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1. Introduction. Let D e E2 be an open set such that D is compact and Bound-
ary D is an oriented Jordan curve. A mapping /: D -»■ E2 is said to be properly
interior iff is light, open, and sense-preserving on D, and a local homeomorphism
(relative to D) at each point of Boundary D. A theorem of Stoilow [6, Theorem
4.5, p. 98] states that if/is properly interior, then at each pointy of D there exists
a closed two-cell neighborhood A of p on which / is topologically equivalent to
w=zn on z SI for some positive integer «. The integer «— 1 is called the multiplicity
off at p. A branch point is a point at which the multiplicity is strictly larger than
zero. Suppose S : Boundary D -»• E2 is continuous ; then S is an interior boundary if
there exists a properly interior/: D -*■ E2 such that/[Boundary 7> = 8. The mapping
/ is said to be an extension of 8 to D. If 8 is an interior boundary and / is any
properly interior extension of 8, then / has only finitely many branch points, say
zx,..., zr with multiplicities p(l),..., p(r). It is well known that 1 + p(l ) + ■ ■ ■ + p(r)
is always equal to the tangential winding number of 8 [2, Theorem 20.1, p. 71].
What has not been considered is what minimal value r can take for a given interior
boundary and what multiplicities can occur for the minimal r. This is part of the
problem of determining more about the branch points, poles, and zeroes of light
open mappings of the two-cell into the two sphere (see [2, p. 76]). An algorithm is
presented here which answers this question for the case that S is a representation
of a normal curve. A mapping 8 of an oriented one-dimensional manifold 7 into
the complex plane E2 is called a representation ; if 8 possesses a continuous non-
vanishing tangent 8' then 8 is called a regular representation. An image point 80 of a
regular representation Sisa vertex if there exist exactly two distinct points x and y
such that S(x) = 8(y) = S0 and if the tangents S'(x) and S'(y) are linearly independent.
A regular representation is normal if it has a finite number of vertices and every
other image point has but one pre-image. Two representations (regular repre-
sentations) 8 and e are equivalent if there exists a sense-preserving homeomorphism
c4:7-^7 such that e = So<£ (and </>' is continuous and nonvanishing). A regular
(normal) curve is then defined to be an oriented curve with a regular (normal)
representation.

In [4] Titus has given an algorithm to determine if a normal representation S is an
interior boundary. His method is to "cut" 8 into two normal representations 8*
and 8** in such a way that 8 is an interior boundary if and only if 8* and 8** are
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and S* and 8** have less vertices than S. The algorithm presented in this paper is
closely related to Titus' ; in fact, his cut of Type IF is unchanged here. The Titus
cut of Type I destroys information about branch point structure and so another
type of cut is introduced. This new cut algorithm not only answers questions about
the branch point structure but can also be used to determine if a normal repre-
sentation is an interior boundary. The price paid for this dual capability is
increased complexity of the algorithm.

2. Preliminaries. In what follows S will be a representation of a closed curve.
Let [S] denote the point set consisting of image points of 8. Let w(8, p) be the
index of 8 about a point p not in [8].

The outer boundary of S will be the subset of [8] which is contained in the closure
of the unbounded component of the complement of [8]; an outer point p is a point
on the outer boundary such that p has but one pre-image. For normal 8 and any
nonvertex/» one can define w + (8, p) and w~(8, p) as the larger and smaller winding
numbers of points p' near p but not on [8]. An outer point p is positive [negative]
ifw + (o,p)=l[w-(8,p)=-l].

Let S be normal and let 8(0) be an outer point where 8 is given by the complex-
valued function 8(t) = a(t) + ib(t) with t the usual angle parameter, 0^r<27r.
Index the n vertices in the natural way by traversing the curve with increasing t
and using consecutively the integers l,2,...,n; thus 8X, 82,..., 8n. (See Figure 1.)

The 2« pre-images of the vertices will be denoted by the lower case Roman
equivalent of the Greek letter denoting the curve and they will be indexed so
that 0<cÍl < • • • <d2n<2-n. Denote d} also by c/* if 8(d¡) = 8(dk) for j¥=k; thus,
8(dJü) = 8(dK) for all k. Define the function v by

a'(d%)   b'(dt)
a'(dk)    b'(dk)  '

Let t'k yet be another name for the smaller pre-image of 8k and let t"k be the other
pre-image. Define the function A on the set of vertices by

a'(tl)   b'(4) _
a'(t'k)   b'(t'k) '

Given any pair of distinct vertices 8;. and 8k, define the following relations :
(i)./3*if/í</í«S«7.
(2) jRk if t^t'jKt'^t;.
(3) jLk if kRj.
(4) j | k if either t'f < t"¡ <t'k<t'k or t'k < tk < t'¡ < t'¡.
For a normal 8 with p = 8(0) a positive outer point, the intersection sequence of

S with respect to p is defined by the sequence {dk}, the values of d£, and the values
of v(k) for each k. A pair of normal representations S and v have isomorphic inter-
section sequences if they have the same number of vertices, df = dk if ef = ek, and
v(dk) = v(ek). As will be seen from the following theorem if two representations

v(dk) = v(k) = sgn

X(8k) = X(k) = sgn
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Figure 1

have isomorphic intersection sequences, they are equivalent ; moreover, if one has
an extension to the disk with certain topological properties, so will the other.
Hence we consider two representations with isomorphic intersection sequences as
interchangeable.

