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THE BRAUER GROUP OF
GRADED CONTINUOUS TRACE C*-ALGEBRAS

ELLEN MAYCOCK PARKER

Abstract. Let X be a locally compact Hausdorff space. The graded Morita
equivalence classes of separable, Z2-graded, continuous trace C*-algebras
which have spectrum X form a group, GBr°°(X), the infinite-dimensional
graded Brauer group of X. Techniques from algebraic topology are used to
prove that GBr°°(X) is isomorphic via an isomorphism w to the direct sum
Hi(X; Z2) © H3(X; Z). The group GBr°°(X) includes as a subgroup the un-
graded continuous trace C*-algebras, and the Dixmier-Douady invariant of
such an ungraded C-algebra is its image in H3(X;Z) under w.

Introduction. The study of graded C*-algebras has become particularly im-
portant since G. G. Kasparov's development of ifrf-theory for operator algebras
[18]. In this paper, separable, Z2-graded, continuous trace C*-algebras are clas-
sified. The graded Morita equivalence classes of such algebras whose spectra are
all the same locally compact Hausdorff space X form a group, called the infinite-
dimensional graded Brauer group of AT and denoted by GBr°°(AT). Two invariants
defined on GBr°°(X) provide useful insights into the structure of these C* -algebras
and relate the results presented here to previous work.

The constructions of J. Dixmier and A. Douady [3, 4, 5] form an important
framework for the graded classification. Let Af be a locally compact Hausdorff space,
with countable base. Dixmier and Douady considered separable, stable, continuous
trace C* -algebras, with spectrum X. There is a canonical way to associate such an
algebra A with a fiber bundle £4 over X with fiber 3^(^), the compact operators
on an infinite-dimensional separable Hilbert space. Let ^^(^f) be the projective
unitary group of 2V, and let H*(X;G) denote the Cech cohomology of X with
coefficients in the sheaf of germs of continuous functions from X to G, for G a
group. Then the isomorphism class of £a is an element of H1(X;^B %(%?)), which
can be shown to be isomorphic to H3(X;Z). They defined the Dixmier-Douady
invariant 8(A) E H3(X;Z) of the algebra A, and proved that the invariant defines
a one-to-one correspondence between isomorphism classes of such algebras and the
elements of i73(X; Z).

Consider now the collection of graded, separable, continuous trace C*-algebras,
all with spectrum X. We will define GBr°° (AT) as the set of equivalence classes of
all such C*-algebras under graded Morita equivalence, which is the graded version
of strong Morita equivalence defined by M. Rieffel [22, 23]. It is important to note,
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116 E. M. PARKER

however, that each equivalence class of GBr°°(X) can be uniquely represented, up
to spectrum-preserving graded '-isomorphism, by a C*-algebra which is a separable,
graded, stable, continuous trace C*-algebra, with spectrum X. In the first sections
of the paper, we choose such a representation, and delay a more thorough discussion
of graded Morita equivalence until §5.

Let A be a separable, graded, stable, continuous trace C*-algebra, with spectrum
X. In this paper, a graded fiber bundle £4 is constructed from A using techniques
parallel to those in the ungraded case. If x E X is an irreducible representation,
then A/ ker(x) is shown to be isomorphic, via a map which preserves the grading, to
J?%t(%f), the graded compact operators on a separable, infinite-dimensional graded
Hilbert space %?. The fiber of £4 over x is then A/ker(z). A topology on the total
space E(£a) is given, and a structure group 9s ^gr(^) for the bundle is defined.
The original algebra A can be retrieved by considering the set of sections of £4
which vanish at 00. The correspondence between A and £4 lies at the heart of the
main result: that GBr°°(X) is isomorphic to H1(X;&>%SgI(&')), which in turn is
isomorphic to the direct sum H1(X; Z2) 0 H3(X; Z). The isomorphism

w: GBr00(X)^H2(X;Z2)®H3(X;Z)

defines invariants twJ(A) E H^X;^) and w%(A) E H3(X;Z) for A € GBr°°(X).
When A is ungraded, it is shown that w2(A) = 8(A) and w\(A) = 1. The group
structure is analyzed and an explicit inverse to an element of GBr°°(X) is con-
structed.

