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Abstract

Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a
brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and
subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used.
Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development
of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the
names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative
mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this
brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the
neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across
atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions
and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the
overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within
chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions
that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing
results that were based on these different anatomical models, particularly when coordinate-based data are not available.
The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical
parcellations and nomenclatures using strictly qualitative and/or categorical methods. Detailed results from this study are
made available via an interactive web site at http://obart.info.
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Introduction

In this paper we examine the brain atlas concordance problem, an

issue that stems from difficulties and differences in the description

of brain structures, and that presents certain obstacles for the

neuroscience research community. The basic premise of this

problem, illustrated briefly in Figure 1, is that multiple different

methods exist for partitioning a brain into a discrete set of

anatomical regions (i.e. parcellating), yet we currently lack a

thorough understanding of the relationships between different

schemes or the potential challenges that discordant parcellations

pose, particularly for meta-analyses and other information

integration efforts. In Figure 1 we show three anatomical regions

rendered in a single reference brain as delineated by two different

atlases (the International Consortium for Brain Mapping anatom-

ical template (ICBM), and the Automated Anatomical Labeling

atlas (AAL [1]); see Materials and Methods) available to the

neuroimaging community. The region in yellow labeled Superior

Temporal, in the ICBM atlas, overlaps multiple regions in the AAL

atlas, just two of which are shown in blue (Superior Temporal Gyrus)

and in red (Middle Temporal Gyrus). The pattern of overlap is

complex: for example, approximately 33% of the yellow Superior

Temporal region’s volume is contained in the blue Superior Temporal

Gyrus region, with another 36% contained in the red Middle

Temporal Gyrus. However, some 71% of the blue region’s volume is

contained within the larger yellow parcel, while only 35% is

contained within the red. While the details of such overlap

calculations will be described below, it is immediately and

intuitively clear that there is no simple mapping between these

regions as defined by the two example atlases.

This brain atlas concordance problem has traditionally been

seen as a neuroanatomical nomenclature problem, and neuroscientists

have struggled with the terminological heterogeneity in the field

for over a century [2]. The issue has generally been viewed as

encompassing two key elements: i) multiple distinct terms are

sometimes used to refer to the same anatomical or functional brain

region, and ii) the same term is sometimes used to refer to different

regions. Thus the problem is often cast as terminological in nature

and has been addressed primarily through the compilation of large

lists of neuroanatomical region labels [3], attempts to build
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thesauri for relating these terms [4], and recently by developing

machine-readable controlled vocabularies and ontologies

[5,6,7,8,9]. In the example given above, on the basis of name

alone, it might be expected that the yellow ICBM Superior Temporal

region should roughly coincide with the blue AAL Superior Temporal

Gyrus region, but this is not the case. It is thus evident that

reconciling published results that reference regions from one

anatomical atlas with those that reference another requires more

than matching region names, but also developing a precise,

quantitative understanding of the correspondence between the

different underlying anatomical partitions.

While the situation we consider is not exclusive to human brain

imaging, it is here that it is particularly pronounced while also

most amenable to analysis. Magnetic resonance imaging (MRI)

today is the most common method for visualizing human

neuroanatomy, but under usual conditions the details used to

define classical region boundaries (e.g. cytoarchitecture) are not

observable. The parcellation of MR images, therefore, involves

either inferring such boundaries from prior data or using

observable landmarks such as sulci as the basis for delineating

regions. Several difficulties, including a dearth of consistently

identifiable landmarks, inter-subject variability, and imprecise or

indeterminate structural-functional relationships, have led to the

community’s inability to adopt a standard parcellation protocol.

Still a variety of different methods are commonly used to

parcellate MR images, serving a number of practical purposes.

These include reducing the total volume of data, establishing

anatomical correspondences between individual subjects, and

providing a discrete framework in which to communicate results.

Explicit a priori parcellation of macro-anatomical regions from

individual MR volumes is sometimes used, for example in region-

of-interest (ROI) based functional analysis or morphometric

analysis [10,11,12,13]. More commonly however, parcellation is

implicit and occurs post hoc when researchers endeavor to label the

voxels that show statistical effects of interest in their experiments.

In either case, reference is often made to one or more digital

atlases that provide the model by which brains are partitioned and

the individual regions named. Thus, while most analyses of brain

imaging data do not directly depend on anatomical parcellations,

the way in which results are reported, interpreted, and compared

with previous studies can be heavily influenced by the choice of

anatomical reference atlas.

A growing number of anatomical atlases have appeared in the

neuroimaging community, some of which have been integrated

within popular software tools for statistical data analysis. It is

important to distinguish between stereotactic reference frames,

which define a coordinate space in which anatomical volumes may

be registered, and anatomical atlases or parcellations which may

be defined within such a space, but which serve to partition the

volume into a discrete set of labeled regions. Whereas some degree

of standardization has been achieved in terms of coordinate

systems, anatomical labeling methods are considerably more

variable. While the Talairach Atlas [14,15] established a large

early ‘‘market share’’ in positron emission tomography (PET) and

functional MRI studies, it is now challenged by a variety of other

anatomical models as the community becomes increasingly aware

of its limitations [16,17]. Moreover, various groups have

developed protocols for expert manual parcellation of MR

volumes [13,18,19,20,21], and new tools are being developed to

perform automatic parcellation of a given MR volume based on a

set of manually labeled training exemplars [e.g. 22,23,24]. Thus

the number of parcellation methods available to researchers is

increasing, in turn amplifying the need for informatics procedures

that capture the relationships between different protocols and

enable mapping between them. Significant progress has been

made to enable registration and visualization of different data sets

and partitioning schemes across atlases, individuals, and species in

the Surface Management System Database (SumsDB; http://

sumsdb.wustl.edu/sums) [25,26]. The ability to ‘‘overlay’’ different

partitions upon one another, as enabled by SumsDB and other

tools, is critical for making quantitative cross-comparisons.

Recently, spatially registered surface-based parcellations of the

macaque cortex from this resource have been studied quantita-

tively [27] in a spirit similar to our current presentation for

volumetric human atlases.

For the present investigation, it is important to note that the

wide variety of labeling methods in use in neuroimaging today

each have been designed for a particular purpose with particular

anatomical bases, and with varying degrees of, sometimes space-

variant, granularity in their delineations. Further, different

methods rely upon, and potentially suffer ambiguity from, the

variable ways in which individual brains can be registered to a

common template. It is thus difficult, in general, to fully separate

the consequences of registration variability and error from those of

differences in the underlying anatomical partitions for different

methods. In the present study we did not seek to specifically

disentangle these different aspects of brain labeling, but rather

sought to compare the net consequences of using a variety of different

Figure 1. Illustration of the brain atlas concordance problem.
A: Rendering of three anatomical regions in the left temporal lobe as
delineated by two different brain atlases. The largest region, Superior
Temporal from the ICBM atlas (see Materials and Methods for atlas
descriptions), shown in yellow, overlaps both the Superior Temporal
Gyrus (blue) and the Middle Temporal Gyrus (red) regions in the AAL
atlas to differing degrees. B: The same region boundaries drawn as
projections in the three cardinal directions. An examination of the
patterns of overlap in just 3 regions points to the complexity of the
concordance problem.
doi:10.1371/journal.pone.0007200.g001

Brain Atlas Concordance
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common procedures to label the same brain, among them

including manual parcellation of the test brain itself, application

of probabilistic atlases in a common template space, and mapping

to an individual anatomical template. Because our primary goal

was to provide a method to begin to understand the state of extant

results that have been variably reported using these different

anatomical frameworks, and not specifically to decipher the

underlying intent of the developers of the atlases, incorporating

such heterogeneous methods in our study is obligatory. Based on

the different underlying references for the various methods,

however, we could hypothesize that similar methods (e.g. two

manual parcellations of the same brain) would give highest overall

concordance, whereas methods that relied on different references

and/or registration schemes would likely have lower degrees of

similarity.