Theorem [4, p. 49]. Let 8 be a normal representation defined on a Jordan curve D;
let e be normal and defined on the Jordan curve E. Suppose that each curve has a
positive outer point and the curves have isomorphic intersection sequences. Then there
exists a sense-preserving homeomorphism « of E2 onto E2 taking D onto E such that
eh = S (juxtaposition denotes function composition).

Suppose 8 and e are representations and x=8(p) and y = &(q) are two points
v/ith p<q. Denote by 8(p)8(q) or 8(p)8(q)(8) the representation obtained by re-
stricting 8 to pStSq. If x and y each have only one pre-image, then xy or xy(8)
will also denote this representation. Let — 8 represent the curve obtained by tracing
S in the opposite direction. Consistent with this notation 8(p)8(q)(— 8) traces from
8(q) to 8(p) via - 8. We shall use ap(8) +pb(e) to denote the representation ap(8)
followed continuously by pb(e), where p is in [8] n [e].

If 7 is a Jordan curve in E2, then InsJ denotes the bounded component of
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E2—J. The set Ins J will be called a Jordan domain. If a and b are two points of J,
then [a, b] denotes the set of points encountered as / is traversed from a to b in
the positive orientation; also (a, b) denotes [a, b]—{a, b}.

We will assume from this point on that a properly interior mapping f on D
does not map branch points onto f(D — D). There is no loss of generality in this
assumption for if / does not have this property, there exists a homeomorphism
h: Z>-> D such that /composed with h has the property. For our purposes/and
f o hare interchangeable.

3. Representations with A= 1. Let S be a normal representation with a properly
interior extension /. Suppose / has r distinct branch points with multiplicities
p(l), p(2),..., p(r). The sum 1 +p(l)+ ■ ■ ■ +p(r) is always equal to the tangential
winding number of 8 [2, Theorem 20.1, p. 71]. There remains the question of what
minimum value r can take, and in that case, what can the multiplicities be. The
results of this section answer that question for the class of representations 8 such
that A(8^) = 1 for every vertex S; (for brevity we write A= 1). Implicit in the previous
remark is the fact that a representation 8 with A=l is an interior boundary. We
shall state that as soon as we develop a few preliminaries.

Consider the vertices of 8 as a partially ordered set under the relation 8y > 8fc if
j=>k. A chain will be a maximal totally ordered set of vertices. A normal 8 is called
properly nested if for any two vertices 8; and 8k either j => k, k^j, or j\k.

Lemma 1. Suppose 8 is a normal representation with a positive outer point. If
X(k) = 1 for k= 1, 2,..., n, then 8 has nonnegative winding number at every point
and 8 is properly nested.

Proof. It follows from [3, Theorem 4, p. 1090] that 8 has nonnegative winding
number at every point.

Suppose by way of contradiction that 8 is not properly nested. Then there exist
d, and dk such that dk<d¡<dk.<dj., i.e., jRk. Suppose k is the smallest integer
such that there is a j with jRk. Pick a point u such that dk_x<u<dk and let 7 be
the interval from dk to dk.. In this case 8(w) is in the unbounded component of the
complement of [8|7]. Otherwise, there would be a point dm such that dm<dk<
dm. < dk., which contradicts the minimality of k. Now Corollary 1 to Theorem 1 of
[3, p. 1087] applies; by this result, the sum over all X(j) with jRk is zero. This
contradicts the fact that X=l.

Definition. Suppose 8m is a vertex; then t"m = d, for some r. We say Sm is a
terminal vertex if X(m) = 1 and 4=4- v If T is the interval t'mútúC, then S* = S|7
represents a positively oriented Jordan curve and [8*] n [8]={Sm}.

Lemma 2. Suppose 8 is as in Lemma 1. Then 8m is the smallest vertex in a chain
of vertices if and only if 8m is a terminal vertex.

Proof. Suppose Sm is the smallest vertex in a chain and let t"m = dk. By hypothesis
on 8, A(8m) = l. To complete the proof, it suffices to show t'm = dk* = dk-X.
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If cT* is not dk_x, then d*<dk-x; thus, one of the following holds:
(1) dk*-x<dk*<dk.x<dk,
(2) d£<dk-x<dk<dk*-x,
(3) dk*<dk*_x<dk.x<dk.

Cases (1) and (2) cannot hold, since by Lemma 1, S is properly nested. If (3) holds,
then the vertex 8(dk-x) = 8p is such that m^p; but Sm is minimal. It must be then
that d£ = dk-1.

The converse follows immediately from the definition of terminal vertex.

Theorem. If 8 is a representation with X=l, then 8 is an interior boundary.

Proof. If 8m is the smallest vertex in a chain, then it follows from Lemma 2 that
8 has a cut of type I at 8m and that 8* is a representation with A= 1. (See Paragraph
7 of [4].) By Theorems 4 and 5 of [4] we have that S is an interior boundary if and
only if 8* is. But 8* has one less vertex than 8 [4, Theorem 6, p. 55]. An induction
argument completes the proof.

Lemma 3. Let 8 be a normal representation defined on the boundary of a Jordan
domain D and suppose fis a properly interior extension of 8 to D. Let 8m be a terminal
vertex of 8. IfTis the interval t'mStS t"m, then there exists a Jordan curve J^D such
that J n(D-D) = T, f(J) =f(T), and for some k > 1, f\J is topologically equivalent
to w = zk on |z| = L

Proof. Pick s in T so that t'm<s<t"m. Let y=8\[t'm,s], y = 8\[s, t"m], and Af=
[y] u [r¡]. Because X(8m)= 1, Theorem 1 of [1, p. 49] applies and there is an arc Hx
in D, with one end point at t'm, such that T7i intersects D-D only at t'm. For the
other end point yx,f(yx) = 8(s); also f(Hx)<=■ [r¡].