The correspondence between graded continuous trace C* -algebras and graded
fiber bundles allows the finite-dimensional cases considered by J.-P. Serre [12],
P. Donovan and M. Karoubi [6], and R. Patterson [19, 20] to be included in
GBr°°(A!'). The invariants of Donovan and Karoubi agree with those defined here.
In addition, by applying the work of J. Phillips and I. Raeburn [21], it is shown
that w{(A) is the obstruction to the grading automorphism of A being an inner
automorphism. Using a construction of P. Green [11] for the correspondence be-
tween the isomorphism classes of continuous trace C* -algebras and H3(X; Z), an
alternate definition for the isomorphism w is given. This definition allows some
modifications in the equivalence relation on GBr°°(X) to be made. Further ap-
plications of the infinite-dimensional graded Brauer group are anticipated in the
context of Kasparov's iCK"-theory.

This paper presents the results of the author's dissertation, written to complete
the requirements for the degree of Ph.D. at Purdue University. She wishes tb
take this opportunity to express her deep appreciation to Professor J. Kaminker
of Indiana University-Purdue University at Indianapolis for his guidance and en-
couragement. In addition, she would like to thank Professor F. Shultz of Wellesley
College for his helpful suggestions.

1. Preliminaries. Let I be a locally compact Hausdorff space. The C*-
algebra of continuous maps from X to C which vanish at 00 will be denoted by
Co(X). We will assume that %* is a separable, infinite-dimensional Hilbert space,
with inner product denoted by ( , )%-. The group of unitary operators on %?,
equipped with the strong operator topology, will be denoted by %(%?), and the C*-
algebra of bounded operators on %* will be denoted by ^(W). If I is the identity
operator, then S1 is included into ^(^) by mapping s E S1 to si E ^(^). The
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THE BRAUER GROUP OF GRADED C*-ALGEBRAS 117

quotient <^'(^')/S1 is the projective unitary group of <%?, denoted by Z? %(%?),
and is given the quotient topology. Let 3£(%?) be the C* -algebra of compact
operators on %*'. The automorphism of ^(flf), denoted by Aut(^), will be given
the topology of pointwise convergence.

Let A be a C*-algebra. The spectrum of A, denoted by A, is given the Jacobson
topology [3, 3.1]. In this paper, attention will be restricted to separable, continuous
trace C*-algebras, whose spectra are all Hausdorff [3, 4.5.3], and have a countable
base [3, 3.3.4]. A hermitian element a £ A is called a positive element of A if there
exists ay E A with yy* = a. Let A+ denote the set of positive elements of A. If t
is a cardinal, then A is homogeneous of degree t if dim(if,r) = t for every nonzero
irreducible representation 7r of A.

1.1. DEFINITION. Let A be a C*-algebra with spectrum X. Then A is a
continuous trace C* -algebra if X is Hausdorff, and if, for every x E X, there is an
element a E A+ and a neighborhood Vx of x in X such that v(a) is a rank one
projection for every v E Vx.

This definition is equivalent to the standard one of a continuous trace C*-algebra
[3, 4.5.3, 4.5.4]. The above characterization will be especially useful here.

1.2. DEFINITION. Suppose that X is a locally compact Hausdorff space. Let
£ be a family of C*-algebras {£(z)}x€X together with a set of maps from X to
Ui€X £(x)' called sections and denoted by T(£), such that

(i)  the set of sections forms a '-algebra under pointwise operations;
(ii)  the set {s(x): s E r(£), x E X} is dense in £(z);

(iii)  the mapping s >—* ||s(x)|| is continuous for every s € T(£);
(iv)  if s : X —► \Jx€X £(x)> tnen s E T(£) if, for every x E X and e > 0, there is

an s' E T(£) and a neighborhood V of x in X such that \\s(y) — s'(y)\\ < e
for all y in V.

Then £ is called a continuous field of C*-algebra over X [3, 10.1.2, 21, 1.3].
Let E(Z) = \Jxex £(x) be the total space of £. If p: E(£) -* X by p(y) = x

for y E £(x), then E(£) can be equipped with the tube topology [5, 1.2]. The set
of sections of £ which vanish at oo, denoted by rn(£), forms a C*-algebra A with
the norm defined by ||s|| = supl6X ||s(x)|| for s E To(£). Its spectrum A is the
space X [3, 10.4.1], and we can then consider an element of X to be an irreducible
representation [3, 10.4.4]. Let £ and £' be two continuous fields of C*-algebras
over X. A function <p: £ —► £' is an isomorphism if tp is the union Uxex^ °^
isomorphisms <px: £(x) —► £,'(x) such that <p(T(l;)) = T(£'). A continuous field of
Hilbert spaces may be defined in a manner similar to the definition of a continuous
field of C*-algebras, where each £(x) is a now separable Hilbert space [3, 10.1.2].

