u2
u1

z1 +

√
u1
2u2

z2

)2

+
1

2
a′12

(√
u2
2u1

z1 +

√
2u1
u2

z2

)2

+

(
α10 + a11 + a12

u1
+ a′11 + a′21

u2
u1

−
(
a′21 +

1

4
a′12

)
u2
u1

)
z21

+

(
α20 + a21 + a22

u2
+ a′22 + a′12

u1
u2

−
(
1

4
a′21 + a′12

)
u1
u2

)
z22

≥
(
α10 + a11

u1
+

1

u1

(
a12 −

1

4
u2a

′
12

))
z21 +

(
α20 + a22

u2
+

1

u2

(
a21 −

1

4
u1a

′
21

))
z22

≥ α10 + a11
u1

z21 +
α20 + a22

u2
z22 .

This ends the proof. �

Remark 12. The positive semi-definiteness of HA can be proved by only assuming that
detA ≥ 0 (recall that A may be nonsymmetric). Indeed, setting HA = (cij) and observing
that HA is symmetric, for z = (z1, z2)

⊤ ∈ R
2,

z⊤HAz = c12

(
4

√
c11
c22
z1 + 4

√
c22
c11
z2

)2

+

√
c11
c22

(
√
c11c22 − c12) z

2
1

+

√
c22
c11

(
√
c11c22 − c12) z

2
2

≥ (
√
c11c22 − c12)min

{√
c11
c22
,

√
c22
c11

}
|z|2,

and positive semi-definiteness follows if c11 > 0, c22 > 0, and c11c22 − c212 = (
√
c11c22 +

c12)(
√
c11c22− c12) ≥ 0. Now, c11 ≥ α10a

′
21(u1)/u1 > 0 for all u1 > 0, c22 > 0 for all u2 > 0,

and, setting ∂ipj = ∂pj/∂ui,

c11c22 − c212 =
a′21a

′
12

u1u2
(p1 + u1∂1p1)(p2 + u2∂2p2)− (a′21a

′
21)

2 =
a′21a

′
21

u1u2
detA(u),

showing the claim. �

Step 2: Solution of an approximate problem. Set w = Dh(u). Then u = u(w) =
(Dh)−1(w). The matrix Bε(w) = Aε(u(w))H

−1
ε (u(w)) writes as

Bε =

(
u1p1/a

′
1 + u21a

′
1/a

′
21 + εu1u2/a

′
21 u1u2

u1u2 u2p2/a
′
2 + u22a

′
22/a

′
2 + εu1u2/a

′
2

)
.

By Lemma 11, Bε is positive semi-definite since z⊤Bεz = (H−1
ε z)⊤(HεAε)(H

−1
ε z) ≥ 0.

In view of Lemma 5, there exists a weak solution wk to the approximate problem (18)
satisfying the discrete entropy inequality (19) with Cf = 0. Summing this inequality from
j = 1, . . . , k and employing the identity ∇wk : Bε(w

k)∇wk = ∇uk : HεAε∇uk and Lemma
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11, we find that
∫

Ω

h(uk)dx+ τ
k∑

j=1

∫

Ω

(
α10 + a11(u

j
1)

uj1
a′21(u

j
1)|∇uj1|2 +

α20 + a22(u
j
2)

uj2
a′12(u

j
2)|∇uj2|2

)
dx

+ ετ
k∑

j=1

∫

Ω

(
α10 + a11(u

j
1)

uj1
|∇uj1|2 +

α20 + a22(u
j
2)

uj2
|∇uj2|2

)
dx

+ ετ

∫

Ω

( ∑

|α|=m

|Dαw|2 + |w|2
)
dx ≤ C.

Step 3: Uniform estimates. The growth conditions (48) and the above entropy estimate
imply that

τ
k∑

j=1

2∑

i=1

∫

Ω

(
(uji )

s−2 + (uji )
2(s−1)

)
|∇uji |2dx ≤ C,

ετ
k∑

j=1

2∑

i=1

∫

Ω

(
(uji )

−1 + (uji )
s−1

)
|∇uji |2dx ≤ C.

