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The bow and sequential effects
in absolute identification

R. DUNCAN LUCE, ROBERT M. NOSOFSKY, DAVID M. GREEN,
and ALBERT F. SMITH
Harvard University, Cambridge, Massachusetts

The bow and sequential effects in absolute identification are investigated in this paper by
following two strategies: (1) Experiments are performed in which sequential dependencies in
signal presentations are manipulated, and (2) analyses are conducted (some of which are largely
free of model-specific assumptions) which bear directly on the question of the origin of the
sequential effects. The main result of the study is that absolute identification performance is
greatly improved in a design in which each signal lies close to the preceding signal presented,
even though the entire range of signals used is the same as in a random presentation design.
This finding is consistent with the attention-band model of Luce, Green, and Weber (1976) and
rejects hypotheses that suggest that the variability in the signal representation in absolute
identification is a function solely of the range of signals being used. However, nonparametric
analyses of sequential response errors show that a plausible assumption concerning the trial-
by-trial movement of the attention band provides an incomplete explanation of sequential
effects in absolute identification. These results are far better explained in terms of systematic
shifts of category boundaries in a Thurstonian model, as suggested by Purks, Callahan, Braida,
and Durlach (1980). Experiments are also performed which suggest that memory decay is not

the major factor accounting for the bow effect in absolute identification.

As one increases the number of equally spaced
signals, and therefore their range, absolute identi-
fication performance deteriorates markedly except
for the extreme signals (Durlach & Braida, 1969;
Weber, Green, & Luce, 1977). This deterioration
evidences itself as a deep bow in a plot of percent
correct, or d’, against ordinal signal position. The
question is why—both why the deterioration and,
given that it occurs, why performance on the extreme
signals does not deteriorate as markedly. Durlach
and Braida (1969) and Gravetter and Lockhead
(1973) have suggested that the deterioration with
range has to do with increased variability of the rep-
resentations of the signals due solely to the increased
range. Berliner and Durlach (1973) have suggested
that the bow arises because the end signals serve as
anchors and that the further a signal is from the near-
est end, the more variable its representation. And
Luce, Green, and Weber (1976), largely on the basis
of magnitude estimation data, have suggested that
both might arise from a mechanism of selective atten-
tion in the intensity dimension. Weber, Green, and
Luce (1977) reported a number of studies which
suggest that both the attention hypothesis and a
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slightly modified version of the anchors hypothesis
are consistent with the data.

There are three aspects to the attention hypothesis.
First, when a signal occurs, its representation is less
variable if the signal is attended than if not!; this
would arise if attention corresponded to a larger
neural sample size, but that interpretation is not
necessary. Second, attention tends to focus some-
what more on the end signals than elsewhere. As
less variability means more accurate performance,
a tendency to attend to the end signals is a way to
account for the bow. And third, attention tends to
focus more on the region of the last signal than
elsewhere. We describe these last two hypotheses
as tendencies, since neither appears to be a firm rule;
indeed, as strict rules they are inconsistent. To the
extent that the third hypothesis is correct, sequen-
tial effects will occur. That they do occur in absolute
identification was demonstrated by Ward and
Lockhead (1970), and subsequently they have been
found by others.

Purks, Callahan, Braida, and Durlach (1980) have
suggested, in contrast to the attention-band hypoth-
esis, that the Thurstonian distributions that repre-
sent the signals are unaffected by the location of the
previous signal, but that the category boundaries
are markedly affected. They partitioned their data
by the previous signal and then fit a constant-
variance Thurstonian model. The separation between
signal distributions was unaffected by the location
of the previous signal, but the category boundaries
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were shifted away from the previous signal. So, for
example, if the previous signal was at 50 dB and the
next louder signal was at 55 dB, then the boundary
between the 50- and 55-dB signals would be located
above its average value.

Although this analysis casts major doubt upon the
third part of the attention explanation, it should be
pointed out that the conclusions are somewhat
model-dependent. Specifically, Purks et al. assume
in their analysis a constant-variance Thurstonian
model and allow for the sequential effects to appear
only as changes in the locations of the mean scale
values or in the boundary values. In contrast, the
attention-band model assumes the means and bound-
aries to be unaffected and the variance to change
locally.

To try to untangle these alternatives, two strategies
are followed in this paper. One is experimental—
trying to exploit the sequential effects by manip-
ulating the sequential dependencies in the signal
presentation. The other is analytical—seeking anal-
yses that are largely free of specific assumptions in
order to examine the sequential effects in the data.
Nonetheless, these analyses should bear directly on
the question concerning the origin of the sequential
effects. Are these effects due to reduced variance
in the signal representation when the signal is closer
to the preceding one, as alleged by the attention-
band model, or are they due to changes in the lo-
cation of the category boundaries?