We recall some elementary sheaf theory. The references [27 and 2] provide more
detail. Let X be a paracompact Hausdorff space. If G is an abelian group, then
H* (X; G) is the Cech cohomology of X with coefficients in G, the sheaf of germs
of continuous functions from X into G. If G is nonabelian, then the cohomology
set H1(X;G) can be defined [13, p. 38]. Let 0 -► Gx — G2 -» G3 — 0 be a short
exact sequence of groups such that Gy is contained in the center of G2; we can then
construct the following exact sequence [10]:

-► H1(X\Q.1) -* Hl(X;G2) — HX(X;G^) — H2(X;Gy).
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118 E. M. PARKER

1.3. DEFINITION. Let A be a C*-algebra. Then A is a (Z2-) graded C*-algebra
if A can be expressed as the direct sum A^0' © A^\ where A^l\ i = 0,1, are
selfadjoint, closed linear subspaces of A, closed under *, and such that if a; E A^,
aj E A^3\ then a^a, € A^+:>\ where addition is modulo 2. If a E A^%\ then a is
said to have degree i.

Alternatively, a grading on A may be induced from an automorphism a of order
2 on A in the following way. Let A'8' = {a E A: a(a) = (-l)la}, i = 0,1. Then
A^0) ©A'1' = A is a grading for A. If a grading for A is given, the automorphism a
can be defined by a(a0+ay) = ao + (—ay). An element a of a graded C*-algebra A is
called homogeneous if a € A^'. A C*-algebra A is trivially graded if A^ = A and
A^1) =0. If A and B are two graded C*-algebras, a *-homomorphism ip: A —► B
is graded if tp(A^) cBw.

The grading of 3£(%?) will now be constructed; the resulting graded C*-algebra
will be denoted by 3^%T(%'). First, we will say that ^ is a graded Hilbert space,
if it is graded in the following way. Suppose that tf'W and %f^> are two copies of
%?. Since there is an isomorphism ^ ss %f' ®%*', we may write %? = SH'W ®^^\
An alternate grading on %? uses a unitary operator J of %* with J2 = 1: define
J^M = {/i£/: J(h) = (—l)lh}, where we consider only those operators J for
which ^W is infinite-dimensional. A direct computation verifies that, if J and J'
are two unitary operators of order 2 of a graded Hilbert space %? which determine
the same grading of %?, then J = J'.

An operator T on ^F is said to be of degree i, i = 0,1, if T(%?^) C ^i+^, for
j = 0,1. Define a grading for £?(<%*) by letting 3"^>(^) be the set of bounded
operators of degree *'. For convenience, a matrix is often used to describe a graded
operator. A degree 0 operator can be represented by a matrix of the form (0 D),
where A: %f^ -» &W and D: &W -» &W. Similarly, a degree 1 operator can
be written as ( ° £) with B: JT'1' -» &W and C: ^°> -» XT™.

The compact operators on a graded Hilbert space ^ can be graded by defining
J?gr (%?) to be the compact operators of %? of degree i. A unitary J of order 2
on ^ may also be used to define the grading on 3H~(S^) (respectively 5?(%?)); let
T E Jfgr^JF) (respectively &&(&)) if JTJ'1 = (-1)*T, for i = 0,1. We can
easily check that if J, J' E %(%?) are of order 2 and induce the same grading on
3l^lx(S!f), then J = ±J'. A graded elementary C*-algebra is a graded C*-algebra
which is isomorphic to 3^%T(^), for %? a graded Hilbert space. The spectrum of a
graded C* -algebra A is the usual spectrum of A regarded as an ungraded algebra.

We now define the graded tensor product of A and B [24, p. 61; 18, 2.6]. Let
A be a graded C*-algebra. A graded state on A is a positive linear functional s
defined on A such that ||s|| = 1 and s = 0 on A'1). If A and B are separable,
graded continuous trace C*-algebras, let AqB denote the algebraic graded tensor
product of A and B, where the elements of AQB are graded by

deg(a©£)) = deg(a) + deg(6).

The product and involution are defined by

(aOb)(a'ob') = (-l)de^de^a'](aa'Qbb'),
(a06)* = (-l)deg(a)deg(b)(a*©6*).
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THE BRAUER GROUP OF GRADED C-ALGEBRAS 119

If s and t are graded states on A and B, respectively, let
n

s(bt(x*x) = Y^ s(a*aj)t(b*bj)
i,3 = l

for x = YJy ctjObj E AQB. Then a C*-norm may be defined on AQB by

2 sQt(y*x*xy)
\\x\r = sup-s—;-—
"  "*     a,t,y    s(Dt(y*y)

where the supremum is taken over all graded states s on A, t on B, and over all
y E A(bB with sQt(y*y) ^ 0. Let A0S denote the completion of AQB with respect
to the norm ||    ||».