Furthermore, since (48) shows that h(u) ≥ C(us1 + us2 − 1) for some C > 0, the estimate
∫

Ω

(
(uk1)

s + (uk2)
s
)
dx ≤

∫

Ω

h(uk)dx+ C ≤ C

yields a uniform bound for uki in L∞(0, T ;Ls(Ω)). Note that by the Poincaré inequality,

‖(uki )s‖L2(0,T ;L2(Ω)) ≤ C‖∇(uki )
s‖L2(0,T ;L2(Ω)) + C‖(uki )s‖L2(0,T ;L1(Ω)) ≤ C,

which implies that ((uki )
s) is bounded in L2(0, T ;H1(Ω)). Thus, defining u

(τ)
i as in the

proof of Theorem 2, we have proved the following uniform estimates:

2∑

i=1

‖u(τ)i ‖L∞(0,T ;Ls(Ω)) ≤ C,(51)

2∑

i=1

(
‖(u(τ)i )s/2‖L2(0,T ;H1(Ω)) + ‖(u(τ)i )s‖L2(0,T ;H1(Ω))

)
≤ C,(52)

√
ε

2∑

i=1

(
‖(u(τ)i )1/2‖L2(0,T ;H1(Ω)) + ‖w(τ)

i ‖L2(0,T ;Hm(Ω))

)
≤ C.(53)

We also need an estimate for the time derivative. Let r = 2s(d + 1)/(d(σ + 1)) > 1,
1/r + 1/r′ = 1, and φ ∈ Lr′(0, T ;X), where X = {φ ∈ Wm,∞(Ω) : ∇φ · ν = 0 on ∂Ω}.
Then, observing that div(A(u(τ))∇u(τ))i = ∆(u

(τ)
i pi(u

(τ)
i )), an integration by parts gives

1

τ

∣∣∣∣
∫ T

0

∫

Ω

(u
(τ)
i − στu

(τ)
i )φdxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫

Ω

u
(τ)
i pi(u

(τ)
i )∆φdxdt

∣∣∣∣
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+ ε

∫ T

0

‖w(τ)
i ‖Hm(Ω)‖φ‖Hm(Ω)dt

≤ ‖u(τ)i pi(u
(τ))‖Lr(0,T ;L1(Ω))‖φ‖Lr′ (0,T ;W 2,∞(Ω))

+ ε‖w(τ)
i ‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω)).

We estimate the norm of u
(τ)
i pi(u

(τ)). We infer from the Gagliardo-Nirenberg inequality

that L2(0, T ;H1(Ω))∩L∞(0, T ;L1(Ω)) →֒ L2+2/d(ΩT ) and thus, by (51) and (52), ((u
(τ)
i )s)

is bounded in L2+2/d(ΩT ), where ΩT = Ω × (0, T ). The growth condition on pi gives the
estimate

‖u(τ)i pi(u
(τ))‖Lr(ΩT ) ≤ C

(
1 +

2∑

i=1

‖u(τ)i ‖σ+1
L(σ+1)r(ΩT )

)

= C

(
1 +

2∑

i=1

‖u(τ)i ‖σ+1
L2s(d+1)/d(ΩT )

)
≤ C.(54)

We conclude that

1

τ

∣∣∣∣
∫ T

τ

∫

Ω

(u
(τ)
i − στu

(τ)
i )φdxdt

∣∣∣∣ ≤ C‖φ‖L2(0,T ;Hm(Ω))

and

(55) τ−1‖u(τ) − στu
(τ)‖Lr(τ,T ;X′) ≤ C.

Step 3: The limit (τ, ε) → 0. By estimates (52), (53), and (55), there exists a subsequence
which is not relabeled such that, as (τ, ε) → 0,

(u
(τ)
i )s ⇀ y weakly in L2(0, T ;H1(Ω)),

τ−1(u(τ) − στu
(τ))⇀ ∂tu weakly in Lr(0, T ;X ′),

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)).

