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Abstract We show how to modify the original Bassi and Rebay scheme (BR1) [F. Bassi and S. Rebay, A

High Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible

Navier-Stokes Equations, Journal of Computational Physics, 131:267–279, 1997 ] to get a provably sta-
ble discontinuous Galerkin collocation spectral element method (DGSEM) with Gauss-Lobatto (GL)
nodes for the compressible Navier-Stokes equations (NSE) on three dimensional curvilinear meshes.

Specifically, we show that the BR1 scheme can be provably stable if the metric identities are
discretely satisfied, a two-point average for the metric terms is used for the contravariant fluxes in
the volume, an entropy conserving split form is used for the advective volume integrals, the auxiliary
gradients for the viscous terms are computed from gradients of entropy variables, and the BR1 scheme
is used for the interface fluxes.

Our analysis shows that even with three dimensional curvilinear grids, the BR1 fluxes do not add
artificial dissipation at the interior element faces. Thus, the BR1 interface fluxes preserve the stability
of the discretization of the advection terms and we get either energy stability or entropy-stability for
the linear or nonlinear compressible NSE, respectively.

Keywords Discontinuous Galerkin · Bassi and Rebay · viscous terms · linearized Navier-Stokes
equations · compressible Navier-Stokes · energy stability · skew-symmetry · entropy-stability

1 Introduction

In [4], Bassi and Rebay introduced a now popular discontinuous Galerkin (DG) approximation to
the compressible Navier-Stokes equations (NSE). They extended the DG method introduced for the
approximation of first order hyperbolic conservation laws by Reed and Hill in 1973 [38] and extended
and popularized with the series of Cockburn and Shu et al., e.g. [9,10,11,12] to diffusion problems. The
method is of Galerkin finite element type, however the approximation space is piecewise polynomial
with discontinuities across element interfaces in contrast to classic continuous Galerkin finite element
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methods. This discontinuous ansatz automatically localizes the data dependencies of the scheme as
well as allows the introduction of approximate Riemann solver fluxes in surface integrals of the weak
form to connect neighboring elements. Riemann solvers introduce artificial dissipation for advection
problems in a natural way. The dissipation behavior of the DG approximation of advection is such
that dissipation is very low for well resolved scales, but very high for coarsely resolved scales [17].
This means that the scheme naturally damps away small scale oscillations for advection dominated
problems and it is this difference to classical continuous Galerkin finite element methods, which are
virtually dissipation free, that makes DG advantageous.

Bassi and Rebay rewrote the second order partial differential equations (PDEs) into an extended
system of first order PDEs by introducing the gradient as a new unknown. After rewriting the system,
the standard DG ansatz analogous to the discretization of first order hyperbolic conservation laws
is used. The only difference is that now two additional surface integral terms appear in the weak
form and suitable choices are needed in addition to the approximate Riemann solvers of the advection
terms. In the BR1 scheme, the simplest of all is used: the arithmetic mean of the viscous fluxes and
the arithmetic mean of the solution (needed for the auxiliary gradient formulation). The resulting
scheme is arguably the most simple variant to date for the discretization of second order terms.

Although popular, the Bassi and Rebay approach, and particularly the BR1 interface approxima-
tion, has never been shown to be stable for the compressible Navier-Stokes equations. When used for
purely elliptic problems, the equivalent DG scheme suffers from some bad properties [2,3] such as: 1)
a widened stencil, which results in a higher fill in of the operator matrix, which in turn is bad for
memory consumption and efficiency of iterative linear algebra solvers; 2) the BR1 scheme is consistent,
but not stable and 3) due to the symmetry of the numerical fluxes of the BR1 scheme, the convergence
behavior has an odd-even behavior with non-optimal convergence. The results for pure elliptic PDEs
have left a bad impression of the BR1 scheme. Many other variants for the discretization of second
order terms have arisen since, e.g. [2,3], which mostly overcome the observed deficiencies of the BR1
scheme.

When applying the BR1 scheme to the unsteady compressible Navier-Stokes Equations (NSE),
the disadvantages observed in purely elliptic problems don’t seem so dramatic anymore. In fact, some
of the issues are naturally resolved when considering an explicit time discretization for the unsteady
compressible NSE: 1) the wider stencil does not matter within a Runge-Kutta discretization, as the
effective stencil size is increased anyway throughout the Runge-Kutta stages, plus the scheme is
purely explicit, so no fill in considerations are necessary; 2) in combination with a de-aliased DG
discretization of the advection operator, stability issues have not been observed when turbulence is
severely under-resolved [20]; 3) due to the upwind nature of the Riemann solver for the advection
terms, there is no symmetry of the numerical fluxes at the interface and no negative influence on the
observed convergence rate when considering high Reynolds number (advection dominated) flows, see
e.g. [5,21]. In addition, the scheme is generic in the sense that it is independent of the underlying
form or structure of the viscous terms, as only arithmetic means are used at the interfaces. It is also
parameter free, i.e. no particular choice of any penalty constant is necessary. This makes the BR1
scheme very simple to implement for generic linear and nonlinear viscous terms on general unstructured
or structured curvilinear grids. Furthermore, in the experience of the authors and analyzed in [24],
the BR1 discretization allows for a relatively large explicit time step in comparison to other schemes.

Unfortunately, DG approximations to the Euler and Navier-Stokes equations are known to some-
times fail due to aliasing instabilities, e.g. [20]. To make the approximation more robust, production
codes add ad hoc stabilization procedures such as overintegration and filtering, e.g. [33,20].

The popularity of the scheme, plus the fact that ad hoc stabilisation is often necessary, shows that
there is a need for careful analysis and construction of a provably stable version.
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In this paper we present the full analysis of a provably stable Bassi and Rebay type approximation
for the compressible NSE on curvilinear grids in three space dimensions. We present a semi-discrete
analysis in a step by step manner, i.e. the energy analysis for the linearized compressible NSE in the
first part, Sec. 3, and the entropy analysis for the nonlinear equations in the second part, Sec. 4.
Both parts have a similar structure: we first introduce the continuous and discrete analysis for a one
dimensional scalar equation to introduce the basic steps and concepts. This is in preparation for the
extension to the general three dimensional NSE on unstructured curvilinear grids.

From the analysis we show that a Bassi and Rebay type approximation is stable if

• the metric identities are discretely satisfied,
• the metric terms in the construction of the contravariant fluxes are incorporated as a two-point

average,
• the advective volume terms are discretised in a split form manner,
• for nonlinear problems the viscous fluxes are computed in terms of the entropy variables and its

gradients,
• and the BR1 scheme is used for the interface fluxes, i.e. arithmetic means are used.

In preparation of the two main parts of this work, we first introduce the discontinuous Galerkin
collocation spectral element (DGSEM) with Gauss-Lobatto (GL) nodes in Sec. 2.1, we present the
proofs for linear equations in Sec. 3, the proofs for the nonlinear equations in Sec. 4, and we draw our
conclusions in the last section, Sec. 5.

1.1 Nomenclature

The analysis and proofs in this work are quite technical. For clarity, we collect notation that we use
throughout this work here.

P
N Space of polynomials of degree 6 N

I
N Polynomial Interpolation operator

(x, y, z) Physical space coordinates

(⇠, ⌘, ⇣) Reference space coordinates
→

v Vector in three dimensional space
→

n = n1x̂+ n2ŷ + n3ẑ Cartesian space normal vector

n̂ = n̂1⇠̂ + n̂2⌘̂ + n̂3⇣̂ Reference space normal vector

u Continuous quantity

U Polynomial approximation
↔

f ,
↔

f̃ Block vector of Cartesian flux and contravariant flux

B Matrix

B Block matrix

2 The DGSEM for Compressible Viscous Flows

Compressible viscous flows are modelled by the Navier-Stokes equations,

ut +
3
X

i=1

@fi
@xi

=
1

Re

3
X

i=1

@fv,i (u,rxu)

@xi
. (2.1)
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The state vector contains the conservative variables

u =

2

4

⇢

⇢
→

v

⇢E

3

5 =

2

6

6

6

6

4

⇢

⇢v1
⇢v2
⇢v3
⇢E

3

7

7

7

7

5

. (2.2)

In standard form, the components of the advective flux are

f1 =

2

6

6

6

6

4

⇢v1
⇢v21 + p

⇢v1 v2
⇢v1 v3
⇢v1 H

3

7

7

7

7

5

f2 =

2

6

6

6

6

4

⇢v2
⇢v2 v1

⇢v2 v2 + p

⇢v2 v3
⇢v2 H

3

7

7

7

7

5

f3 =

2

6

6

6

6

4

⇢v3
⇢v3 v1
⇢v3 v2

⇢v3 v3 + p

⇢v3 H

3

7

7

7

7

5

, (2.3)

where

H = E +
p

⇢
E = e+

1

2
|
→

v|2 e =
1

� � 1

p

⇢
. (2.4)

The equations have been scaled with respect to free stream reference values so that the Reynolds
number is

Re =
⇢1V1L

µ1

, (2.5)

where L is the length scale and V1 is the free-stream velocity. Additionally, the Mach number and
Prandtl numbers are

M1 =
V1

p

�RT1
, Pr =

µ1Cp

�1
. (2.6)

The viscous fluxes written in terms of the primitive variables are

fv,1 =



0 ⌧11 ⌧12 ⌧13

✓

⇣

X3

j=1
vj⌧1j

⌘

+ �
@T

@x

◆ �T

,

fv,2 =



0 ⌧21 ⌧22 ⌧23

✓

⇣

X3

j=1
vj⌧2j

⌘

+ �
@T

@y

◆ �T

,

fv,3 =



0 ⌧31 ⌧32 ⌧33

✓

⇣

X3

j=1
vj⌧3j

⌘

+ �
@T

@z

◆ �T

,

(2.7)

where

⌧ij = µ

✓

@vj
@xi

+
@vi
@xj

◆

�
2

3
µ (rx ·

→

v) �ij , � =
µ

(� � 1)PrM2
1

, (2.8)

and the temperature is

T = �M2
1

p

⇢
. (2.9)

For a compact notation that will simplify the analysis, we define block vectors (with the double
arrow)

↔

f =

2

4

f1

f2

f3

3

5 , (2.10)
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and the spatial gradient of a state as

→

rxu =

2

4

ux

uy

uz

3

5 . (2.11)

The dot product of two block vectors is defined by

↔

f ·
↔

g =
3
X

i=1

fi
T
gi . (2.12)

Finally, the dot product of a block vector with a vector is a state vector,

→

g ·
↔

f =
3
X

i=1

gifi . (2.13)

With this notation the divergence of a flux is defined as

→

rx ·
↔

f =
3
X

i=1

@fi
@xi

, (2.14)

which allows us to write the Navier-Stokes equations compactly as

ut +
→

rx ·
↔

f =
1

Re

→

rx ·
↔

fv

⇣

u,
→

rxu

⌘

. (2.15)

As part of the approximation procedure, it is customary to represent the solution gradients as a
new variable to get a first order system of equations

ut +
→

rx ·
↔

f =
1

Re

→

rx ·
↔

fv (u,
↔

q)

↔

q =
→

rxu .

