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Abstract

The modern approach to m-form global symmetries in a d-dimensional quantum field
theory (QFT) entails specifying dimension d − m − 1 topological generalized symmetry
operators which non-trivially link with m-dimensional defect operators. In QFTs engineered
via string constructions on a non-compact geometry X, these defects descend from branes
wrapped on non-compact cycles which extend from a localized source / singularity to the
boundary ∂X. The generalized symmetry operators which link with these defects arise from
magnetic dual branes wrapped on cycles in ∂X. This provides a systematic way to read
off various properties of such topological operators, including their worldvolume topological
field theories, and the resulting fusion rules. We illustrate these general features in the
context of 6D superconformal field theories, where we use the F-theory realization of these
theories to read off the worldvolume theory on the generalized symmetry operators. Defects
of dimension 3 which are charged under a suitable 3-form symmetry detect a non-invertible
fusion rule for these operators. We also sketch how similar considerations hold for related
systems.
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1 Introduction

One of the important recent advances in the study of quantum field theory (QFT) has

been the appreciation that generalized symmetries can often be better understood in terms

of corresponding topological operators [1]. For a d-dimensional QFT, an m-form symmetry

naturally acts onm-dimensional defects. There is a corresponding dimension d−m−1 gener-

alized symmetry operator which is topological, i.e., it is unchanged by local perturbations to

its shape [1–5]. This includes higher-form symmetries, their entwinement via higher-groups,

as well as more general categorical structures.1 One of the general aims in this direction is

to use such topological structures to gain access to non-perturbative information on various

QFTs. This is especially important in the context of strongly coupled systems where one

typically does not have access to a practically useful Lagrangian description of the system.

In this vein, one of the lessons from recent work in stringy realizations of QFT is that

there are large families of QFTs which do not have a (known) Lagrangian description. This

includes, for example, all 6D superconformal field theories (SCFTs), as well as many com-

pactifications of these theories.2 More broadly, one can consider the QFT limit of any string

background X, as obtained by decoupling gravity. In this context, it is natural to expect

that the extra-dimensional geometry directly encodes these generalized symmetries.

This expectation is, to a large extent, borne out by the explicit construction of the

defect operators of these systems. In the stringy setting, we can generate defects, i.e.,

non-dynamical objects with formally infinite tension by wrapping branes on non-compact

cycles of X. The resulting higher symmetries act on these objects, but can be partially

screened by dynamical degrees of freedom wrapped on compact cycles of the geometry. This

generalized screening argument à la ’t Hooft was used in [6] to define the “defect group” of

a 6D SCFT. As noted in [15,19,20], specifying a polarization of the defect group amounts to

determining the electric / magnetic higher-form symmetries of the system. This perspective

has by now been generalized in a number of directions, and has reached the stage where

there are explicit algorithms for reading off generalized symmetries for a large number of

geometries [6, 20, 23,25,26,29,34,42,46,53,63,70,72,76–78,94,128–130].

One of the puzzling features of these analyses is that the topological operators of reference

[1] are in some sense only implicitly referenced in such stringy constructions. The absence

of an explicit brane realization of these symmetry topological operators makes it challenging

to access some features of generalized symmetries in these systems. For example, it is well-

known in various weakly coupled examples that generalized symmetry operators can support

a topological field theory, and that in the context of theories with non-invertible symmetries,

these can also produce a non-trivial fusion algebra.

In this note we present a general prescription for how to construct topological operators

1For recent work in this direction, see e.g., [1–102]. For a recent overview of generalized symmetries, see
reference [103].

2See [104–106] for early examples, and for recent work on the construction and study of such theories,
see [6, 10,94,107–125] as well as [126,127] for recent reviews.
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in the context of geometric engineering. We mainly focus on the tractable case of 2-form

symmetries for 6D SCFTs and their compactification, as engineered via F-theory back-

grounds. In these cases, the generalized symmetry operators arise from D3-branes wrapped

on boundary torsional cycles. We find that when the SL(2,Z) bundle of the F-theory model

is non-trivial, these models generically have a non-invertible symmetry simply because the

fusion algebra for the generalized symmetry operators contains multiple summands. This is

quite analogous to what has been observed in the context of various field theoretic construc-

tions [14,38,43,44,55,56,62,64,65,74,80–82,84,85,87,96,98,99,102,128,131–143] as well as

some recent holographic models [100,101].

We emphasize, however, that the construction we present can be applied to essentially

any QFT which can be engineered via a string / M- / F-theory compactification. We expect

that experts may already be aware of various aspects of this construction, but as far as

we are aware, the closest analog of our construction only appeared a few weeks ago in the

context of some specific holographic constructions [100,101].

2 Branes and Generalized Symmetry Operators

Our interest will be in understanding the brane realization of generalized symmetry opera-

tors. To frame the discussion to follow, let us first briefly recall how defects are engineered

in such systems. We begin by considering a QFT engineered via a string / M-theory back-

ground of the form Rd−1,1×X whereX is taken to be a non-compactD-dimensional geometry

(d + D = 10 for a string background and d + D = 11 for an M-theory background). We

get a QFT by introducing branes and / or localized singularities at a common point of X.

These singularities need not be isolated, and can in principle extend all the way out to the

boundary ∂X. Gravity is decoupled because X is non-compact. This provides a general

template for engineering a wide range of (typically supersymmetric) QFTs.

We obtain supersymmetric defects by wrapping BPS branes on non-compact cycles of X

which extend from the localized singularity out to the boundary. As explained in [6,15,19,20]

a screening argument à la ’t Hooft then tells us that there is a corresponding set of unscreened

defects:

D =
⊕

m

D(m) with D(m) =
⊕

p−k=m−1

Hk(X, ∂X)

Hk(X)
, (2.1)

where in the above, the superscript m references an m-dimensional defect acted on by an m-

form symmetry, we sum over supersymmetric p-branes and k is a cycle dimension. Specifying

a polarization of D picks an electric / magnetic basis of operators and also dictates the higher-

form symmetries via the Pontryagin dual. In the d-dimensional QFT, a p-brane wrapped on

a k-cycle will fill out p + 1 − k spacetime dimensions. We indicate this by saying that the
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brane fills the space:3

S̃p+1 = M̃p+1−k × Σ̃k = M̃m × Σ̃k, (2.2)

where Σ̃k = Cone(γ̃k−1) is the cone generated by extending the boundary cycle γ̃k−1 ∈
Hk−1(∂X) from infinity to the tip of the cone. A final comment is that the torsional factors

of D(m) will define discrete higher-form symmetries. Non-torsional generators instead label

continuous symmetries.

In the d-dimensional QFT, the appearance of an m = (p+1− k)-dimensional defect im-

plicitly means there are also corresponding operators Om with support on an m-dimensional

subspace. The m-form symmetry acts on the defects and operators by passing these opera-

tors through a topological operator U(Mn) with support on an n-dimensional subspace. To

link with the defect, we have:

m+ n = d− 1. (2.3)

In seeking out an extra-dimensional origin for these operators, we first observe that the

defect embeds in spacetime, and extends along the radial direction which starts at the tip

of the singularity and goes all the way to the boundary ∂X, wrapping a boundary cycle

of Hk−1(∂X), namely it is specified by an element of Hk(X, ∂X). Our general proposal is

that the topological operator which links with this object is given by a magnetic dual brane

which links with the original brane in both X as well as the spacetime Rd−1,1. In particular,

we can wrap a q-brane on a cycle of the form:

Sq+1 = Mq+1−(D−1−k) × γD−1−k = Mn × γD−1−k, (2.4)

where γD−1−k is a cycle in HD−1−k(∂X) and Mq+1−(D−1−k) is a subspace of the d-dimensional

spacetime. Observe that in X, the cycle does not fill the “radial direction”. Rather, it always

“sits at infinity”. Now, for this to be a topological operator which properly links with the

defect, we also require:

(p+ 1− k) + (q + 1− (D − 1− k)) = d− 1, (2.5)

or equivalently:

p+ q = D + d− 4. (2.6)

But observe that this is just the requirement that in the full string / M-theory background,

our sought after q-brane is simply the magnetic dual p-brane! See figure 1 for a depiction.

We now argue that wrapping a q-brane on the cycle at infinity Sq+1 = Mq+1−(D−1−k) ×
γD−1−k can be viewed as inserting a topological operator for the m-form symmetry. Along

these lines, recall that for a (supersymmetric) p-brane, there is a corresponding (p+1)-form

potential C̃p+1 which couples to this object, and thus a (p+2)-form field strength F̃p+2. In the

full higher-dimensional geometry, we also can speak of the dual field strength ∗F̃p+2 = Fq+2,

3We reserve untilded quantities for the generalized symmetry operators.
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Figure 1: Depiction of a generalized symmetry operator realized via a wrapped brane. We
consider a supersymmetric QFT (SQFT) localized at the tip of a conical geometry X. At
the boundary @X, we have bounding cycles e� and � which link in @X. Wrapping a p-brane
on the cone over e� yields a defect for an m-form symmetry, and wrapping the magnetic dual
q-brane on a linking cycle � realizes a generalized symmetry operator. The spacetime loci
fM of the p-brane and M of the q-brane also link with each other. The wrapped q-brane is
automatically topological since it sits at infinity in the radial geometry.

as sourced by a magnetic dual (q +1)-form potential Cq+1. The presence of a p-brane signals

that there is a modified Bianchi identity:

dFq+2 = �eSp+1
, (2.7)

namely a delta function supported contribution to the flux. Of course, this is just indicating

that we have a suitable symmetry current which couples to the magnetic dual potential Cq+1.