The difficult task of integrating research results across studies

that employ varied methods is of increasing consequence as the

volume of published work continues to grow rapidly in the

neuroimaging field and in neuroscience more generally. Text-

mining tools are being developed to automatically or semi-

automatically extract terms and concepts from research articles to

populate knowledge bases [28,29,30] that should ultimately be

accessible in a common anatomical framework. We posit that the

proper integration of knowledge about specific anatomical regions

requires an appropriate theoretical framework for mapping

between different atlases, which will lead to a quantitative

understanding of the correspondences between parcellations, and

which will provide the necessary evidence for best reconciling

heterogeneously reported results.

In the present investigation we develop and apply this

framework, casting the brain atlas concordance problem as an

analysis of the spatial relationships between different partitions of

the same ‘‘space’’–or underlying anatomy. From this perspective,

we seek to discover the quantitative spatial relationships between

all pairs of regions across a set of anatomical parcellations. Pair-

wise relationships can be expressed using simple conditional

probabilities, providing answers to straight-forward questions of

the form: what is the probability that a voxel is in Region X according to

Method A if it is in Region Y according to Method B? In this framework

the potential impact of the use of multiple discordant parcellation

schemes in the published literature becomes clear. If regions from

one atlas can not be mapped to regions from another atlas with

high probability, then reconciling results based on these two

anatomical references using region labels alone will lack certainty.

The quantitative procedures developed here are used to

compare eight different parcellations of the left-hemisphere gray

matter regions in a high-resolution MR volume (see Table 1 and

Materials and Methods for details). Beyond the computation of

region-to-region conditional probabilities, we also establish

methods for visualizing the large resulting dataset, introduce

procedures to uncover higher-order relationships between sets of

regions, and develop the idea of global similarity between two whole-

brain parcellations. The concept of ‘‘chance’’ similarity is

additionally derived from a series of random parcellations of the test

brain and used to establish significance measures for comparing

parcellations. The overall results reveal a set of complex

correspondences between different atlas structures, information

that is valuable in a variety of contexts, and that has not been

previously described. For some atlas pairs, we find a surprising lack

of concordance, and we discuss the reasons and implications for

such findings. The detailed results of this study are also made

available at http://www.obart.info, which we hope will assist

researchers attempting to interpret the existing literature, choosing

atlasing methods, or developing new analytical procedures for

their own studies.

Results

Region-level concordance analysis
We analyzed the pair-wise spatial correspondences between

anatomical regions defined in eight distinct parcellations of a single

test brain, the ICBM single-subject template. For any pair of

regions, two conditional probability values were calculated based

on the spatial overlap between the parcels (see Equation 3 and

Figure 2). For simplicity, we write the probability that a voxel x is

in region i in one parcellation given that it is in region j in another

parcellation as P i jjð Þ. Because the regions within a given

parcellation R are spatially disjoint, P i jjð Þ~0 if regions i and j

are both drawn from R. The Venn diagram in Figure 2 illustrates

the lack of symmetry in these spatial relations. If region j is wholly

contained in region i, then P i jjð Þ~1, while P j ijð Þ will also equal 1

only when the two regions are identical.

Figure 3(A) shows the overall results of this region-level analysis

across the eight parcellations. The matrix of conditional

probabilities P is depicted as an image, with each pixel’s color

indicating the value of that matrix entry (on a logarithmic scale).

Each row and column corresponds to one particular anatomical

region in a parcellation, and regions are grouped by parcellation

method (the rows or columns between sets of grey lines). Non-zero

(non-black) entries indicate that two regions exhibit some degree of

spatial overlap, and it is apparent that overlap is often partial

between region pairs. While the results contained in matrix P are

Table 1. Summary of parcellation methods compared in this study.

Method # LH regions % GM labeled Reference space Brief Description

AAL 62 93.2% Colin27 Manual parcellation of Colin27 atlas

CYTO 29 21.6% MNI average Maximum likelihood cytoarchitectonic atlas in MNI space

H-O 56 86.7% MNI average Maximum likelihood atlas from manually labeled scans

ICBM 49 92.5% Colin27 Individual parcellation of Colin27 atlas

LPBA40 29 97.0% MNI average Maximum likelihood from manually labeled scans

T&G 65 81.1% Colin27{ Freesurfer-classified individual atlas, tweaked by human expert

TALc 68 26.5% Talairach brain Brodmann’s area labels mapped to MNI space with icbm2spm

TALg 49 76.7% Talairach brain Gyrus-level Talairach atlas mapped to MNI as above

{The T&G method as used here also relies on the Freesurfer average subject atlas.
doi:10.1371/journal.pone.0007200.t001
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too numerous to describe individually here, an annotated software

tool is available online (http://www.obart.info) that allows the

interested reader to view the findings interactively and in full

detail. Presently, we provide further explication for a single

illustrative brain region, continuing to expand on the example

from Figure 1.

Figure 3(B) shows the values from the column and row of P

corresponding to the Superior Temporal region as defined by the

ICBM atlas (see Materials and Methods for details of each

parcellation scheme) rendered as the heights of bars. A single

column in P contains the probabilities that a voxel is in each of the

other anatomical regions given that it is in the ICBM Superior

Temporal region (Figure 3B, top bar plot). The corresponding row

in P contains the probabilities that a voxel is in this ICBM region

given that it is in each of the other parcels (Figure 3B, bottom bar

plot). It is apparent that the set of voxels labeled Superior Temporal

by the ICBM atlas is assigned multiple labels by other atlases,

including but not limited to ‘‘superior temporal gyrus’’ and its

derivatives. Still we observe no equivalent or nearly equivalent unit

in any of the other atlases, and the conditional probabilities

rendered in Figure 3B are largely asymmetric. The utility of the

conditional overlap measure is apparent as it observed, for

instance, that multiple regions from the T&G parcellation are

contained to a large degree within this ICBM region, but not vice

versa; thus these regions are (largely) subsets of the ICBM Superior

Temporal region, information which could not be ‘‘read off’’ as such

if a different measure of overlap (e.g. Jaccard index) had been

used.

From the conditional matrix P, a symmetric overlap matrix O

was also computed (Equation 4). From O (see Figure S1 for

illustration), some simple statistical properties were calculated that

characterize the problem of mapping between different parcella-

tions, e.g. the number of regions K in any parcellation R9 that

overlap a single region drawn from parcellation R. This number

offers some insight into the overall ambiguity in the mapping

problem between atlases, with larger K indicating increasing

uncertainty. For each region, we calculated the average number of

partially overlapping areas in the other 7 parcellations. Figure 3(C)

shows a histogram of these values. The mean and median of this

distribution are 4.95 and 4.71, respectively.

For each pairing of atlases, we ranked region pairs in order of

decreasing symmetric overlap value in order to reveal the most

similar region definitions directly. The top 5 region-region

overlaps for each atlas pair are shown in Table 2. The full

overlap matrix for any atlas pair can also be downloaded from

http://obart.info. Notably, the most similar regions tended to be

large subcortical structures (e.g. thalamus, putamen), whose

boundaries (and nomenclature) are more well-determined than

in the cerebral cortex, where delineations are more arbitrary,

although there were certain exceptions. Even the highest region-

level agreement between areas from the CYTO cytoarchitectonic

parcellation and those in other atlases tended to be relatively low,

which was anticipated because no other methods compared used

direct analysis of cytoarchitecture as the basis for region

definitions. Determining how the voxels most likely to be classified

as part of a particular cytoarchitectonic area overlap with voxels

classified by other methods (based largely on sulcal/gyral

landmarks) is potentially of high interest to researchers now using

the CYTO atlas in their work, but who are faced with much

previous literature referencing these other schemes. Some of the

pairs in highest agreement (e.g. Area-44 with the inferior frontal

gyrus pars opercularis in the T&G parcellation and Area-45 with the

T&G inferior frontal gyrus pars triangularis) were as traditionally

expected, but these results provide quantification of such assumed

relationships between terminologies. The TALc parcellation also

uses cytoarchitectonic nomenclature in the form of Brodmann’s areas

(though the locations of these areas in the Talairach atlas were

only approximate), but TALc regions did not strongly match

CYTO regions, or correspond particularly well with regions from

any other parcellation.