Applying this same theorem at yx, we produce an arc Kx with yx one end point,
f(Kx)<=-[y], and Kx intersects D — D only at its other end point zx, if at all. Let
LX = HX u Kx; note that f(Lx)<= M. \fzx e D, then f(zx) = 8m and a repetition of the
above process produces an arc 72 with end point at zx such that /(72) <= Af. This
process must terminate after a finite number of steps since properly interior
mappings are finite-to-one. Thus, the last arc produced, say 7„ must have one end
point in D—D. Since/is a local homeomorphism at each point of D — D, this end
point must be t"m. Hence, the arc 7=71u---u79 intersects D — D only in
the points t'm and t"m; also, f(P) = M. Then 7=7 u 7is the desired Jordan curve.

On 7the mapping/is topologically equivalent to w=zk on \z\ = 1 for some k> 1
by Theorem 4.3 [6, p. 86].

Definition. Let 8,f and 7 be as in Lemma 3. Any branch points off (or their
multiplicities) in Ins 7 are said to belong to the terminal vertex Sm.

Let p. be a finite sequence of positive integers, i.e., p=p(l),..., p(k). Define
\p\=k. We do not require that the p(j) be distinct nor that \p\ be the same for
every p considered. For an interior boundary 8, define F(8) to be the set of all
sequences p such that 8 has a properly interior extension/with exactly \p\ branch
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points of multiplicities p(l), p(2),..., p(k). Note that for any p e Y(8), 2J=i p(j)
is equal to one plus the tangential winding number of 8 [2, Theorem 20.1, p. 71].
It follows from this that 8 has an extension which is a local homeomorphism if
and only if the tangential winding number of 8 is one; in this case, T(8) is empty.
We make the convention that O denotes the empty sequence. When 8 has a local
homeomorphism extension, we consider O the only element of Y(8). If p and v
are any sequences as above, define p u v to be the sequence p(X),..., p(k), v(l),...,
v(l). Define pu <&=p.

The following theorem gives an algorithm for constructing p in T(S) with \p\
minimal, where Sisa representation with A = 1. Before stating the theorem we
make one definition.

Definition. Let 8 be a representation with A=l where 8 is defined on [0, 2-n].
Suppose 8m is the terminal vertex of a chain of 8 of maximal length and assume
this length is at least two. Define /={S( | /?=>/} where 8P is the smallest vertex in
the chain such that p=>m. Each 8¡ in / is a terminal vertex by the maximality of
the length of the chain. Of course, 8m is in 7. For each 8¡ in 7 let 7( = [t[, t'/]. Define
8* to be the representation given by S|([0, 27r] — ij {7¡ | 8, in /}); thus, 8* is
obtained by removing from S the loops corresponding to the vertices 8, in /. Suppose
we renumber the vertices of 8 so that 8X,..., 8r are the terminal vertices of S not
in / and 8r+x,..., 8S the terminal vertices of S in /. We number the vertices of
8* so that 8f is the terminal vertex of 8* corresponding to 8} (new numbering),
1^/gr, and 8f+1 corresponds to the vertex SP of S in the old numbering. (See
Figures 1 and 2.)

Suppose that 8 has every chain of length 1 and has s such chains. By Lemma 3,
8 has at least í branch points. But the tangential winding number of S is s+1 and
so every branch point has multiplicity one. We can thus ignore this case.

Theorem 1. Suppose 8 is a representation with X=l with vertices numbered as
in the definition above.

(1) If p is in Y(8), then \p\^s, where s is the number of terminal vertices of 8.
If \p] =s, then there is a 1-1 correspondence between the terminal vertices and the
K/)-

(2) Suppose p is a sequence of positive integers with \p\ =s. Then p is in Y(8) with
p(j) belonging to the terminal vertex 8;, 1 ̂ j^s, if and only ifp* is in Y(8*) where

P*U) = l4J)      for lâj^r,

P*(r+l)=   2   0*0")-1)
i = r + l

with p*(J) belonging to 8f, 1 Sj^r+1.

Proof. We first dispose of (1) by appealing to Lemma 3. To each terminal
vertex there corresponds a Jordan curve7on which/, an extension of 8, is topologi-
cally equivalent to w = zk, k> 1, on |z| = 1. There must be a branch point in Ins 7;
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S2 = 8*

Figure 2

if \p\ is to be minimal there can be only one, since/can be redefined to be topologi-
cally equivalent to w=zk on \z\ < 1 in Ins 7.

Now we turn our attention to (2). First suppose p is in F(8) with \p\ minimal.
Let/be an extension of 8 to D with branch point structure given by p, where p(j)
belongs to the terminal vertex 8¿, 1 SjSs.