Following the general reasoning in [1], we conclude that we can represent our topological

symmetry operator by exponentiating the integral of Fq+2 over the (q + 2)-chain Zq+2 =

Mq+1�(D�1�k) ⇥ Cone(�D�1�k):

U(Z) = exp

✓
2⇡i

Z

Z

Fq+2

◆
. (2.8)

In particular, if we wish to know the action of U(Z) on any correlation function, we can

simply insert it into the path integral of the (D + d)-dimensional supergravity theory.

On the other hand, since we are integrating Fq+2 over a chain, we can reduce this to the

integral of Cq+1 over the bounding geometry Sq+1 = Mq+1�(D�1�k) ⇥ �D�1�k. Since this is

an insertion in the path integral, we can view this is as just specifying a “brane at infinity”,

namely a (q + 1)-brane wrapped on the prescribed cycle. Indeed, integrating Cq+1 over this

cycle is just one of the worldvolume couplings of the q-brane action. Note also that by

wrapping the q-brane on a linking cycle at infinity, it is automatically topological from the

perspective of the d-dimensional QFT. Indeed, any localized fluctuation of such a brane is

completely decoupled from the dynamics of the field theory localized at the singularity. The

only remaining structure which could in principle persist is purely topological in nature.
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Figure 1: Depiction of a generalized symmetry operator realized via a wrapped brane. We
consider a supersymmetric QFT (SQFT) localized at the tip of a conical geometry X. At
the boundary ∂X, we have bounding cycles γ̃ and γ which link in ∂X. Wrapping a p-brane
on the cone over γ̃ yields a defect for an m-form symmetry, and wrapping the magnetic dual
q-brane on a linking cycle γ realizes a generalized symmetry operator. The spacetime loci
M̃ of the p-brane and M of the q-brane also link with each other. The wrapped q-brane is
automatically topological since it sits at infinity in the radial geometry.
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only remaining structure which could in principle persist is purely topological in nature.4

Summarizing, our proposal is that for a wrapped p-brane which produces a defect, the

corresponding generalized symmetry operators which act on these defects are realized by

magnetic dual q-branes wrapped on linking cycles of the geometry. This is compatible with

the holographic discussion considered a few weeks ago in [100,101], which considers the case

of QFTs engineered via D3-brane probes of appropriate singularities. In that setting, the

near horizon geometry is of the form AdS5 × Y where Y can be viewed as the asymptotic

geometry ∂X = Y probed by the D3-brane. Indeed, as noted in [101], defects arise from

branes which fill the radial direction of the AdS5, while the symmetry operators arise from

branes wrapped on a cycle of Y and sitting at a point of the conformal boundary ∂AdS5. It is

important to emphasize that precisely because we are dealing with a conformal boundary the

construction presented in the holographic setting is indeed compatible with the perspective

developed here.

Observe that we can also read off the corresponding topological field theory (TFT) local-

ized on this symmetry operator. Starting from Sq+1 = Mq+1−(D−1−k) × γD−1−k, we consider

the topological couplings on the worldvolume theory of our q-brane. Roughly speaking, we

can integrate this theory along γD−1−k and arrive at a TFT on Mn = Mq+1−(D−1−k). To see

this procedure through from start to finish, then, we need to know the topological couplings

on the original brane, as well as a technique to dimensionally reduce along γD−1−k.

As a further abstraction, now that we have a method for realizing generalized symmetry

operators, we can in principle just consider branes wrapped on torsional cycles “at infinity”.

In particular, there is a priori no need for there to exist explicit defects of the appropriate

codimension which link with these branes.5

3 Example: 2-Form Symmetries of 6D SCFTs

To illustrate the above considerations, we now show how this works in practice for (discrete)

2-form symmetries of 6D SCFTs. All known 6D SCFTs can be engineered via F-theory on an

elliptically fibered Calabi-Yau threefold with base B such that the threefold has a canonical

singularity [107, 109, 110]. In the SCFT limit, all of the bases take the form B = C2/Γ for

Γ an appropriate finite subgroup of U(2) (see [109] for the classification of all such Γ). The

defect group for the 2-form symmetry is Ab[Γ], the abelianization of Γ (see reference [6]).

Some basic features of these orbifold singularities are summarized in table 1.

4Another way to arrive at the same conclusion is to consider localized fluctuations from the singularity.
Any correlation function involving operators of the theory will be—up to topological couplings—completely
decoupled from the “brane at infinity”. Thus, the only possible remnant of the brane at infinity on the
localized dynamics could be topological in nature.

5This, for example, happens in various 3D Chern-Simons-like theories with charge conjugation, i.e., there
is a (non-invertible) 0-form symmetry which acts on no local operators, but line operators do transform
non-trivially in passing through the wall (see e.g., [85, 144]).
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Γ D(2) LΓ

ZN ZN 1/N

D2N Z2 × Z2
1
2

(
N N − 1

N − 1 N

)

D2N+1 Z4
2N−1

4

2T Z3 1/3

2O Z2 1/2

2I 1 1

Zp(q) Zp −q/p

Dp+q,q

Z2p × Z2 (q even)

Z2p (q odd)
(See main text)

Table 1: In the left column we list out all of the families of finite subgroups of U(2) associated
to 6D SCFTs. Here Dk means the dicyclic groups of order 2k, and 2T , 2O, and 2I denote
the binary tetrahedral, octahedral, and icosahedral groups respectively. Zp(q) denotes a Zp

subgroup of U(2) generated by an action (z1, z2) 7→ (ζpz1, ζ
q
pz2) (p and q coprime). Finally,

Dp+q,q is a U(2) subgroup which generalizes the dicyclic group (see [6, 109] and references
therein for more details).

It is helpful to decompose the base geometry as a fibration S3/Γ → B → R≥0 in which the

SCFT sits at the point r = 0 in R≥0 where the S
3/Γ collapses to zero size. We can introduce

a defect by wrapping a D3-brane on the radial direction of R≥0 as well as a torsional 1-cycle of

S3/Γ. In this case, we expect the topological operator which acts on such defects to be given

by a D3-brane which wraps the boundary torsional 1-cycle as well as a three-dimensional

subspace M3
6 of the 6D spacetime.

The procedure for how to work out the TFT generated by our wrapped D3-brane follows

similar steps to those developed in [101]. Starting from the D3-brane worldvolume theory,

we have the topological couplings [145,146]:

SD3
top = 2πi

∫

S

exp(F2)

√
Â(TS)

Â(NS)
(C0 + C2 + C4) , (3.1)

where here, F2 = F2 − B2, with F2 the U(1) gauge field strength of the D3-brane, and B2

the (pullback of) the NS-NS 2-form potential. Additionally, the Cm are the pullbacks of RR

potentials onto the worldvolume of the D3-brane. Due to SL(2,Z) duality covariance, we

will label the 2-form curvatures as F3 := dB2 and FD
3 := dC2. Expanding out, the relevant

6We take M3 to be connected throughout.
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couplings for us are, expressed in differential cohomology (see e.g., [70, 147]),:7

SD3
top = 2πi

∫

S

F̆5 + F̆D
3 ⋆ F̆2 + F̆1 ⋆

(
1

2
F̆2 ⋆ F̆2 +

1

24
ĕ

)
, (3.2)

with ĕ the Euler class of S. Comparing with [101], it will turn out to be important to also

track the term involving F̆1 ⋆ F̆2 ⋆ F̆2. On the other hand, the contribution from the Euler

term will play little role in the present analysis.8

One might ask how a term involving F1 arises from purely field theoretic considerations.

Indeed, because there are no continuous marginal parameters in 6D SCFTs [150, 151], one

might be tempted to conclude that no such dependence could be present. Observe, however,

that the 6D SCFT admits 4D defects (i.e., codimension two defects) given by D3-brane probes

of the local model. The worldvolume of this D3-brane contains a continuous parameter τ

which is precisely what is also entering in our generalized symmetry operators.

To proceed further, we need to dimensionally reduce the WZ terms of the D3-brane

wrapped on a torsional cycle γ of the extra-dimensional geometry. There is a subtlety here

in cases where the SL(2,Z) bundle of an F-theory model is non-trivial because these duality

transformations act on the axio-dilaton as well as the doublet of 2-form potentials of the IIB

background.9 Consequently, the first case we consider involves the 6D SCFTs withN = (2, 0)

supersymmetry. In these cases the elliptic fibration is completely trivial, which simplifies

the analysis of the D3-brane topological terms. We next treat the case of single curve non-

Higgsable cluster theories [152]. In this case, the presence of a non-trivial duality bundle

leads us to a discrete Chern-Simons gauge theory on the generalized symmetry operator,

which potentially coupled to background fields. We expect similar considerations to hold

in any background where the axio-dilaton is constant. In all these cases, we find that 3D

defects charged under a suitable 3-form symmetry detect a non-invertible symmetry, namely

the fusion algebra for the symmetry operators contains multiple summands.