EXPERIMENT 1

In the first experiment, we exploit the idea that the
attention band (reduced variance in the Thurstonian
representation), if it exists, tracks the previous sig-
nal. The idea is that we can constrain the sequence
of signal presentations so that each signal lies close
to the immediately preceding one, and yet arrange
it so that, in the long run, all signals are presented
equally often. More specifically, on each trial we
constrain the signal to be the one just presented,
the one just above it, or the one just below it, each
with probability 1/3, except, of course, for the two
end signals (see the Method section). We refer to
this as the small-step(3) condition. The sequential
constraint in this condition not only causes each
signal to be near the preceding one, but also makes
them much more predictable a priori, reducing the
possible responses from 11 alternatives in the random
case to 3 in the small-step one. To disentangle these
two effects, we also ran what we refer to as the large-
step condition. Here, each signal was, as in the
small-step case, one of three adjacent possibilities,
and in the long run each signal was presented equally
often. However, the three possibilities were always
far from the preceding signal rather than near it.
We also ran a small-step design with five adjacent

signals centered on the preceding signal in order to
see if performance deteriorated appreciably from the
small-step(3) condition. This would be expected if the
attention band was 10-20 dB wide, as has been esti-
mated previously (Green & Luce, 1974).

Method

The signals, wide-band noise gated on for 500 msec, were pre-
sented binaurally, in quiet, via TDH-39 headphones. The ob-
servers, one male and two females, were tested in single-wall
sound-treated chambers (IAC-402A). Blocks of 100 trials were run
with rests between blocks.

The stimulus set always consisted of 11 signals spaced at inter-
vals of 5 dB from 40 to 90 dB SPL. In the random condition,
successive signals were equally likely and were selected at random,
independently of previous choices. In other conditions, Markov
transition matrices were used to program the selection of suc-
cessive signals. In these matrices, the row entry is the index of
the previous stimulus, S®-1, and the column entry is the index
of the present stimulus, S™. The large-step and small-step(3)
conditions involved diagonal bands of three adjacent entries of
probability 1/3, with exceptions due to overflow at the end sig-
nals. The small-step(5) matrix contained a diagonal band of five
adjacent entries of probability 1/5. In the small-step matrices,
the band was centered on the main diagonal. In the small-step(3)
matrix, the end signals received entries 2/3,1/3; in the small-
step(5) matrix, the two signals at each end received entries of
2/5,2/5,1/5 and 2/5,1/5,1/5,1/5, respectively. In the large-
step matrix, the band was centered on (S®~1,S™) pairs (1,6),
@27, ..., (5,10, (6,11), (7,1), (8,2), ..., (11,5), with overflow
from one end accommodated at the other extreme. For example,
the entry that would have been placed in cell (6,12) went in cell
(6,1). All these Markov chains have the property that, asymp-
totically, every stimulus is used equally often.

On successive days in 3-day cycles, the observers completed
between 600 and 800 trials in the random, small-step(3), and
large-step conditions, for a total of approximately 4,000 trials
in each condition. Following this, approximately 1,500 trials were
run in the small-step(5) condition. After these data were collected,
it occurred to us that because the constraints of the large-step
matrix might be more difficult for our observers to remember
than those of the small-step(3) matrix, the large-step condition,
as run, might fail to reduce response uncertainty in the way in-
tended. Indeed, two of our observers were using a substantial
number of responses which were impossible under the constraints
of the matrix. Therefore, an additional 4,000 trials of large-step
data were collected in which the three possible responses for
each trial were printed on the terminal prior to the trial. It is
these data that are presented below.

At the beginning of each block of trials, the ascending sequence
of intensities was played twice. During these presentations, the
identity of each signal was printed on the terminal. The obser-
vers were instructed to use the numbers from 1 (softest) through
11 (loudest) as responses to the signals, and encouraged to re-
spond accurately.

At the beginning of each trial, the word “READY"’ appeared
on the terminal for 500 msec. After the signal was presented,
the observer entered a response; the number appeared on the
screen and could be corrected prior to its being entered into the
computer (PDP-15). After all observers had responded on a trial,
feedback was provided and the next signal was presented fol-
lowing a 500-msec delay.

Observers were paid $3.50/h for participating in the exper-
iment.

Data Presentation
There are several reasonable approaches to pre-
senting the data obtained in the various conditions.



One straightforward route is simply to compute per-
cent correct scores or estimates of d’ from the cumu-
lative judgment matrices obtained in each condition.
This approach suffers from the obvious drawback,
however, that the constrained response choices in
the small-step(3), small-step(5), and large-step con-
ditions will inflate artificially subjects’ performance
relative to the random-step condition. For example,
assume in the small-step(3) condition that stimulus 4
is presented on trial n; if stimulus 5 is then presented
on trial n+ 1, and the subject judges it to be stimu-
lus 6, he or she will still respond 5, since only re-
sponses 3, 4, and 5 are possible on that trial. This
will increase artificially the percent correct score on
stimulus 5, or the estimate of ds .

In order to circumvent this difficulty, we employ
an alternative method of analysis throughout this
article. First, an estimate of dy;,, is computed only
for that subset of trials in which responses i and i+1
are both available. In particular, the data are par-
titioned into conditional stimulus-response (S-R)
matrices according to the previous signal. Values of
d/’j+ are then computed from each conditional S-R
matrix in which such a computation is possible, and
then an overall dy;,, value is computed by averaging
each of these conditional d{;, estimates together.?
For example, in the small-step(3) condition, the over-
all d, s is computed by estimating d,s when the pre-
vious signal was 4 and when the previous signal was
5, and then averaging these together. [In the small-
step(3) condition, responses i and i+ 1 are both
available on a given trial if and only if the previous
signal was eitheriori+1.]