Following Bezgin et al. [27], we also plotted all of the computed

pairs of spatial conditional overlap values against one another, with

the larger conditional probability for each region pair always plotted

as the x-coordinate in the scatter plot (Figure 4). In this depiction,

some approximate relationships can be deduced based on the

position of the point representing a single region pair in the plane.

Those region pairs represented by the many points near (0,0) are

nearly disjoint, while those near (1,1) are closely matching. Points

clustered along or near the line x= 1 correspond to approximate

subset relationships (one region is contained within the other larger

region). Still, based on the scatter plot density (depicted also as log

histograms along either axis), it is apparent that many region-region

relationships are in the interior coordinate plane–with relatively

low, but non-zero values for both conditionals. Such ‘‘overlap’’

relations [31], which vary asymmetrically, are problematic for

terminological ontologies that rely on simple categorical mappings

and therefore lose information relative to the pair of conditional

probability values we compute here.

Visualization of region-level concordance results
The ordering of regions in each parcellation as depicted in

Figure 3(A) is somewhat arbitrary, and thus visually determining

the degree of correspondence between two parcellations is difficult.

By rearranging the rows and columns (the ordering of regions), in

the matrix, the interpretation of results is made easier. A heuristic

Figure 2. Venn diagram illustrating the formulation of
conditional probability measures Pij . Three different hypothetical
regions r1, r2, and r3 are shown in two dimensions in different spatial
arrangements. At bottom, the calculation of each conditional proba-
bility based on the areas (volumes in 3-D) of the shaded regions is
shown.
doi:10.1371/journal.pone.0007200.g002
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based on the singular value decomposition (SVD; see Materials

and Methods) was applied to permute the rows and columns of

each rectangular block in C independently in order to minimize

the matrix bandwidth (the maximum distance of non-zero entries

from the diagonal) for that block. The result of applying this

reordering algorithm is shown in Figure 5(A). It can be seen that,

although non-zero conditional probability values have been

moved toward the diagonal, there remains considerable band-

width for each block, which is due to the general lack of one-to-one

correspondences between regions. Still, this procedure provides a

one-dimensional embedding for region labels; i.e. regions with

similar spatial definitions appear nearby in this space. This is

useful to impose a meaningful order on the sets of region labels

when comparing two parcellations.

The set of anatomical region labels from the different

parcellations considered were also plotted in two-dimensional

space using multi-dimensional scaling (MDS). In this visualization

method, similarly defined (e.g. overlapping) anatomical entities are

assigned to nearby points in the 2D space while spatially disparate

entities appear more distant. Figure 5(B) shows the results of

applying MDS using a dissimilarity matrix derived from the

symmetric overlap matrix O. The result provides the observer with

a means to visually determine which anatomical regions drawn

from multiple parcellation schemes are most similar to one

another prior to delving deeper into, for example, the precise

conditional probability values for the many available region pairs.

Higher-order spatial relationships
The matrix formulations described above provide measures of

the pair-wise correspondences between anatomical parcels, but

they do not directly capture what we refer to as higher-order spatial

relationships. For example, it may be the case that the union of m

regions from one atlas is approximately spatially equivalent to the

union of n regions from another. We applied a simple graph

theoretical algorithm that uses the conditional probability values

from matrix P to extract such relationships between region

definitions in any pair of atlases. Bipartite graphs, with regions from

each parcellation represented as distinct sets of vertices, were

constructed, with edges drawn between two vertices when the two

corresponding regions overlap. Figure 6(A) shows the initial

bipartite representation of the correspondence between two

parcellations based on probabilistic atlases of similar scope, the

Harvard-Oxford (H-O) and the LPBA40 atlases. The graph is

connected (i.e. a path can be drawn from any vertex to any other

vertex), and no significant region groupings can be easily

identified.

In Figure 6(B), the graph is rendered after pruning all edges with

weights Eij ,0.25, partitioning the graph into multiple individually

connected components. Each resulting component is rendered in a

different color, and the vertices (regions) have been reordered for

improved visualization. While this procedure uncovered certain

approximate higher-order correspondences that were not obvious

in Figure 6(A), it is evident that such congruence between these

Figure 3. Region-level concordance analysis across eight anatomical parcellations. A: Overall non-symmetric concordance matrix P. Entry
Pij gives P(i|j), the probability that a voxel is in region i given that it is in region j in another parcellation scheme. Each row and column corresponds to
a particular anatomical region, and regions are grouped by parcellation method (separated by the gray horizontal and vertical lines). B: The column
(top) and row (bottom) from the matrix P corresponding to the Superior Temporal region as delineated by the ICBM atlas (see arrows in A) were
extracted and the corresponding conditional probability values rendered as the heights of bars. The orange bars give the fraction of the ICBM
Superior Temporal region contained in other regions, and the blue bars (below) give the fraction of other regions contained in the ICBM region. The
names of the example overlapping regions corresponding to the annotated bars are as follows: 1. AAL superior temporal gyrus; 2. AAL middle
temporal gyrus; 3. ICBM superior temporal; 4. LPBA40 superior temporal gyrus; 5. TALg superior temporal gyrus; 6. CYTO TE1.2; 7. H-O superior
temporal gyrus, anterior division; 8. T&G anterior superior temporal gyrus; 9. T&G posterior dorsal superior temporal sulcus; 10. TALc Brodmann Area
41; 11. TALg transverse temporal gyrus. C: Histogram of the mean number of regions from any parcellation R9 that overlap a single region drawn
from a different parcellation R.
doi:10.1371/journal.pone.0007200.g003
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partitions occurs primarily at a rather large spatial scale (e.g. the

first connected component corresponds approximately to the

entire frontal lobe). In most cases, such correspondences emerged

only after the removal of many edges that represent substantial

degrees of overlap between regions. Still, from Figure 6(B) (and

from visualizations with other intermediate thresholds not shown

here but available online), it is possible to note interesting

relationships between regions, a few of which are:

i) The LPBA40 superior temporal gyrus largely contains 6 regions

in the H-O atlas, including parcels labeled the anterior and

posterior divisions of the superior temporal gyrus, but also Heschl’s

gyrus, Planum Polare, Planum Temporale, and the Temporal pole.

ii) What is called the caudate by LPBA40 is subdivided into

caudate and accumbens in H-O, and what is called putamen in

LPBA40 largely contains both the putamen and pallidum in H-

O.

iii) The supramarginal gyrus as defined by LPBA40 largely

contains two subdivisions of a parcel with the same name in

the H-O atlas, but also contains almost 80% of a region

called the parietal operculum cortex, a term not used in the

LPBA40 atlas. Notably, a search of NeuroNames [5] does not

reveal any correspondence between these labels.

These graph-based depictions as shown in Figure 6(B) provide a

simple, straight-forward means for understanding the major spatial

relationships between two parcellations. We thus provide bipartite

graph depictions for each atlas pair, with edge thresholds of 0.10

and 0.25, in Text S1. The accompanying web tool (http://obart.

info) additionally allows the user to select custom edge thresholds

for the graph depicting any atlas pair, providing an interactive

resource to enable a better understanding of the complex relations,

which are far too numerous to describe in full here. A simple use

case, for example, would be to look up the regions from the 8

methods studied that most overlap a particular area of interest in

the atlas with which a researcher is most familiar.

Global atlas concordance
While the above results revealed both simple and highly

complex correspondences between region definitions owing to

multiple atlasing methods, we additionally sought to provide a

single scalar-valued index of global concordance between two

parcellations. We calculated the Adjusted Rand Index (ARI [32]) as

well as a novel S index (SI), which was developed for this specific

application, for each pair of brainwide neuroanatomical parcella-

tions (excluding the CYTO parcellation, which only provides a

partial labeling of the brain).

The values of such scalar indices are typically difficult to

interpret in the absence of known distributions of the values

expected by chance. To compute such chance concordance

distributions, we compared random parcellations of the test brain. We

used a simple algorithm (see Materials and Methods) to create

random space-filling partitions of the gray matter voxels consisting

of N contiguous regions. Fifty random parcellations were

generated for each of the atlases examined, with N matched to

the number of regions comprising each atlas. Figure 7 shows

several sections through an actual parcellation (AAL) as well as a
size-matched random parcellation. For each pair of atlases, the

similarity indices for 1000 pairs of size-matched random parcella-

tions were calculated, yielding an estimate of the chance

distribution specific to each pair-wise comparison.