The most general situation in which the axio-dilaton is position dependent is, by the

same reasoning, expected to also lead to non-invertible symmetries. We anticipate that

more general possibilities can arise once we consider topological operators which are also

fused with those associated with the 0-form and 1-form symmetries of these 6D SCFTs.

These generically arise once we take into account the contributions from flavor 7-branes (see

e.g., [77, 94,130]).

Though we leave the details for future work, it is also clear that we can apply the same

methodology when we compactify a 6D SCFT on a background manifold Q of dimension

l. Indeed, all that is required is that we also wrap the topological operator on the relevant

7There is a subtlety here due to the fact that the 5-form field strength is self-dual. For additional
discussion on this point, see e.g., [8, 148,149].

8It can play a role in situations where we demand specific Spin / Pin structures for M3.
9Indeed, even in configurations where the axio-dilaton is constant, there can still be a non-trivial action

on the 2-form potentials of the IIB background.
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cycle (possibly torsional) of Q, and again perform the appropriate dimensional reduction.

3.1 6D N = (2, 0) Theories

As a first class of examples, consider the 6D N = (2, 0) SCFTs as engineered by type IIB

on an ADE singularity C2/Γ with Γ a finite subgroup of SU(2). We begin by considering

the case Γ a cyclic group and then turn to the case of Γ non-abelian.

Γ Cyclic Consider first the case where Γ is a cyclic group. The topological field theory

of the operator constructed from the D3-brane is then derived by reduction in differential

cohomology on the quotient S3/Γ. Let us denote the cohomology generators of S3/Γ by

1, u2, vol in degree 0,2,3 and their lift to differential cohomology by 1̆, ŭ2, v̆ol. We expand as

F̆5 = ă2 ∗ v̆ol + ă3 ∗ ŭ2 + ă5 ∗ 1̆
F̆3 = b̆0 ∗ v̆ol + b̆1 ∗ ŭ2 + b̆3 ∗ 1̆
F̆2 = c̆0 ∗ ŭ2 + c̆2 ∗ 1̆
F̆1 = d̆1 ∗ 1̆

(3.3)

and similarly for F̆D
2 , F̆D

3 , where the “D” superscript refers to the field strength obtained

under an S-duality transformation. The coefficients multiplying ŭ are background fields for

the discrete symmetries

ă3 ↔ Z(2)
N , b̆1 ↔ Z(0)

N , c̆0 ↔ Z(−1)
N , (3.4)

while those multiplying 1̆ are field strengths for the continuous abelian symmetries

b̆3 ↔ U(1)(1) , c̆2 ↔ U(1)(0) , d̆1 ↔ U(1)(−1) (3.5)

In the above, the superscripts (s) refer to the corresponding s-form symmetry. The expansion

along v̆ol is a standard reduction and as S3/Γ has formally infinite volume ă2, b̆0 are non-

dynamical, measuring fluxes which are absent in the purely geometric background (and

therefore vanish). The self-duality of F̆5 implies the vanishing of ă5. Regarding the axio-

dilaton, the curvature of d̆1 is identified with10 R(d̆1) = d(Re(τ)) ∈ H1(M3,Z)11 and when

this class is trivial, then the data contained in the differential cohomology class d̆1 is simply

τ . With this in mind, we will also employ a slight redefinition of the F̆3 fields to get

rid of the cumbersome τ factors in the D3 topological action which is F new
3 ≡ 1

τ
F old
3 and

10The righthand side is not exact since τ is not single-valued.
11The map R on the differential cohomology group H̆p(M3) is part of the short exact sequence 0 →

Hp−1(M3, U(1)) → H̆p(M3)
R−→ Ωp

Z(M3) → 0 where Ωp
Z(M3) denotes p-forms on M3 with integer periods,

i.e. where standard U(1) fluxes live. For more details on the basics of differential cohomology geared towards
physicists see [147,153], as well as section 2 of the recent paper [70].
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(FD)new3 ≡ τ(FD
3 )old. Consistency with Dirac quantization follows from lifting these fields to

M-theory on a torus fibration in the standard duality dictionary, i.e., we interpret the type

IIB SL(2,Z) covariant 3-form flux as an M-theory 4-form flux reduced on the elliptic fiber.

We emphasize now that in this case there is no flux non-commutativity contrary to the

setup in [15]. To see why, consider the Hamiltonian formulation by writing M3 = N2 × Rt.

We get the pair of electric and magnetic flux operator valued in the TorH2(N2 × γ;Z) as

Φe(b0 ⋆ u2) and Φm(c0 ⋆ u2). Now on N2, the Poincaré duals PD[b0] and PD[c0] do not

intersect for degree reasons, so Φe(b0 ⋆u2) commutes with Φm(c0 ⋆u2) and there are no terms

involving co-boundaries giving rise to non-commutativity upon quantization as in [101] that

describes a discrete gauge theory in the sense of [154].

We insert the expansion (3.3) into our expression for the topological action to find:

SD3
top =

2πi

N

∫

M3

(
a3 + c0 ∪ bD3 + cD0 ∪ b3 + c2 ∪ bD1 + cD2 ∪ b1

−c0 ∪ b3 − cD0 ∪ bD3 − c2 ∪ b1 − cD2 ∪ bD1

)
,

(3.6)

where we have added terms derived from similar expansions for F̆D
2 to restore invariance

under S-duality. Notice that terms coming from expanding F̆D
3 are already present in the

1
2
F̆1 ⋆ F̆2 ⋆ F̆2 term in (3.2). The above action simplifies after defining linear combinations

given by b′1 ≡ bD1 −b1, b
′
3 ≡ bD3 −b3, c

′
0 ≡ c0−cD0 , and c′2 ≡ c2−cD2 after which the topological

action is just

SD3
top =

2πi

N

∫

M3

(a3 + c′0 ∪ b′3 + c′2 ∪ b′1) . (3.7)

Recall that F̆2 and F̆D
2 are worldvolume field strengths on the D3-brane at infinity and

therefore c0, c2 and their dual partners are path-integrated over. The topological operator

therefore takes the form:

U(M3) =
1

K

∫
Dc′0Dc′2 exp

(
SD3
top

)
(3.8)

where K is a normalization constant we determine shortly. In our definition of U(M3), we

have left implicit the dependence on the torsional 1-cycle of the boundary geometry (to avoid

cluttering notation). At this point, unless otherwise stated, we assume that this torsional

1-cycle is a generator of H1(S
3/Γ,Z). The topological operator U(M3) is a product of the

operator

U0 = exp

(
2πi

N

∫

M3

a3

)
, (3.9)
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which is the standard flux operator for surface defects of the SCFT, and

U1 =
1

|H1(M3,ZN)|

∫
Dc′2 exp

(
2πi

N

∫

M3

c′2 ∪ b′1

)
,

U3 =
1

N

∫
Dc′0 exp

(
2πi

N

∫

M3

c′0 ∪ b′3

)
.

(3.10)

So altogether we have

U(M3) = U0U1U3 . (3.11)

which sets the normalization constant K. When the C2 and B2 backgrounds are turned off

we have, U(M3) = U0.

Let us now study the fusion algebra. Note that all operators except U0 are condensation

operators since they specify a 3-gauging of a U(1)(3) or Z(4)
N symmetry along the M3 world-

volume. Moreover, we show that these operators satisfy the fusion algebra of projections

UiUi = Ui , (i = 1, 3), (3.12)

and so formally speaking are non-invertible. That being said, they are invertible when

restricted to their image where they equate to the identity operator. This follows for instance

for U1 by the manipulations

U1 =
1

|H1(M3,ZN)|

∫
Dc′2 exp

(
2πi

N

∫

M3

c′2 ∪ b′1

)

=
1

|H1(M3,ZN)|
∑

ℓ∈H1(M3,ZN )

exp

(
2πi

N

∫

ℓ

b′1

)

=
1

|H1(M3,ZN)|
∏

ℓ′

(
N−1∑

k=0

exp

(
2πik

N

∫

ℓ′
b′1

))
(3.13)

together with the integrality of the periods of b′1. Here {ℓ′} are a generating set for the lattice

H1(M3,ZN). So whenever such periods are non-vanishing we have a vanishing sum of roots

of unity. From this we also see that Ui = U †
i for i ̸= 0 follows from relabeling k → −k. The

normalization is now explicitly K = N |H1(M3,ZN)|. On the other hand the operator U0

displays a cyclic fusion ring

U0U †
0 = 1 , Un

0 = exp

(
2πin

N

∫

M3

a3

)
. (3.14)

Concerning the operators charged under U(M3), these include the surface operators of

the defect group D constructed from D3-branes wrapped on relative 2-cycles of the F-theory

base B. The operators U1,U3 do not act on elements of D since they carry no charge under

the symmetries of (3.4) and (3.5) other than Z(2)
N . Therefore the restriction of U(M3) on D is

10



given by U0, namely the standard flux operator. However, as mentioned at the end of Section

2, U(M3) can act on operators with spacetime dimension other than 2 as well. The U1 piece

acts on local operators of the 6D SCFT that originate from D1 and F1 strings wrapping a

torsional 1-cycle in the boundary S3/Γ times the radial direction of C2/Γ, while the U3 piece

acts on line operators that wrap a point in S3/Γ times the radial direction. The actions of

U1 and U3 on these operators is almost trivial: it multiplies by zero on any operators with

non-zero charge under the symmetry groups Z(0)
N and U(1)(1) respectively.