Analogous procedures are used to compute dy;;
in the small-step(5), large-step, and random-step con-
ditions. The reader should note that there are 2 in-
dividual estimates of dj;;; in the small-step(3) and
large-step conditions, 4 individual estimates of d{;;;
in the small-step(5) condition, and 11 individual esti-
mates of di;;; in the random-step condition which
are averaged together to form each overall d{;,; value.
The more individual estimates of an overall dj ;)
value there are, the fewer data there are that go into
forming each individual d{ ;1 estimate.

In summary, the conditional method of analysis al-
lows us to compare identification performance
among the various conditions directly, free from con-
tamination by the constraints on responses inherent
in the sequentially constrained conditions.

Results and Discussion

Figure 1 displays the values of d{;+; as a function
of signal i for each procedure: random, small step(3),
small step(5), and large step.® These were computed
from one grand S-R matrix obtained by cumulating
the data of all subjects, each subject having shown a
similar pattern of results. The large-step data are
from the condition in which the display indicated the
three response alternatives for each trial; these data
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Figure 1. Values of d/;,, as a function of signal i in the random,
large-step, small-step(3), and small-step(5) conditions.

are virtually indistinguishable from those collected
when the alternatives were not explicitly displayed.
As is readily observed, sensitivity in the small-
step(3) condition is vastly greater than that in the
random-step condition. Sensitivity in the small-
step(5) condition is substantially inferior to that in
the small-step(3) condition, but is still clearly
superior to the random-step performance. Sensitivity
in the large-step condition is slightly, but consis-
tently, below that obtained in the random-step con-
dition. Each of these results is consistent with the
hypothesis of an attention band, about 10-20 dB
wide, which tends to track the last signal presented.
These data undercut both of the hypotheses that
suggest that variability in the signal representation is
a function solely of the range of signals being used.
The range in each of the conditions is identical, with
only the sequential dependencies in the signal presen-
tations being manipulated, yet sensitivity in each con-
dition is characteristically different. One might try to
save the range hypothesis by arguing that the source
of the effect is the range of potential signals on each
trial, but this will not do because that range is equally
narrow in the large-step and small-step(3) cases. Or
one might try to save it by saying it is the range be-
tween successive trials that is relevant; but this be-
comes difficult to distinguish from the emphasis
placed by the attention-band theory on the impor-
tance of sequential dependencies among signals.
Since data on absolute identification often are re-
ported as percent correct, we show in Figure 2 our
data in this form as well. Comparing Figures 1 and 2
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Figure 2. Percent correct scores for each signal, computed from
cumulative judgment matrices in each condition.

is revealing. The first of the two most salient differ-
ences is seen in the relation between the random and
large-step data: In the conditional d’ analysis of Fig-
ure 1, the large-step function lies below the random
one, whereas the opposite is true in the percent cor-
rect measure computed from the cumulative judg-
ment matrix. This is clear evidence that the artificial
inflation due to response restrictions of percent cor-
rect (or of d’) computed from the cumulative matrix
is not an idle concern. The second difference con-
cerns the bowing in the data. According to the con-
ditional d’ representation, all of the conditions ap-
pear to produce the same amount of bowing, with the
curves simply displaced vertically. In contrast, the
percent correct representation suggests less bowing
for the small-step(3) condition than for either the
random or large-step ones. The apparent flattening
is, at least in part, a ceiling effect of the probability
measure.

The fact that, in terms of conditional d’, the effect
of the experimental manipulations is simply to dis-
place the bow suggests that different mechanisms
may underlie the bow and the sequential effects in
these absolute identification tasks. This is not a nec-
essary conclusion, however, For example, the at-
tention band may tend to track the last signal pre-
sented, and in addition have a special propensity to
move towards the extremes of the intensity range.
Another source of concern to us is that the djy
estimate in the small-step condition is based on re-
sponse probabilities that approach unity. The d’

analysis assumes a very specific distribution func-
tion, namely the Gaussian. This may be a rather poor
approximation in the tails of the actual distribution
of the underlying decision variable. We simply do not
know enough to be confident of its accuracy, and, as
Wandell and Luce (1978) have demonstrated, one’s
conclusions can be altered radically by using other
plausible distributions which differ from the Gaussian
mainly in the tails. We prefer to remain cautious,
therefore, regarding any final conclusions or infer-
ences concerning the magnitude of the bow effect
across the various conditions.