Estimates (52) and (55) allow us also to apply the Aubin lemma in the version of [19], such
that, for a subsequence, u(τ) → u strongly in L2s(0, T ;L2q(Ω)) as (τ, ε) → 0, where q ≥ 2

is such that H1(Ω) →֒ Lq(Ω). Because of the uniform bound of (u
(τ)
i ) in L2s(d+1)/d(ΩT )

and the a.e. convergence of (u
(τ)
i ), we find that, up to a subsequence, u

(τ)
i → ui strongly

in Lp(ΩT ) for all p < 2s(d + 1)/d and in particular for p = 2s. By (52) and the above
strong convergence, again up to a subsequence, uipi(u

(τ)) → uipi(u) a.e. in ΩT . Because

of the bound (54), the dominated convergence theorem shows that u
(τ)
i pi(u

(τ)) → uipi(u)
strongly in Lr(ΩT ),
Now, let φ = (φ1, φ2) ∈ Lr′(0, T ;X)2. After an integration by parts, u(τ) solves

∫ T

0

〈τ−1(στu
(τ) − u(τ)), φ〉dt+

2∑

i=1

∫ T

0

∫

Ω

u
(τ)
i pi(u

(τ))∆φidxdt
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+ ε

∫ T

0

∫

Ω

( ∑

|α|=m

Dαw(τ) ·Dαφ+ w(τ) · φ
)
dxdt = 0.

The above convergence results are sufficient to pass to the limit (τ, ε) → 0, which yields

∫ T

0

〈∂tu, φ〉dt+
2∑

i=1

∫ T

0

∫

Ω

uipi(u)∆φdxdt = 0.

This proves the theorem.

6. Further results and open problems

In this section, we discuss some further results and open problems related to cross-
diffusion systems and entropy methods.

(i) Dirichlet boundary conditions: Dirichlet boundary conditions may be treated under
some conditions on the nonlinearites. To see this, we assume that ui = uD,i on
∂Ω for i = 1, . . . , n and we set wD = Dh(uD). For simplicity, we assume that
uD = (uD,1, . . . , uD,n) depends on the spatial variable only. Then, using the test
function w − wD in (1), we obtain

d

dt

∫

Ω

(h(u)− wDu)dx+

∫

Ω

∇u : (D2h)(u)A(u)∇udx

=

∫

Ω

∇wD : A(u)∇udx+
∫

Ω

f(u) ·Dh(u)dx−
∫

Ω

f(u) · wDdx.(56)

If h(u) grows superlinearly (such as ui log ui) and wD is smooth, we may estimate, after
integration over time, the first integral on the left-hand side as

∫
Ω
(h(u)− wDu)dx ≥

1
2

∫
Ω
h(u)dx−C for some constant C > 0. Under Hypotheses H2’ and H3, the second

integral on the left-hand side and the second integral on the right-hand side are
estimated as follows:

∫

Ω

∇u : (D2h)(u)A(u)∇udx ≥ C

n∑

i=1

∫

Ω

|∇α̃i(ui)|2dx,
∫

Ω

f(u) ·Dh(u)dx ≤ Cf

∫

Ω

(1 + h(u))dx.

Then, assuming that A(u) and f(u) are such that, for instance,

|A(u)∇u| ≤
n∑

i=1

|∇α̃i(ui)|, |f(u)| ≤ C(1 + h(u)),

we can estimate the remaining integrals on the right-hand side of (56). In a similar
way, we may treat Robin boundary conditions by combining the ideas for Dirichlet
and homogeneous Neumann conditions.
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(ii) Uniqueness of weak solutions: It is possible to prove the uniqueness of weak solutions
to (1)-(2) (with f = 0) under the assumption that A(u) can be written as a gradient,
i.e. A(u) = ∇Φ(u) for some monotone function Φ : D → R

n, by employing the H−1

method. Unfortunately, the monotonicity assumption is rather strong since it requires
that ∇Φ(u) = A(u) is positive semi-definite, and many examples (see Section 2) do
not satisfy this condition. A uniqueness result for bounded weak solutions to an n-
species system related to (9) was recently presented in [68], but assuming that the
transition rate function q is the same for all species. Uniqueness results under weaker
conditions are an open problem (at least to our best knowledge). In fact, it is well
known that this question is delicate since non-uniqueness even occurs for some scalar
equations; see, e.g., [33].