Γ Non-Abelian Consider next the case where Γ is non-abelian. As far as the defect group

is concerned, the relevant data is captured by the abelianization Ab[Γ]. Returning to the

entries of Table 1, we see that in nearly all cases, we again have a single cyclic group factor

so the analysis proceeds much as we already presented. On the other hand, for some D-type

subgroups, Ab[Γ] has two cyclic group factors. For this reason, we now focus on this case.

Proceeding more generally, when we insert the above expansion (3.3) into (3.2), the

overall coefficient we obtain in the exponential is given by the canonical link pairing in first

homology:

LΓ : H1(S
3/Γ)×H1(S

3/Γ) → Q/Z. (3.15)

This is because given t̆i2 such that I(t̆i2) = ti2 ∈ H2(S3/Γ,Z) ≃ Zni
× Znj

we have that

∫

S3/Γ

t̆i2 ∗ t̆j2 = Lij
Γ . (3.16)

Table 1 gives the explicit linking pairing for all Γ a finite subgroup of SU(2).12

Let us turn next to the TFT obtained from wrapping a D3-brane on a torsional cycle of

S3/Γ. When H̆2(S3/Γ) has more than one generator, the previously considered ă3, b̆1, and

c̆0 each pick up an index. In determining the spectrum of topological operators, it is enough

to consider D3-branes wrapping γ = ν1γ1+ν2γ2, with γi a primitive generators of H1(S
3/Γ).

The action is now (reverting back to the original duality basis for clarity):

SD3
top = 2π

√
−1νi(LΓ)ij

∫

M3

(
aj3 + cj0 ∪ bD3 + (cD0 )

j ∪ b3 + c2 ∪ (bD1 )
j + cD2 ∪ bj1

−cj0 ∪ b3 − (cD0 )
j ∪ bD3 − c2 ∪ bj1 − cD2 ∪ (bD1 )

j

)
.

(3.17)

Just as in the case of Γ = ZN , we observe that the fusion rules for these topological operators

12In the more general case where Γ is a Dp+q,q subgroup of U(2) and Ab[Γ] has two cyclic group factors,
determining the linking pairing is somewhat dependent on the divisibility properties of p, q and p+ q. The
linking pairing was worked out on a case by case basis in some examples in reference [15]. There, one can
see that Lij

Γ can be recast as an intersection pairing of certain non-compact 2-cycles in a blow-up of C2/Γ.
It is tempting to speculate that one can use a quiver-based method to directly read off this data, much as
in [76].

11



produce an invertible symmetry when the background C2 and B2 fields are switched off.

3.2 6D NHC Theories

We now turn to rank one 6D N = (1, 0) theories in which the axio-dilaton is constant but

the duality bundle of the F-theory model is still non-trivial. In particular, we consider the

case of the single curve non-Higgsable clusters (NHCs) of reference [152] in which the base

of the F-theory model supports a curve of self-intersection −n for n = 3, 4, 6, 8, 12. These

models can be written as (C2×T 2)/Zn, where the action on the C2 base is by a common nth

primitive root of unity [109,155]. On the tensor branch, these theories are characterized by a

6D gauge theory coupled to a tensor multiplet with charge prescribed by the self-intersection

number. With notation as in [109], we have:

su(3)

3 ,
so(8)

4 ,
e6
6,

e7
8,

e8
12 (3.18)

where
g
n refers to a (−n)-curve with a ADE singularity of type g wrapping it. These can all

be presented as F-theory backgrounds (C2 × T 2)/Zn (see [109, 155]) where the quotient is

defined by the group action:

(z1, z2, z3) → (ζnz1, ζnz2, ζ
−2
n w) (3.19)

where w is the torus-fiber coordinate. In the nomenclature of table 1, Γ = Zn(1) (i.e., p = n

and q = 1), and thus the link pairing is LΓ = 1/n.

To build U(M3), we again wrap a D3 on M3 × γ where γ is a generating 1-cycle with

boundary homology class γ ∈ H1(S
3/Γ), but now there is a non-trivial SL(2,Z) monodromy

for n = 3, 4, 6, 8 and 12. This clearly modifies the expansion of F̆3, F̆2, and their duals

in such a way that one must generally consider the vectors (F2, F
D
2 ), (F3, F

D
3 ) modulo some

relations as well-defined objects rather than the individual components. More precisely, we

need to expand these fields in cohomology with the twisted coefficient module

(Z⊕ Z)ρ (3.20)

where ρ is the SL(2,Z) monodromy of order k when going around γ as given in table 2.

We begin by computing the twisted cohomology of the boundary of the base space S3/Γ =

12



n Kodaira Type Monodromy ρ k = ord(ρ) TorH1(T3) Lt
γ

3 IV

(
0 1

−1 −1

)
3 Z3 1/3

4 I∗0

(
−1 0

0 −1

)
2 Z2 ⊕ Z2

(
0 1/2

1/2 0

)

6 IV ∗

(
−1 −1

1 0

)
3 Z3 2/3

8 III∗

(
0 −1

1 0

)
4 Z2 1/2

12 II∗

(
0 −1

1 1

)
6 0 0

Table 2: Topological data for asymptotic geometries of 6D N = (1, 0) SCFTs. The F-theory
geometry consists of an elliptic fibration over a Lens space base containing a torsional 1-
cycle γ. The torus fibration restricted to γ gives a three-manifold T3, a torus bundle more
precisely, whose torsion and linking forms Lt

γ we list, see [48]. D3 branes wrapped on γ map
under M-/F-theory duality to M5-branes wrapped on T3.

∂(C2/Γ). Via an identical computation13 to that given in section 3.2 of [156], we get

H∗(S3/Zn; (Z⊕ Z)ρ) = {0, Gk, 0, Gk} (3.22)

where

Gk =





Z2 ⊕ Z2 k = 2 (n = 4)

Z3 k = 3 (n = 3, 6)

Z2 k = 4 (n = 8)

1 k = 6 (n = 12)

(3.23)

Now, F̆5 associated with D3 branes should be reduced on untwisted differential cocycles

ŭi ∈ H̆ i(S3/Γ;Z):
F̆5 = ă2 ⋆ v̆ol + ă3 ⋆ ŭ2 + ă5 ⋆ 1̆, (3.24)

whereas F̆3, F̆
(D)
3 associated with D1 and F1 strings and the worldvolume F̆2, F̆

(D)
2 should

be reduced on twisted differential cocycles t̆i ∈ H̆ i(S3/Γ; (Z ⊕ Z)ρ). The reduction goes

as follows: when k ̸= 2 (here ρ in the superscript stands for self-dual operators that are

13Let A = Z2 be a Zn module, then H∗(S2r−1/Zn, A) is computed by taking the cohomology of the
cochain complex:

Z2 1−ρ−−−→ Z2 1+ρ+···+ρn−1

−−−−−−−−−−→ Z2 1−ρ−−−→ · · · 1+ρ+···+ρn−1

−−−−−−−−−−→ Z2 1−ρ−−−→ Z2 . (3.21)

13



compatible with the ρ twisting):

F̆ ρ
3 =

(
F̆3

F̆
(D)
3

)
/Im(ρ− 1) = b̆ρ2 ⋆ t̆1 + b̆ρ0 ⋆ t̆3

F̆ ρ
2 =

(
F̆2

F̆
(D)
2

)
/Im(ρ− 1) = c̆ρ1 ⋆ t̆1 .

(3.25)

Similar expansions hold for b̆ρ0 and b̆ρ2. The notation of the lefthand side denotes the reduction

of (F̆2, F̆
(D)
2 ) modulo SL(2,Z) monodromy. The fields cn and bm are discrete Gk valued n-

cocycles and m-cocycles where Gk = Z2,Z3 as in (3.23) respectively.

When k = 2 we have the decomposition

H i(S3/Γ; (Z⊕ Z)ρ) = H i(S3/Γ; (Z)ρ)(e) ⊕H i(S3/Γ; (Z)ρ)(m) (3.26)

with ρ = −1 for each coefficient ring. Consequently the expansion is then

F̆2 = c̆1 ⋆ t̆(e),1 , F̆
(D)
2 = c̆D1 ⋆ t̆(m),1 (3.27)

where I(t̆(e,m),1) = t(e,m),1 generates H1(S3/Γ; (Z)ρ)(e,m). Similar expansions hold for b̆0 and

b̆2. In this case all fields are discrete Z2 co-cycles with the degree as indicated by their index.