Discrimination strategy hypothesis. One possibility
that must be considered is that the subjects’ im-
proved performance on the small-step procedure was
due to their use of an alternative strategy—a strategy
that is not absolute identification in the usually un-
derstood sense. As stated previously, on any given
trial in the small-step(3) schedule, the stimulus was
equally likely the one just presented, the one just
above it, or the one just below it. Thus, instead of
engaging in an absolute identification of the signals,
the subjects could have simply been performing a
modified discrimination task in which they judged
whether the signal on trial n+ 1 was softer than, the
same as, or louder than the signal on trial n. Their re-
sponses on trial n+1 would then be based on the
feedback they had received on the prior trial n. For ex-
ample, if signal 5 had been presented on trial n and
the subject judged the signal on trial n+1 to be
louder, he or she would simply respond 6. It is pos-
sible, then, that subjects’ improved performance in
the small-step(3) design was due solely to the fact that
they were able to use a discrimination strategy.

The discrimination strategy hypothesis receives
some support in Figure 3 in which we compare per-
formance on the small-step(3) procedure with per-
formance on the random schedule conditionalized
upon prior signal. The solid line corresponds to the
d{j;+; values in the random schedule when the prior
signal was either i or i+1. As before, separate d’
values were computed for each prior signal and then
averaged together. (The difference between this pro-
cedure and the one used to estimate d{ ;1 in Figure 1
is that we averaged over all 11 previous signals in
Figure 1). The dashed line corresponds to the d{ i1
values for the small-step(3) schedule when the prior
signal was (necessarily) i or i+ 1. (This is the same
curve as that presented in Figure 1.) As is readily ob-
served, performance on the small-step(3) schedule is
markedly superior to. the random-step performance
even when one restricts attention to exactly the same
one-trial sequential dependencies. This result
supports the hypothesis that subjects’ improved sen-
sitivity in the small-step design was due to their use of
a discrimination strategy which was not used in the
random-step design.
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Figure 3. Values of d’ for each signal pair in the small-step
(3) condition, the random condmon when previous signal is near,
and the random condition when previous signal is far.
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Intuitive and plausible as the discrimination strat-
egy hypothesis may be, experimental evidence sug-
gests that it is not correct. In a follow-up experi-
ment, Nosofsky (in press) tested the hypothesis ex-
plicitly—subjects were required simply to discrimi-
nate successive signals embedded in a random-step
design rather than actually to identify them. The
subjects’ ability to resolve adjacent signals was vir-
tually unchanged from their performance in a
random-step identification condition, and was far
worse than their resolution performance in a small-
step(3) identification condition. Thus, even if sub-
jects engaged in the hypothesized discrimination
strategy in the small-step(3) condition, their superior
performance in that condition must be due to some-
thing more than the opportunity to pursue that strat-
egy. We turn, therefore, to an account of the results
presented above in terms of attention bands.

Attention-band hypothesis. Suppose that attention
tends to focus more in the region of the last presented
signal than elsewhere, but that the shifting of the
band is probabilistic, rather than strict. It is plausible
that the probability that the band shifts fully to the
location of the last presented signal is higher when it
has a relatively short distance to move. Such a situa-
tion is guaranteed in the small-step design but not in
the random-step design, in which case one should see
a substantial increase in d’, as observed.

If, however, attention does tend to track the previ-
ous signal, one should observe at least some improve-
ment in identification performance in the random-
step design when the previous signal is near the cur-
rent d’ pair over performance when the previous
signal is far. In Figure 3, we have plotted overall d’
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values for each signal pair contingent on the prior
stimulus being at least two steps away from the closer
signal in the pair (dotted line). For example, the over-
all d,s is computed by averaging the d s values ob-
tained when the prior signal was 1, 2, 7, 8, 9, 10, or
11. As can be seen in the graph, there is a small, but
consistent, tendency for the d{; 1 values to be larger
when the previous signal was i or i+ 1 rather than
when it was at least two signals away. This result is
significant by a Wilcoxon test [W(10)=6.5, p < .0S§,
nondirectional].* In sum, our random-step data lead
us to conclude that there is some, albeit slight, im-
provement in identification performance measured in
d' when the prior signal is near rather than far from
the current signal judged. This result is in accord with
the hypothesis of an attention band which tracks the
prior signal in probabilistic fashion. It is in direct
contrast to the result obtained by Purks et al., but
draws support from the results of Siegel (1972).
Nevertheless, it is a small effect and, as we now
show, the shifting category boundaries found by
Purks et al. are much more important as a source of
sequential effects in the random-step data.

Shifting category boundaries. To review, Purks
et al. found that following the presentation of a
given signal, all category boundaries were shifted
away from that signal. That is, all category bound-
aries located above the signal were shifted above their
average values and all category boundaries located
below the signal were shifted below their average
values. We have expressed concern that the model
they employ in deriving this result assumes constant-
variance stimulus distributions and allows sequential
effects to appear only as changes in the means of
these distributions or as shifts of the category bound-
aries. The attention-band model, on the other hand,
does not assume constant-variance stimulus distribu-
tions, and views sequential effects as resulting from
local changes in variance.