(2.16)

To set up the standard spectral element approximation, one subdivides the physical domain, ⌦,
into K non-overlapping and conforming hexahedral elements, ek, k = 1, 2, . . . ,K. These elements can
have curved faces if necessary to accurately approximate the geometry.

So that the equations can be approximated by a Legendre spectral element method, they are re-
written in computational space on the reference element E = [�1, 1]3. Each element is mapped from

the reference element with a mapping
→

x =
→

X(
→

⇠ ), where
→

X = Xx̂ + Y ŷ + Zx̂ and the hats represent

unit vectors. Similarly, the reference element space is represented by
→

⇠ = ⇠⇠̂ + ⌘⌘̂ + ⇣⇣̂.
From the transformation, we define the three covariant basis vectors

→

ai =
@

→

X

@⇠i
, i = 1, 2, 3, (2.17)

and (volume weighted) contravariant vectors, formally written as

J
→

a i =
→

aj ⇥
→

ak , (i, j, k) cyclic , (2.18)

where

J =
→

ai · (
→

aj ⇥
→

ak) , (i, j, k) cyclic (2.19)
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is the Jacobian of the transformation. Elements with curved faces will have basis vectors and Jacobian
that vary within an element. However, even with curved elements, the contravariant coordinate vectors
satisfy the metric identities [25]

3
X

i=1

@
�

Jain
�

@⇠i
= 0 , n = 1, 2, 3 . (2.20)

In terms of the reference space variables, the gradient of a function, g, is

→

rxg =
1

J

3
X

i=1

J
→

a i @g

@⇠i
(2.21)

and the divergence of a vector,
→

g, is

→

rx ·
→

g =
1

J

3
X

i=1

@

@⇠i

⇣

J
→

a i ·
→

g
⌘

. (2.22)

The transformation of the gradient and divergence can be written in terms of block vectors and
block matrices of the form

B =

2

4

B11 B12 B13

B21 B22 B23

B31 B32 B33

3

5 , (2.23)

where each Bij is a 5 ⇥ 5 matrix. In terms of block vectors and matrices, the transformation of the
gradient (2.21) is

→

rxu =

2

4

ux

uy

uz

3

5 =
1

J

2

4

J a11 I5 J a21 I5 J a31 I5
J a12 I5 J a22 I5 J a32 I5
J a13 I5 J a23 I5 J a33 I5

3

5

2

4

u⇠

u⌘

u⇣

3

5 =
1

J
M

→

r⇠u, (2.24)

where I5 is the 5⇥ 5 identity matrix.
For the divergence, (2.22), each component is

@

@⇠i

⇣

J
→

a i ·
→

g
⌘

=
@

@⇠i

⇣

J ai1g1 + J ai2g2 + J ai3g3

⌘

, (2.25)

so for a block vector
↔

g,
→

rx ·
↔

g =
1

J

→

r⇠ ·
⇣

MT ↔

g

⌘

. (2.26)

Finally, if we define the contravariant block vector

↔

f̃ = MT↔

f , (2.27)

the transformed system of the Navier-Stokes equations (2.16) is compactly written as

Jut +
→

r⇠ ·
↔

f̃ =
1

Re

→

r⇠ ·
↔

f̃v (u,
↔

q)

J
↔

q = M
→

r⇠u

(2.28)

on the reference element.
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The spectral element approximation is derived from weak forms of the equations (2.28). Let us
define the inner product on the reference element for state vectors

hv,uiE =

Z

E

u
T
vd⇠d⌘d⇣ . (2.29)

Similarly, for block vectors,
D

↔

f ,
↔

g

E

E
=

Z

E

3
X

i=1

f
T
i gid⇠d⌘d⇣ . (2.30)

Since there should be no confusion in context, we will usually leave off the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the weak
form of (2.28) reads as

hJu,φi+

Z

@E

φ
T

⇢

↔

f̃ �
1

Re

↔

f̃v

�

· n̂ dS�
D↔

f̃ ,
→

r⇠φ

E

= �
1

Re

D↔

f̃v,
→

r⇠φ

E

D

J
↔

q,
↔

ψ

E

=

Z

@E

u
T
n

MT ↔

ψ

o

· n̂ dS�
D

u,
→

r⇠ ·
⇣

MT ↔

ψ

⌘E

.

(2.31)

2.1 The Spectral Element Approximation

To get spectral accuracy, we approximate the state vector by polynomials of degree N , which we
represent as U 2 P

N (E). The polynomials can be written in terms of the Legendre basis functions, or
equivalently in terms of the Lagrange basis with nodes at the Legendre Gauss or Gauss-Lobatto points
with nodal values Unml, n,m, l = 0, 1, . . . , N . We write the interpolation of a function g through those
nodes as G = I

N (g). Fluxes are also approximated with polynomials of degree N , represented nodally,
and computed from the nodal values of the state and gradients. Derivatives are approximated by
exact differentiation of the polynomial interpolants. Differentiation and interpolation do not commute,

however, so
⇣

I
N (g)

⌘

0

6= I
N
�

g0
�

[6,28].

The geometry and metric terms are also approximated with polynomials of degree N . Most im-
portantly, the metric terms are computed so that the discrete metric identities [25]

3
X

i=1

@IN
�

Jain
�

@⇠i
= 0 , n = 1, 2, 3 (2.32)

are satisfied. This is ensured if the metric terms are computed as

Jain = �x̂i ·r⇠ ⇥
⇣

I
N
�

Xlr⇠Xm

�

⌘

, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic . (2.33)

This definition ensures free stream preservation discretely [25] and has already been shown to be
important for stability [32].

Integrals and inner products are approximated by a Legendre-Gauss or Legendre-Gauss-Lobatto
quadrature. We write the quadrature in one space dimension as

Z 1

�1

g (⇠) d⇠ ⇡

Z

N

g(⇠) d⇠ ⌘
N
X

n=0

g (⇠n)!n , (2.34)
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where !n, n = 0, . . . , N are the quadrature weights. Tensor product extension is used for multiple di-
mensions. We write the discrete inner product between two functions f and g in three space dimensions
as

hf, giN =
N
X

n,m,l=0

fnmlgnml!n!m!l ⌘

N
X

n,m,l=0

fnmlgnml!nml, (2.35)

where fnml = f (⇠n, ⌘m, ⇣l), etc. An important fact to remember here is that from the definition,

D

I
N (f), V

E

N
= hf, V iN , (2.36)

for any V 2 P
N .

The Gauss type quadratures are chosen because of their high precision. For polynomials U and V ,

hU, V iN = hU, V i 8 UV 2 P
2N+�, (2.37)

where � = 1 for the Gauss and � = �1 for the Gauss-Lobatto quadrature [6]. The exactness of both
Gauss and Gauss-Lobatto quadrature leads to a summation-by-parts formula,

Z

N

UV 0dx = UV |1
�1 �

Z

N

U 0V dx, (2.38)

which extends to all space dimensions [26].
In this work, we restrict ourselves to Gauss-Lobatto quadrature, where the boundary nodes are

included. Including the boundary nodes simplifies the construction of stable surface terms, since no
interpolation of volume data to the element surface is necessary. From summation-by-parts (2.38), we
have the discrete extended Gauss Law [29]

D

→

r⇠ ·
↔

F̃, V
E

N
=

Z

@E,N

⇣↔

F̃ · n̂
⌘

V dS�
D↔

F̃,
→

r⇠V
E

N
, (2.39)

where n̂ is the reference space unit outward normal at the faces of E and

Z

@E,N

⇣↔

F̃ · n̂
⌘

dS =
N
X

j,k=0

!jkF̃
1 (⇠, ⌘j , ⇣k)

�

�

�

1

⇠=�1
+

N
X

i,k=0

!ikF̃
2 (⇠i, ⌘, ⇣k)

�

�

�

1

⌘=�1
+

N
X

i,j=0

!ij F̃
3 (⇠i, ⌘j , ⇣)

�

�

�

1

⇣=�1

⌘

Z

N

F̃ 1d⌘d⇣
�

�

�

1

⇠=�1
+

Z

N

F̃ 2d⇠d⇣
�

�

�

1

⌘=�1
+

Z

N

F̃ 3d⇠d⌘
�

�

�

1

⇣=�1
.

(2.40)

With this notation, the approximations give the discrete weak forms of the DGSEM

hJU,φiN +

Z

@E,N

φ
T

⇢

↔

F̃�
1

Re

↔

F̃v

�

· n̂ dS�
D↔

F̃,
→

r⇠φ

E

N
= �

1

Re

D↔

F̃v,
→

r⇠φ

E

N

D

J
↔

Q,
↔

ψ

E

N
=

Z

@E,N

U
T
⇣⇣

MT ↔

ψ

⌘

· n̂
⌘

dS�
D

U,
→

r⇠ · I
N
⇣

MT ↔

ψ

⌘E

N
,

(2.41)

where the test functions are restricted to polynomials in P
N .
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Elements are coupled through the boundary terms by way of numerical fluxes, which we represent
as F̃⇤, F̃⇤

v and U⇤

hJU,φiN +

Z

@E,N

φ
T

⇢

F̃
⇤ �

1

Re
F̃
⇤

v

�

dS�
D↔

F̃,
→

r⇠φ

E

N
= �

1

Re

D↔

F̃v,
→

r⇠φ

E

N

D

J
↔

Q,
↔

ψ

E

N
=

Z

@E,N

U
⇤,T
⇣⇣

MT ↔

ψ

⌘

· n̂
⌘

dS�
D

U,
→

r⇠ · I
N
⇣

MT ↔

ψ

⌘E

N
.