When reducing the F̆5 term, the non-zero term comes from

∫

S3/Γ

ŭ2 ⋆ ŭ2 ≡ LΓ(ŭ2) (3.28)

on S3/Γ. This gives the contribution to the action of

exp

(
2πiLΓ(ŭ2)

∫

M3

a3

)
. (3.29)

For F̆3, F̆
(D)
3 , F̆2, F̆

(D)
2 , on the other hand, the non-zero terms can be evaluated from the

pairing of the twisted cohomology classes on γ ∈ H1(S
3/Γ;Z):

k = 3, 4 :

∫

γ

t̆1 ⋆ t̆1 ≡ Lt
γ(t̆1)

k = 2 :

∫

γ

t̆(e),1 ⋆ t̆(m),1 ≡ Lt
γ(t̆(e),1, t̆(m),1)

(3.30)

which we both denote by Lt
γ whenever the context is clear. The self-pairing of t̆(e,m),1 vanishes

as we shortly argue.

The pairing between twisted classes in differential cohomology generalizing torsional link-

ing are computed using the methods in reference [157]. M-/F-theory duality gives a natural
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relation of such pairings to linking forms in ordinary singular homology. We now explain

this relation as we perform our computations from the latter perspective.

To frame the discussion we introduce the torus bundle three-manifold T3 as the restriction

of the S-duality torus bundle to the 1-cycle γ wrapped by the D3 brane. As all three-

manifolds its homology groups are fully determined by H1(T3;Z) which is computed by

application of the Mayer-Vietoris sequence to

H1(T3) = Z⊕ coker (ρ− 1) (3.31)

where ρ is the SL(2,Z) monodromy matrix acting on 1-cycles upon traversing γ. The

torsional subgroups are listed in table 2. The linking form on T3 follows from similar consid-

erations [48]. Let us denote the torsional generators of TorH2(T3;Z) by t2 which by Poincaré

duality and the universal coefficient theorem is dual to the generators ℓ1 of TorH1(T3;Z).
When the monodromy matrix is of type I∗0 (k = 2) both t2 and ℓ1 are further indexed by

(e,m) distinguishing the factors in TorH1(T3;Z) ∼= Z2 ⊕ Z2 for that case.

Now note that M-/F-theory duality maps a D3 brane wrapped on γ×M3 to an M5-brane

wrapped on T3 × M3 where M3 is the space-time submanifold supporting the topological

operator. The Wess-Zumino-Witten term of the M5-brane contains the term [158,159]

SM5
top ⊃ 2πi

∫

M3×T3

F̆7 +
1

2
F̆3 ⋆ F̆4 (3.32)

where F̆3 is the anti-self-dual 3-form field strength (of the anti-chiral 2-form field on the

M-theory worldvolume), and F̆7 is the pullback of the magnetic dual 7-form field strength.

We can therefore equivalently compute the topological field theory on M3 starting from

the action (3.32). This approach however expresses the coefficient of the topological theory

via geometric data of T3 and avoids SL(2,Z) twisted cohomology classes. We therefore

conjecture that the pairing (3.30) is geometrized to a link pairing on the torus bundle

k = 3, 4 : Lt
γ(t̆1) =

∫

γ

t̆1 ⋆ t̆1 =

∫

T3

t̆2 ⋆ t̆2

k = 2 : Lt
γ(t̆(e),1, t̆(m),1) =

∫

γ

t̆(e),1 ⋆ t̆(m),1 =

∫

T3

t̆(e),2 ⋆ t̆(m),2 =
1

2

(3.33)

where the righthand side is computed by the linking pairing given in table 2. We will have

more to say on the M-theory perspective in section 4. Evidence for the identity (3.33) is

already given in [101] which considers a setup with −1 ∈ SL(2;Z) monodromy along γ and

where the case k = 2 in (3.33) was found to hold.

Before writing down the full topological action of our D3-brane, we must first comment

on the expected non-commutativity of flux operators in this scenario. Due to the presence of

a non-trivial duality bundle, there is a mixing between the electric and magnetic dynamical

two-form curvatures on the D3 worldvolume gauge theory, so considering the on-shell relation
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FD
2 = ∗F2 (see for instance [160]) we must quantize these fields as a self-dual Maxwell

theory.14 This is especially clear in the M5-brane picture where the flux quantization is

already that of anti-self-dual fields and the torsion homology of the T 2-bundle precisely

descends to the torsion in the twisted homology that the D3-brane wraps. Depending on the

value of k, it is occasionally possible to have a canonical splitting of electric and magnetic

fluxes on the D3.

Now expanding on the treatment of [101] to examine the non-commutativity of fluxes

on the D3 worldvolume in our cases, we first assume that M3 = N2 × Rt to employ a

Hamiltonian formalism. The Hilbert space associated to the spatial manifold N2 × γ of the

D3-brane worldvolume will then be a representation a Heisenberg algebra, the details of

which depend on the value of k. The Heisenberg algebra is generated by non-commuting

electric and magnetic flux operators Φe,Φm respectively detecting fluxes through torsional

cycles. The cases are:15

• For k = 2, we have a pair of non-commuting electric and magnetic fluxes associated

with TorH2(N2 × γ):

Φe(c̆1 ⋆ t̆(e),1)Φm(c̆
(D)
1 ⋆ t̆(m),1) = exp

(
2πiLt

γ(t̆(e),1, t̆(m),1)
)
Φm(c̆

(D)
1 ⋆ t̆(m),1)Φe(c̆1 ⋆ t̆(e),1)

(3.34)

we thus get a Z2 gauge theory as in [147], with the action given by

SZ2 = πi

∫

M3

c1 ∪ δc
(D)
1 (3.35)

where (c1, c
(D)
1 ) are a pair of discrete gauge fields which together are valued in G2 =

Z2×Z2. In other words, c1 and c
(D)
1 are each separately Z2 valued discrete gauge fields

normalized such that
∫
c1 = ℓ mod 2.

• For k = 3, 4, 6, we have a pair of non-commuting self-dual fluxes associated with

TorH2(N2 × γ). Now, extra care has to be taken since the electric and magnetic field

has to be the same [15]. For x, y ∈ H1(γ; (Z⊕ Z)ρ)

Φa(c̆
ρ
1 ⋆ x̆)Φb(c̆

ρ
1 ⋆ y̆) = exp

(
2πiLt

γ(x̆, y̆)
)
Φb(c̆

ρ
1 ⋆ y̆)Φa(c̆

ρ
1 ⋆ x̆) (3.36)

here Lt
γ(x, y) is the bilinear form of the twisted linking pairing. Thus, we need to

include a discrete CS gauge theory of the form

S = 2πiLt
γ(t̆1)

∫

M3

cρ1 ∪ δcρ1, (3.37)

14Note that our worldvolume theory is Euclidean.
15We thank I. Garcia Etxebarria for a question which prompted this clarification. See also [161] for a

related discussion.
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where cρ1 is a discrete gauge field valued in Gk as in (3.23) normalized such that
∫
cρ1 =

ℓ mod 2 or 3.

Furthermore, the topological actions generating the link pairing above produce an addi-

tional term in the effective action of the D3 brane reduced on the twisted 1-cycle, the middle

term(s) in both lines of (3.38), because the effective action must be a functional of the gauge

invariant combination δcρ1 − bρ2 where bρ2 is defined in the first line of equation (3.25).16

To summarize then, we get the action of the topological operator (where again we keep

the dependence on the torsional 1-cycle implicit, include a normalization factor K−1, and

leave the cup products implicit) U(M3) = K−1 exp(SD3
top) as:

k = 2 : SD3
top = 2πi

∫

M3

(
− 1

4
a3 − 1

2
b
(D)
2 c1 − 1

2
b2c

(D)
1 + 1

2
c1δc

(D)
1

)

k = 3, 4, 6 : SD3
top = 2πi

∫

M3

(
LΓa3 − Lt

γb
ρ
2c

ρ
1 + Lt

γc
ρ
1δc

ρ
1

) (3.38)

where for k = 3, 4, 6, the path integral is written as K−1
∫
Dcρ1 exp

(
SD3
top

)
with the implicit

understanding that a delta–function relating c1, c
(D)
1 has been inserted to gauge fix the mon-

odromy relations of line (3.25). For the values of both LΓ = LΓ(ŭ2) =
1
n
and Lt

γ = Lt
γ(t̆1)

see table 2. Also, in this subsection the normalization factor will be K = (|H2(M3, Gk)|)1/2
for reasons that will be clear in what follows.

Notice that due to the coupling to the various b2 fields in line (3.38), we see again, just

as in subsection 3.1, that the symmetry operator U(M3) acts on more than just dimension-2

operators in the defect group D. The b2’s are background fields for a discrete G
(1)
k -symmetry

and are sourced by defects constructed from (p, q)-5-branes wrapping homology classes17 in

H2(S
3/Γ, (Z⊕ Z)ρ) = Hom(Gk, U(1)) times the radial direction of C2/Γ.

Notice that due to the presence of terms like cδc in (3.38), we see that even if we ignore

terms involving b2 fields (and hence the effect of U(M3) on the line operators mentioned in the

previous paragraph) our 2-form symmetry operators are tensored with discrete topological

gauge theories, namely some level-N Dijkgraaf-Witten theories with gauge group Gk, T (N,Gk).

The levels of these gauge theories are classified by by H4(Gk,Z) [162], and the possible levels

relevant to single node NHCs are H4(ZN ,Z) = ZN and H4(Z2
2,Z) = Z3

2. Our action (3.38)

thus predicts the levels of these discrete gauge theories living on the defect group symmetry

operators and notice that the operator fusion simply adds together the cyclically defined

Chern-Simons levels, so this confirms that that U(M3) appears to be an invertible operator

when linking with operators with trivial charge under the G
(1)
k symmetry.