We want, therefore, if at all possible, a scheme for
analyzing the data that bears directly on the question
quite independently of the adequacy of any model.
Consider the following analysis. Let P(R{®, | S®,
S{™ 1) be the probability of responding on trial n that
the signal is believed to have been i+ 1, R{}, when,
in fact, it is S; and given that the signal on the pre-
ceding trial was S;. And let PRY | S,S{"™") be the
other one-step error probability under the same con-
ditions. The attention model says that both of these
probabilities of error are smaller when i is close to j
than when i is far from j. By previous estimates, the
transition from smaller to larger should be in the
neighborhood of 10-20 dB. This prediction is shown
in Figure 4. In contrast, if the distributions remain
the same, but the boundaries shift away from the
location of the previous signal, we should have the
pattern shown in Figure 5. The qualitative difference
between these predictions is striking.
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Figure 4. Schematic prediction of the sequential one-step re-
sponse errors for the attention-band model, See text for a full
explanstion of the notation.

The data from the random-step condition, shown
in Figure 6, are averaged over signals 3 to 9 and over
subjects in order to have adequate sample sizes. An
examination of the subjects separately and of the in-
termediate signals separately showed no substantial
differences from the average plot. These values for
end signals 1 and 2 are essentially flat at about .15
and for 10 and 11 are flat at about .10. As is easily
seen, the data are similar to Figure 5, not to Figure 4,
thereby supporting the shifting boundary idea. The
hypothesis of an attention band located at the previ-
ous signal is simply inadequate to account for these
sequential effects.

Table 1 presents a similar analysis for the large-
step data, segregated according to whether the jump
was up (S-1) < S®) or down (S@-D > SM), We ex-
cluded from this analysis those trials in which the
current signal, S®, was equal to either 1 or 11. The
left panel presents the analysis for trials in which the
jump was up. Given that signal i was presented on
trial n—1, then, when the middle potential signal,
i+35, is selected for presentation on trial n, the one-
step error probabilities are .18 and .21, whereas in
the other two cases, the (necessarily) one-sided one-
step error probabilities are twice as large. The same
pattern is evident in the right panel, which presents
the analysis for the trials in which the jump was
down. Assuming symmetric and identical Thurstonian
distributions for the three signals, this means that, in
terms of shifting category boundaries, the bound-
aries are displaced away from the middle possible
signal, and are not displaced away from the previous
signal, as was found in the random case,

In Table 2, we analyze the response errors for the
small-step(3) data. When the previous signal is re-

peated, the one-step error probabilities are .09 and
.10, whereas for the other two cases, the (necessarily)
one-sided error rate is some 50% greater. Assuming
identical and symmetric Thurstonian distributions
for the three signals, one may conclude from the
small-step data either that the boundaries are dis-
placed away from the signal presented on the previ-
ous trial, as in the random condition, or that they are
displaced away from the middle possibility on the
current trial, as in the large-step condition. This is be-
cause, in the small-step(3) condition, the middle pos-
sibility and the previous signal are always the same.

We have included in the Appendix a summary of
the individual criterion shifts measured in d’ units
for the interested reader,

Summary. In sum, the attention-band hypothesis
by itself gives at best an incomplete explanation of
sequential effects in absolute identification. The pat-
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tern of one-step sequential response errors observed
is far better explained in terms of shifting category
boundaries in a Thurstonian model, although we
know of no rule that characterizes these shifts across
experimental designs.

Table 1
Distribution of Responses Conditioned on Previous Signal i
for Large-Step Data

§(n—1) < g(n)

g(n~1) 5, g(n)

Response

Response

sm i+ 5 6 S 7 i6 -5

i-7 57 .39 04
i—6 24 61 15
i-5 10 44 46

i+4 52 45 .03
i+5 18 61 21
i+6 .05 36 59

Note-Data are averaged over previous signal i,i=1,...,11.
Table 2
Distribution of Responses Conditioned on Previous Signal i
for Smali-Step Data
Response
s(m) i-1 i i+1
i—1 .82 18 .00
i .09 .81 10
i+l .00 14 .86

Note—Data are averaged over previous signal i,i=3,...,9.

The results of the various experiments do lend sup-
port, however, to the attention-band model as at
least a partial explanation of absolute identification
performance. Subjects’ vastly improved performance
in the small-step(3) design strongly supports the
attention-band theory, and the results obtained in the
small-step(5) and large-step conditions are also con-
sistent with its prediction. In addition, the slightly
improved performance in the random-step design
when the previous signal is near rather than far from
the current signal also supports a model in which at-
tention tends to track signal presentations probabi-
listically.

In the remainder of the article, we examine in more
detail the potential role that memory may have
played in the various absolute identification experi-
ments.

EXPERIMENT 2

A hypothesis based on memory rather than on at-
tention or variable category boundaries was sug-
gested to us by Marilyn Shaw. She argued that, on
each trial, the subject searches his or her memory for
the most recent trial on which the signal was near the
current presentation. The two representations are
compared and a response is selected to accord with
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the feedback given on the earlier trial. Note that it is
usual in the random-step condition and inevitable in
the large-step condition for the subject to have to
reach several trials into the past for a relevant case.
If, as everyone believes, representations in short-term
memory deteriorate over time, then the subject is
forced to deal with a degraded representation in these
conditions. In contrast, in the small-step case it is
always sufficient to work with the representation
from the preceding trial.