Figure 8(A) shows the global atlas concordance results as

calculated using the Adjusted Rand Index. The computed ARI

for each pair of atlases is shown in the above diagonal entries, with
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those values appearing in green exceeding the 95th percentile index

in the corresponding chance similarity distribution. Shown in the

corresponding sub-diagonal entries are the 1000 sorted chance

similarity values obtained by simulation (black curve), as well as a

red horizontal line indicating the ARI for the true atlas pair. Global

atlas concordance as assessed by the ARI was surprisingly poor, with

many parcellation pairs judged to be concordant at or below chance

levels. Because the ARI penalizes anatomical region refinement

(subset or hierarchical relationships), however, we designed and

utilized a second similarity index (SI; see Equation 7) intended to

better capture the notion of global concordance for atlases that may

contain brain parcels subdivided with different levels of granularity.

The global concordance results computed using SI are shown in

Figure 8(B). Here, most of the concordance values for pairs of

parcellations rise above chance levels, as would be expected for

parcellations of the same brain that are, in most cases, based on

sulcal/gyral landmarks. As hypothesized, the two parcellations that

used the test brain directly as a reference (AAL and ICBM) had the

highest overall concordance, and the two probabilistic atlases of

similar scope (H-O and LPBA40) had the next highest similarity.

Still it is worth noting that no concordance values observed

approached the maximum theoretical value of 1, and several pairs,

particularly those involving the Talairach-based parcellations,

remain at or below the concordance values expected by chance

according to simulations. Figure 9 illustrates the relationship

between the ARI and the new S-index. The indices show

considerable correlation (r=0.87) but are not so tightly coupled as

to be completely redundant.

The global concordance values for the TALc atlas were

particularly low in both the ARI and S-index calculations, and

this was owing largely to the fact that a considerably lower fraction

of the gray matter voxels from the test brain were assigned labels

by this method than by the other labeling schemes compared (see

Table 1 and further discussion below). To examine this

parcellation method further, we created a second ‘‘neighborhood’’

Figure 4. Scatter plot of computed spatial conditional proba-
bility values for all region pairs. For each two regions (ri, rj),
max(P(i|j), P(j|i)) is plotted vs. min(P(i|j), P(j|i)) (see also [27]). Histograms
shown adjacent to either axis are log scale counts of these measures
taken across all region pairs.
doi:10.1371/journal.pone.0007200.g004

Figure 5. Visualization of region-level concordance results. A: Pij matrix after permuting the indices (region labels) independently within each
block in order to reduce matrix bandwidth. The blocks can not be completely diagonalized because of the lack of one-to-one correspondence
between regions in pairs of parcellations. B: Visualization of region labels using multi-dimensional scaling. Top: 2-D landscape of computed
coordinates for each anatomical region, with the parcellation from which each region is drawn indicated by the marker type. Bottom: magnified
portion of the 2-D landscape above revealing the anatomical regions and their labels that occupy this segment of the space (the highlighted
rectangular area in top).
doi:10.1371/journal.pone.0007200.g005

Brain Atlas Concordance

PLoS ONE | www.plosone.org 9 September 2009 | Volume 4 | Issue 9 | e7200



version of the TALc atlas, called TALcNH, in which unlabeled GM

voxels were assigned labels based on the labels of nearby

(neighborhood) voxels (see Materials and Methods). An additional

concordance analysis of the TALcNH parcellation is included as

Text S2. In brief, this method resulted in ,79% of GM being

labeled (note that much of the cerebellum is not assigned a ‘‘cell-

level’’ label in the Talairach atlas) as opposed to just ,26% in

TALc, and boosted global similarity values significantly. We also

include additional bipartite graph representations for comparing

TALcNH with the other parcellations within Text S2.

Additionally, Table S1 provides the values of the two global

concordance measures evaluated separately for voxels judged to be

Figure 6. Extraction of approximate higher order spatial relationships using bipartite graphs. A: Initial bipartite graph constructed by
connecting vertices on the left (corresponding to the H-O parcellation) with vertices on the right (corresponding to the LPBA40 parcellation) when the
corresponding parcels overlap. The undirected edge weights were determined by the maximum conditional probability value for each region pair.
The graph is fully connected. B: Final bipartite graph representation of the same parcellations after pruning all edges with weight less than 0.25. The
graph is partitioned into 9 connected components (rendered in different colors); for each component, the union of regions on the left is
approximately equivalent to the union of regions on the right.
doi:10.1371/journal.pone.0007200.g006

Figure 7. Random parcellations. A: Sections through the AAL parcellation of the test brain with different colors indicating different parcels. B: a
random parcellation of the same test brain.
doi:10.1371/journal.pone.0007200.g007

Brain Atlas Concordance

PLoS ONE | www.plosone.org 10 September 2009 | Volume 4 | Issue 9 | e7200



in the cerebral cortex and for voxels judged to be elsewhere

(subcortical nuclei, brainstem, cerebellum). While these results are

highly variable across atlas pairs, this analysis allows one to

observe which partitioning methods agree more or less along these

broadest of subdivisions. It is clear, for example, that concordance

between TALc and the other methods was always substantially

higher subcortically than cortically, again pointing to cortical

registration considerations.

Discussion

In this study we have undertaken the first systematic, quantitative

analysis of the relationships between different anatomical parcellation

schemes used within the brain imaging community. The brain atlas
concordance problem occurs not because of disagreements in terminology

(cf. descriptions of the neuroanatomical nomenclature problem), but

because the underlying reference partitions of brain anatomy (e.g.

atlases) are, at times, dissimilar. Taking this perspective, we computed

conditional probability matrices that relate any brain region in any of

the parcellations examined to all others, independent of linguistic

label. Thus we see our approach as one based on direct evidence; that is,

by applying the different anatomical labeling procedures available in

the neuroimaging community to a common individual brain, we can

refer to specific spatial definitions for each region rather than relying

on subjective interpretation about the meaning of particular terms. It

should be made clear that the goal of this investigation was not to

determine which parcellation is best or to advocate one method or

another. Indeed, it is highly unlikely that the neuroscience community

will, or even should, adopt a single scheme for partitioning the brain or

for labeling its pieces. Further, it is clear that the motivations

underlying the construction of one atlas can be different from another

(e.g. cytoarchitectonic vs. landmark-based, or of different granularity

in particular areas). Moreover, multi-dimensional descriptions of brain

areas based on multiple atlases, each of different modality (e.g.

cytoarchitecture, folding patterns, connectivity, gene expression

patterns), are ultimately likely to provide the best windows into brain

organization. Nevertheless, in order to make sense of the vast body of

imaging studies that make reference to the multiple available

parcellation schemes, it is constructive to attain an understanding of

how these schemes relate to one another.

Concordance of atlases used in neuroimaging
By using 8 different methods to parcellate the gray matter

within the same individual MRI volume, we were able to

directly compute the relative spatial overlaps of all available

region pairs (Figures 3 and 4). It is apparent that the voxels

within a typical region in one parcellation most often map to

multiple anatomical regions in another, with one-to-one or

Figure 8. Global concordance between parcellations. A: Results using Adjusted Rand Index (ARI). B: Results using the S index. In each
subfigure the values in the upper diagonal entries are the concordance indices for particular pairs of atlases, with above chance values in green. The
lower diagonal entries show the sorted distribution of chance concordance values obtained by comparison of 1000 random size-matched
parcellations (curved line) and the actual value obtained for this atlas pair as a horizontal line.
doi:10.1371/journal.pone.0007200.g008

Figure 9. Comparison of Adjusted Rand Index and S index. The
values of both computed indices of global concordance plotted against
each other for each atlas pair.
doi:10.1371/journal.pone.0007200.g009
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nearly one-to-one relationships being the exception. On

average, a single region overlaps more than 4 regions defined

in any other parcellation, and sometimes 15 or more (though,

note that these numbers can vary with region size). While any

particular anatomical region is likely to overlap several regions

in different parcellations, the expected value of this number K is

limited by the spatially contiguous nature of anatomical

partitions. This practical upper limit is reflected in the overall

sparsity of the matrix P (Figure 3A).