(2.42)

Applying the discrete extended Gauss law (2.39) to the equation for
↔

Q gives the final weak form of
the DGSEM for the compressible Navier-Stokes equations

hJU,φiN +

Z

@E,N

φ
T

⇢

F̃
⇤ �

1

Re
F̃
⇤

v

�

dS�
D↔

F̃,
→

r⇠φ

E

N
= �

1

Re

D↔

F̃v,
→

r⇠φ

E

N

D

J
↔

Q,
↔

ψ

E

N
=

Z

@E,N

�

U
⇤ �U

 T
⇣⇣

MT ↔

ψ

⌘

· n̂
⌘

dS�
D

→

r⇠U,MT ↔

ψ

E

N
.

(2.43)

The numerical advective flux F̃⇤ is usually computed with an approximate Riemann solver such
as the Lax-Friedrichs or Roe solvers. The coupling functions for the viscous terms include the Bassi-
Rebay (BR1), Local DG (LDG), Interior Penalty (IP), and others. See [3] for a review of the variety
of solvers used in practice for the viscous terms.

The approximation with an upwind Riemann solver for the advective flux and the BR1 scheme for
the viscous terms is usually stable in practice, at least for well-resolved flows. Examples include two
and three dimensional computations, e.g. [5,21,35]. Often, however, some kind of filtering is applied
to ensure stability [15] or the volume integrals are “overintegrated”, i.e., evaluated with quadratures
M > N [23,33].

In fact, despite its use in applications, the approximation (2.43) is not necessarily even linearly stable.
Immediate possible contributors to instability are the use of inexact quadrature in the volume terms, or
the choice of the numerical fluxes. We show in the following that with the appropriate approximation
of the advective and diffusion terms, the approximation is stable using the BR1 scheme for the surface
viscous terms. Then, starting from the stable approximation, we will see precisely what contributes
to instability in (2.43) for underresolved flows.

3 Linear Stability Analysis

3.1 BR1 is Stable: Linear Scalar Advection-Diffusion in 1D

To motivate and to provide an outline of the concrete steps used in the analysis of the Navier-Stokes
equations, we start with an initial boundary value problem for the simpler linear variable coefficient
advection-diffusion equation

BV P

8

>

>

>

<

>

>

>

:

ut + (au)x = (bux)x , x 2 [0, L]

u(0, t) = 0

ux(L, t) = 0

u(x, 0) = u0(x)

(3.1)

with a = const. > 0 and b = b(x) > 0. The choice a > 0 is solely to simplify the writing of the boundary
conditions. It is not necessary in general. To guarantee stability of the advective terms with the DG
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approximation [27], we re-write them in split form,

ut +
1

2

�

(au)x + aux + axu
 

= (bux)x . (3.2)

Note that in the case of a constant advection speed, a, the split form reduces to the standard conser-
vative form. However, we purposely leave it in split form in anticipation of the more complex proofs
where the split form is necessary. Since a is constant,

ut +
1

2

�

(au)x + aux
 

= (bux)x . (3.3)

We also split the gradient of the solution as a variable itself so

ut +
1

2

�

(au)x + aux
 

= (bq)x

q = ux .
(3.4)

We then construct two weak forms

hut,�i+
1

2

�⌦

(au)x,�
↵

+ haux,�i
 

=
⌦

(bq)x ,�
↵

hq, i = hux, i
, (3.5)

where

hu,�i =

Z L

0

u�dx . (3.6)

Integrating the second and last inner products in the equation for u by parts yields

hut,�i+
1

2
au�|L0 � bq�|L0 +

1

2
{haux,�i � hau,�xi} = �hbq,�xi

hq, i = hux, i .
(3.7)

3.1.1 Continuous Energy Analysis in 1D

The boundary value problem (3.1) is well-posed. When we choose � = u and  = bq and impose the
boundary conditions,

1

2

d

dt
kuk2 = �

1

2
u2(L)� hbq, uxi

hq, bqi = hux, bqi > 0,
(3.8)

where ||u||2 = hu, ui. Substituting for the hbq, uxi term in the equation for u,

1

2

d

dt
kuk2 6 0. (3.9)

Then integrating in time over the interval [0, T ] and applying the initial condition gives the energy
bound

ku(T )k 6 ku0k . (3.10)

It is a bound of this type that we require for the stability of the discrete approximation.
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3.1.2 An Energy Stable DGSEM in 1D

To construct the DGSEM in one space dimension, we subdivide the interval into elements ek =
[xk�1, xk] k = 1, 2, . . . ,K, where the xk, k = 0, 1, . . . ,K are the element boundaries with x0 = 0 and
xK = L. Each element is mapped onto the reference element E = [�1, 1] by the linear mapping

x = xk�1 +�xk
⇠ + 1

2
, (3.11)

where �xk = xk � xk�1 is the length of the element. With the change of variable, u and q satisfy

�xk
2
hut,�i+

1

2

nD

(au)⇠,�
E

+
⌦

au⇠,�
↵

o

=
⌦

(bq)⇠,�
↵

�xk
2
hq, i =

⌦

u⇠, 
↵

,

(3.12)

where now

hu,�i =

Z 1

�1

u�d⇠ . (3.13)

In preparation for the approximation, we integrate the first and third terms in the braces of the
equation for u in (3.12) by parts once, as well as the diffusion term on the right. Similarly, we integrate
the equation for q by parts

�xk
2
hut,�i+ au�|1

�1 � bq�|1
�1 �

1

2

n

⌦

au,�⇠
↵

+
D

u, (a�)⇠

Eo

= �
⌦

bq,�⇠
↵

�xk
2
hq, i = u |1

�1 �
⌦

u, ⇠

↵

,

(3.14)

We then make the following approximations

u ⇡ U 2 P
N (�1, 1) ,

q ⇡ Q 2 P
N (�1, 1) ,

b ⇡ I
N (b ) .

(3.15)

Furthermore, we approximate inner products with discrete inner products that approximate the con-
tinuous ones using Gauss-Lobatto Quadrature, and restrict � and  to the polynomial space. We use
Gauss-Lobatto quadrature to ensure that the interpolant of the flux equals the flux of the interpolant
at the element endpoints. This property will be needed later to ensure that the advective boundary
terms are dissipative. Finally, elements are coupled by introducing continuous numerical fluxes F ⇤ for
the advective flux, U⇤ for the boundary solution in the gradient equation and Q⇤ for the boundary
derivative. The result is the split form DGSEM approximation for the solution on an element

�xk
2
hUt,�iN +

�

F ⇤ � bQ⇤
�
 �

�

1

�1
�

1

2

⇢

⌦

aU,�⇠
↵

N
+

⌧

U,
⇣

I
N (a�)

⌘

⇠

�

N

�

= �
⌦

bQ,�⇠
↵

N

�xk
2
hQ, iN = U⇤

 
�

�

1

�1
�
⌦

U, ⇠

↵

N
.

(3.16)
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Summation-by-parts applied once to each equation gives the final form of the approximation

�xk
2
hUt,�iN +

✓

F ⇤ �
1

2
aU

◆

�

�

�

�

�

1

�1

� bQ⇤
�
�

�

1

�1

+
1

2

⇢⌧

⇣

I
N (aU)

⌘

⇠
,�

�

N

�

⌧

U,
⇣

I
N (a�)

⌘

⇠

�

N

�

= �
⌦

bQ,�⇠
↵

N

�xk
2
hQ, iN =

�

U⇤ � U
�

 
�

�

1

�1
+
⌦

U⇠, 
↵

N
.

(3.17)

To show stability, we replace � by U and  by I
N (bQ)

�xk
2
hUt, UiN +

✓

F ⇤ �
1

2
aU

◆

U

�

�

�

�

1

�1

� bQ⇤U
�

�

1

�1
= �

⌦

bQ,U⇠

↵

N

�xk
2
hQ, bQiN =

�

U⇤ � U
�

bQ
�

�

1

�1
+
⌦

U⇠, bQ
↵

N

(3.18)

so that the element-wise energy satisfies

1

2

d

dt

�xk
2
hU,UiN +

✓

F ⇤ �
1

2
aU

◆

U

�

�

�

�

1

�1

� bQ⇤U
�

�

1

�1
�
�

U⇤ � U
�

bQ
�

�

1

�1

= �
�xk
2
hQ, bQiN  0,

(3.19)

or, making the element ID explicit,

1

2

d

dt

�xk
2

�

�

�

�

�

�
Uk
�

�

�

�

�

�

2

N
+

✓

F ⇤ �
1

2
aUk

◆

Uk

�

�

�

�

1

�1

� bQ⇤Uk
�

�

�

1

�1
�
⇣

U⇤ � Uk
⌘

bQk
�

�

�

1

�1
6 0, (3.20)

The total energy in the domain is the sum over all of the elements

kUk2N =
K
X

k=1

�xk
2

�

�

�
Uk
�

�

�

2

N
. (3.21)

Since the numerical quantities F ⇤, Q⇤ and U⇤ are continuous by construction, the total energy satisfies

1

2

d

dt
||U ||2N 6 BL� BR+ BI, (3.22)

with the left and right boundary terms

BR =

⇢✓

F ⇤ �
1

2
aUK

◆

UK �
h

bQ⇤UK + U⇤bQK � UKbQK
i

��

�

�

�

⇠=1

, (3.23)

BL =

⇢✓

F ⇤ �
1

2
aU1

◆

U1 �
h

bQ⇤U1 + U⇤bQ1 � U1bQ1
i

��

�

�

�

⇠=�1

, (3.24)

and the inner boundary term

BI =
X

interior

faces

✓

F ⇤ JUK� 1

2
a

r
U2

z◆
� b
�

Q⇤ JUK + U⇤ JQK� JUQK
 

, (3.25)
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where

JV K = V R � V L = V k+1|⇠=�1 � V k|⇠=1 (3.26)

is the usual jump in the argument across the interface between element k, k + 1.
We now examine each of the boundary contributions in turn. If we apply boundary states

F ⇤ = 0, U⇤ = 0, Q⇤ = Q (3.27)

on the left, then

BL =

⇢

�
1

2
a
⇣

U1
⌘2

�
h

bQ1U1 � bQ1U1
i

�

⇠=�1

= �
1

2
a
⇣

U1
⌘2
�

�

�

�

⇠=�1

6 0. (3.28)

Applying the states

F ⇤ = aU, U⇤ = U, Q⇤ = 0, (3.29)

on the right boundary gives

BR =

⇢

1

2
a
⇣

UK
⌘2

�
h

UKbQK � UKbQK
i

�

⇠=1

=
1

2
a
⇣

UK
⌘2

> 0 (3.30)

The boundary conditions applied in this way are therefore dissipative.
We are now left with only the contribution of the jumps at the interfaces. The contribution of the

advective part is non-positive. With the upwind value F ⇤ = aUL,

a

✓

UL JUK� 1

2

r
U2

z◆
= �

1

2
a JUK2 6 0 , (3.31)

which leaves only the interface contribution of the diffusion terms to bound.
The BR1 scheme [4] computes the interface values as

U⇤

⇣

UL, UR
⌘

=
UL + UR

2
⌘ {{U}}

Q⇤

⇣

QL, QR
⌘

=
QL +QR

2
⌘ {{Q}} .