If passage of time between presentations of signals
of similar intensity is all that is important, then per-
formance in the small-step procedure should deteri-
orate to the level of that observed in the large-step
procedure, provided the delays between relevant
signal presentations are made comparable. To check
this, we used the large-step schedule but presented
only those signals that fulfilled the small-step con-
straints, omitting all presentations of other signals.
However, since the whole procedure is paced by the
subjects’ responses, we had to build in some time to
correspond to responses to the lost signals. There are
various ways this might have been done; we elected to
do it by yoking together two subjects, the one run in
the large-step design and the other receiving only the
subset of trials fulfilling the small-step condition. We
call this latter condition *‘yoked small step(3).”’

It should be noted prior to reporting the results
that, by itself, this experiment could not be defini-
tive. If performance failed to deteriorate to the level
of large steps, a memory theorist could argue that,
during these pure delays, the observer engaged in
some form of rehearsal. And if performance did
deteriorate, an attention theorist could argue that
attention might wander over long periods during
which nothing was happening. A category boundary
theorist could argue that the variance of the bound-
ary locations increased with time. Nonetheless, the
experiment needed to be run to see which alternative
needed further investigation and amplification.

Method

The signal set and the apparatus were the same as in Experi-
ment 1.

In each block of trials, one observer responded to 100 signals
presented under the constraints of the large-step transition matrix
described for Experiment 1. The other observer received only that
subset of the signals which fulfilled the constraints of the small-
step(3) transition matrix. In other words, both observers received
the first trial in each block, the selection of which was uncon-
strained. Then the signal sequence generated according to the
large-step transition matrix was presented to the one observer, and
it was also monitored so that whenever a signal arose which dif-
fered by a small step from the signal last heard by the other ob-
server, it was presented to that observer. Although most frequently
only a single large-step trial intervened between successive small-
step trials, on rare occasions up to 24 large-step trials intervened.
On average, the small-step observer received 27 trials to the large-
step observer’s 100 trials.

Two female observers, neither of whom had participated in
Experiment 1, completed about 10 blocks of trials per day. For
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Figure 7. Values of d;;,, as a function of signal i for the large-
step and yoked small-step(3) conditions.

each observer, data were collected in the large-step condition
during one half of each session and in the small-step condition
during the other, with the order reversed from day to day. Because
we accumulated large-step data much faster than small-step data,
it was necessary to run approximately 6,500 large-step trials for
each observer to yield data on 1,750 yoked small-step trials.

For each observer on each of her trials, the set of responses pos-
sible for that trial under the constraints of the appropriate matrix
were printed on the terminal. Otherwise, the procedure and struc-
ture of trial blocks was as described for Experiment 1.

Results and Discussion

Since the patterns of performance of the two sub-
jects were similar, the results shown in Figure 7 are
cumulated over subjects. The method of analysis was
as in Experiment 1. Sensitivity in the yoked small-
step(3) condition is clearly superior to that of the
same subjects in the large-step condition. We may
conclude that the observed level of performance in
the large-step procedure is due to something more
than time since the most recent presentation of a sig-
nal of intensity similar to that of the current signal.

We also wish to note that we collected data from
these same subjects in a standard small-step(3) con-
dition and that, if anything, their performance in the
yoked condition was superior to their performance in
the standard condition. We conclude that mere de-
lays between signal presentations do not contribute
substantially to performance differences among con-
ditions using our experimental paradigm.

EXPERIMENT 3

In this final experiment, we explore the possibility
that much of the effect on memory has to do with
intervening signals. One way to approach that would
be somehow to fill the intervening time with some-



thing to block rehearsal. An alternative, however, is
to place under very close control how far into the
past the observer must search for a nearby signal.

Method

Everything was as in Experiment 1, except for the nature of the
sequential dependencies in the signal presentations. For each
number k, one can generate a k-lagged small-step design as fol-
lows. The signal on trial n is chosen at random from among all of
the signals simultaneously meeting the following conditions: It
shall fulfill the small-step(3) condition for trial n -k, and it shall
fail to satisfy that condition for all intermediate trials. For ex-
ample, for lag 3, suppose S® =2, S®V=9, and S®-D=4; then
the possible values for S™ are 1 and 2, 3 being ruled out because it
meets the small-step(3) condition relative to S®~1, The program
was written to relax these constraints should they prove inconsis-
tent, but that problem did not arise. On each trial, the set of three
responses centered around the signal presented on trial n—k ap-
peared on the terminal screen, regardless of whether all of the cor-
responding signals were eligible to be presented.

One of the subjects from Experiment 2 and three new subjects
participated. Approximately 1,900 responses were collected in
each lag condition for two of the subjects, and approximately
2,900 responses were collected in each lag condition for the other
two subjects. Insofar as was possible, lag conditions 1, 2, 3, and 4
were run on successive days in 4-day cycles.

Results and Discussion

The data for lags 1 [which is small step(3)], 2, 3,
and 4 are shown in Figure 8. Again, we have com-
bined the data of the individual subjects, since
their results were similar. There seems to be little or
no difference among the last three lags, which sug-
gests that, if decreased sensitivity from the small-
step(3) condition is due to interference with memory,
the effect is completely manifest when there is only
one intervening signal.