The alignment of two parcellations that would, theoretically,

enable mapping between the constituent regions with the highest

degree of certainty occurs when every region from one parcellation

corresponds directly and exclusively to one region from the other.

In this scenario, the blocks in matrix P, each of which corresponds

to the comparison of two parcellation schemes, could be

diagonalized by finding a proper permutation of columns and

rows. In other words, by rearranging the order of the anatomical

regions, the non-zero probabilities could be lined up along the

matrix diagonal, providing a useful visualization as well as a

meaningful sorting of region labels. Although our SVD-based

approach (shown in Figure 5A) does not necessarily yield the

optimal solution, in general, lower resulting bandwidth is

indicative of better correspondence between the two parcellations.

An additional visualization procedure explored here was to map

region labels into a two-dimensional space using MDS (Figure 5B),

such that similarly defined (overlapping) regions appear in closer

proximity with one another than non-overlapping regions. This

type of simple intuitive graphical representation stands in contrast

to anatomical ontologies, which are often difficult to visualize and

frequently fail to capture analog similarity between entities. In

Figure 5B, for example, a magnified view of the MDS plot shows a

region depicting region labels from each of the 8 parcellations,

which are, for the most part, located in and around the junction of

the parietal and temporal lobes; the layout, based on spatial

analysis, thus gives rise to an understanding of terminological

relations (e.g. Brodmann Area 40 is located in the inferior parietal

lobe). Labels for the inferior parietal lobule, as defined by TALg

and by AAL, are in particularly close proximity near the center of

the landscape, reflecting their relatively high overlap value

(Oij<0.5).

Building on the conditional region-level concordance measures,

we have developed a graph-based method for examining

potentially ‘‘higher-order’’ spatial relationships between pairs of

parcellations (Figure 6 and Text S1). By removing all edges with

weights Eij less than some threshold Eijvh from a bipartite graph

representing the atlas pair, it may be partitioned into multiple

connected components in a process that is analogous to noise

reduction. For each resulting component, the set of regions in V1 is

approximately equivalent to the set of regions in V2. Examination

of the bipartite graphs, at different edge thresholds, provides

particularly useful insight into correspondences between two

atlases. From Figure 6, we note that, after removing a large

number of edges representing overlap of up to 25%, various

relationships were revealed (in this case between the H-O and

LPBA40 probabilistic atlases). For example, simple correspon-

dences were observed for regions defined in each atlas as the

insular cortex, precentral gyrus, or postcentral gyrus. Hierarchical

relations were also observed, for example, between the LPBA40

left superior temporal gyrus and six subdivisions of that gyrus

provided in the H-O atlas (orange-red component in Figure 6B).

Finally, this procedure also revealed significantly more complex

relationships consisting of multiply overlapping sets of regions at

large spatial scales, e.g. in the frontal regions (red component) and

in the posterior portions of the brain (orange component). To the

best of our knowledge, no previous methods have been introduced

to directly find and visualize such spatially corresponding region sets.

As a global measure of the concordance between two

parcellations, we used the Adjusted Rand Index (ARI) and a

new similarity index developed for this application. To compare

these summary indices with ‘‘chance’’ in the given context, we

created a series of random parcellations of the test brain matched

to each atlas by number of regions, and computed each index

repeatedly for pairs of random parcellations. Results for the ARI

indicated that only 3 atlas pairs had similarity greater than

expected by chance (H-O/ICBM; H-O/LPBA40; ICBM/

LPBA40). While the ARI has expected value of zero under the

generalized hypergeometric distribution, its computed value was

consistently positive in the current context even for random

parcellations, indicating a shortcoming in its application to

spatially constrained comparisons such as these and indicating

the need for understanding empirical chance distributions. The

ARI works by comparing the fraction of, in this case, voxel pairs

that are either assigned the same label in both parcellations or

different labels in both parcellations relative to the total number of

voxel pairs. This index does not allow for refinement of a single

region in one atlas into multiple regions in another without

penalty. This may account for some of the low similarity values

observed in these comparisons as this type of refinement is

observed in numerous places across the different atlases in, for

example, the cerebellum (e.g. ICBM vs. H-O), thalamus (e.g. T&G

vs. ICBM), and cerebral cortex (e.g. the cingulate cortex in

LPBA40 vs. AAL), to name only a few.

The S-index was designed to capture global similarity while

allowing for region refinement in one atlas relative to another. It is

similar to the local consistency error measure defined by Martin et

al. [28] for comparing object segmentations in complex 2D

images. The S-index computes a sum of ‘‘penalties’’ for each pair

of overlapping regions in the two parcellations, weighted by

the relative volume of the smaller region. No penalty is

assigned when one region is a pure subset of another (when

max P i jjð Þ,P j ijð Þð Þ~1; see Figure 2 for illustration), and the

largest penalty is assigned when the maximal overlap is 50%

(reflecting maximal ambiguity in mapping between the region

pair). For regions that overlap only slightly relative to each of their

overall volumes, the penalty is accordingly small. Using this index,

most atlas pairs were found to be more similar than chance, with

the notable exception of any atlas compared to TALc and most

compared to TALg. A primary cause of this observed discordance

is due to misregistration of the Talairach volume to the MNI-space

template brain that can be large relative to the sizes of individual

regions in each atlas. The TALc parcellation is particularly

problematic because it attempts to delineate cytoarchitectonic

regions, while other atlases (excepting CYTO which is not

compared globally) are based on sulcal and/or gyral patterning.

Further, because the ‘‘cell level’’ Talairach atlas only delineates a

relatively thin cortical strip, which is not well-registered with the

test brain cortical surface even after application of a coordinate

transform , many of the cortical GM voxels under investigation go

unlabeled in TALc. Thus, a comparison of similarity should be

expected to reveal significant differences given these inconsistencies.

Recognizing the problems that misregistration poses for the TALc

atlas, and recognizing the ability of the widely-used Talairach

Daemon [14] to provide its user with the nearest anatomical label

for any specified coordinate, we also performed a supplemental

analysis on a new parcellation deemed TALcNH, which essentially

dilates the TALc parcellation in order to provide non-trivial labels

to most cortical voxels, as might be performed in assessing

activations in an fMRI study; this analysis is provided in Text S2.
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General discussion
We have outlined a key practical problem that impacts the

neuroimaging community, and that is illustrative of similar

problems throughout neuroscience disciplines. Previous efforts to

reconcile different neuroanatomical parcellations and nomencla-

tures have been mostly limited to the qualitative inference of terms

judged by experts to refer to approximately the same segment of

brain. Bowden and colleagues have developed a well-known

structured nomenclature system for neuroanatomy [5,6], which

consists of a set of hierarchically-related primary and super-

structures, a table of synonymous terms, and a table of terms for

ancillary structures. With the relatively recent rise of the

neuroinformatics discipline, several groups have begun to

assemble formal machine-readable ontologies that encode semantic

relationships between neuroanatomical terms [7,8,9] in an effort

to automate knowledge extraction and facilitate data representa-

tion. While these resources are generally useful as controlled

vocabularies, they often neglect the fact that the terms are

representative of spatially defined entities, and that the most useful

mappings between terms will be based on their definitions as such.

Additionally, these terminological approaches typically assume

that the relationships between anatomical entities can be captured

with a small set of possible relationships such as synonymy and

parent-child hierarchy. Our results suggest that the mapping

problem is considerably more complex, and that incorporating

quantitative spatial relations, in the form of conditional probability

values, into ongoing ontological efforts, could prove a very fruitful

way forward.

One advanced approach to the nomenclature/brain atlas

concordance problem was provided by Stephan et al. [31] who

developed the objective relational transformation (ORT) method

to map between different parcellation schemes in a coordinate-

independent manner. This method, used within the CoCoMac

database (http://www.cocomac.org), relies on defining the logical

relations between brain areas from different parcellations. In ORT

these relations reduce the continuous patterns of spatial overlap

between region pairs to a discrete set of possibilities: identity,

subset, superset, and partially overlapping. A set of rules is then

provided to translate region-level information from parcellation to

parcellation. This technique is rigorously developed and is of great

interest when only coarse information is available about the

relationships between region pairs in different parcellations.