Note that A®B defined above is the graded analogue of the minimal tensor
product of A and B. In the case considered here, A and B are continuous trace, so
A<g>B agrees with the graded version of the maximal tensor product [1, 16.4]. Thus
there is no ambiguity when we refer to the graded tensor product A®B.

We say that a graded C*-algebra A is stable if A « A(g>J^,r (J*"), via a graded
"-isomorphism. Let X be a locally compact Hausdorff space, with countable base.
Then we define 2/(X) to be the category whose objects are separable, graded, stable,
C*-algebras with continuous trace, with spectrum X. We note that the grading
of A must be nontrivial; in addition, we require that the grading automorphism
a of A fix X. It is useful to observe that every element of S?(X) is homogeneous
of degree Nq [21, 1.12]. A morphism of <&(X) is a graded *-homomorphism. Let
GBr°°(X) denote the set of graded isomorphism classes of elements of f§(X).

Let £ be a fiber bundle over X with fiber F a C*-algebra, and group G. Then £
is a graded fiber bundle if F = F^ © F^ is a graded C*-algebra and if the group
G is contained in the subgroup of Aut(F) whose elements preserve the grading of
F. We note that the local trivializations hi'. %i x F —► £|g/, for {^}ie/ an open
cover of X, must preserve the grading on the fiber. In addition, £ may be written
as the Whitney sum £ = £(°) © £(*). One example of a graded fiber bundle is a
Clifford algebra bundle. If £ is a real vector bundle over X with a Riemannian
metric, then the complexified Clifford algebra bundle of £, denoted by C(£), is a
bundle of graded C*-algebras such that C(£)x = C(FX) ®R C, where C(FX) is the
Clifford algebra associated to the fiber over x. Let £ be an ungraded fiber bundle
with fiber F a C*-algebra. Then £ may be given a trivial grading corresponding
to the trivial grading of the fiber F. In this case, £(°' = £, and £^' =0. If £ is a
graded fiber bundle over x, then To(£), the algebra of sections of £ which vanish at
oo, is graded as follows: for s E T0(£), deg(s) = i if s(x) E Fx for every x EX. If
£i and £2 are graded fiber bundles, then tp: £i —► £2 is a graded homomorphism of
graded fiber bundles if tp is a homomorphism of fiber bundles which preserves the
grading on each fiber.

2. Construction of the fiber bundle associated to a graded C*-algebra.
The aim of this section is to identify each element of GBr°° (X) with one of a Cech
cohomology group. Then the powerful techniques of cohomology theory can be
used to analyze GBr°°(X). The key step in this identification is the construction of
a continuous field of graded C* -algebras from an element of !§(X). This continuous
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120 E. M. PARKER

field is then shown to be a fiber bundle. Before proceeding to the actual construc-
tion, it is necessary to make some remarks concerning graded representations of a
graded C*-algebra.

Let A E &(X), and suppose that n: A —> 5C(%^) is a representation of A.
Then tt is a graded representation if ^ is a separable, graded, infinite-dimensional
Hilbert space, and ir is a graded '-homomorphism. As in the ungraded case, a
subspace K of a graded Hilbert space %f is said to be invariant under a graded
representation 7r: A —► Jz?(^) if 7r(A)if C K. An irreducible graded representation
ir of A E &(X) is a graded representation such that if K is an invariant subspace
of ir, then K = 0 or %*'. The quotient A/ ker(7r) is graded in the following way.
Let a € A be a homogeneous element of A. Let [a] be the equivalence class of a
in A/ker(7r). Define deg([a]) = deg(a). Since it is graded, this definition is well
defined. It then follows that the quotient map q: A —* A/ker(7r) is graded, and
that the homomorphism tp: A/ker(7r) —» ̂rgr(^r) is a graded isomorphism.

2.1. LEMMA. Let A E S?(X). Every element x E X can be represented by a
nontrivial irreducible graded representation.

PROOF. Let x E X and let it: A —> ̂f(^) be a representative of the equivalence
class x. Suppose that a is the grading automorphism of A; then a preserves the
kernel of it. Since A/ker(7r) « ^r(^), ct induces the standard grading on ^(^).
There exists a J E ^(^) which induces this grading on 3^(%f„). Use J to define
a grading on 3% as in §1. Then it': A — ^(J£(0) ffi^(1)) by it'(a) = ir(a) is
a graded representation of A. Since it is irreducible, it' is also irreducible. And
ker(7r) = ker(7r') implies that it and it' determine the same equivalence class of
x.    D