Let 8, be a terminal vertex in 7 Then there exists a Jordan curve 7 as in Lemma 3
such that, on 7, /is topologically equivalent to w = zk on |z| = l. Note that
k = p(j) — 1 since p(j) belongs to S;. We may assume that, on 7 u Ins 7, / is topologi-
cally equivalent to w = zk on \z\ S 1. Thus, there are arcs X and Y in Ins 7 such that
X has end point t'¡, Y has end point t], X and Y intersect only at their other end
point, andf(X)=f(Y). Let Dx be the disk bounded by D-D-[t), t'¡] and Xu Y.
There exists a map « from Dx onto \z\ S 1 such that « is a homeomorphism on
Dx-X- Y, on X, and on Y. Also h(X)=h(Y)={z \ z real, OSzS 1} and, for x in
X and y in Y, h(x) = h(y) if and only if f(x) =f(y). Clearly g=fh~1 is well defined,
continuous, light everywhere, and open, except possibly on h(X); therefore, g is
open on h(X) [5, Theorem 9, p. 336]. The map g is a properly interior extension of
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8 with the loop corresponding to S; removed. Note that g has the same branch
point structure as / except that the branch point of multiplicity p(j) has been
replaced by one of multiplicity p(j) — l.

We continue this process, removing the loops associated with the vertices in I
and obtaining an extension/* of 8* with multiplicities p(l), p(2),..., p(r),
p(r+1)— 1,..., p(s) — l. Applying Lemma 3 to 8*+1 yields a Jordan curve7 such
that/* |7 is topologically w=zk on \z\ = 1. If z, is the branch point off of multiplicity
p(j) belonging to 8; in I, then by the construction above we can assume that there
is a z'j which is a branch point of/* of multiplicity p(j)— 1. Since p=>j and p(j)
belongs to Sy, we can also assume that z'¡ is in Ins 7. Thus, k = Jisj=r + x (p(j)~ 1) =
P*(r+ 1). We can define/* to be topologically z«*<r + 1> + 1 on 7 u Ins 7. This process
produces an extension of 8* with branch point structure p*.

Now suppose p* belongs to F(8*) and let/* be a properly interior extension of
8* to D with branch point structure given by p*, where each p*(j) belongs to a
terminal vertex of 8*. Let S*+ x be as before and let 7 and 7 be as in Lemma 3. Then

/*|7is topologically zß'ir+1) + 1 on \z\ = 1. Consider the following
Claim. Let 7 be a Jordan curve and suppose f\J is topologically equivalent to

w=zk on \z\ = 1. Let 7be a closed arc in 7 such that/maps both end points into the
same point, but is 1-1 on the rest of 7. For any integers p(l), p(2),..., p(u) such
that 2f=i p(i) = k— 1, there exists a properly interior map g on 7 u Ins 7 such that
g|7=/and g has branch points of multiplicities p(l),..., p(u) (consequently, only
those multiplicities occur). Furthermore, if tx, t2,..., tv are any points of 7, there
exist arcs y1, y2,..., yu in 7 u Ins 7 such that for each/ yj intersects 7 only at t¡,
the other end point of y1 is the branch point of multiplicity p(j),f is 1-1 on y', and
yi r\yi = 0 if ijíj. We make a slight abuse of language and extend the claim to the
case where some of the p(i)=0; i.e., some of the end points of the y' need not be
branch points.

If the claim is true, we apply it for/*, 7 and 7 as in the paragraph preceeding the
claim. Then k = p*(r+l)+1 and let p(i) = p(i)—l, r+lSiSs. By hypothesis
k—l =p*(r+ l) = 2f=r + i p(i). Suppose without loss of generality that D is the unit
disk in the complex plane and yr+1 = {z \ z real, OSzS 1}. We define a mapping «
on the unit disk as follows. On the part of the unit disk with Im z^O define « to be
f*(z2). Let K be a Jordan curve tangent to [8*] atf*(tx) and such that/*(y1) is in
Ku Ins K but intersects K only at f*(tx). Define « on {eie 177^0^277} so that it
traces K in a positive orientation as 0 increases from 77 to 277 and h(eix) = h(ei2n)
=f*(tx). Then « can be defined on {z | 0^ \z\ S 1,77< arg z<2t7} to be a homeo-
morphism and so that « is continuous on the whole disk. By Theorem 9 [5, p. 336],
« will be properly interior. Note that « has a branch point at zero of multiplicity
p(r+1) and elsewhere the multiplicities are the same as those off*.

If we repeat this process for each of the other values i=r+2,..., s,we will have
produced a representation that adds the loops corresponding to the terminal
vertices of 8 in 7 We also obtain a properly interior extension of this representation
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which has branch point structure as in (2). Hence, we have proved the theorem if
we establish the claim.

The claim will be proved by induction on u. If u= 1, the claim is clear. Suppose
it true for u— 1 > 1. Without loss of generality take 7 and/(7) to be the unit circle.
By the induction hypothesis there is a map g, and arcs y1,..., yu~1 which satisfy the
claim with respect to z°a) + ■•• +"("-d + 1 and p(l),..., p(u— 1). Let e be an arc in
Ins g(J) with one end point at g(tv), which does not intersect any g(y'). By Theorem
1 [1, p. 49], there is an arc e in Ins 7 with one end point at tv, mapping homeo-
morphically onto e. Note we are done if p(u) = 0. Assume again without loss of
generality that tv=l,e={z\ zreal, O^z^ 1}, andg\e = zpiu)+1. Define/on 7 u Ins 7
by letting/be g(zpW + 1) on {z | 0^|z|^l, 0^argz^27r/(,5(M)-|-l)} and zi,(u) + 1 on
the rest of the unit disk. Then / has the required properties, where yu is e. This
establishes the claim and hence, the theorem.

Using Theorem 1 we can test whether p is in Y(8) or not, with \p\ minimal, by
examining p*. There is an improvement in our situation since 8* has all chains no
longer than those of S and at least one strictly shorter. Thus, repeated application

S3 = (82)*

Figure 3
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of the theorem reduces the problem to examining a representation with every
chain of length one. In this case the only admissible p is one which has a branch
point of multiplicity one belonging to each terminal vertex. Also, starting with such
a representation we can build up to a p in Y(8) by using the theorem in the other
direction.