Bezgin et al. [27] expanded this framework in a manner similar

to our approach in order to deduce these logical relationships from

spatial partitions. Specifically, they calculated conditional overlap

values between regions defined within multiple macaque cortical

parcellation schemes represented as surface-based overlays in the

Surface Management database system (SumsDB) [26]. Such

relationships were extracted by first calculating the conditional

overlap values (e.g. P(i|j), P(j|i)) for all region pairs, then by

classifying each region pair as belonging to one of the possible

logical relationships based on the overlap pair. These authors

introduced several procedures for performing classification,

including a machine learning approach based on previously

classified relationships across brain maps. They also made use of a

weighting scheme, which allows nodes (cf. voxels) near the centers

of regions to have greater influence than those near the

boundaries, thereby reducing the impact of potentially imprecise

registration of the parcellation schemes. Overall the proposed

SORT (Spatial Objective Relational Transformation) approach

appears very promising for inferring the necessarily approximate

categorical relationships used in the CoCoMac system. Nevertheless,

the reduction of the computed conditional overlap values to

categorical relations is, in some sense, counter-intuitive. By

retaining these values as conditional probabilities, indeed it should

be possible to replace the complex algebra of ORT with the

familiar mathematics of basic probability theory.

It may appear that the problem of translating between multiple

parcellation schemes might be simply avoided by referring to the

brain geographically with reference to a particular coordinate

space, and this is of course done frequently in human

neuroimaging studies. Often publications incorporate tables that

include lists of coordinates at which particular effects of interest

were observed, with reference to one of a small number of

commonly-used stereotactic coordinate spaces. Mapping between

atlas spaces based on standard coordinate-based data affords

superior resolution to the techniques we present here, but

coordinate-based approaches are not always feasible, particularly

in mining data from the literature. In particular, neither the

presentation of coordinate-based results nor the preferred

coordinate space is universally agreed upon, and some analyses

are performed and reported at the region-level [e.g. 11,12].

Further, coordinate data almost always provide only a partial view

of the results that is invariably supplemented with textual

description and anatomical labeling of some form. Related

research by Nielsen and Hansen [33] sought to model the

relationships between particular spatial coordinates of activations

reported in the BrainMap functional imaging database [34] and the

anatomical labels assigned to these activations by the authors.

While their method was designed to detect outliers or errors in

database values, it also provides probability density estimates

across Talairach space for the ‘‘region’’ corresponding to a given

neuroanatomical term. These results can be informative in that

they reveal what parts of brain space have been assigned a particular

label in the database, but they do not take into account the use of

different atlases with different definitions of region boundaries.

In general, quantitative treatments of the anatomical parcella-

tion and associated nomenclature problem have been largely

absent for several reasons, including the general lack of

appropriate methods and of directly comparable digital atlases.

In human brain imaging, digital atlases are widely available and

easily subjected to mathematical analysis, thus making the present

study possible. The high-resolution ICBM template brain was a

natural choice as a test brain because it is used in several common

software packages and has been examined in some detail, resulting

in the availability of the AAL and ICBM anatomical parcellations.

The other methods studies, while not specific parcellations of the

test brain, could be applied in a manner consistent with common

practices in the field. While the results presented here and made

available in detail as a web tool should provide valuable

information to neuroimaging researchers, the analysis will need

to be extended to multiple different brains in order to produce

accurate meta-atlases that probabilistically map between different

parcellations with known measures of uncertainty across individ-

uals. It should be noted that additional efforts are currently under

way to provide unified surface and volume-based representations

of multiple atlases and anatomical parcellations for human and for

macaque [25]. Such efforts will prove very useful in comparing

results across studies and in comparing results from neuroimaging

with those from ‘‘classical’’ neuroscientific investigations.

To further our overall understanding of the different anatomical

labeling conventions currently in use, it would be valuable to

establish a common set of MR scans that could be labeled

manually by anatomists or otherwise using different parcellation

schemes. Manual parcellations are time-consuming and require

extensive training to perform but could provide a valuable

resource to the community and could additionally be used to

improve automated parcellation tools [e.g. 22,23,24]. The Open
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Access Series of Imaging Studies (OASIS) project has made

hundreds of structural MR scans freely available to the community

[35]; a subset of these scans, for example, could be made available

as a parcellation test bed to enable such a project. Additionally

these methods are suitable for the comparison of atlases in other

species, where researchers also must confront the brain atlas

concordance problem. In the rodent, for example, at least two

major atlases [36,37] offer fine parcellations of the rat brain whose

boundaries can be quite different over large regions [38], but

which have not yet been systematically compared.

Summary
In this study we have attempted to precisely quantify the spatial

relationships between different parcellations of the same human

brain anatomy. Our analyses indicate that mapping results from

one reference atlas to another is a complex challenge that must be

addressed in order to fully comprehend the growing body of

literature in functional brain imaging and other neuroscientific

disciplines. The problem is particularly crucial for the future

success of neuroinformatics initiatives based on automated or

semi-automated text analysis. Furthermore, simple ontological

efforts based on, for example, synonymy and parent-child

relationships, appear to be incapable of capturing the rich

landscape of spatial relations observed in this analysis of human

brain atlases. Future efforts should thus include a focus on

quantitative spatial comparisons of different atlases and parcella-

tions, as presented here (and also in [27,39]). The framework we

have provided appears suitable for the future development of a

well-defined meta-atlas to allow probabilistic mapping between

labeled regions defined using the myriad protocols available to the

neuroscience community today.

Materials and Methods

The single-subject ICBM template brain
The high-resolution single subject anatomical template (‘‘Co-

lin27’’; [40]) from the International Consortium for Brain

Mapping (ICBM) served as the test data for this study. This low-

noise template is an intensity average of 27 coregistered T1-

weighted gradient-echo MR scans (TR=18 ms, TE= 10 ms, flip

angle = 30u) obtained from the same human subject. The volume

has dimensions 18162176181, with 1 mm isotropic voxels, and

covers the entire brain. This single-subject template is provided

spatially registered (following application of a 9-parameter global

affine transformation) to the commonly used Montreal Neurolog-

ical Institute (MNI-305) stereotactic coordinate space. The high

signal to noise ratio allows one to visually resolve anatomical

details not readily seen in a single typical MR scan. This volume is

widely available and is distributed with multiple functional

imaging software tools.

Voxels from this template brain were assigned probabilities of

belonging to one of three tissue types – grey matter (GM), white

matter (WM), or cerebrospinal fluid (CSF) – using the Statistical

Parametric Mapping (SPM5) software package [41]. Voxels in the

left hemisphere (both cortical and subcortical) for which the GM

probability was greater than 0.25 were included in a binary mask,

indicating areas to be labeled using the systems described below.

Only the left hemisphere was used because some atlases

differentiate between the left and right hemisphere instances of a

particular region while others do not.

Parcellations and atlases
Several different procedures were used to create a set of distinct

anatomical parcellations of the test brain. While other atlases and/

or protocols for manual parcellation have been described in the

literature, some procedures required resources such as expert

anatomists trained with a particular protocol that were not

available for the present investigation. Table 1 summarizes the 8

procedures used and some of their attributes.

Talairach. Two separate parcellations were created based on

the Talairach anatomical atlas [15]. The first, TALg, is a

parcellation into gyri and other macroscopic subdivisions, while

the second, TALc, is a parcellation into subcortical nuclei (with

considerable detail in the thalamus) and architectonic regions,

specifically Brodmann’s areas [42]. The original Talairach atlas

was published in print and labeled sections from a single

hemisphere of the cadaver of a 60-year old woman. This atlas

became the de facto standard in early imaging research because it

established a common (although unrepresentative) coordinate

space and template. Although the atlas contained Brodmann area

labels, it is important to note that no histology was performed, that

these labels were determined based simply on visual comparison

with Brodmann’s illustrations, and that no precise area boundaries

were drawn. The atlas was digitized and manually traced to create

the Talairach Daemon [14], an online tool that allows researchers

to query for labels at five different ‘‘levels’’ at any given point in

Talairach space.