(3.32)

Using the identity

JwvK = {{w}} JvK + {{v}} JwK , (3.33)

the interface contribution from the approximation of the diffusion terms in (3.25) is

{{Q}} JUK + {{U}} JQK� JUQK = 0 . (3.34)

With all boundary and interface terms accounted for,

1

2

d

dt
kUk2N 6 0 , (3.35)

and integrated over the time interval [0, T ] leads to the desired bound

kU(T )kN 6 kU0kN . (3.36)

In summary, we see that using a split form for the advection terms and the BR1 scheme for the
diffusion, the DGSEM is stable for the advection-diffusion equation.
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3.2 BR1 is Stable: 3D Linearized Compressible Navier-Stokes Equations

We follow the same steps as in the previous section to now show that the DGSEM with the BR1
scheme is linearly stable for the compressible Navier-Stokes equations, provided that the advective
terms and the physical boundary conditions are approximated stably. A roadmap for the development
of well-posed problems and stable approximations was recently presented by Nordström [36]. Since
we are interested in the influence on stability of the BR1 scheme in this paper, we will consider only
the first two steps in that roadmap: symmetrization of the equations and the energy method.

We will leave the approximation of the physical boundary conditions to a future paper and assume
here that they are properly posed and implemented in a stable manner. Starting from the stable variant
of the DGSEM, we will then see why the standard approximation may be unstable even for smooth
flows when underresolved.

3.2.1 Continuous Energy Analysis in 3D

As with the advection-diffusion approximation, we will prove stability using an energy method. An
important difference between the two is in the step between (3.12) and (3.14) which used the fact
that the adjoint of a scalar is itself.

The Navier-Stokes equations linearized about a constant state can be written in the form

ut +
3
X

j=1

@Aju

@xj
=

1

Re

3
X

i=1

@

@xi

0

@

3
X

j=1

Bij

@u

@xj

1

A, (3.37)

where u = [�⇢ �v1 �v2 �v3 �p]
T represents the perturbation from the reference values. The coefficient

matrices Aj and Bij are constant in the linear approximation of the equations. We use the primitive
variable formulation because that is what one usually implements. The system is known to be sym-
metrizable by a single constant symmetrization matrix, S, and there are multiple symmetrizers [1] to
choose from that will enable us to apply the energy method. We write the symmetrized matrices as

As
j = S�1AjS =

�

As
j

�T
and Bs

ij = S�1BijS =
�

Bs
ij

�T
. Explicit representations of the symmetrizer and

coefficient matrices are written down in [37].
To again simplify the notation for the use in the analysis, we define a block vector of matrices, e.g.

↔

A =

2

4

A1

A2

A3

3

5 (3.38)

and the diagonal block matrix and full block matrix

S =

2

4

S 0 0
0 S 0
0 0 S

3

5 , B =

2

4

B11 B12 B13

B21 B22 B23

B31 B32 B33

3

5 . (3.39)

Then the product rule applied to the divergence of the flux in (3.37) can be written as

→

rx ·
↔

f =
⇣

→

rx ·
↔

A

⌘

u+
⇣

↔

A

⌘T →

rxu, (3.40)

where

↔

f =

2

4

A1u

A2u

A3u

3

5 ,
⇣

↔

A

⌘T

= [A1 A2 A3] . (3.41)
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The nonconservative advective form of the linearized Navier-Stokes equations can therefore be written
as

ut +
⇣

→

rx ·
↔

A

⌘

u+
⇣

↔

A

⌘T →

rxu =
1

Re

→

rx ·
⇣

B
→

rxu

⌘

. (3.42)

Averaging the conservative and nonconservative forms gives the split form of the PDE

ut +
1

2

⇢

→

rx ·
↔

f +
⇣

→

rx ·
↔

A

⌘

u+
⇣

↔

A

⌘T →

rxu

�

=
1

Re

→

rx ·
⇣

B
→

rxu

⌘

. (3.43)

Because the coefficient matrices are constant the split form is not necessary. It is presented only in
preparation for the discrete analysis. In the discrete approximation the coefficient matrices are still
constant, but they get multiplied by the metric terms of the curvilinear elements. This indirectly
introduces variable coefficients, even for the linear NSE.

Proceeding with the continuous analysis, the next step is to drop the divergence of the coefficient
matrices,

→

rx ·
↔

A, since it is zero. We will see later in the discrete analysis that this step needs additional
attention, since it depends on properties of the discrete metric terms.

As usual, we construct a weak form by multiplying the split form by a test function and integrating
over the domain. In inner product notation,

hut,φi+
1

2

⇢

D

→

rx ·
↔

f ,φ
E

+

⌧

⇣

↔

A

⌘T →

rxu,φ

��

=
1

Re

D

→

rx ·
⇣

B
→

rxu

⌘

,φ
E

. (3.44)

As before, we introduce the intermediate block vector
↔

q =
→

rxu to get the first order system

hut,φi+
1

2

⇢

D

→

rx ·
↔

f ,φ
E

+

⌧

⇣

↔

A

⌘T →

rxu,φ

��

=
1

Re

D

→

rx · (B
↔

q) ,φ
E

D

↔

q,
↔

ψ

E

=
D

→

rxu,
↔

ψ

E

.

(3.45)

Then we apply the extended Gauss law (2.39) to the flux divergence terms to separate surface and
volume contributions

hut,φi+

Z

@⌦

✓

1

2

⇣

↔

f ·
→

n
⌘

�
1

Re

⇣⇣

B
→

rxu

⌘

·
→

n
⌘

◆T

φ dS

+
1

2

nD

→

rxu,
↔

f
(T ) (φ)

E

�
D

↔

f ,
→

rxφ

Eo

= �
1

Re

D

B
↔

q,
→

rxφ

E

,

(3.46)

where

↔

f
(T ) (φ) =

2

4

AT
1 φ

AT
2 φ

AT
3 φ

3

5 , (3.47)

and
→

n is the physical space outward normal to the surface.
With suitable boundary and initial conditions, the equations are well-posed. First, we set φ =

�

S�1
�T

S�1u in (3.46), which includes symmetrization as part of the test function. Then

D

S�1
ut,S

�1
u

E

+

Z

@⌦

✓

1

2
S�1

⇣

↔

f ·
→

n
⌘

�
1

Re
S�1

⇣⇣

B
→

rxu

⌘

·
→

n
⌘

◆T

S�1
u dS

+
1

2

⇢⌧

→

rxu,
↔

f
(T )

✓

⇣

S�1
⌘T

S�1
u

◆�

�
D

S�1↔
f ,

→

rx

⇣

S�1
u

⌘E

�

= �
1

Re

D

S�1B
↔

q,
→

rx

⇣

S�1
u

⌘E

.

(3.48)



16 Gregor J. Gassner et al.

Let us define the symmetric state vector as us = S�1u and examine the terms in (3.48) separately.
First,

D

S�1
ut,S

�1
u

E

=
1

2

d

dt

�

�

�

�u
s
�

�

�

�

2
. (3.49)

Next, we consider the volume term

D

S�1B
↔

q,
→

rx

⇣

S�1
u

⌘E

=
D

Bs↔

q
s,

→

rxu
s
E

. (3.50)

Making the changes on the boundary terms,

Z

@⌦

✓

1

2
S�1

⇣

↔

f ·
→

n
⌘

�
1

Re
S�1

⇣⇣

B
→

rxu

⌘

·
→

n
⌘

◆T

S�1
u dS =

Z

@⌦

✓

1

2

⇣

↔

f
s ·

→

n
⌘

�
1

Re

⇣⇣

Bs →

rxu
s
⌘

·
→

n
⌘

◆T

u
s dS,

(3.51)
where

↔

f
s =

2

4

As
1u

s

As
2u

s

As
3u

s

3

5 . (3.52)

The most interesting terms are the volume flux terms. The solution flux term is

D

S�1↔
f ,

→

rx

⇣

S�1
u

⌘E

=
D

↔

f
s,

→

rxu
s
E

, (3.53)

whereas the test function flux term is
⌧

→

rxu,
↔

f
(T )

✓

⇣

S�1
⌘T

S�1
u

◆�

=

⌧

S
→

rxS
�1

u,
⇣

S�1↔
f (us)

⌘T
�

=

⌧

→

rxS
�1

u,
⇣

S�1↔
f (us)S

⌘T
�

=
D

→

rxu
s,

↔

f
s (us)

E

.

(3.54)

Next, we set
↔

ψ =
�

S�1
�T

S�1B
↔

q in the second equation of (3.45)

⌧

↔

q,
⇣

S�1
⌘T

S�1B
↔

q

�

=

⌧

→

rxu,
⇣

S�1
⌘T

S�1B
↔

q

�

i.e.
⌦

↔

q
s,Bs↔

q
s
↵

=
D

→

rxu
s,Bs↔

q
s
E

.

(3.55)

Gathering all the terms, the flux volume terms cancel leaving

1

2

d

dt

�

�

�

�u
s
�

�

�

�

2
+

Z

@⌦

✓

1

2

⇣

↔

f
s ·

→

n
⌘

�
1

Re

⇣⇣

Bs →

rxu
s
⌘

·
→

n
⌘

◆T

u
s dS

= �
1

Re

⌦

↔

q
s,Bs↔

q
s
↵

6 0.