Fusion Rules We now turn to the fusion rules for our symmetry operators, namely we

compute U(M3)×U †(M3). We find that in the presence of the G
(1)
k background field b2 that

16This follows from the fact that the standard D3 topological action must be a functional of the gauge
invariant combination F −B2 and its S-dual completion FD − C2.

17Said differently, a 2-cycle with (p, q)-charge of the brane is being measured modulo Im (ρ− 1).
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the fusion rule typically contains multiple summands, i.e., the hallmark of a non-invertible

symmetry.18 This is detected by 3D defects sourcing such backgrounds and linked by surface

operators which in turn are produced in the fusion.

• For the simplest case of k = 6, the symmetry operator associated with a generator of

H1(S
3/Z12,Z) takes the form

U(M3) = exp

(
2πi

12

∫

M3

a3

)
(3.39)

which simply reproduces the Z12 defect group of a (−12)-curve NHC.

• For k = 2 (i.e. the −4 NHC theory), we can decompose U(M3) = U0(M3)U1(M3).

U0(M3) =
(

2πi
4

∫
M3

ă3

)
generates a Z4 defect group, whereas U1(M3) is non-invertible

when b2 or b
D
2 is turned on. Physically, this means 3D defects which are charged under

the 1-form symmetry (with background field b2) will detect this non-invertible fusion

rule.

Because our topological action exactly matches that of equation (3.14) of [101] up to

an overall irrelevant minus sign, we can borrow the result to state

U1(M3)× U1(M3) =
1

|H2(M3,Z2)|2
∑

σ,σ′∈H2(M3,Z2)

exp

(
πi

∫

σ

b2

)
· exp

(
πi

∫

σ′
b
(D)
2

)

(3.40)

where σ and σ′ are generators ofH2(M3,Z2). Notice that these exponents are symmetry

operators for a discrete Z2 × Z2 1-form symmetry in the 6D SCFT. In the language

of [83] this sum over symmetry operators restricted to lie in M3 means that this is a

3-gauging of the Z2 × Z2 3-form symmetry along M3. This is commonly known as a

condensation operator.

• For k = 3, 4, we can similarly decompose U(M3) = U0(M3)U1(M3) where the invertible

piece U0(M3) =
(

2πi
n

∫
M3

ă3

)
produces a Z6 and Z8 algebra respectively.19 U1(M3) is

again non-invertible which we can see from the fact that the fusion product U1(M3)×
U †
1(M3) ̸= 1 (for k = 2, U1(M3) = U †

1(M3)). Calculating the total fusion (leaving the

correct normalization until the final result),

U(M3)× U †(M3) =

∫
Dcρ1Dc′ρ1 exp

(
2πiLt

γ

∫

M3

(
cρ1 ∪ δcρ1 − c′ρ1 ∪ δc′ρ1 + bρ2 ∪ (c′ρ1 − cρ1)

))

(3.41)

18The non-invertible fusion is in fact not very surprising considering that the terms in the actions of (3.38)
not involving a3 are a discrete analog of the 3D actions one would write for the standard fractional Quantum
Hall effect (FQHE). This is similar to what was found in the analysis of ABJ anomalies in references [84,87].

19Recall that n = 6 for k = 3 and n = 8 for k = 4.
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and after substituting ĉρ1 := c′ρ1 − cρ1 and integrating a term by parts we find

U(M3)× U †(M3) =

∫
Dc′ρ1 Dĉρ1 exp

(
2πiLt

γ

∫

M3

(
ĉρ1 ∪ δĉρ1 + bρ2 ∪ ĉρ1

))
. (3.42)

This is slightly different than the k = 2 case where there was no analog of the middle

term above. Comparing to equation (B.15) of [84], we see indeed that the left-hand

side is still a condensation operator and the coefficient in front of the middle term is

interpreted as discrete theta angle given by the identity element in H3(Gk, U(1)) ≃ Gk

given the coefficient of the middle term.2021 Explicitly we have (restoring the correct

normalization),

U(M3)× U †(M3) =
1

|H2(M3, Gk)|
∑

σ∈H2(M3,Gk)

ϵ(M3, σ) exp

(
2πiLt

γ

∫

σ

bρ2

)
(3.43)

where ϵ(M3, σ) is a discrete torsion term and following [84], we see that the right-hand

side is equivalent to a level-1 Dijkgraaf-Witten theory with gauge group Gk coupled to

a 1-form electric background field bρ2. In other words,

U(M3)× U †(M3) = T (1,Gk)
DW (M3, b

ρ
2) (3.44)

in the obvious notation. Note that this is again a 3-gauging of a 3-form symmetry

along M3.

3.3 More General 6D SCFTs

We can extend our discussion in a few different directions. One can also consider more

general F-theory backgrounds with constant axio-dilaton [107,109–111,163]).22 Even though

the axio-dilaton is constant, the duality bundle can still be non-trivial. The base of the model

is again a generalized ADE-type singularity, and has boundary torsional 1-cycles on which

we can wrap D3-branes.

More broadly speaking, whenever we have a non-trivial defect group we anticipate that

a similar structure persists. When we have a position dependent axio-dilaton profile at

the boundary of the base geometry, it appears simplest to extract the relevant topological

terms for the generalized symmetry operators by starting with the topological terms of an

M5-brane and dimensionally reducing along the (torsional) 3-cycle obtained by fibering the

20More generally, the relevant discrete theta angles of this Gk gauge theory is given by
Hom

(
Tor ΩSpin

3 , U(1)
)
when M3 is a spin manifold. We will leave this more refined consideration of the

structure of M3 to future work.
21Notice that (B.15) of [84] is written in terms of U(1) valued forms, where the purpose of their first term

is to constrain the gauge field to be discretely valued.
22This includes, for example, rank N conformal matter of type (G,G) [110,111].
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F-theory torus over the torsional 1-cycle of the base.

It is also natural to treat the effects of the 0-form and 1-form symmetries by explicitly

tracking the profile of flavor 7-branes in the system. One way to proceed is to pass to the

M-theory limit by compactifying on a further circle. So long as the generalized symmetry

operator does not wrap this circle, we can then analyze these effects in purely geometric

terms using [77]. Alternatively, we can use the known structure of topological terms on the

tensor branch of these 6D theories to extract the same data from a “bottom up” perspective

[26,63,94,130].

In both situations, however, the appearance of a non-trivial SL(2,Z) bundle in the F-

theory background is a strong indication that the resulting generalized symmetry operators

will have a fusion algebra which is not captured by a group law. Said differently, we expect

that generically, these 6D SCFTs will have non-invertible symmetries which act on 3D defects

sourcing a background for G
(1)
k .

We leave a more systematic analysis of these cases for future work.

4 M-theory Examples

Although we have focussed on IIB / F-theory backgrounds, the same considerations clearly

hold more broadly. For example, 5D SCFTs engineered via M-theory on Calabi-Yau canon-

ical singularities can also support various defects [19, 20, 76, 129]. To set notation, let X

denote a non-compact Calabi-Yau threefold which generates a 5D SCFT. We can get defects

by wrapping M2-branes and M5-branes on non-compact cycles which extend to the bound-

ary ∂X. The corresponding topological operators are obtained by wrapping magnetic dual

branes on the appropriate cycles:

M2 on M̃1 × R≥0 × γ̃1︸ ︷︷ ︸
Line Defect

↔ M5 on M3 × γ3︸ ︷︷ ︸
Gen. Symm. Membrane

(4.1)

M5 on M̃2 × R≥0 × γ̃3︸ ︷︷ ︸
Surface Defect

↔ M2 on M2 × γ1︸ ︷︷ ︸
Gen. Symm. Defect

(4.2)

M5 on M̃4 × R≥0 × γ̃1︸ ︷︷ ︸
Wall Defect

↔ M2 on pt× γ3︸ ︷︷ ︸
Gen. Symm. Point

. (4.3)

Reduction of the topological terms on the worldvolume of these branes then produces the

corresponding TFT concentrated on our symmetry operator, see (3.32).

As a final comment on this example, we note that 5D SCFTs sometimes also enjoy flavor

symmetries as realized by various discrete symmetries as well as “flavor 6-branes” (namely

ADE singularities). One can in principle consider wrapping such “6-branes” on torsional

cycles of the boundary geometry. This can be viewed as introducing a singular profile for

the M-theory metric in the asymptotic geometry. Wrapping such a 6-brane on a torsional
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3-cycle would result in a generalized symmetry operator for a 0-form symmetry (as it is

codimension 1 in the 5D spacetime). Clearly, this case is a bit more subtle to treat, but it

is so intriguing that we leave it as an avenue to pursue in future work.

5 Further Generalizations

So far, we have mainly explained how to lift various “bottom up” field theory structures to

explicit string constructions. This is already helpful because it provides us with a machine

for extracting the corresponding worldvolume TFT on these generalized symmetry operators,

as well as the resulting fusion rules.