(iii) Quadratic reaction terms: In this paper, our focus was rather on the diffusion part
than on the reaction part. The question is whether the results can be extended
to diffusion systems with, say, quadratic reaction rates as they arise in reversible
chemistry. For instance, a global existence result for the following problem is generally
unknown:

∂tu− div(A(u)∇) = f(u) in Ω, fi(u) = (−1)i(u1u3 − u2u4),

for i = 1, 2, 3, 4, with boundary and initial conditions (2). If A(u) is the diagonal
matrix A = diag(d1, . . . , dn) with smooth functions di = di(x, t) ≥ 0, the global
existence of weak solutions was shown in [23]. This result is based on the observation
that h(u) =

∑4
i=1 ui(log ui− 1) possesses an L2 estimate. This is proved by using the

duality method of M. Pierre [54], and the proof is based on the diagonal structure of A.
A global existence result for a system modeling the more general reaction A1+A2 ⇋

A3 + A4 was given in [11] in the two-dimensional case, the three-dimensional case
being an open problem. Reaction-diffusion systems with diffusivities di depending
on u and quadratic rate functions were recently analyzed in [7], but still only in the
diagonal case.

(iv) Long-time behavior of solutions: We expect that the long-time behavior of weak
solutions to (1)-(2) with f = 0 can be proven under some additional conditions.
For specific diffusion matrices, the exponential decay has been already shown; see
[35, 36]. The idea is to estimate the entropy dissipation in terms of the entropy. For
instance, let u∞ = (u∞,1, . . . , u∞,n) be a constant steady-state to (1)-(2). To simplify,
we assume that the entropy is given by

H∗ =
n∑

i=1

∫

Ω

ui log
ui
u∞

dx,

and that the entropy dissipation can be estimated from below according to

(57)

∫

Ω

∇w : B(w)∇wdx =

∫

Ω

∇u : (D2h)A(u)∇udx ≥ λH∗
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for some λ > 0. Then the entropy-dissipation inequality (4) becomes

dH
dt

+ λH ≤ 0,

and Gronwall’s lemma implies exponential convergence in terms of the relative entropy
H∗. By the Csiszár-Kullback inequality, we conclude the exponential decay in the L1

norm, ‖u(t)− u∞‖L1(Ω) ≤ C exp(−λt/2) for t > 0. For details, we refer to [12].
The main task is to derive the entropy-dissipation relation (57). According to

Hypothesis H2’, we need to prove

n∑

i=1

∫

Ω

|∇α̃i(ui)|2dx ≥ λ

n∑

i=1

∫

Ω

ui log
ui
u∞

dx.

If α̃i(ui) = u
1/2
i (for instance), this inequality is a consequence of the logarithmic

Sobolev inequality. For more general functions α̃i and power-type entropy densities,
one may employ Beckner-type inequalities; see [13, Lemma 2]. The general case,
however, is an open problem.

(v) Entropies for population models: It is an open problem to find an entropy for the
general population model with diffusion matrix A = (aij) defined in (67). Just a
simple combination of the entropies for the systems analyzed in Theorems 3 and 4,
i.e. summing (11) and (15), seems to be not sufficient. A partial result was shown
recently in [68]. It is also an open problem if an entropy for the population system
with matrix (12), where p1 and p2 are given by (14), exists without restrictions on
the coefficients αij (except positivity).

(vi) Gradient systems and geodesic convexity: There might to be a relation between our
entropy formulation and the gradient structure for reaction-diffusion systems devel-
oped by Liero and Mielke [46] but no results are known so far. Using purely dif-
ferential methods, they have shown the geodesic λ-convexity for particular reaction-
cross-diffusion systems. A generalized McCann condition for geodesic convexity of the
internal energy of certain diffusion systems was given in [69]. It is an open problem
if such geometric properties also hold for the examples presented in Section 2.

(vii) Coupled PDE-ODE problems: Coupled reaction-diffusion-ODE problems occur, for
instance, in chemotaxis-haptotaxis systems modeling cancer invasion [62]. Denoting
by u1, u2, u3 the densities of the cancer cells, matrix-degrading enzymes, extracellular
matrix, respectively, the evolution is governed by (1) with the exemplary diffusion
matrix

A(u) =



a11(u) a12(u) a13(u)
a21(u) 0 0

0 0 0


 .