Because the single subject test brain is provided aligned to the

MNI stereotactic space, which has measurable differences from the

Talairach space, a coordinate transformation was used to apply

labels from the Talairach atlas to the MNI-space brain. Such

mapping between these two template spaces is common in

neuroimaging research, and several methods have been prescribed

to make the transformation [25,43,44,45]. Here we used the method

described by Lancaster et al. [45], specifically the icbm_spm2tal

transform (http://brainmap.org/icbm2tal/index.html), to map

each point in the target brain to a corresponding point in the

Talairach atlas, where the labels were simply ‘‘read off.’’ The gyrus-

level labels were used to provide TALg, and the cell-level labels were

used to provide TALc. It should be noted that the TALg parcellation

specifies larger regions than the TALc parcellation. This is because

regions from TALg include portions of the white matter from the

Talairach brain, whereas regions from TALc do not; see Lancaster et

al. (2000) for further details. This problem is partially alleviated here

because only voxels likely to constitute GM are considered in the

analyses, thus discarding many WM voxels assigned labels by the

Talairach Daemon. However, from Table 1 it is clear that

misregistration of the thin cortical contours defined in TALc with

the test brain GM resulted in a low fraction of GM voxels receiving

non-trivial labels. In using the Talairach Daemon, many researchers

invoke functionality that allows the user to find the nearest label to a

given input coordinate. We leveraged this idea to create an

additional parcellation, called TALcNH, which is examined in Text

S2. In TALcNH, each unlabled GM voxel in TALc is assigned the

nearest non-trivial label, assuming one is present within 5 mm of the

target voxel.

AAL. Because of inaccuracies in using the Talairach atlas to

label brains registered to MNI-space, Tzourio-Mazoyer et al. [1]

created a new MNI-space anatomical atlas. The single-subject

template brain (the test data in the present study) was manually

parcellated according to a set of rules based primarily on

identifying macro-anatomical landmarks (e.g. prominent sulci),

and often with reference to previous delineations. A detailed

parcellation of the cerebellum [46] was incorporated, while other

subcortical structures (e.g. thalamus) were largely defined as large

macro-regions. Cortical regions were drawn not to strictly follow

the GM in the subject brain, but also to account for some expected

inter-subject variability, by extending into the WM. The
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Automated Anatomical Labeling (AAL) toolbox is an extension for

SPM that makes this atlas available to users, for example, to

provide anatomical labels corresponding to locations of activation

foci in functional imaging studies. The basic procedure is to simply

register MR scans to the MNI-space and ‘‘read off’’ the label from

the single subject atlas at one or more voxels of interest. Here the

brain being labeled is the atlas brain, so no additional steps were

necessary. We refer to this parcellation here as AAL.

ICBM. An additional macro-anatomical parcellation specific

to the single-subject test brain is available from the International

Consortium for Brain Mapping (http://www.loni.ucla.edu/

ICBM/Downloads/Downloads_ICBMtemplate.shtml). Cortical

gyri, subcortical structures, and the cerebellum (as a singular

entity) are given unique labels. Thalamic and brainstem structures

are delineated in considerable detail. We refer to this parcellation

as ICBM.

Tourville and Guenther using FreeSurfer. Tourville and

Guenther [47] have developed a landmark-based protocol for

parcellation that builds upon a system used at the Center for

Morphometric Analysis (CMA) [18] and that is focused in

particular on cortical areas involved in speech processing. This

system, therefore, incorporates a large number of auditory, motor,

and premotor cortical areas. The FreeSurfer software program

(http://surfer.nmr.mgh.harvard.edu) was trained to perform

automatic cortical parcellation [22] based on a training set of

manually labeled scans using this protocol. The test brain was then

parcellated using FreeSurfer, and manually edited by an expert

anatomist to correct any apparent gross mislabelings. Freesurfer’s

default subcortical parcellation [48] was also performed, and the

sum results of both cortical and subcortical labeling were projected

back into the original volume-space, resulting in a parcellation

(T&G) that could be readily compared to those described

above.

Probabilistic atlases. Three probabilistic brain atlases were

also used to parcellate the test brain. Such atlases give an estimate

of the probability that a given voxel in a standard space belongs to

a particular region. Probability estimates are based on the

proportion of voxels at a given location in a set of individual

manually labeled brains registered to the template space that have

been assigned any given label. For each probabilistic atlas used

here, deterministic parcellations were created by assigning the

most probable region label to each selected voxel. The CYTO

parcellation was created using the probabilistic cytoarchitectonic

maps from Zilles and colleagues, published as the Anatomy Toolbox

[49]. These maps, which are derived from post-mortem

histological analysis in multiple subjects, then registered to the

MNI-space using a high-dimensional non-linear registration

algorithm, do not cover the entire brain; for this reason they are

excluded from certain comparisons, including global atlas

similarity described below. Notably, CYTO is the only labeling

method examined that is based on direct histological

investigations. The second probabilistic atlas, the Harvard-

Oxford (H-O) atlas (distributed with the FSL software package;

http://fsl.fmrib.ox.ac.uk/fsl/), was created by affine-registering 37

individual scans that were each manually parcellated according to

the CMA protocols [18] to MNI-space using the FLIRT tool in

FSL. For the present study, the cortical and subcortical atlases

distributed with FSL were combined into a single volume. The H-

O parcellation is again the maximum likelihood labeling at each

voxel. Lastly, the LONI probabilistic brain atlas (LPBA40) [50]

consists of 40 manually labeled brains according to a set of

protocols developed at UCLA’s Laboratory of Neuroimaging. The

atlas has several variants based on the choice of methods used to

register the individually labeled brains. Here we used a maximum

likelihood parcellation created from a version of the atlas that used

the SPM5 default registration methods to align each scan to the

template space.

Each of the 8 parcellations above assumed the final form of a

18162176181 voxel volume. Each left hemisphere GM voxel was

labeled in each parcellation as belonging to a particular area or to

‘‘none.’’ Formally, this resulted in each of the M relevant voxels xi,

i [ 1,2,3, . . . ,Mf g in the image being mapped to a non-negative

integer label corresponding to a particular region, i.e. xi . rk.

Unlabeled voxels were assigned the value 0. A subset of the voxels

in these volumes was subjected to analysis. These voxels were

selected by i) finding the union of all voxels assigned a non-zero

label in any of the atlases considered, and ii) intersecting that voxel

set with the left hemisphere GM mask described above.

Region-level concordance matrices
The parcellations of the test brain can be mathematically

formalized as sets or sets of sets. Specifically, a single parcellation R

is a set of N regions,

R~ r1,r2, . . . ,rNf g ð1Þ

and each region comprises the set of indices of the voxels that map

to the same anatomical label:

ri~ k [ 1,2,3, . . . ,Mf g : xk . ri ð2Þ

We define a non-symmetric measure of spatial overlap between a

region i from parcellation R and region j from parcellation R9 as:

Pij~
ri\rj
�

�

�

�

rj
�

�

�

�

~P x [ ri x [ rj
�

�

� �

ð3Þ

where |ri| indicates set cardinality, or the number of voxels in the

region or intersection of regions. Pij thus indicates the proportion

of region rj that is contained within the bounds of region ri. Its

values are limited to the interval [0,1], and thus Pij has a straight-

forward interpretation as the conditional probability that a voxel is

contained in region i given that it is contained in region j, averaged

across all voxels in rj. For simplicity, we write these conditionals as

P i jjð Þ or simply Pij, omitting the reference to voxel x.