But the stringy perspective provides us with even more. For one thing, it makes clear

the ultimate fate of these “topological” operators once we recouple to gravity. Indeed, once

we couple to gravity, X no longer has a boundary, and so all of our wrapped branes will

again become dynamical. Moreover, we can also see that in many cases, these generalized

symmetries automatically trivialize in compact geometries.

Reinterpreting generalized symmetry operators in terms of wrapped branes also suggests

a further “categorical” generalization of the standard generalized symmetries paradigm. In-

deed, it has been appreciated for some time that at least in type II backgrounds on a

Calabi-Yau threefold, the spectrum of topological branes is captured, in the case of the

topological B-model by the (bounded) derived category of coherent sheaves and in the mir-

ror A-model by the triangulated Fukaya category.23 The important point here is that for

these more general objects, simply working in terms of “branes wrapped on cycles” is often

inadequate. This in turn suggests that instead of assigning a generalized symmetry operator

to a sub-manifold of the d-dimensional spacetime, it is more appropriate to work in terms

of a complex of objects (in the appropriate derived category). Note also that because these

derived categories are monoidal, there is also a notion of fusion in this setting.
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[25] L. Bhardwaj and S. Schäfer-Nameki, “Higher-form symmetries of 6d and 5d

theories,” JHEP 02 (2021) 159, arXiv:2008.09600 [hep-th].

[26] F. Apruzzi, M. Dierigl, and L. Lin, “The fate of discrete 1-form symmetries in 6d,”

SciPost Phys. 12 no. 2, (2022) 047, arXiv:2008.09117 [hep-th].

23

http://arxiv.org/abs/1912.02817
http://dx.doi.org/10.1007/JHEP10(2019)169
http://arxiv.org/abs/1908.08027
http://arxiv.org/abs/1908.08027
http://dx.doi.org/10.1007/JHEP01(2020)101
http://arxiv.org/abs/1910.14086
http://dx.doi.org/10.4310/AMSA.2020.v5.n2.a2
http://arxiv.org/abs/1912.13504
http://dx.doi.org/10.1007/JHEP07(2020)077
http://arxiv.org/abs/2004.05350
http://dx.doi.org/10.1007/JHEP09(2020)024
http://arxiv.org/abs/2005.12296
http://dx.doi.org/10.1007/JHEP12(2020)203
http://arxiv.org/abs/2005.12831
http://dx.doi.org/10.21468/SciPostPhys.10.2.032
http://arxiv.org/abs/2007.05915
http://dx.doi.org/10.1007/JHEP03(2021)196
http://arxiv.org/abs/2007.15003
http://dx.doi.org/10.1007/JHEP10(2020)056
http://arxiv.org/abs/2007.15603
http://dx.doi.org/10.21468/SciPostPhys.8.4.062
http://dx.doi.org/10.21468/SciPostPhys.8.4.062
http://arxiv.org/abs/1910.14039
http://dx.doi.org/10.1007/JHEP02(2021)159
http://arxiv.org/abs/2008.09600
http://dx.doi.org/10.21468/SciPostPhys.12.2.047
http://arxiv.org/abs/2008.09117


[27] C. Cordova, T. T. Dumitrescu, and K. Intriligator, “2-Group Global Symmetries and

Anomalies in Six-Dimensional Quantum Field Theories,” JHEP 04 (2021) 252,

arXiv:2009.00138 [hep-th].

[28] R. Thorngren, “Topological quantum field theory, symmetry breaking, and finite

gauge theory in 3+1D,” Phys. Rev. B 101 no. 24, (2020) 245160, arXiv:2001.11938

[cond-mat.str-el].

[29] M. Del Zotto and K. Ohmori, “2-Group Symmetries of 6D Little String Theories and

T-Duality,” Annales Henri Poincare 22 no. 7, (2021) 2451–2474, arXiv:2009.03489

[hep-th].

[30] P. Benetti Genolini and L. Tizzano, “Instantons, symmetries and anomalies in five

dimensions,” JHEP 04 (2021) 188, arXiv:2009.07873 [hep-th].

[31] M. Yu, “Symmetries and anomalies of (1+1)d theories: 2-groups and symmetry

fractionalization,” JHEP 08 (2021) 061, arXiv:2010.01136 [hep-th].

[32] L. Bhardwaj, Y. Lee, and Y. Tachikawa, “SL(2,Z) action on QFTs with Z2

symmetry and the Brown-Kervaire invariants,” JHEP 11 (2020) 141,

arXiv:2009.10099 [hep-th].

[33] O. DeWolfe and K. Higginbotham, “Generalized symmetries and 2-groups via

electromagnetic duality in AdS/CFT ,” Phys. Rev. D 103 no. 2, (2021) 026011,

arXiv:2010.06594 [hep-th].

[34] S. Gukov, P.-S. Hsin, and D. Pei, “Generalized global symmetries of T [M ] theories.

Part I,” JHEP 04 (2021) 232, arXiv:2010.15890 [hep-th].

[35] N. Iqbal and N. Poovuttikul, “2-group global symmetries, hydrodynamics and

holography,” arXiv:2010.00320 [hep-th].

[36] Y. Hidaka, M. Nitta, and R. Yokokura, “Global 3-group symmetry and ’t Hooft

anomalies in axion electrodynamics,” JHEP 01 (2021) 173, arXiv:2009.14368

[hep-th].

[37] T. D. Brennan and C. Cordova, “Axions, higher-groups, and emergent symmetry,”

JHEP 02 (2022) 145, arXiv:2011.09600 [hep-th].

[38] Z. Komargodski, K. Ohmori, K. Roumpedakis, and S. Seifnashri, “Symmetries and

strings of adjoint QCD2,” JHEP 03 (2021) 103, arXiv:2008.07567 [hep-th].

[39] C. Closset, S. Giacomelli, S. Schafer-Nameki, and Y.-N. Wang, “5d and 4d SCFTs:

Canonical Singularities, Trinions and S-Dualities,” JHEP 05 (2021) 274,

arXiv:2012.12827 [hep-th].

24

http://dx.doi.org/10.1007/JHEP04(2021)252
http://arxiv.org/abs/2009.00138
http://dx.doi.org/10.1103/PhysRevB.101.245160
http://arxiv.org/abs/2001.11938
http://arxiv.org/abs/2001.11938
http://dx.doi.org/10.1007/s00023-021-01018-3
http://arxiv.org/abs/2009.03489
http://arxiv.org/abs/2009.03489
http://dx.doi.org/10.1007/JHEP04(2021)188
http://arxiv.org/abs/2009.07873
http://dx.doi.org/10.1007/JHEP08(2021)061
http://arxiv.org/abs/2010.01136
http://dx.doi.org/10.1007/JHEP11(2020)141
http://arxiv.org/abs/2009.10099
http://dx.doi.org/10.1103/PhysRevD.103.026011
http://arxiv.org/abs/2010.06594
http://dx.doi.org/10.1007/JHEP04(2021)232
http://arxiv.org/abs/2010.15890
http://arxiv.org/abs/2010.00320
http://dx.doi.org/10.1007/JHEP01(2021)173
http://arxiv.org/abs/2009.14368
http://arxiv.org/abs/2009.14368
http://dx.doi.org/10.1007/JHEP02(2022)145
http://arxiv.org/abs/2011.09600
http://dx.doi.org/10.1007/JHEP03(2021)103
http://arxiv.org/abs/2008.07567
http://dx.doi.org/10.1007/JHEP05(2021)274
http://arxiv.org/abs/2012.12827


[40] R. Thorngren and Y. Wang, “Anomalous symmetries end at the boundary,” JHEP

09 (2021) 017, arXiv:2012.15861 [hep-th].

[41] C. Closset, S. Schafer-Nameki, and Y.-N. Wang, “Coulomb and Higgs Branches from

Canonical Singularities: Part 0,” JHEP 02 (2021) 003, arXiv:2007.15600

[hep-th].

[42] L. Bhardwaj, M. Hubner, and S. Schafer-Nameki, “1-form Symmetries of 4d N = 2

Class S Theories,” SciPost Phys. 11 (2021) 096, arXiv:2102.01693 [hep-th].
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[77] M. Cvetič, J. J. Heckman, M. Hübner, and E. Torres, “0-Form, 1-Form and 2-Group

Symmetries via Cutting and Gluing of Orbifolds,” arXiv:2203.10102 [hep-th].

[78] M. Del Zotto, I. Garcia Etxebarria, and S. Schafer-Nameki, “2-Group Symmetries

and M-Theory,” arXiv:2203.10097 [hep-th].

[79] M. Del Zotto and I. Etxebarria Garcia, “Global Structures from the Infrared,”

arXiv:2204.06495 [hep-th].

27

http://arxiv.org/abs/2111.01790
http://arxiv.org/abs/2111.08032
http://dx.doi.org/10.1007/JHEP04(2022)061
http://arxiv.org/abs/2111.13564
http://arxiv.org/abs/2111.13697
http://arxiv.org/abs/2112.02092
http://dx.doi.org/10.1007/JHEP04(2022)126
http://arxiv.org/abs/2112.09531
http://arxiv.org/abs/2201.00018
http://arxiv.org/abs/2107.14227
http://arxiv.org/abs/2111.10369
http://arxiv.org/abs/2111.10369
http://dx.doi.org/10.1103/PhysRevD.106.026007
http://arxiv.org/abs/2203.03644
http://arxiv.org/abs/2201.08372
http://arxiv.org/abs/2203.10102
http://arxiv.org/abs/2203.10097
http://arxiv.org/abs/2204.06495


[80] L. Bhardwaj, L. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible

Higher-Categorical Symmetries,” arXiv:2204.06564 [hep-th].