It is an open problem whether these systems possess an entropy structure and whether
our method can be extended to such problems. One idea could be to reduce the
problem to the subsystem (u1, u2) and to estimate terms involving ∇u3 directly by
differentiating the ODE for u3.
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(viii) Bounded weak solutions: A challenging task is to determine all diffusion systems
whose weak solutions are bounded. As a first step in this direction, we consider n = 2
and diffusion matrices A(u) = (aij) depending linearly on the variables,

aij(u) = αij + βiju1 + γiju2, i, j = 1, 2,

where αij, βij, γij ∈ R. We wish to find conditions on the coefficients for which
the logarithmic entropy density (6) satisfies Hypothesis H2. Requiring that B =
A(D2h)−1 is symmetric, we can fix some coefficients,

α12 = α21 = γ12 = β21 = 0, β22 = β11 − γ21,

γ11 = γ22 − β12, γ21 = β12 + α22 − α11.

The matrix (cij) = (D2h)A is positive semi-definite if and only if

c11 =
1

u1(1− u1 − u2)

(
(β12 − γ22)u

2
2 + (−β11 + β12 + α22 − α11)u1u2

+ β11u1 + (−α11 − β12 + γ22)u2 + α11

)
≥ 0,(58)

det(cij) =
1

u1u2(1− u1 − u2)

(
β11(β11 − β12 − α22 + α11)u

2
1 − γ22(β12 − γ22)u

2
2

+ (α11γ22 − α22γ22 − β11β12 + 2β11γ22 − β12γ22)u1u2

+ (α2
11 − α11α22 + α11β11 − α11β12 + α22β11)u1

+ (α11γ22 − α22β12 + α22γ22)u2 + α11α22

)
≥ 0(59)

holds for all u1, u2 > 0 such that u1 + u2 < 1, where admissible ranges for the
remaining five parameters α11, α22, β11, β12, γ22 have to be determined. Examples
are (i) the volume-filling model of Burger et al. (see Section 2.1) and (ii) the model
defined by (16), where

(i) α11 = 1, α22 = β, β11 = 0, β12 = 1, γ22 = 0,

(ii) α11 = 1, α22 = 1, β11 = −1, β12 = −1, γ22 = −1.

Other examples can be easily constructed. For instance, for α11 = α22 = β11 = β12 = 1
we have

A(u) =

(
1 + u1 + (c22 − 1)u2 u1

u2 1 + c22u2

)
,

and (cij) = (D2h)A is positive semi-definite if and only if

c11 =
(1− u2)(1 + (c22 − 1)u2) + u1

u1(1− u1 − u2)
≥ 0 and

det(cij) = (1 + (c22 − 1)u2)(1 + u1 + c22u2) ≥ 0,

which is the case if 0 ≤ c22 <∞. However, it seems to be difficult to solve inequalities
(58)-(59) in the general situation. Possibly, techniques from quadratic optimization
with inequality constraints and quantifier elimination may help. Some results using
different ideas were presented in [37].
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Appendix A. Relations to non-equilibrium thermodynamics

We show that the entropy variable w = Dh(u), defined in Section 1, is strongly related
to the chemical potentials of a fluid mixture and that the particular change of unknowns
associated with the logarithmic entropy density (6) is related to a special choice of the
thermodynamic activities.
We introduce first the thermodynamic setting. Consider a fluid consisting of N com-

ponents with the same molar mass under isobaric and isothermal conditions. We write ρi
instead of ui to denote the mass density of the ith component. The evolution of the mass
densities is governed by the mass balance equations

(60) ∂tρi + div Ji = 0, i = 1, . . . , N,

where Ji are the diffusion fluxes. We have assumed that the barycentric velocity vanishes
and that there are no chemical reactions. Furthermore, we assume for simplicity that the
total mass density is constant,

∑N
j=1 ρj = 1.