(3.56)

We see, then, that the growth in the energy, defined as the L
2 norm, is determined by the boundary

integral,

1

2

d

dt

�

�

�

�u
s
�

�

�

�

2
6 �

Z

@⌦

✓

1

2

⇣

↔

f
s ·

→

n
⌘

�
1

Re

⇣⇣

Bs →

rxu
s
⌘

·
→

n
⌘

◆T

u
s dS. (3.57)
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Integrating in time over the interval [0, T ],

�

�

�

�u
s(T )

�

�

�

�

2
6 ||u(0)||�

Z T

0

Z

@⌦

✓

⇣

↔

f
s ·

→

n
⌘

�
2

Re

⇣⇣

Bs →

rxu
s
⌘

·
→

n
⌘

◆T

u
s dS. (3.58)

To properly pose the problem, initial and boundary data must be specified. The value at t = 0
is replaced by initial data u0. As for the boundary terms, Ref. [37] shows that they can be split, in
characteristic fashion, into incoming and outgoing information with boundary data specified along
the incoming characteristics
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where ⇤+ > 0 and ⇤� < 0. We will assume here that boundary data g = 0 and hence

Z

@⌦

✓

⇣

↔

f
s ·

→

n
⌘

�
2

Re

⇣⇣

Bs →

rxu
s
⌘

·
→

n
⌘

◆T

u
s dS > 0, (3.60)

so that
�

�

�

�u
s(T )
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� 6
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�u
s
0

�

�

�

� . (3.61)

Finally, since us = S�1u, u = Sus,
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kSk2
kuk 6
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�u
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� 6
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S�1

�

�

�

2
kuk , (3.62)

and therefore
||u(T )|| 6 C ||u0|| . (3.63)

It is a bound like (3.63) that we seek for a stable discontinuous Galerkin approximation.

3.2.2 An Energy Stable DGSEM in 3D

In terms of the reference space variables, the linearized Navier-Stokes equations become

Jut +
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r⇠ ·
⇣

MT↔

f
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=
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Re
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✓
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J
MTBM
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r⇠u

◆

. (3.64)

Let us define, then, the gradient vector with the intermediate variable
↔

q, and the contravariant viscous

flux by
↔

f̃v = MTB
↔

q to write the equations in reference space as
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r⇠ ·
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1

Re

→
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J
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q = M
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r⇠u .

(3.65)

With the product rule, we also construct the split advective form
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(3.66)

where
↔

Ã = MT
↔

A.
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We note that for general curvilinear grids, the metrics terms in the matrix M depend on space.

Hence, the transformed coefficient matrices
↔

Ã are not constant anymore. Thus, the discrete divergence
→

r⇠ ·
↔

Ã is not automatically zero as in the continuous case. However, with the metric identities (2.20)
the discrete divergence of the transformed coefficient matrices is exactly zero. If (2.20) doesn’t hold
aliasing due to the erroneous discrete divergence of the transformed coefficient matrices could disrupt
the stability of the method [30]. It follows that the metric identities are a crucial ingredient for the
stability of the discretization as will be seen in the analysis that follows.

We then form the discontinuous Galerkin approximation as usual by replacing integrals with Gauss-
Lobatto quadratures, boundary quantities by numerical ones, solutions by polynomial interpolants
and restrict the test functions to the polynomial space. The result is the formal statement of the DG
approximation (c.f. (2.43))
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(3.67)

where
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F̃(T ) = I
N
⇣

MT
I
N
⇣

↔

f (T ) (φ)
⌘⌘

, and

D

J
↔

Q,
↔

ψ

E

N
=

Z

@E,N

U
⇤,T
⇣⇣

MT ↔

ψ

⌘

· n̂
⌘

dS�
D

U,
→

r · IN
⇣

MT ↔

ψ

⌘E

N

=

Z

@E,N

�

U
⇤ �U

 T
⇣⇣

MT ↔

ψ

⌘

· n̂
⌘

dS +
D

→

r⇠U,MT ↔

ψ

E

N
.

(3.68)

The equation for the approximate solution U, (3.67), is commonly known as the weak form of the
approximation. If we apply the extended discrete Gauss law (2.39) one more time to the inner product
D↔

F̃,
→

r⇠φ

E

N
, we get the algebraically equivalent [26] strong form
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(3.69)

To assess stability of the approximation, we follow the same steps as to show well-posedness. First

we set
↔

ψ =
�

S�1
�T
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Q in (3.68). Using the fact that
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where
↔

F̃s
v = I

N
⇣

MTBs
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⌘

. Next, we set φ =
�
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�T

S�1U =
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S�1
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Us in (3.69). The advective

volume terms cancel, for (c.f. (3.54))
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Therefore,
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(3.72)

Separating the advective and viscous boundary terms, the elemental contribution to the total energy
is
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(3.73)

The total energy is found by summing over all of the elements. When all the element contributions
are summed, the interior faces get contributions from two elements. For a conforming mesh as assumed
here, the contributions match pointwise. Also when the elements are conforming, the outward facing
normals at each face point in precisely opposite directions. If we designate the element on one side of
a shared face (arbitrarily chosen) as the “master” and the other as the “slave” then we can represent

the normal contribution of the contravariant flux on the master element side as
↔

F̃ · n̂ = F̃master
n .

Since the outward normal at a face is in either the ⇠̂i or �⇠̂i direction, F̃master
n is proportional to the

contravariant flux for that coordinate, ±F̃i. Along that same direction, but with opposite sign is the
contribution from the slave element side, F̃slave

n . The sum of the contributions then is represented in
terms of the jump on the master element side

r
F̃n

z
= F̃

slave
n � F̃

master
n . (3.74)

Note that this notation mimics the 1D case (3.26), where the “right” side of the interface was the
slave element side at ⇠ = �1 of element k+ 1 and the “left” side corresponded to the master element
side at ⇠ = 1 of element k.
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Let Us,k be the (symmetric) solution vector on element k. Then summing over all elements,
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(3.75)

where PBT represents the physical boundary terms, which we assume are dissipative, i.e. PBT 6 0.
Note that the interior faces always have the master element side orientation.

Numerical fluxes are used to resolve two discontinuous states Us,L and Us,R and the viscous fluxes.
The advective flux can be split according the wave directions relative to the normal of the master side

⇣↔

f̃
s · n̂

⌘

=
⇣⇣

MT ↔

A
s
⌘

· n̂
⌘

u
s =

⇣↔

Ã
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From that splitting, we can write the numerical advective flux as
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Ã

s

n

�

�

�

q
U

sy . (3.78)

The fully upwind flux corresponds to � = 1, whereas � = 0 gives the centered flux.
With either the upwind or central numerical flux (3.78), the contribution of the advective fluxes

at the faces is dissipative. For any two state vectors,

r
a
T
b
z
=

t
5
X

m=1

ambm

|
=

5
X

m=1

JambmK

=
5
X

m=1

({{am}} JbmK + JamK {{bm}}) = {{a}}T JbK + JaKT {{b}} .

(3.79)

Therefore

r
�

F̃
s
n

�T
U

s
z
= {{F̃s

n}}T
q
U

sy +
r
F̃
s
n

zT
{{Us}}

= {{Us}}T Ã
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and the contribution of the advective interface terms to the energy in (3.75) is nonpositive.
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We are now left with bounding the viscous surface contributions in (3.75). Using the BR1 scheme
for the surface values for the viscous terms, the surface contribution coming from the viscous terms
at each node is
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Replacing the jump in the product using (3.79), the surface contribution of the viscous terms due to
the BR1 scheme vanishes because
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We are now in the position to write the total energy bound. We define the total energy over the
domain by
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Since Bs � 0 [37] and J > 0, we can also define the physical dissipation over the domain by the broken
norm
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Under the assumption that the physical boundary terms are approximated stably, all terms on the
right side of (3.86) are nonpositive. Using the equivalence of the norms, we have the stability bound

||U||N 6 C ||U0||N . (3.87)

We see in (3.86) that dissipation includes physical dissipation plus, for � > 0, artificial dissipation
added at element surfaces that depends on the size of the jumps in the solution. Again, as in the
scalar problem, we see that the BR1 scheme itself has no effect on the energy. Stability is therefore
guaranteed if the conditions at the physical boundaries are properly posed and implemented stably.

3.3 Why is Instability Seen in Practice?

For smooth flows, stability of the approximation actually has nothing to do with BR1, and everything
to do with the approximation of the advective terms where instability might be a result of aliasing
instability. The BR1 approximation itself does not contribute to instability, but it also does not add
any stabilizing dissipation.

If the standard form of the DGSEM is used even with the symmetric equations, then the bound
on the energy is (c.f. [29])
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The additional volume term is due to aliasing. It is the amount by which the product rule fails to
hold. The sign of the aliasing error is indeterminate, and (3.88) shows that the physical diffusion or
the dissipation associated with the Riemann solver have the ability to counterbalance the product rule
error and stabilize the scheme. For well resolved solutions, the aliasing error will be spectrally small,
making it likely that the physical and interface dissipations are sufficiently large for stabilization. For
under resolved solutions, the aliasing errors may be too large for the approximation to be stable. For
large Reynolds numbers, the physical dissipation may be too small. The artificial dissipation due to the
Riemann solver might be sufficiently large, depending on which solver is chosen. (For example, a Lax-
Friedrichs Riemann solver will be more dissipative than the exact upwind solver.) Finally, changing
from the BR1 to another scheme, coupled with a more dissipative Riemann solver might be enough to
stabilize the aliasing term. But, ultimately, the key to a stable DGSEM is the stable approximation
of the advective terms.

4 Nonlinear Stability Analysis

We now show how to construct nonlinearly stable discontinuous Galerkin spectral element approxi-
mations, stable in the sense that the mathematical entropy is bounded by the initial value. We first
analyze the Dirichlet problem for the scalar, one dimensional Burgers equation to motivate the steps.
We then do the same for the nonlinear Navier-Stokes equations, postponing a study of the physical
boundary conditions as we did for the linear counterpart to a later paper. We therefore focus only on
the influence of the interior element boundary approximations. We will see two differences from the
linear analysis of the Navier-Stokes equations. First, the Euler advective terms do not have a split
form, but are otherwise approximated by a special two-point flux. A relationship between the two
point flux and split forms is known for the Burgers equation, so we motivate the relationship in the
next section. The second difference is that the viscous terms are to be expressed in terms of gradients
of the entropy variables rather than the solution state vector.

4.1 BR1 is Stable: The Nonlinear Viscous Burgers Equation in 1D

To motivate the analysis of the nonlinear 3D Navier-Stokes equations, we analyze the DGSEM ap-
proximation of the initial boundary-value problem for the scalar, nonlinear viscous Burgers equation
in one space dimension

BV P

8

>

<

>

:

ut + f(u)x = (b(u)ux)x x 2 [0, L]

u(0, t) = u(L, t) = 0

u(x, 0) = u0(x)

(4.1)

where f(u) = u2/2 and b(u) > 0 is a positive viscosity function.