This conditional measure is to be contrasted with more

commonly employed symmetric overlap measures, such as the

Dice coefficient [51] or the Jaccard similarity index [52], which

can only take its maximum value of 1 when the regions are

identically defined. Pij is instead 1 when there is a pure subset

relationship, even when Pji,1. We also employed a symmetric

index of overlap, but one that is readily computed from the Pij
values and whose denominator is the geometric mean rather than

size of the union of the two regions:

Oij~
ri\rj
�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffi

rij j rj
�

�

�

�

q ~

ffiffiffiffiffiffiffiffiffiffiffi

PijPji

p

ð4Þ

This index, which is equivalent to the cosine coefficient for binary

vectors as commonly used in information retrieval [53] , again

takes values on [0,1], but is only equal to 1 when the two regions

are identically defined. Here Oij=Oji.
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The above measures are each defined with respect to two

parcellations. For convenience we concatenated the sets of regions

in all atlases into a single list, such that each region is indexed with

a unique integer. This resulted in matrices P and O being square

block matrices where the individual blocks indicated the spatial

relationships between the regions from two individual atlases. For

non-symmetric matrix P, two blocks–one in the lower triangular

portion and one in the upper triangular portion–are necessary to

capture the conditional probabilities related to the comparison of

any two atlases. From the P and O matrices one can readily

calculate various statistical properties across parcellations (e.g. the

number of other regions that any particular region overlaps), and

these can form the basis of more advanced analyses and

visualization procedures.

Visualization of region-level results. The order of the

regions encompassed in each parcellation was initially arbitrary. The

indices may be reordered algorithmically in order to improve

visualization and interpretability of global results. A method was

developed to permute the rows and columns of each block in the block

matrix P independently in order to reduce the matrix bandwidth

(defined as max
Pij=0

i{jj jð Þ) for each block. This has the effect of

reordering the regions in pairs of parcellations to reflect similar patterns

across brain space. Because bandwidth minimization is an NP-

complete problem [54], we used a heuristic that proceeds as follows: i)

the singular value decomposition (SVD) is computed for each block of

the matrix P; ii) the first left and right singular vectors are sorted, and

the sort indices are used as permutations of the rows and columns

within the block. This results in the non-zero entries in each block

being permuted toward the diagonal, yielding a more suitable

visualization than the arbitrarily ordered P.

Non-metric multi-dimensional scaling (MDS) was also used to

visualize region labels from all atlases in two-dimensional space.

The input to MDS was a symmetric dissimilarity matrix
ffiffiffiffiffiffiffiffiffiffiffi

1{O
p

calculated from the symmetric overlap matrix. The mdscale routine

from the MATLAB Statistics Toolbox was used, which uses

Kruskal’s normalized STRESS1 criterion [55] for optimization;

this method returns x- and y- coordinates for each region such that

the distances between points is approximately monotonically

related to the dissimilarity values.

Extracting hierarchical relationships through graph

partitioning. The spatial relationships between regions in two

different atlases can be complex. Inferring higher-order

relationships is difficult due to the vast combinatorial

possibilities. We addressed this problem using a graph

theoretical approach. For any pair of parcellations, we define a

weighted bipartite graph B= (V1+V2, E) where edges E are weighted

as:

Eij~max P ijjð Þ,P jjið Þð Þ , i [ V1, j [ V2 ð5Þ

Here V1 and V2 are distinct vertex sets representing the sets of

regions in each of the two parcellations. For the present

parcellations, this graph is typically connected (there is a path

from any node to any other). Various graph partitioning methods

can be employed to cut the graph into multiple components. Here

we employed a very simple algorithm, which iteratively removes

the edge with smallest non-zero weight until a threshold for the

maximum number of graph components or maximum pruned

edge weight is reached. We then deduced that, for each resulting

connected component, the union of regions represented in V1 in

that component has a spatial correspondence with the union of

regions represented in V2, up to some level of ‘‘noise’’ determined

by the stopping criterion. Intuitively, this indicates that some set of

regions in one parcellation has high overlap, in potentially

complex patterns, with some set of regions in another parcellation.

For visualization of the bipartite graph, the vertices in V1 and V2

were reordered using techniques from spectral graph theory [56].

Nodes were re-indexed by sorting the Fiedler vector (the

eigenvector corresponding to the second smallest eigenvalue of

the graph Laplacian) [57]; this re-indexing brought the connected

components in closer proximity within the graph layout and

minimized the visualization problem of crossing edges.

Global similarity of parcellations. To address the global

similarity or concordance of two parcellations we first applied the

Adjusted Rand Index (ARI; [32]). The ARI computes the fraction

of all possible pairs of voxels that are either i) in the same region in

both parcellations or ii) in different regions in both parcellations,

and is normalized such that its expected value is 0 under the

generalized hypergeometric model of randomness. The ARI

formulated here for comparing parcellations is:

ARI~

P

ij

ri\rj
�

�

�

�

2

 !

{
P

i

rij j
2

� �

P

j

rj
�

�

�

�

2

 ! !,

M

2

� �

1

2

X

i

rij j
2

� �

z

X

j

rj
�

�

�

�

2

 ! !

{

X

i

rij j
2

� �

X

j

rj
�

�

�

�

2

 ! !,

M

2

� �

ð6Þ

where ri and rj are the sets of voxels labeled as region i in the first

parcellation and region j in the second, respectively, andM is the total

number of labeled voxels. The notation
x

y

� �

denotes ‘‘x choose y’’

or the number of ways y items can be chosen from a set of x.

Additionally, we developed a new index, S, which is calculated

from the Pij values for a pair of parcellations. The index ‘‘penalizes’’

region-to-region relationships that are overlapping, but that are not

pure subset relationships. The maximum penalty for a pair of

regions occurs when one region overlaps another by exactly 50% of

its volume. These pair-wise ‘‘penalties’’ are weighted by the size of

the regions involved. The scalar-valued similarity index S for two

parcellations, which takes values between 0 and 1, was computed as

follows. First the maximum of the two conditional probabilities

corresponding to each region pair was calculated,

Xij~max Pij,Pji

� �

along with ‘‘weights’’ for each non-zero Xij corresponding to the

relative volume of the smaller region:

Uij~

min rij j, rj
�

�

�

�

� �

if Xijw0

0 otherwise

(

Wij~
Uij
P

Uij

Then the weighted maximum conditional probabilities were

combined and subtracted from 1 as penalty terms in order to

arrive at the final expression for global concordance:

S~1{4
X

ij

WijXij 1{Xij

� �

ð7Þ

Random parcellations. The pair-wise global similarity

values for different parcellations have little meaning without an
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understanding of their expected values in the given context. To

this end, we developed the notion of a random parcellation of the

template scan. Space-filling random parcellations of the scan into

N contiguous regions were created as follows:

1. N ‘‘seed points’’ were chosen randomly from voxels

x1,x2, . . . ,xM and assigned region labels 1,2, . . . ,Nf g.
2. For each labeled voxel xi, its 6-neighborhood in three

dimensions was calculated, and all unlabeled neighboring voxels

were assigned label L(xi).

3. Step 2 was repeated until all voxels x1,x2, . . . ,xM were labeled.

A matched set of random parcellations was created for each

atlas; that is, the number of regions in the random parcellations

was set equal to the number of regions in a given atlas. Global

similarity was assessed between pairings of random parcellations in

order to establish the distributions of ‘‘chance’’ concordance when

comparing arbitrary partitions of brain space.

Supporting Information

Figure S1 Symmetric concordance matrix. Region-level con-

cordance results across eight parcellations using the symmetric

measure Oij = sqrt(Pij*Pji). Each row and column corresponds to a

particular anatomical region, and regions are grouped by

parcellation method (separated by gray horizontal and vertical

lines). Non-zero (non-black) entries indicate some degree of

overlap between the region pair. Only the upper diagonal

elements are shown because of symmetry.

Found at: doi:10.1371/journal.pone.0007200.s001 (0.45 MB TIF)

Text S1 Bipartite graph comparisons of anatomical parcella-

tions. Bipartite graph comparisons of anatomical parcellations.

Each pair of parcellations is compared using the bipartite graph

formulation described in our paper. The graphs are shown for

theta = 0.10 and for theta = 0.25.

Found at: doi:10.1371/journal.pone.0007200.s002 (0.71 MB

PDF)

Text S2 Supplemental analysis based on TALcNH parcellation.

Found at: doi:10.1371/journal.pone.0007200.s003 (0.29 MB

PDF)

Table S1 Global concordance measures for the comparison of

parcellations computed using voxels in i) a cerebral cortex only

mask , and ii) a subcortical only mask.

Found at: doi:10.1371/journal.pone.0007200.s004 (0.03 MB

PDF)
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