[81] Y. Hayashi and Y. Tanizaki, “Non-invertible self-duality defects of Cardy-Rabinovici

model and mixed gravitational anomaly,” arXiv:2204.07440 [hep-th].

[82] J. Kaidi, G. Zafrir, and Y. Zheng, “Non-Invertible Symmetries of N = 4 SYM and

Twisted Compactification,” arXiv:2205.01104 [hep-th].

[83] K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible

Condensation Defects,” arXiv:2204.02407 [hep-th].

[84] Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the

Standard Model,” arXiv:2205.05086 [hep-th].

[85] Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible

Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025

[hep-th].

[86] G. Arias-Tamargo and D. Rodriguez-Gomez, “Non-Invertible Symmetries from

Discrete Gauging and Completeness of the Spectrum,” arXiv:2204.07523

[hep-th].

[87] C. Cordova and K. Ohmori, “Non-Invertible Chiral Symmetry and Exponential

Hierarchies,” arXiv:2205.06243 [hep-th].

[88] L. Bhardwaj, M. Bullimore, A. E. V. Ferrari, and S. Schafer-Nameki, “Anomalies of

Generalized Symmetries from Solitonic Defects,” arXiv:2205.15330 [hep-th].

[89] V. Benedetti, H. Casini, and J. M. Magan, “Generalized symmetries and Noether’s

theorem in QFT,” arXiv:2205.03412 [hep-th].

[90] L. Bhardwaj and D. S. W. Gould, “Disconnected 0-Form and 2-Group Symmetries,”

arXiv:2206.01287 [hep-th].

[91] A. Antinucci, G. Galati, and G. Rizi, “On Continuous 2-Category Symmetries and

Yang-Mills Theory,” arXiv:2206.05646 [hep-th].

[92] F. Carta, S. Giacomelli, N. Mekareeya, and A. Mininno, “Dynamical consequences of

1-form symmetries and the exceptional Argyres-Douglas theories,” JHEP 06 (2022)

059, arXiv:2203.16550 [hep-th].

[93] F. Apruzzi, “Higher Form Symmetries TFT in 6d,” arXiv:2203.10063 [hep-th].

[94] J. J. Heckman, C. Lawrie, L. Lin, H. Y. Zhang, and G. Zoccarato, “6d SCFTs,

Center-Flavor Symmetries, and Stiefel–Whitney Compactifications,”

arXiv:2205.03411 [hep-th].

28

http://arxiv.org/abs/2204.06564
http://arxiv.org/abs/2204.07440
http://arxiv.org/abs/2205.01104
http://arxiv.org/abs/2204.02407
http://arxiv.org/abs/2205.05086
http://arxiv.org/abs/2204.09025
http://arxiv.org/abs/2204.09025
http://arxiv.org/abs/2204.07523
http://arxiv.org/abs/2204.07523
http://arxiv.org/abs/2205.06243
http://arxiv.org/abs/2205.15330
http://arxiv.org/abs/2205.03412
http://arxiv.org/abs/2206.01287
http://arxiv.org/abs/2206.05646
http://dx.doi.org/10.1007/JHEP06(2022)059
http://dx.doi.org/10.1007/JHEP06(2022)059
http://arxiv.org/abs/2203.16550
http://arxiv.org/abs/2203.10063
http://arxiv.org/abs/2205.03411


[95] F. Baume, J. J. Heckman, and C. Lawrie, “Super-Spin Chains for 6D SCFTs,”

arXiv:2208.02272 [hep-th].

[96] Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Time-reversal Symmetry,”

arXiv:2208.04331 [hep-th].

[97] L. Bhardwaj, S. Schafer-Nameki, and J. Wu, “Universal Non-Invertible Symmetries,”

arXiv:2208.05973 [hep-th].

[98] L. Lin, D. Robbins, and E. Sharpe, “Decomposition, condensation defects, and

fusion,” arXiv:2208.05982 [hep-th].

[99] T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, “Non-invertible

Symmetries and Higher Representation Theory I,” arXiv:2208.05993 [hep-th].

[100] F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Non-Invertible Symmetries

from Holography and Branes,” arXiv:2208.07373 [hep-th].

[101] I. Garcia Etxebarria, “Branes and Non-Invertible Symmetries,” arXiv:2208.07508

[hep-th].

[102] A. Cherman, T. Jacobson, and M. Neuzil, “1-form symmetry versus large N QCD,”

arXiv:2209.00027 [hep-th].

[103] C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White

Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in 2022

Snowmass Summer Study. 5, 2022. arXiv:2205.09545 [hep-th].

[104] E. Witten, “Some comments on string dynamics,” in STRINGS 95: Future

Perspectives in String Theory, pp. 501–523. 7, 1995. arXiv:hep-th/9507121.

[105] A. Strominger, “Open p-branes,” Phys. Lett. B 383 (1996) 44–47,

arXiv:hep-th/9512059.

[106] N. Seiberg, “Nontrivial fixed points of the renormalization group in six-dimensions,”

Phys. Lett. B 390 (1997) 169–171, arXiv:hep-th/9609161.

[107] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, “Atomic Classification of

6D SCFTs,” Fortsch. Phys. 63 (2015) 468–530, arXiv:1502.05405 [hep-th].

[108] Y. Tachikawa, “Frozen singularities in M and F theory,” JHEP 06 (2016) 128,

arXiv:1508.06679 [hep-th].

[109] J. J. Heckman, D. R. Morrison, and C. Vafa, “On the Classification of 6D SCFTs

and Generalized ADE Orbifolds,” JHEP 05 (2014) 028, arXiv:1312.5746

[hep-th]. [Erratum: JHEP 06, 017 (2015)].

29

http://arxiv.org/abs/2208.02272
http://arxiv.org/abs/2208.04331
http://arxiv.org/abs/2208.05973
http://arxiv.org/abs/2208.05982
http://arxiv.org/abs/2208.05993
http://arxiv.org/abs/2208.07373
http://arxiv.org/abs/2208.07508
http://arxiv.org/abs/2208.07508
http://arxiv.org/abs/2209.00027
http://arxiv.org/abs/2205.09545
http://arxiv.org/abs/hep-th/9507121
http://dx.doi.org/10.1016/0370-2693(96)00712-5
http://arxiv.org/abs/hep-th/9512059
http://dx.doi.org/10.1016/S0370-2693(96)01424-4
http://arxiv.org/abs/hep-th/9609161
http://dx.doi.org/10.1002/prop.201500024
http://arxiv.org/abs/1502.05405
http://dx.doi.org/10.1007/JHEP06(2016)128
http://arxiv.org/abs/1508.06679
http://dx.doi.org/10.1007/JHEP05(2014)028
http://arxiv.org/abs/1312.5746
http://arxiv.org/abs/1312.5746


[110] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa, “6d Conformal Matter,”

JHEP 02 (2015) 054, arXiv:1407.6359 [hep-th].

[111] J. J. Heckman, “More on the Matter of 6D SCFTs,” Phys. Lett. B 747 (2015) 73–75,

arXiv:1408.0006 [hep-th]. [Erratum: Phys.Lett.B 808, 135675 (2020)].

[112] K. Intriligator, “6d, N = (1, 0) Coulomb branch anomaly matching,” JHEP 10

(2014) 162, arXiv:1408.6745 [hep-th].

[113] K. Ohmori, H. Shimizu, and Y. Tachikawa, “Anomaly polynomial of E-string

theories,” JHEP 08 (2014) 002, arXiv:1404.3887 [hep-th].

[114] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura, “Anomaly polynomial of

general 6d SCFTs,” PTEP 2014 no. 10, (2014) 103B07, arXiv:1408.5572

[hep-th].

[115] M. Del Zotto, J. J. Heckman, D. R. Morrison, and D. S. Park, “6D SCFTs and

Gravity,” JHEP 06 (2015) 158, arXiv:1412.6526 [hep-th].

[116] L. Bhardwaj, “Classification of 6d N = (1, 0) gauge theories,” JHEP 11 (2015) 002,

arXiv:1502.06594 [hep-th].

[117] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa,

“F-theory and the Classification of Little Strings,” Phys. Rev. D 93 no. 8, (2016)

086002, arXiv:1511.05565 [hep-th]. [Erratum: Phys.Rev.D 100, 029901 (2019)].

[118] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A. Tomasiello, “The frozen phase of

F-theory,” JHEP 08 (2018) 138, arXiv:1805.09070 [hep-th].

[119] J. J. Heckman, T. Rudelius, and A. Tomasiello, “Fission, Fusion, and 6D RG Flows,”

JHEP 02 (2019) 167, arXiv:1807.10274 [hep-th].

[120] L. Bhardwaj, “Revisiting the classifications of 6d SCFTs and LSTs,” JHEP 03

(2020) 171, arXiv:1903.10503 [hep-th].
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