In contrast to linear problems, where we use energy estimates, we use entropy to define stability
for nonlinear problems [39]. For the Burgers equation, we use the entropy function

s(u) ⌘
u2

2
, (4.2)

and the entropy variable

w(u) ⌘
ds

du
= u . (4.3)
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The entropy variable contracts the advective term of the Burgers equation, i.e.

w(u) f(u)x = u f(u)x = u
df

du
ux = uuux =

✓

u3

3

◆

x

⌘ f ✏
x (u) , (4.4)

where f ✏(u) = u3

3 is the entropy flux. Similarly, wut = st.

For the following continuous analysis, we rewrite the second order problem as before into a first
order system. We formally rewrite the viscous flux b(u)ux in terms of the derivative of the entropy
variable

b(u)ux = b̂(u)wx , (4.5)

where, due to the specific choice of entropy variables, w = u and b̂(u) = b(u) > 0. The system then
reads as

ut + f(u)x =
⇣

b̂(u) q
⌘

x

q = wx .
(4.6)

4.1.1 Continuous Entropy Analysis in 1D

The entropy for (4.1) is bounded in time by the initial entropy. To show this, we multiply the first
equation in (4.6) by the entropy variable w rather than the solution u, and the second equation by
the viscous flux fv ⌘ b̂(u) q, and integrate over the domain to get the two weak forms

hw(u), uti+ hw(u), f(u)xi = hw(u), fv,xi

hq, fvi = hwx, fvi ,
(4.7)

where h·, ·i is the L2 inner product on the interval [0, L]. We then use the relations for the entropy
function (4.2), entropy variable (4.3), the entropy flux (4.4), and integration by parts for the viscous
volume integral in the first equation of (4.7) to get
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We can insert the second equation of (4.8) into the first to eliminate the derivative of the entropy
variable leaving
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We note that the viscosity coefficient b̂(u) is always positive and thus �hq, fvi = �
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q, b̂(u) q
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guaranteed nonpositive. Therefore we can bound (4.9) as
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where the total entropy is
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When we insert the specific form of the entropy function (4.2), entropy variable, (4.3), and entropy
flux for the Burgers equation into (4.10) ,
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so that when the boundary conditions, u = 0, are applied,

d
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Z
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dx 6 0 , (4.13)

which says that the total entropy over the domain at any time is bounded by its initial value.

4.1.2 An Entropy-Stable DGSEM in 1D

Using the notation introduced in Sec. 3.1.2, we construct the DGSEM using the usual steps: (i) we
multiply the equations in (4.6) with test functions and integrate over an element, (ii) we use integration
by parts to separate boundary and volume contributions, (iii) we approximate the quantities with
Lagrange polynomials of degree N constructed with N + 1 GL nodes, (iv) we approximate the inner
products with quadrature rules with the same N+1 GL nodes as for the Lagrange ansatz, (v) we
insert numerical surface fluxes at the element interfaces, and (vi) we use summation-by-parts for the
first equation to get the strong form DGSEM of the viscous Burgers equation
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(4.14)

In (4.14), U,Q, W and F are the polynomial approximations of the solution, the solution gradient,
the entropy variable, and the advective flux collocated at the Gauss-Lobatto nodes. Furthermore,
we introduce the shorthand notation of the viscous flux Fv, which is a polynomial approximation of
the term b̂(u)q, i.e. Fv = I

N (b̂(U)Q). The quantities marked with ⇤ are the numerical surface flux
approximations, which, as before, depend on state values (and gradients) from the left and right of
the element interface.

Unfortunately, the standard form of the DGSEM, (4.14), is unstable, independent of the choice
of the numerical surface fluxes because of the way the advective terms are discretized. The problem,
again, is the aliasing introduced in the discretization of the volume terms of the advective fluxes
⌦

F⇠,�
↵

N
. The aliasing error causes a sink/source in the discrete entropy and cannot be bounded. The

result is that entropy can pile up during coarsely resolved simulations and can even lead to a blow up
of the solution.

In [16], the fix to the aliasing problem was a specific reformulation of the volume integrals by using
the skew-symmetry strategy, where the discrete volume integral of the advective terms was replaced
with
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E

N
. (4.15)

We note that for well resolved approximations, the difference between the two volume integral ap-
proximations is spectrally small. However, with severe under resolution, the difference is important. In
fact, the second term in (4.15) is constructed so that it mimics the continuous entropy analysis of the
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previous section. That is, when we insert the collocation interpolant of the entropy variable W (= U

for the Burgers equation) for the test function �, it was shown in [16] and also in Appendix B.1 here,
that the volume contributions with the skew-symmetric derivative approximation can be rewritten
into an equivalent surface integral contribution

1

3

D

I
N (U2)⇠ + I

N (U U⇠),W
E

N
= F ✏

�

�

1

�1
, (4.16)

where F ✏ is the interpolant of the continuous entropy flux, f ✏ with nodes at the Gauss-Lobatto points.
Unfortunately, the strategy of using skew-symmetric forms of the advective terms does not directly

generalize to the compressible nonlinear Euler equations. Carpenter and Fisher et al., e.g. [14,7]
have, however, established a general discrete framework to determine the volume integral for general
hyperbolic conservation laws so that crucial conditions like (4.16) hold. It is therefore instructive to
see the relationship between the split form and the two point flux form introducted in [14,7] in a case
where they are equivalent.

The key is the summation-by-parts property of the underlying spatial operator and the existence
of a numerical two-point flux F ec = F ec(U, V ) with the property

F ec(U, V ) (W (U)�W (V ))� (F (U)W (U)� F (V )W (V )) + (F ✏(U)� F ✏(V )) = 0 , (4.17)

or in shorthand notation,
F ec JW K� JF W K +

q
F ✏y = 0 , (4.18)

which gives entropy conservation when used in a first order finite volume discretization of the nonlinear
hyperbolic conservation law, e.g. [39].

Carpenter and Fisher et al. use the summation-by-parts property and (4.18) to construct a high
order accurate volume integral. To bring their scheme into the form used in this work, we introduce
a special derivative projection operator

D(F )ec(⇠) ⌘
N
X
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k(⇠) 2F
ec(U(⇠), U(⇠k)). (4.19)

We note that D(F )ec is a function that depends on ⇠, but is in general not a polynomial of degree
N . Like Carpenter and Fisher et al. we replace the standard volume term approximation with this
derivative projection
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N
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which has the property (see Appendix B.1)
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which is analogous to the property of the skew-symmetric volume integral (4.16).
We now show that the two strategies are indeed equivalent. For the Burgers equation, the entropy

conserving two-point flux has the form [19]
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so that the derivative projection operator is
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When projected onto the test function,
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where we use the consistency of the polynomial derivative, i.e. that the derivative of the constant one
N
P

k=0

`0k(⇠n) = 0. Thus, for the Burgers equation, the use of D(F )ecBurgers is equivalent to the approxima-

tion of the split form,
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3
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+ uu⇠

�

. (4.25)

The goal now is to show that in combination with a stable discretization of the advection terms, using
BR1 for the viscous terms leads to a stable approximation in the sense that it is entropy conserving.

We get a stable approximation by replacing the standard volume integral of the advection term
with the entropy conserving version (4.20) and use an entropy conserving two-point flux F ec,⇤ = F ec

satisfying (4.18) as the numerical surface flux for the advection terms
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To show that entropy is conserved, we set � = W and  = Fv in (4.26)

�xk
2
hUt,W iN + (F ec,⇤ � F )W

�

�

1

�1
+
⌦

D(F )ecBurgers,W
↵

N
= (F ⇤

v � Fv)W
�

�

1

�1
+
⌦

Fv,⇠,W
↵

N

�xk
2
hQ,FviN = W ⇤Fv

�

�

1

�1
�
⌦

W,Fv,⇠

↵

N
.

(4.27)

From the collocation of interpolation and numerical integration (i.e. a point-wise multiplication at
each GL node) and the assumption of analytical time integration,

�xk
2
hUt,W iN =

�xk
2
hSt, 1iN , (4.28)

for the first term in the first equation of (4.27), where S is the discrete polynomial approximation of
the entropy s(u). Next, we use (4.21) to replace the volume contribution of the advective flux by a
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surface contribution. Finally, we use the second equation of (4.27) to replace the viscous volume term
contribution in the first to get
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The last term on the right of (4.29) is always non-positive since
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and the viscosity coefficient b̂ is always positive.

With the element ID explicit, we have the first intermediate result that on an element ek
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When we sum over all elements, we get the temporal change of the total discrete entropy
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and the inequality
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where we replaced quantities at the boundaries by their boundary (BC) values and
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with the 1D jump defined in (3.26).

Regrouping the BL and BR terms gives
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where we introduced the boundary notation |L0 to indicate that this is the evaluation at the left and
right physical boundaries. The first term is analogous to the boundary term in the continuous problem,
(4.10). The second and third terms are penalty terms that account for the weak boundary condition
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implementation at the physical boundaries. We note that the boundary condition implementation has
to be dissipative for stability, i.e. boundary conditions must be specified so that
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6 0 .

(4.38)

With dissipative boundary implementations, the contribution at the boundary can be estimated as

BL� BR 6
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0
, (4.39)

which matches the influence of the boundaries in the continuous problem, and which we also assume
is implemented so that it is dissipative.

What is left to bound are the interface conditions, BI, in (4.33). The first part of BI includes
contributions from the advective part of the PDE. Note that the specific numerical surface flux F ec,⇤

is defined so that the first term identically vanishes, c.f. (4.18), thus all that remains is the viscous
contribution,
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In the BR1 scheme, the numerical surface fluxes are the arithmetic means of the arguments. For the
viscous Burgers equation,

F ⇤

v = {{Fv}} , W ⇤ = {{W}} . (4.41)

Using the identity for the jump of a product of two quantities

JabK = {{a}} JbK + JaK {{b}} (4.42)

and inserting the numerical surface fluxes (4.41) for the viscous terms, we see that the internal bound-
ary contribution is
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Therefore, the temporal change of the total discrete entropy is
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dt
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which mimics the continuous estimate (4.10)
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except for the additional dissipation introduced at the physical boundaries, (4.38).