Note that at any point there may be several chains which are of maximal length
and so there are several choices for which 8* to use. Since the theorem is "if and
only if" it is immaterial which S* is chosen.

Example.   In Figures 1-4 we reduce a representation by the method of the
theorem until we obtain the representation S4 (Figure 4). It is clear that this
representation has one branch point of multiplicity 2. Working backwards we get

r(S3): (3, 1); (2, 2); (1, 3). (The first entry belongs to 8?; the second, to S|.)
T(8*): (3, 2); (2, 3); (1, 4). (The first entry belongs to Sf ; the second, to Sf.)
r(S): (4, 1, 2), (3, 2, 2), (2, 3, 2), (1, 4, 2); (3, 1, 3), (2, 2, 3), (1, 3, 3); (2, 1, 4),

(1, 2, 4). (The first entry belongs to 84; the second, to S5; the third, to S7.)

S4 = (S3)*

Figure 4
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4. The cut process. Let 8 be a normal representation of a closed curve. In this
paragraph we define representations which are "more like" representations with
A=l. We show that these representations determine whether 8 is an interior
boundary and, if so, determine the branch point structure of 8.

Assume 8 has nonnegative circulation; otherwise, it cannot be an interior
boundary. If S has A( ;) = 1 for all vertices 8¡, then Theorem 1 gives the desired
information about 8 and T(S). So we assume that this is not the case; we select a
positive outer point 8(0) and, with respect to that, number the vertices as in Para-
graph 2. We select the least q such that X(q)= — 1.

Suppose P={8¡ \j<q, t'¡, t"¡<Q. By choice of q, for any S¡ and S,- in P, either
i^>j,j=>i, or i\j. A nonempty subset P' of P will be called a nest if

(i) there exist some a,b<q such that 8a, S¡, are not in P and 0<t'a<t'¡<t"j<t'b<t'q
for every 8, in P'.

(ii) given any 8, and S; in P', if there exists a 8k, k<q, with t[<t'k<t'j, then 8k
must be in P'.

Let the nests of 8, if there are any, be Px, P2,..., Pp. Given a nest Pr, pick sr
and ur such that 0 < sr < t'} < t" < ur < t'q for every Sy e Pr and if k is such that sr < t'k
or t"k < ur, then 8k is in Pr. Let yr represent an arc which intersects [8] only in its end
points 8(sr) and 8(ur), and such that 8(sr)8(ur)(8) + 8(ur)8(sr)(yr) describes a curve of
nonnegative circulation. (See Figure 5.) Define 7= 1J {(t], t'¡) | 8y in P}. Let ß be a
parametrization of the arc [8(0)8,(8)] -8(7), oriented from 8(0) to 8„.

For any m <q with 8m not in P one of the following cases must arise

A(m):t'm < t'q < l"q < t"m,

B(m): 4 < t'q < C < t"q.
Other cases are ruled out by choice of m and q.

Now we are ready to define the cuts of 8: 8*, 8**, e, er, £r.
Case A(m). Define 8* and 8** by

8* = 8m8q(ß) + 8(t"Q)8(t"m)(8),

8** = 8(0)8(0(8) +8q8m(-ß) + 8(4)8(277X8).
See Figures 6 and 7.

Figure 5
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Figure 6

Case B(m). Define 8* and S** by

8* = 8q8m(-ß) + 8(Q8(0(8)
8** = 8(0)8(0(8) + 8m85(j3)+8(08(277)(S).

See Figure 8.
Also in this case, if there are p nests, then for each r, 1 S r Sp, with t'm < sr define

er and £r by

e' = 8m8(ur)(ß) + 8(ur)8(sr)(y') + 8(sr)8(ur)(ß) + 8(ur)8(Q(?>)   (Figure 9),
V = S(0)S(ir)(S) + 8(sr)8(ur)(ß) + S(wr)S(ír)(/) + 8(sr)8q(ß) + 8(t'Q)8(27t)(8)

(Figure 10).
Let k be the least positive integer such that t'm <sk. If no such k exists, let e=S*;

otherwise define e by

e = 8(0)8(^(8) + 8(sk)8(uk)(-yk) + 8(uk)S(sk + x)(8) + 8(sk + x)8(uk + x)( -yk + i)
+ ■ ■ ■+8(up-x)8(sp)(8) + 8(sp)8(up)(-y'>) + 8(up)8(2n)(8).

See Figure 11.
Before we begin proving theorems about these representations, we will modify

er and C so that they are normal. Some of the other representations will be modified
in §5. Let x be a point on [ß] such that x is encountered before 8(sr) and there are
no vertices of S on [ß] between x and 8(sr). Let a represent an arc which touches [8]
only at its end points, x and 8(ur). Assume a is oriented from x to S(wr) and is
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mod 8

modS*

Figure 7

8"
Figure 8
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Figure 9
mod d

mod £'

Figure 10

mod
Figure 11
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such that x8(ur)(a) + 8(ur)x(—jS) is a positively oriented Jordan curve (i.e., a lies
to the right of ß). Then define mod er by

mod * = 8mx(j3) + xS(Wr)(«) + S(Mr)S(ir)(/) + S(ir)S(Mr)03) + S(Mr)S(O(8).
(See Figure 9.)