A problem arises, however, in the interpretation of
these data. Due to the sequential constraints em-
bodied in the experimental procedure described
above, it turns out that signals at higher lags become
more and more predictable a priori. It is possible,
then, that decaying memory is offset by increased sig-
nal predictability to yield equivalent performance
across different lags. We therefore seek converging
evidence from data we already have available from
the random-step condition in Experiment 1. Spe-
cifically, we isolate those trials in the random condi-
tion which actually satisfy the sequential constraints
in the k-lagged small-step design described above.
For example, for lag-3 analysis, we only look at those
trials for which signal i is presented on trial n, sig-
nal i—1, signal i, or signal i+1 is presented on
trial n—3, and none of these signals are presented
ontrialn—1 or trialn -2,

The di;;; values for the four lag conditions are
presented in Figure 9, (Note that the lag 1 condition
corresponds to the di;; values already plotted in
Figure 2 for the random data when the previous sig-
nal was i or i+ 1.) The results, significant by a
Friedman test [x*(3)=9.7, p < .05] exhibit a pattern
similar to that found for the k-lagged small-step de-
sign—if anything, performance improves with in-
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Figure 8. Values of d/, , as a function of signal i for each lag
condition (1-4). i

creasing lag subsequent to lag 1. The data from the
two experiments converge on the conclusion that any
memory effects are limited to one intervening trial. A
similar conclusion was reached by Siegel (1972) in his
study of memory effects in the absolute identification
of tone frequencies.

CONCLUSIONS

Our firmest conclusion is that the account of se-
quential effects in absolute identification in terms of
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Figure 9, Values of d;(,; as a function of signal i for those
trials in the random condition of Experiment 1 that satisfy the
sequential constraints of the k-lagged small-step designs, for
k=1,2,3,4.
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an attention band located in the region of the last
presented signal is at best incomplete. Only minor
(albeit significant) increases in d’ were observed in
the random-step condition when the intensity differ-
ence between the current signal and the previous one
was small as compared with when it was large. Fur-
thermore, the pattern of sequential response errors
that was observed is far better explained in terms of
systematic shifts in category boundaries in a
Thurstonian model. It is not clear which, if any, rule
describes the shift for all cases. For example, a rule
that seems to describe all but the edges of a random
schedule—shift each boundary from its average
position away from the previous signal—cannot
account for the errors observed under the large-step,
sequentially constrained presentation schedule.
There the rule seems to be: Shift both boundaries
away from the middle possible signal. We do not
have a simple rule to account for the data from both
conditions.

Despite the failure of the one-trial sequential track-
ing hypothesis, the attention-band model remains a
viable, if incomplete, explanation of absolute identi-
fication performance. The systematic differences in
the levels of sensitivity observed in the conditions of
Experiment 1—small step(3), small step(5), random
step, and large step—support strongly the idea of an
attention band, about 10-20 dB wide, which tends to
locate itself in that region of the intensity continuum
from which signals have been recently and repeatedly
presented. We need to learn a good deal more, how-
ever, about the factors that control the band’s loca-
tion. Among those that may be significant are the in-
tensity difference between successive signal presenta-
tions, the degree of signal clustering, and subject ex-
pectancies.

In any case, the results observed in the sequentially
constrained conditions undercut hypotheses which
suggest that the variability in the signal representa-
tion is a function solely of the range of signals being
used, since the range in each of these conditions was
identical. The possibility that the range between suc-
cessive signal presentations is the relevant factor re-
mains as an issue for further investigation.

The possible role of memory limitations on perfor-
mance in the various experimental conditions was in-
vestigated in several ways. First, the conditional d’
analysis applied to the random-step data of Experi-
ment 1 is relevant to hypotheses that emphasize the
memory retention interval, That d’ in the random-
step condition was only slightly better than average
when the previous signal was, at most, one step away
from the current signal makes any hypothesis based
solely on the memory retention interval difficult to
defend. Second, simple time delay between signal
presentations of similar intensity was shown to have,
at best, minor effects in Experiment 2. Finally, in

Experiment 3, we showed that any performance def-
icits caused by interpolating signals of dissimilar in-
tensity between signals of similar intensity were
manifest completely in just one intervening trial.