Remark 1. The entropy-stability of the approximation is not specific to the Burgers equation. It holds
for any scalar advection-diffusion problem with entropy variables w and entropy flux f ✏.
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4.2 BR1 is Entropy-Stable: 3D Nonlinear Compressible Navier-Stokes Equations

For the compressible Navier-Stokes equations (2.1)
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entropy-stability is unfortunately not equal to nonlinear stability, but it does give a stronger estimate
than the linear stability of Sec. 3.2 [34,39]. Analogous to the nonlinear Burgers equation, Sec. 4.1, we

introduce an entropy pair (s,
→

f ✏), this time with the scalar entropy function
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where & = ln p� � ln ⇢ is the physical entropy, and the entropy flux
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The entropy variables are
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with the property

k
T @2s

@u2
k > 0, 8k 6= 0, (4.50)

if ⇢ > 0 and p > 0 [7,39,13]. The positivity requirement on the density and the temperature, T / p/⇢,
guarantees a one-to-one mapping between conservative and entropy variables; it is this requirement
that makes entropy-stability not a true nonlinear statement. Thus, entropy-stable discretizations can
(and do) produce invalid solutions with negative density or temperature and need further strategies
to guarantee positivity.

The entropy pair contracts the Euler terms, meaning that it satisfies the relations
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Furthermore, we will see that the viscous flux should be rewritten in terms of the gradient of the
entropy variables
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if p > 0 and µ > 0 [7,40,13].
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4.2.1 Continuous Entropy Analysis in 3D

To motivate the bounds needed for the approximation to be entropy-stable, we start with the contin-
uous entropy analysis using the Navier-Stokes equations in the form
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We multiply the first equation with the entropy variables and the second equation with the viscous
flux and integrate over the domain to get the weak forms
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Next we use the properties of the entropy pair to contract the left side of the first equation of (4.56)
and use integration by parts on the right hand side to get
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Inserting the second equation of (4.57) into the first gives
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We use the property (4.54) and integrate the flux divergence on the left side to get the estimate
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where

s = hs(u), 1i =

Z

⌦

s(u) dV (4.60)

is again the total entropy. Boundary conditions then need to be specified so that the bound on the
entropy depends only on the boundary data. We will assume here that boundary data is given so that
the right hand side is non-positive so that the entropy will not increase in time. For more on boundary
conditions for the Navier-Stokes equations, see, e.g. [37].
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4.2.2 An Entropy-Stable DGSEM in 3D

As in Sec. 3.2.2, we transform the Navier-Stokes equations into reference space
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The standard strong form of the DGSEM is derived as described in Sec. 2.1 and is
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where U,W,Q are the polynomial interpolants of the conservative variables, the entropy variables
and the gradient of the entropy variables with nodes at the Gauss-Lobatto points. Furthermore, we

use the polynomial interpolations of the contravariant Euler and the viscous flux
↔

F̃,
↔

F̃v. As always,
the quantities in the discrete surface integrals marked with ⇤ are the numerical fluxes and entropy
variables that couple the elements and depend on values (and gradients) from the “left” and “right”
of the interface.

Similar to the DGSEM discretization of the Burgers equation in Sec. 4.1, the standard DGSEM
discretization of the Euler terms in (4.64) is not entropy-stable and is infected with aliasing errors
arising from the nonlinearity of the Euler fluxes. In contrast to the Burgers equation where a two
point flux (4.22) is equivalent to the explicit split form seen in (4.24), an explicit split form of the
nonlinear Euler flux divergence that gives discrete entropy-stability is not known. Again, we use the
framework of Carpenter and Fisher et al., e.g. [14,7], that allows us to get a discrete entropy-stable
approximation of general nonlinear hyperbolic conservation laws even when the explicit split form is
not known, as long as a two-point entropy conservative numerical flux function is known.

For an entropy-stable approximation to the advective terms, we approximate the divergence of the
flux with an entropy conservative flux
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and the contravariant numerical volume fluxes are
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An example of an entropy conserving two point flux is described in Appendix A. Note that since
↔

Fec

is symmetric in its arguments, so is
↔

F̃ec.

If we make the replacement (4.65) into the discrete volume integral for the advective flux in (4.64)
and replace the test function with the Lagrange basis,
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where
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is exactly the discrete form used in Carpenter and Fisher et al., e.g. [14,7] and Gassner et al. [18] with
the averaging of the metric terms, e.g.
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Remark 2. In [18] it was shown that standard (strong form) DGSEM volume integral
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r⇠ ·
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recovered if we replace F̃l,ec, l = 1, 2, 3 in (4.66) with
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Note that the standard discretization differs in that it has the average of the flux times the metric
terms, whereas in the entropy-stable variant (4.67) has the specially averaged entropy-conservative flux
times the average of the metric terms. The separation of the average of the metric terms corresponds,
c.f , e.g. [31], to a de-aliasing of the metric terms (which are variable functions themselves when
elements have curved sides) and affects stability, see Appendix B.3.

The goal now is to show that the DGSEM with BR1 is entropy-stable when used in combination
with an entropy-stable discretization of the advective (Euler) terms. To show stability, we make the
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replacement (4.65) into (4.64) and assume the use of entropy conservative numerical fluxes that satisfy
the equivalent of (4.18) at the element boundaries. The final discretization is therefore
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(4.72)

We now mimic the continuous entropy analysis as closely as possible and replace φ  W and
↔

ψ  
↔

Fv in (4.72) to get
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(4.73)

where I
N
⇣

MT
↔

Fv

⌘

=
↔

F̃v .

We look first at the first term of the second equation of (4.73) and insert the alternate form of the
viscous flux shown in (4.63). We use the property (4.54) of the viscous flux matrices B ✏ to see that
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as long as the interpolant of the element mapping Jacobian determinant, J , is non-negative at the
Gauss-Lobatto nodes.

We next replace the volume integral for the advective flux by a surface integral
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which we prove in Appendix B.3.
Finally, we insert the second equation of (4.73) into the first and use the estimate (4.74) to allow

all but the time derivative term to be replaced with surface integrals and an inequality
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34 Gregor J. Gassner et al.

The time derivative term is the time rate of change of the entropy in the element. Assuming that
the chain rule with respect to differentiation in time holds, we use the contraction property of the
entropy variable (4.51) at each GL point within the element to see that
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We get the total discrete entropy by summing over all elements
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so the total discrete entropy satisfies the estimate
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(4.79)

where PBT are the physical boundary terms and where we use the slave–master definition of the jump
(3.74), with all interior faces in master element side orientation. To ensure stability, the numerical
surface flux of the Euler terms, F̃ec,⇤

n is chosen so that at each quadrature point on the interior element
faces the argument of the advective surface quadratures vanishes, i.e.
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Compare this generalized condition to the Burgers case (4.18) and see Appendix A for a choice for the
entropy conserving numerical surface flux for the compressible Euler equations. See also Appendix B.2
to see how to relate the Cartesian flux conditions to the contravariant flux condition.

The choice of the numerical surface fluxes for the viscous terms for the BR1 discretization are
again simply the averages
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With the identity (see (3.79))
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we see that the contribution of the viscous numerical fluxes at the interior faces vanishes exactly
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The final discrete entropy statement therefore
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which precisely mimics the continuous estimate (4.59) except for the additional dissipation at the

physical boundaries due to the numerical surface fluxes
↔

F̃
ec,⇤
n ,

↔

F̃⇤

v,n,W
⇤ evaluated at the boundary.

Note that to guarantee stability, the choice of these auxiliary physical boundary terms must be deter-
mined to ensure that their effect is dissipative. From another point of view, the additional term gives
constraints on the boundary fluxes from which to derive stable boundary conditions.

5 Conclusions

In this work stability of the BR1 scheme for general advection diffusion systems is shown. The focus
of the paper is on the compressible NSE, however due to the generic structure of the BR1 scheme (i.e.
it does not depend on the particular form of the viscous PDE terms) the stability estimate extends to
all advection-diffusion problems, if stable DGSEM approximations of the advection terms are known.

The paper is split in two parts, the linear energy analysis and the nonlinear entropy analysis.
Whereas it is sufficient in the linear case to consider skew-symmetric split form approximations of the
advection terms, special entropy-stable DGSEM formulations are necessary for the nonlinear case. To
the best knowledge of the authors, we also present for the first time the full proof of entropy-stability
for a DGSEM of the compressible Euler terms on three dimensional curvilinear meshes.

Furthermore, we show that a Bassi and Rebay type approximation can be provably stable if the
metric identities are discretely satisfied, a two-point average for the metric terms is used in the volume
integral, the auxiliary gradients for the viscous terms are computed from gradients of entropy variables,
and the BR1 scheme is used for the interface fluxes.

Our analysis shows that even for three dimensional curvilinear grids, the BR1 fluxes do not add
artificial dissipation at the interior element faces. Thus, the BR1 interface fluxes preserve the stability
of the discretization of the advection terms and we get either energy stability or entropy-stability for
the linear or nonlinear compressible NSE, respectively.

An open source code that implements the scheme is available at github.com/project-fluxo. Numer-
ical investigations show that it is robust in comparison to the standard DGSEM (even in comparison
to ad hoc stabilisation techniques such as polynomial de-aliasing) for under-resolved compressible
turbulence simulations, e.g. [18].

To further highlight the remarkable robustness of the stable DGSEM we conclude with a discus-
sion of a numerical simulation of the Taylor-Green vortex with a Reynolds number of Re = 1600 (see
e.g. [20,18] for details of the setup). We intentionally stress the numerical experiment by choosing the
scheme without added artificial stabilisation terms. That is, we use the BR1 scheme for the viscous
terms and we use only the EC flux at the interface for the Euler terms, without adding any Rie-
mann solver type dissipation. To further stress our high order method and to highlight its enhanced
robustness, we intentionally under-resolve the physics of the vortex dominated flow.

A common challenging benchmark resolution is 643 degrees of freedom. We choose a high poly-
nomial degree of N = 7 (eight GLL nodes in each direction inside the element) and 83 elements. If
we use the standard DGSEM without the entropy-stable modifications described here the simulation
immediately crashes, even when using Riemann solvers with added dissipation at the interface, see
e.g. [20]. However, when using the entropy-stable approximation without added numerical dissipation
at the element interfaces the simulation no longer crashes.