Let s(ρ) = s(ρ1, . . . , ρN) be the thermodynamic entropy of the system. Then the chem-
ical potentials µi are defined (in the isothermal case) by

µi = − ∂s

∂ρi
, i = 1, . . . , N,

where here and in the following we set physical constants (like temperature) equal to one.
Neglecting also body forces and the (irreversible) stress tensor, the diffusion fluxes Ji can
be written as (see [22, Chapter IV, (15)] or [6, Formula (170)])

(61) Ji = −
N−1∑

j=1

Lij∇(µj − µN), i = 1, . . . , N,

where Lij are some diffusion coefficients such that (Lij) is positive definite. Once an explicit
expression for the thermodynamic entropy is determined, equations (60)-(61) are closed.
Now, we explain the relation of the entropy variables to the above setting. Since ρN =

1−∑N−1
j=1 ρj, we may express the density of the last component in terms of the others such

that we can introduce

h(ρ1, . . . , ρN−1) := −s
(
ρ1, . . . , ρN−1, 1−

N−1∑

j=1

ρj

)
,

and in fact, h corresponds to the (mathematical) entropy introduced in Section 1. With
this notation, the entropy variables become

wi =
∂h

∂ρi
= − ∂s

∂ρi
+
∂s

ρN
= µi − µN , i = 1, . . . , N − 1,

which relates the entropy variables to the chemical potentials. Moreover, comparing the
flux vector J = B(w)∇w from (3) with (61), we see that the diffusion matrixB(w) coincides
with (Lij).
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For the second statement, we recall that the chemical potentials of a mixture of ideal
gases can be formulated as

(62) µi = µ0
i + log ρi, i = 1, . . . , N,

where µ0
i is the Gibbs energy which generally depends on temperature and pressure. Since

we have supposed an isobaric, isothermal situation, µ0
i is constant and, for simplicity, we set

µ0
i = 0 for i = 1, . . . , N . In order to model non-ideal gases, it is usual in thermodynamics

to introduce the thermodynamic activity ai and the activity coefficient γi by

µi = µ0
i + log ai = log ai, where ai = γiρi.

If γi = 1, we recover the ideal-gas case. In the volume-filling case, Fuhrmann [30] has

chosen γi = 1 +
∑N−1

j=1 aj for numerical purposes. Then

ρi =
ai
γi

=
ai

1 +
∑N−1

j=1 aj
,

and since ai = exp(µi), it follows that

ρi =
eµi

1 +
∑N−1

j=1 e
µj

, i = 1, . . . , N − 1.

which corresponds to the inverse transformation (8) if we identify µi with wi. This expres-
sion can be derived directly from (62). Indeed, if µ0

i = 0, we obtain wi = −(µi − µN) =

− log(ρi/ρN) with ρN = 1−∑N−1
j=1 ρj, and inverting these relations, we find that

ρi =
ewi

1 +
∑N−1

j=1 e
wj

, i = 1, . . . , N − 1.

Appendix B. Formal derivation of two-species population models

We derive formally cross-diffusion systems from a master equation for a continuous-
time, discrete-space random walk in the macroscopic limit. We consider only random
walks on one-dimensional lattices but the derivation extends to higher dimensions in a
straightforward way. The lattice is given by cells xi (i ∈ Z) with the uniform cell distance
h > 0. The densities of the populations in the ith cell at time t > 0 are denoted by u1(xi, t)
and u2(xi, t), respectively. We assume that the population species u1 and u2 move from the
ith cell into the neighboring (i± 1)th cells with transition rates S±

i and T±
i , respectively.

Then the master equations can be formulated as follows [51]:

∂tu1(xi) = S+
i−1u1(xi−1) + S−

i+1u1(xi+1)− (S+
i + S−

i )u1(xi),(63)

∂tu2(xi) = T+
i−1u2(xi−1) + T−

i+1u2(xi+1)− (T+
i + T−

i )u2(xi),(64)

where i ∈ Z. We further suppose that the transition rates S±
i and T±

i depend on the
departure cell i and the arrival cells i± 1:

S±
i = σ0p1(u1(xi), u2(xi))q1(1− u1(xi±1)− u2(xi±1)),

T±
i = σ0p2(u1(xi), u2(xi))q2(1− u1(xi±1)− u2(xi±1)),
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where σ0 > 0 is some number. Abbreviating pj(xi) = pj(u1(xi), u2(xi)) and qj(xi) =
qj(1− u1(xi)− u2(xi)), the master equations (63)-(64) become