Similarly, let y be a point of [ß] which is encountered after 8(ur) and such that there
are no vertices of 8 between 8(ur) and y. Let a* represent an arc oriented from S(jr)
to y with a* to the right of ß. Define mod £r by

mod£' = 8(0)8(sr)(8) + 8(^)8(^)08) + 8(ur)8(sr)(y>)
+ 8(sr)yC**)+yUß) + S(OSO)(8).   (See Figure 10.)

Smooth mod er and mod ÏJ so that they are regular. We leave it to the reader to
prove that mod er is normal, mod er is an interior boundary if and only if er is, and
r(£r) = r(mod £r). A similar statement is true for £r.

Hoping that the reader's patience is not exhausted, we make one more definition.
Let 77 be a representation with A= 1, suppose it is parametrized by the usual angle
parameter 0 S 0 is 277. The outer boundary of 77 is a Jordan curve ; suppose it has a
positively oriented parametrization <f>(6), Oá0<27r, where çi(0)=7?(0). Define
7] aug zk, k~è 1, by

(v aug zk)(6) = v(k8), 0úes^~

= 4>((k+1)0-2»,       T$ï^e^ ^r«      J=i,2,...,k.

Note that r¡ aug zk has the same topological properties as a representation r¡* with
X= 1 whose chains of vertices are described as follows:

If 8(l > SÍ2 > • • • > 8ir is a chain of 77, then 8X > 82 > ■ ■ ■ > 8k> 8tl +k> • • ■ > 8ir +k is
a chain of 77*. (See Figure 12.) Thus, we can apply the results of §3 to 77 aug zk.

Figure 12

77 ' aug z2
(modified)
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Theorem 2. Suppose for some m<q, Case A(m) or B(m) holds and S* and 8** are
interior boundaries. Then 8 is an interior boundary. Moreover, r(S)=>{/x* u p** | p*
is in Y(8*) andp** is in Y(8**)}.

Proof. The proof follows along the lines of the proofs of Theorem 7' and
Theorem 7" [4, p. 56].

Theorem 3. If for some m<q, Case B(m) holds and 8* and e are interior boundaries,
then 8 is an interior boundary. Moreover, Y(8) => {p u v \ p is in Y(8*) and v is in Y(e)}.

Proof. Observe that if e is an interior boundary with some properly interior
extension g, then 8** (as defined in Case B(m)) is an interior boundary which has
an extension with the same branch points as g. Then the proof again is similar to
the proof of Theorem 7' [4, p. 55].

Theorem 4. If for some m<q and some r, l^r^p and t'm < sr, it is the case that
er and tj are interior boundaries, then 8** is an interior boundary. Suppose p is in
T(mod er) with \p\ =k* where p(l),..., p(k) belong to the terminal vertex 8(uT) ofe'.
Define M=J,lk=xp(i) and p* = p(k+1 ),..., p(k*). (Let p* = $> if k = k* = l.)
Similarly let v be in T(mod £r) with \v\ =L* and suppose v(l),..., v(L) belong to the
terminal vertex 8(sr) of tj. Define N=J,f=x v(i) and v* = v(L+l),..., v(L*). (Let
v* = <S>ifL=L* = l.)Let7] = S(ir)S(Mr)(S) + 8(ur)8(sr)(y0- V i & m F(v aug zM+N~x),
then p* U v* u f is in Y(8**).

Proof. Suppose gx is a properly interior extension of £r to the Jordan domain
Dx ; similarly let g2 be a properly interior extension of er to D2. Let s and s' be the
pre-images of 8(ir) under gx ; let u and u' be the pre-images of 8(ur) under g2. Let
the arcs Tx in Dx and 72 in D2 be as in Lemma 3.

There is a point v* in Dx — Dx such that gx(y*)=y. Suppose s is encountered
before s' as Dx — Dx is traversed from y* to y* in the positive orientation. We may
assume there are no branch points of gx mapping into Ins [8(sr)y(a*)+y8(sr)(-ß)].
This fact and an application of Theorem 1 [1, p. 49] produce an arc 77 in Dx
mapping homeomorphically onto [8(sr)y(ß)] where 77 intersects Dx — Dx only at
its end points s' and y*. Let Bx be the open disk bounded by 77, Tx, and [y*, s].

Let x* be the point of 7>2 — D2 such that g2(x*) = s. Suppose u and u' are such
that x* is not in [u, u']. Let z be the pre-image of 8(sr) first encountered as 72 is
traced from uto u'. An argument similar to that of the previous paragraph pro-
duces an arc K in D2 mapping homeomorphically onto [x8(sr)(ß)], where K inter-
sects D2 — D2 only in its end points x* and z. Let B2 be the open disk bounded by
K, [«', x*], and T'2, the closure of the component of T2—{z} containing ü'.

Assume without loss of generality that Bx and B2 intersect in one and only one
point, s' (on Bx) = z (on B2). Let L be an arc joining s and u' which touches Bx u B2
only in those points. Suppose c4 represents 8(sr)8(uT)(8) on L. Then the represen-
tation </>* defined on Tx u 72 u L by c/>*\Tx=gx, </>*\T'2=g2, </>*\L=(/>, is equivalent
to a representation of r¡ augzM+N_1. This follows since gx\Tx is topologically zM;
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g2\T2 is topologically zN. However, one traversing of the loop by g2 is lost due to
using 72 instead of 72 and taking part of 72 together with L to get a representation
of 77.