In addition, the numerical scheme is virtually dissipation free. To see this, we choose a Mach
number of M = 0.1 for the Taylor-Green vortex to allow for comparisons with the incompressible NSE.
For incompressible flows, it is possible to relate the enstrophy (ens), the kinetic energy dissipation
rate (diss) and the Reynolds number. Using this relationship, we estimate the numerical Reynolds
number by computing the ratio of the discrete total enstrophy and the discrete total kinetic energy
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Fig. 1 Numerical simulation of the Taylor-Green vortex with Mach number M = 0.1 and Reynolds number Re =
1600 showing temporal evolution of the numerical Reynolds number in comparison to the physical value. The DG
discretization uses 83 elements and a polynomial degree of N = 7 resulting in 643 degrees of freedom. The BR1
method is used for the viscous terms and the EC flux without additional dissipation is used for the Euler fluxes at
the interfaces, making the scheme virtually dissipation free yet stable. The standard DGSEM immediately crashes
for this test case.

dissipation rate, i.e. Renum(t) ⇡ 2 ens(t)
diss(t) . The result is presented in Fig. 1. As a reference, the physical

Reynolds number Re = 1600 is plotted as well. It is remarkable that for the fully developed flow at
later times the numerical Reynolds number approaches the physical Reynolds number, which confirms
the two properties proven here: (i) the method is virtually dissipation free; (ii) it is still stable when
the standard scheme crashes.
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A An Entropy Conserving Euler Flux

We explicitly present the Kinetic Energy Preserving and Entropy Conservative (KEPEC) numerical
flux function for the compressible Euler equations. The KEPEC flux was first derived by Chan-
drashekar [8]
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and (·)ln is the logarithmic mean

(·)ln =
J·K

Jln(·)K . (A.3)

A numerically stable method to compute the logarithmic mean when (·)R ⇡ (·)L is given in [22,
App. B].

It is also possible to add additional dissipation to the entropy conservative scheme and create an
entropy-stable (ES) approximation. One example is with a matrix dissipation entropy-stable flux for
the compressible Euler equations of the form
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The average components of the dissipation term are given by
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3

7

7

7

7

5

,

Λ̂ = diag ({{v1}}� ā, {{v1}}, {{v1}}, {{v1}}, {{v1}} + ā) ,
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We note that the selection of the discrete dissipation operator (A.5) creates a scheme that is able to
exactly resolve stationary contact discontinuities. The proof of this property follows the same structure
as that presented by Chandrashekar [8].
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For completeness, we provide the entropy conserving (and stable) fluxes for the other Cartesian
directions
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The matrix dissipation term remains similar where the matrix of right eigenvectors are given by
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respectively. The diagonal matrix of eigenvalues uses the appropriate value of the velocity depending
on the spatial direction.

To create the contravariant entropy conservative fluxes we incorporate the average of the metric
terms, e.g. at the (⇠ = 1) element face

F̃
⇤,ec = {{Ja11}}F⇤,ec

1 + {{Ja12}}F⇤,ec
2 + {{Ja13}}F⇤,ec

3 . (A.9)

The dissipation terms remain unchanged for the contravariant entropy-stable approximations.

B Proofs of Entropy Conservation for Nonlinear Advection Terms

B.1 Proof of Entropy Conservation for the One-Dimensional Volume Integral

We first show the property (4.21), rewritten here as
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For convenience we introduce the entropy potential
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at each GL node i = 0, ..., N to rewrite the entropy-conservation condition (4.18) on the two-point
flux
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We then explicitly write the volume integral in (B.1) as a sum
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Let us now introduce the summation-by-parts matrix Q = MD with entries Qim ⌘ !iDim, which
has the property

Q+QT = B , (B.6)

where B = diag([�1, 0, ..., 0, 1]) is the boundary evaluation matrix. Because the derivative of a constant
is exact, the Q matrix satisfies

N
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QimVi = 0 (B.7)

for all Vi.
In terms of Q,
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But from (B.6), 2Qim = Qim �Qmi +Bim so

hD(F )ec,W iN =
N
X

i=0

N
X

m=0

Wi (Qim �Qmi +Bim)F ec(Ui, Um)

=
X

i,m

WiQimF ec (Ui, Um) +
X

i,m

WiQmiF
ec (Ui, Um) +

X

i,m

BimWiF
ec (Ui, Um) .

(B.9)

We now re-index the second sum, i $ m, use the fact that F ec is symmetric in its arguments, and
recombine the sums to get
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The definition of the entropy potential (B.4) says that we can write the argument
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Inserting (B.11) and (B.12) into (B.10),
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By (B.7), the first term in the second line is zero. Next, with Bim = Qim +Qmi, re-indexing i $ m,
and using (B.7),
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Therefore the second and third sums in the second line of (B.13) cancel. What is left is what we set
out to show, namely
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Remark 3. The result (B.1) is a general one that depends only on the summation-by-parts property.
It is therefore not specific to the discontinuous Galerkin approximation, per se.

B.2 Proof of Entropy Conservation at Interelement Interfaces for Curvilinear Elements

We now show the property (4.80),
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For the approximate 2D surface integral, we evaluate the integrand at (N + 1)2 GL quadrature
points, see (2.40). Therefore we only need to prove that the integrand vanishes discretely at each
interior face quadrature point. We assume that the following derivations are restricted to one interior
face quadrature point, and skip quadrature point indices.

The general three-dimensional conditions on the Cartesian components of the two-point numerical
flux are

�

F
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z
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q
H ✏y = 0,

(B.17)

where we use the slave–master jump definition from (3.74),

JWK = Wslave �Wmaster, (B.18)

and each interior face has the master element side orientation, so that quadrature points of the slave
and the master map on each other.

We make the assumption that the mesh is watertight, i.e. that the normal vector and the surface
element are continuous across element interfaces. For a conforming hexahedral mesh, the condition
holds discretely at the surface quadrature points if we ensure the discrete metric identities (2.32) and
if the unit outward facing normal vector and surface element on the element side are constructed from
the element metrics by

ŝ =

�

�

�

�
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3
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J
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J
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n̂l. (B.19)

The continuity of the surface metric allows us to use only the metric of the master element side, so
that we are able to move the metric into the jump.

We can write any normal contravariant surface flux using the Cartesian fluxes and the metric
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→

n) ·
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(B.20)
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We combine the three Cartesian equations (B.17) with the surface metric ŝ
→

n, defined in (B.19),
leading to
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(B.21)

If we define the contravariant numerical flux as

F̃
ec,⇤
n ⌘ ŝ

�

n1F
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then
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Finally, using the continuity of the surface metric, we move it inside the jump terms, yielding

�

F
ec,⇤
n

�T JWK�
s
⇣⇣

MT ↔

F

⌘

· n̂
⌘T

W

{
+

r⇣
MT →

F ✏
⌘

· n̂
z

=
�

F̃
ec,⇤
n

�T JWK�
r
�

F̃n

�T
W

z
+

r
F̃ ✏
n

z
= 0 ,

(B.24)

proving that in (4.80), the integrand vanishes at each quadrature point of an interior face individually.

B.3 Proof of Entropy Conservation in 3D Curvilinear Coordinates

We show in this section that the property (4.75) holds, reproduced here for convenience as

D
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F̃)ec,W
E

N
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Z

@E,N

⇣→

F̃ ✏ · n̂
⌘

dS , (B.25)

provided that the discrete metric identities (2.32) are satisfied.

Similar to what was done in Appendix B.1, we introduce three entropy potentials, one for each
Cartesian space direction
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ijk

, l = 1, 2, 3, (B.26)

for each GL node i, j, k = 0, ..., N . We use them to rewrite the entropy-conservation condition on the
two-point fluxes F l,ec,⇤, c.f. (B.17), into
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F
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⌘T
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r
 
l
z
(i,m)jk

, l = 1, 2, 3, (B.27)

for i, j, k,m = 0, ..., N .
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To match terms, we expand all the terms of the volume integral approximation
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(c.f. (4.69)) and of the surface integral approximation
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We then focus on the first (⇠ direction) term of the volume integral approximation, which allows
us to follow the one dimensional proof as closely as possible. The sum can be written in terms of
Qim = wiDim,
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(B.30)

Therefore, we can use the same steps as in one dimension: We use the summation-by-parts property
2Qim = Qim � Qmi + Bim, a re-indexing of i and m to subsume the Qmi term, and the facts that
F ec(Uijk, Umjk) and the jump operator of the metric term

��

Ja11
  

(i,m)jk
are symmetric with respect
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to the index i and m to rewrite the ⇠ direction contribution to the volume integral approximation as
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(B.31)

Next, we use the relations (B.27) of the Cartesian two-point entropy-conserving flux Fl,ec to note
that

�
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l
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mjk , l = 1, 2, 3. (B.32)

We further note that Bim only has entries for i = m = 0 and i = m = N (c.f. (B.12)) so
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Finally, we can exploit the consistency of the two-point flux and (B.26) so that for i = m = 0 and
i = m = N ,

W
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Inserting relations (B.32)-(B.34) into the last line of (B.31) says that

N
X

i=0

W
T
ijk 2

N
X

m=0

Qim

↔

F
ec(Uijk, Umjk) ·

nn

J
→

a 1
oo

(i,m)jk

=
N
X

i=0

N
X

m=0

Qim

⇣

→

 ijk �
→

 mjk

⌘

·
nn

J
→

a 1
oo

(i,m)jk
+Bim

⇣

→

 ijk +
→

F ✏
ijk

⌘

·
nn

J
→

a 1
oo

(i,m)jk
.

(B.35)

Now, since the derivative of a constant is zero,
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Finally, Bim being diagonal and symmetric, we can swap the i$ m in Bim

→

 ijk to rewrite the second
line of (B.35)
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The last step is to use the summation-by-parts property Bim �Qim = Qmi and re-index to see that
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Therefore,
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To summarize, the first (⇠ direction) part of the volume integral approximation (B.30) is
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where we have returned Qim = !iDim and represented the boundary terms explicitly.
Similar results hold for the second and third parts of the volume integral approximation, leading
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Regrouping the boundary terms and the volume terms, we have shown that
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which gives the desired entropy condition (B.25), provided that the metric identities (2.32) hold
discretely, i.e. that

N
X

m=0

Dim

⇣

Ja1n

⌘

mjk
+Djm

⇣

Ja2n

⌘

imk
+Dkm

⇣

Ja3n

⌘

ijm
=

 

3
X

l=1

@

@⇠l
I
N
⇣

Jaln

⌘

!

ijk

= 0 , (B.42)

for n = 1, 2, 3 and all GL points i, j, k,= 0, ..., N within an element. For the strategy on how to properly
approximate the metric terms so that the metric identities are satisfied, see [25].
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