σ−1
0 ∂tu1(xi) = p1(xi−1)q1(xi)u1(xi−1) + p1(xi+1)q1(xi)u1(xi+1)

− p1(xi)(q1(xi−1) + q1(xi+1))u1(xi),(65)

σ−1
0 ∂tu2(xi) = p2(xi−1)q2(xi)u2(xi−1) + p2(xi+1)q2(xi)u2(xi+1)

− p2(xi)(q2(xi−1) + q2(xi+1))u2(xi).(66)

The functions p1(xi) and p2(xi) model the tendency of the species to leave the cell i,
whereas q1(xi) and q2(xi) describe the probability to move into the cell i. The latter
functions allow us to model the so-called volume-filling effect. Indeed, we may interpret
u1 and u2 as volume fractions satisfying u1 + u2 ≤ 1. Then 1 − u1 − u2 describes the
volume fraction not occupied by the two species. If the ith cell is fully occupied, i.e.
u1(xi) + u2(xi) = 1, and qj(1− u1(xi)− u2(xi)) = qj(0) = 0, the probability to move into
the ith cell is zero.
In order to derive a macroscopic model, we perform a formal Taylor expansion of uj(xi±1),

pj(xi±1), and qj(xi±1) around uj(xi) up to second order. Furthermore, we assume a diffusive
scaling, i.e. σ0 = 1/h2. Substituting the expansions into (65) and (66) and performing the
formal limit h→ 0, it follows that (see [51] for details)

∂tu1 = ∂x
(
a11(u)∂xu1 + a12(u)∂xu2

)
,

∂tu2 = ∂x
(
a21(u)∂xu1 + a22(u)∂xu2

)
,

where u = (u1, u2). The diffusion coefficients are given by

(67)

a11(u) = p1(u)q1(u3) + u1(∂1p1(u)q1(u3) + p1(u)q
′
1(u3)),

a12(u) = u1(∂2p1(u)q1(u3) + p1(u)q
′
1(u3)),

a21(u) = u2(∂1p2(u)q2(u3) + p2(u)q
′
2(u3)),

a22(u) = p2(u)q2(u3) + u2(∂2p2(u)q2(u3) + p2(u)q
′
2(u3)),

where ∂ipj = ∂pj/∂ui and u3 = 1−u1−u2. In several space dimensions, the argumentation
is the same but the computations are more involved. We obtain equation (1) with f = 0
and the diffusion matrix A with coefficients aij as above.
It seems very difficult—if not impossible—to explore the entropy structure of this equa-

tion in full generality. Therefore, we investigated two special cases in this paper. First, we
assumed that p1 = p2 = 1, q1 = q, and q2 = βq, where β > 0. This corresponds to the
volume-filling case (9). Second, we have set q1 = q2 = 1. This gives the matrix (12).

Appendix C. A variant of the Aubin compactness lemma

Lemma 13. Let (yτ ), (zτ ) be sequences which are piecewise constant in time with step
size τ > 0 and which are bounded in L∞(0, T ;L∞(Ω)). Let (yτ ) be relatively compact
in L2(0, T ;L2(Ω)), i.e., up to subsequences which are not relabeled, yτ → y strongly in
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L2(0, T ;L2(Ω)) and zτ ⇀
∗ z weakly* in L∞(0, T ;L∞(Ω)) as τ → 0. Finally, let

‖yτ‖L2(0,T ;H1(Ω)) ≤ C,

‖yτzτ‖L2(0,T ;H1(Ω)) + τ−1‖πτzτ − zτ‖L2(τ,T ;(H1(Ω))′) ≤ C,

where (πτzτ )(·, t) = zτ (·, t + τ) for 0 < t ≤ T − τ . Then there exists a subsequence (not
relabeled) such that yτzτ → yz strongly in Lp(0, T ; Lp(Ω)) for all p <∞.

Note that the result would follow from the Aubin compactness lemma if yτ was bounded
from below by a positive constant, since in this situation, it would suffice to apply the
Aubin lemma in the version of [27] to infer the strong convergence of (a subsequence of)
(zτ ) in L

2(0, T ;L2(Ω)) which, together with the strong convergence of (yτ ), would give the
result.