We know that there is a properly interior extension g3 of </j* to the disk B3
bounded by TxuT2u L. If we define / on Bx u 7Ï2 u B3 by f\ TJ¡=gu 1 á / ̂  3,
then by Theorem 9 [5, p. 336]/is properly interior and extends 8**. Clearly, by
its construction/will have branch point structure as described in the theorem.

Having seen that we can construct elements of F(8) from the cuts of 8, we now
show that every member of T(S) arises in this way.

Theorem 5. Suppose 8 is an interior boundary where Xi£l and let q be the least
integer such that X(q) = — 1. Then for some m<q, Case A(m) or Case B(m) holds and
8* and 8** as defined in that case are interior boundaries. If p is in F(8), then there
exist p* in F(8*) and p** in F(8**) such that p=p* u p**.

Proof. Suppose /is a properly interior extension of S to D. Since X(q)= -1, by
Theorem 1 [1, p. 49], there is an arc A in D with one end point at t"q such that A
intersects D-D only at t"q and possibly its other end point b; also, f(A)^[ß].
If b is in D, this same Theorem 1 gives that/(¿>)=|8(0) = 8(0). However, an interior
mapping cannot map a point of D into the boundary off(D), but 8(0) is an outer
point and hence, on the boundary on f(D). We can conclude that b is in D — D.
Since /isa local homeomorphism at each point of D-D, it must be that b = t"m
for some m and since/(è) is in [ß], m<q. As we have remarked before, by choice of
m and q, either case A(m) or Ti(«i) arises. Let Dx and D2 be the components of
D-A, where D2-D2 contains /_1(8(0)). By definition, f\Dx-Dx = 8* and

f\D2 — D2 = 8**; thus, 8* and 8** are interior boundaries.
No branch point off can lie on A since f(A)c[ß]cz [8] and we are assuming no

branch points map onto [8]. Hence, the branch points of/are in Dx u D2. Let
¡JL* = lx(Ji), ■ ■ -, f¿(jk) be the multiplicities of the branch points of/in Dx and
/¿** = /*0'fc+i)> ■ ■ ■, p(j,), those in 7»2. Clearly p* is in F(S*), p** is in T(8**),
and p* u p** comprises all the multiplicities of the branch points off.

Theorem 6. Suppose 8** is an interior boundary andq is the least integer such that
X(q)= — 1. Suppose for some m<q, Case B(m) holds and for some r, ISrSp, with
t'm < sr, er and {" are interior boundaries. If p is in T(8**), then there exist p in F(er),
v in F(Ç), and £ in F(7) augzM+JV_1) such that p = p* u v* u f, where M, p*, N,
v*, and 77 are as in Theorem 4. If for each r, ISrSp, with t'm < sr, either er or tr fails
to be an interior boundary, then e is an interior boundary. In this case F(8**) = F(e).

Proof. Let/** be an extension of 8** to D. Suppose a1 describes an arc which
intersects [8] only at its end points 8(s}) and 8(u,), 1 SjSp; let it be oriented from
8(u,) to 8(s,). IfKj is the Jordan curve [8(^)8(^)03) + 8(uj)8(sj)(a% then a' should
be located so that [y^^Kj u Ins K¡. Let A be the arc on D-D such thatf**\A
describes 8\[t'm, t'q] and let B be the arc such that 8\B describes 8m8,(j3). Suppose x'¡
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and y] are in A and x¡ and y¡ are in B, where f**(x¡)=f**(x'¡) = 8(s¡) and f**(y,) =
f**(yi) =«(«;).

By an argument similar to that in Lemma 3, there is an arc 77, in D with one
end point at x,-, the other, z¡, in A u B, and f**(Hj)<^Kj. Let us first suppose that
for each/ 1 íkjúp, the other end point z; is in B. Then since/** is properly interior,
z¡=y}. Denote by L¡ the Jordan curve formed by 77, and //,' = [x,, y,]. By Theorem
4.2 [6, p. 96],/**|7, is topologically equivalent to the mapping w = zk for some
positive integer k. Hence, there exists a properly interior mapping g¡ on 7y u Ins L¡
such that gj\Hj=f** and gj\H'} traces — y'. Also, g} can be taken to have the same
branch point structure on 7; u Ins7; as/** does. If we define h to be/** on
D- Ui-i (7, u Ins 7,) and g;- on 7; u Ins 7;, 1 èjèp, then by Theorem 9 [5,
p. 336], A is properly interior on D; by definition of e, A extends e. Since /z has
the same branch point structure as/**, it must be that every p in T(8**) which has
an extension/** with every z} in B is in Y(e). We shall soon prove that if some z¡
is in A, then e1 and £J are interior boundaries. Hence, in the case that e1 and V,
1 újúp, fail to be interior boundaries, every extension/** of 8** is as above. We
conclude that in this case, r(S**)<= Y(e).

Now we show that r(e)cr(S**). Let g be a properly interior extension of e to
D. Let Bj = [ut, Vj] be the arc of D-D mapping onto y1, 1 újúp- Choose C¡, an
arc in E2 — D, so that C; intersects D — D only at its end points ut and v¡ and so that
traversing B¡ from u¡ to vt and then C} from «; to v¡ is in the negative orientation.
Let g, be a homeomorphism such that gj\Bt = g and g, maps Q onto [8(^)8(^)03)].
Clearly g¡ can be extended to be a homeomorphism on F3 = /?, u Q u Ins (B¡ u C;).
Call this extended map gf. If we define h on 2?=U?«i £/ u D by A|/3 = g and
h\Ej=gf, then A is a properly interior extension of 8** with the same branch point
structure as g. Hence, Y(e)<= Y(8**) and so r(e) = T(8**).