Concerning the bow in absolute identification
data, we remain unsure of its source. Limited atten-
tional resources is still a possibility. To account for
the bow, it is sufficient merely to place more of the
resources on the ends of the range than in the middle,
which is equivalent to saying, in the Thurstonian
model, that the variances of the end signals are
smaller than those of the middle ones. But that, by
itself, fails to account for the fact that performance
with a fixed number of equally spaced signals does not
improve nearly as much with increasing range as the
Thurstonian model predicts. That finding requires all
variances to grow, or distances to diminish, with
range, but there must be some deeper explanation for
this. After all, the peripheral neural representation of
a signal is almost certainly independent of the other
signals being used in the experiment, and so, in par-
ticular, of the range and of whether a signal is an end
one. But, if one thinks of attention as a band in in-
tensity—like a searchlight in the representational
space—that tracks signals probabilistically but with
some greater tendency towards the ends of the range,
then both the bow and range effects make sense. This,
however, is the model Kornbrot attempted to fit to
data (see Footnote 1) but rejected in favor of a single-
process Thurstonian model.
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NOTES

1. Kornbrot (1980) has attempted to fit a particular nonconstant-
variance Thurstonian version of the attention-band model to ab-
solute identification data of Lippmann, Braida, and Durlach
(1976). In particular, she assumed that the ratio of the variances
on adjacent signals was a constant, as was true of the special
Poisson model studied by Luce, Green, and Weber (1976). Within
that special family of models, she found that the best fit to the data
was with no attention bands (a single rather than a dual Thurstonian
model) and with equal variances (the ratio of variances of ad-
jacent signals is 1). This means that Kornbrot’s analysis, albeit
exceedingly painstaking, is limited by a rather severe prior con-
straint which is inherent neither in attention bands nor in
nonconstant-variance models. In addition, her analysis does not
take into account the existence of sequential effects, which we
know to be pronounced. We hope that if the attention ideas are
wrong, more direct evidence can be found.

2. Within each S-R matrix, the method used to compute each
dy;, pair is as follows. Whenever stimulus i + 1 is presented and a
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Response
Stimulus R<i R > i+l
i Correct Rejection False Alarm
i+l Miss Hit

response of i+1 or greater is given, it is considered a ‘‘hit,”’
whereas a response of i or less is considered a ‘‘miss.”’ Similarly,
whenever stimulus i is presented and a response of i+ 1 or greater is
given, it is considered a ‘‘false alarm,”” whereas a response of i or
less is a “‘correct rejection.’’ Values of d’ are then computed in the
usual way. The procedure is summarized in the table above.

An alternative procedure (that employed by Purks et al.) would
have been to compute maximume-likelihood estimates of each d’
pair simultaneously using a case-V (constant-variance) Thurstonian
model. Although such a procedure utilizes all the information
in the S-R matrix, it is not a viable approach in the present study
due to the response constraints inherent in the small-step and
large-step conditions. In addition, we reject the constant-variance
assumption made in the model even for the random-step condition.

3. We wish to point out that, since a signal was presented only
after all observers had entered a response for the previous trial,
the intertrial interval in these experiments was not controlled.
Indeed, it seemed to be that subjects’ response times were nega-
tively correlated with their performance across conditions. Never-
theless, we believe that the differences in intertrial intervals be-
tween conditions accounted for an extremely small proportion of
the variance, and that the sequential dependencies were the major
determiners of performance. Some evidence to this effect is pre-
sented in Experiment 2.

4. Using the Thurstone case-V method of analysis, we find a
similar pattern of results that are significant by a Wilcoxon test
[W(9) =17, p < .05, directional (one tie)].

APPENDIX

In the following tables we present the criterion shifts
in d’ units for each signal pair as a function of the pre-
vious signal presented for the random-step, small-step(3),
and large-step conditions. The method for computing
d,” i+1 for each signal pair is as described in Footnote 2.

Let ¢; denote the distance of the criterion from the mean
of the noise distribution, and let b; denote the criterion
shift. The values tabled below are computed by the formula

bi=(c;—d{i11/2)/d{ ;-

Table Al
Random Step Criterion Shifts (by)

i

Previous

Signal 1 2 3 4 5 6 7 8 9 10
1 .16 .56 35 53 .16 .69 50 52 19 -.00
2 =21 .20 .70 44 75 51 41 33 .19 -.08
3 -.17 -.27 .26 44 51 .38 34 45 19 .00
4 -04 -.27 -.25 -.03 46 47 47 44 30 -.01
5 -03 -.21 -.03 -.16 37 49 41 .36 30 -.02
6 03 -.10 -.22 -.52 -.20 .53 39 .37 .29 .02
7 02 -.36 -.28 —-46 —-41 -.18 .24 37 .36 .01
8 -05 -.22 —-45 -.20 —-40 -.18 -.10 44 44 .10
9 -.01 -.15 -.25 -44 -.18 -.35 -.17 .06 .29 18
10 -22 -.50 -.28 -.36 —41 —41 -.20 .08 -.05 -.15
11 04 —.54 -.50 -.04 -.31 -.03 .07 .21 -.09 -.08
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Table A2
Large-Step Criterion Shifts (b;)
Previous ! Previous !

Signal 1 2 3 4 5 Signal 5 6 7 8 9 10
i+6 30 69 64 73 .87 i-5 .59 13 .39 12 -1
i+7 .01 -.18 -.37 -.24 i-4 —54 -1.24 -85 -48 -42 -.12

Table A3
Small-Step Criterion Shifts (b;)
Previous -
Signal 1 2 3 4 5 6 7 8 9 10
i .01 -05 -.02 -02 .09 07 —.01 15 .08 -.01
i+1 -.08 -.12 -.10 -07 -.16 -12 -.08 -.01 -02 -.00
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