Proof. The proof is inspired from [9, Section 4.4] but parts of the proof are different. The
idea is to prove that

lim
(h,k)→0

∫

ΩT

(
(yτzτ )(x+ h, t+ k)− (yτzτ )(x, t)

)2
dx dt = 0 uniformly in τ > 0,

where ΩT = Ω× (0, T ) and yτ (·, t), zτ (·, t) are extended by zero for T ≤ t ≤ T + k. Then
the result follows from the lemma of Kolmogorov-Riesz [8, Theorem 4.26] and the L∞

boundedness of yτzτ . We write
∫

ΩT

(
(yτzτ )(x+ h, t+ k)− (yτzτ )(x, t)

)2
d(x, t)

≤ 2

∫

ΩT

(
(yτzτ )(x+ h, t+ k)− (yτzτ )(x, t+ k)

)2
d(x, t)

+ 2

∫

ΩT

(
(yτzτ )(x, t+ k)− (yτzτ )(x, t)

)2
d(x, t) = I1 + I2.

For the estimate of I1, we integrate over the line segment [x, x+h] and employ a standard
extension operator in L2:

I1 ≤
∫

ΩT

∫ 1

0

h2|∇(yτzτ )(x+ sh, t+ k)|2ds d(x, t) ≤ Ch2‖∇(yτzτ )‖L2(ΩT ) ≤ Ch2,

where here and in the following, C > 0 denotes a generic constant.
For the second integral, we have

I2 ≤ 4

∫

ΩT

(yτ (x, t+ k)− yτ (x, t))
2zτ (x, t+ k)2d(x, t)

+ 4

∫

ΩT

yτ (x, t)
2(zτ (x, t+ k)− zτ (x, t))

2d(x, t) = I21 + I22.

Since (zτ ) is bounded in L∞(0, T ;L∞(Ω)), we can estimate as follows:

(68) I21 ≤ C

∫

ΩT

(yτ (x, t+ k)− yτ (x, t))
2d(x, t).
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By assumption, (yτ ) is relatively compact in L2(ΩT ). By the inverse of the lemma of
Kolmogorov-Riesz [8, Exercise 4.34], the right-hand side of (68) converges to zero as k → 0
uniformly in τ > 0. Furthermore,

I22 =

∫

ΩT

yτ (x, t)
2zτ (x, t)(zτ (x, t)− zτ (x, t+ k))d(x, t)

+

∫

ΩT

yτ (x, t+ k)2zτ (x, t+ k)(zτ (x, t+ k)− zτ (x, t))d(x, t)

+

∫

ΩT

(yτ (x, t)
2 − yτ (x, t+ k)2)zτ (x, t+ k)(zτ (x, t+ k)− zτ (x, t))d(x, t)

= J1 + J2 + J3.

Using Lemma 5 in [19] and the bounds on (yτ ), (zτ ), the first integral can be estimated as

J1 ≤ ‖y2τzτ‖L2(0,T ;H1(Ω))‖πkzτ − zτ‖L2(0,T−k;H1(Ω)′)

≤ Ck1/2τ−1‖πτzτ − zτ‖L1(0,T−τ ;H1(Ω)′) ≤ Ck1/2,

and this converges to zero as k → 0 uniformly in τ > 0. The same conclusion holds for J2.
Finally, in view of the L∞ boundedness of (yτ ) and (zτ ), the third integral becomes

J3 ≤
∫

ΩT

(yτ (x, t+ k) + yτ (x, t))(yτ (x, t+ k)− yτ (x, t))zτ (x, t+ k)

× (zτ (x, t+ k)− zτ (x, t))d(x, t)

≤ C

∫

ΩT

|yτ (x, t+ k)− yτ (x, t)|d(x, t).

Because of the relative compactness of (yτ ) in L2, the right-hand side converges to zero
uniformly in τ > 0. This finishes the proof. �
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[34] T. Jackson and H. Byrne. A mechanical model of tumor encapsulation and transcapsular spread.
Math. Biosci. 180 (2002), 307-328.
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[40] K. Küfner. Invariant regions for quasilinear reaction-diffusion systems and applications to a two pop-

ulation model. NoDEA Nonlin. Diff. Eqs. Appl. 3 (1996), 421-444.
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