Now suppose for some r, 1 Sr^p, that zr is in ^. Since/** is properly interior,
it must be that zr=y'r. A similar argument to that used for 77r produces an arc 77^'
in D such that yr is one end point, x'r is the other, 77" n (D — D)={x'r,yr}, and
f**(H'r)cKr. Let D2 he the Jordan domain bounded by 77r, 77,, 77r', and [x], y'¡].
Let Dx be the component of D — D2 with the pre-image under/** of 8(0) on its
boundary; D3, the other component. (We note in passing that for the given/**,
there is no Hhj=£r, with one end point in A and the other in B. This follows from
the fact that one end point of 77, would be in Dx, the other in D3. This is impossible
since 77, n Hr = 0.) Let P be an arc in D2 which intersects Dx only at its end points
x'r and yr. Suppose that g is a function defined on P which represents 8(sr)8(ur)(ß) +
8(ur)8(sr)(yr) + 8(sr)8(ur)(ß). If N is the number of pre-images of S(jr) on H¡, then
the function g* on the Jordan curve P u Hr' defined by g*\P=g, g*\H'T'=f**, is
topologically equivalent to w=zN + 1. Extend g* to be properly interior on EX=P
U 77; u Ins (P u 770. Defining g** on Dxv Ex by g**\Dx=f**, g**\Ex=g*,
we obtain a properly interior extension of £r.

Again we can argue that there are no branch points of/** on Dx — Dt for í = 1,2, 3.
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Let v** = v(l),..., v(L) denote the multiplicities of the branch points of g* and let
v*=v(L+l),..., v(L*) be the multiplicities of the branch points of/** in Dx.
Note that v = v** u v* is in T(£r) and 2f-i v(i) = N.

By a similar argument we can produce a properly interior extension of cr with ¿i
in r(er) such that p*=p(k +1),..., p(k*) are the multiplicities of the branch
points of/** in 7>3 and 2f-i /¿(0 = AT» where Af is ths number of pre-images of
S(wr) on TTr. We now only have to note that by definition of AT and N,f**\D2 — D2
represents 77 mod zM+N~1 where 77 is as in Theorem 4. Letting £ be the sequence of
multiplicities of branch points of/** in D2, we have that £ is in F(r¡ aug ZM+N~1)
and the branch point multiplicities of/** are it* u v* u f. The theorem is thus
proved.

5. The finiteness of the algorithm. It is now necessary to show that we are in
some sense better off by considering the cuts instead of the original representation
8. We have already observed that the branch point structure of S is reflected by
that of its cuts. Now we modify the cuts so that they are normal and prove that
they have strictly less vertices than 8. Thus, after a finite number of steps, the cut
process will terminate, leaving normal representations which either have A = 1 or
are Jordan curves. In either case, the branch point structure is determined; in the
former case, by Theorem 1.

In Case A(m), define mod 8* and mod 8** as in case II'(j) [4, p. 57]. (See Figure 7.)
In Case B(m), when there are no nests of 8 with respect to q, define mod 8* and
mod 8** as in case II"(j) [4, p. 58]. Also, in Case B(m), when there are nests, e is
modified as in case II"(j)- (See Figure 11.) It is not difficult to show 8* is an interior
boundary if and only if mod 8*; also, r(S*)=r(mod S*). A similar statement
holds for mod 8** and mod e. By Theorem 10 [4, p. 59] we have that mod 8*,
mod 8**, mod e, (in the appropriate cases) have Sn — 2 vertices, where n is the
number of vertices of 8.

If there are no nests of 8 with respect to 8„ then we use mod 8* and mod 8**
as the cuts. When there are nests, the modification process of [4] would cause 8**
to have more vertices than S ; hence the introduction of the cuts er and £r. We have
already defined mod er and mod £r and observed that they properly preserve
critical point structure. Finally, we show that they have less vertices than 8.

Theorem 7. In Case B(m), mod er and mod tj have Sn — 2 vertices, where 8 has
n vertices.

Proof. The proof will be for er ; that for £r is similar.
Except for the loop added at 8(ur), mod er traces a subset of [8] and no arc is

retraced. The loop at 8(ur) adds one vertex, but it replaces a nest, which had
at least one vertex. These facts imply that mod er has Sn vertices. However, 8m
and 8, are not vertices of mod er and so the number of vertices of mod er is S « — 2.

A given representation may have many different cut sequences, each giving rise
to a different subset of T(8). We illustrate this by an example.
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Consider the representation S in Figure 6. The cuts which yield interior bound-
aries are shown in Figures 7-12. Notice that any p in Y(8) which arises from a cut
other than the e, t, cuts in Case B(l) has \p\ ̂ 4. In Case B(l), e1 and Ç1 are interior
boundaries (see Figures 8 and 9). If p is in T^1) with \p\ minimal, then |/*| = 1.
Thus, p* = <S> and M=l. Similarly for v in Y(ir) with |v| minimal, v* = <t> and
N=2. Let | be in r^1 aug z2) (see Figure 12) with |f | minimal. Then by Theorem
1, ||| =3. By Theorem 4, $=$ u <D u $> = $ u p* u v* is in r(8**)=r(S). It
follows from Theorem 6 that any £ in Y(8) with |£| minimal must have ||| ^3. We
conclude that the minimal number of branch points for any light open extension
of S is 3. This occurs only in Case B(l). Every £in T(8) with |||=3isin T^augz2).
These are listed in the example at the end of §3.
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