It is now possible to construct the continuous field of graded elementary C*-
algebras associated to an element of &(X). Let A E &(X). Every x E X may
be identified with an irreducible representation of A on a graded Hilbert space %?,
and this representation is graded by the above lemma. Then the continuous field
£,t is the family of C*-algebras {£(x)}xex, where £(x) = A/ker(x), together with
the set of sections r(£^) defined as follows. For every a E A, let sa: x >—> ax, where
ax denotes the image of a in A/ker(x). Let 5? = {sa: a E A}. Then T(£^) is
the set of maps s': X —* \JxeX £(a;) w^h the property: for every e > 0 and every
x E X, there exists a neighborhood V of x in X and a map s E S7 such that
\[s(y) - s'(y)\[ < e for every y EV. Note that since A is homogeneous of degree N0,
then for every x E X, A/ker(x) is isomorphic to 5£(%f). Since A is graded, each
£(z) is graded and the isomorphism between A/ker(z) and ^iX(%?) preserves the
grading of £(z) induced from A. This construction is the graded analogue of the
Dixmier-Douady construction [3, 10.5].

We can proceed now to show that the continuous field £^ is a graded fiber bundle,
with base X and fiber J^r(J^). First, it is necessary to identify the group of the
proposed fiber bundle. Let Aut°(^) be the subgroup of Aut(^) whose elements
preserve the grading oiJfSI(^). Then Aut°(Jf) inherits the topology of pointwise
convergence from Aut(^). Let

^0 = {(o   °):Me^(;T)},    ^i = {(°   J):6,ce^(-r)}.
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THE BRAUER GROUP OF GRADED C'-ALGEBRAS 121

Let ^gr(JF) = % U &i; ^gr(X) is a closed subgroup of 1/(3r) which inherits
the strong operator topology from %(%f). Define ZP^^flf) to be the quotient
VV{X)ISX.

2.2. PROPOSITION.  Aut°(X) is homeomorphic to 9°%^).

PROOF. Define a function <p: ̂ gr(X) -► Aut0^) by <p(U)(T) = UTU*,
for U E ^gr(^) and T E 3£. It is clear that the kernel of tp is S1, and that
<p(%) E Aut°(^) for every ^ € %&(%?). We next show that tp is surjective.
Suppose that $ E Aut°(^). There exists a unitary U such that $(T) = UTU* for
every T E 3?(%f), and in particular, for every T € J?%x(%?). Since $ E Aut°(^),
then deg(T) = i implies that deg($(T)) = i, i = 0,1. It can be shown that U
is of the form (q^) or (°c0) with a,b,c,d E %(%f), by choosing an orthonormal
basis for ^', making some appropriate choices for T, and then computing UTU*
for these cases.

Using the definition of the strong operator topology, it is easy to show that
the map tp: ^gr(^) —> Aut°(^") is continuous. Therefore, the quotient map
tp: 3° ^gr(^) —♦ Aut°(^) is bijective and continuous. To complete the proof that
tp is a homeomorphism, it can be shown, following the argument of [7, 5.40], that
tp~l is continuous.    D

2.3. THEOREM. Let A E &(X). Then t\jx is a graded fiber bundle with base
space X, fiber ^gr(^'), and group 3s ^gr(^).

PROOF. The construction above of £a gives the base space X, the fiber J?gr(^),
and the total space £'(£a) = Uxex A/ker(x), which is equipped with the tube
topology. Let p: £(£a) —* X by p(y) = x when y E Ax. It is straightforward to
check that Aut°(^) ps 3s %%x(M?) is an effective topological transformation group
for £,4. The rest of the defining conditions for a fiber bundle are satisfied by the
following proposition.

2.4. PROPOSITION. There exist coordinate neighborhoods {^i}i^i of X and
graded homeomorphisms h^: ^ x J?gr(^) —► p_1(^) which satisfy

(i)  phi(x,T) = x, for every xE^i, Te^fZ);
(ii) if hltX: J?gx(£?) —► p~l(x) is defined by setting hi<x(T) = hi(x,T), then,

for each pair i,j E I, and each x E ^ fl ^, the homeomorphism
n7,x onJ,x'- ^rO^H —* S£iT(%?) coincides with an element o/^0^/gr(^);

(iii) for each i,j E I, the map gij: %% n ^■ —► 9° %&(%?) defined by gi,3(x) =
h~x o hj^x is continuous.

The proof of Proposition 2.4 will be delayed until §6. This will conclude the
proof that £^ is a graded fiber bundle.    □

3. GBr°°(X)«i71(X;Z2)©i73(X;Z). We now prove that GBr°°(X) is isomor-
phic to H1(X;&>%'gI(l%')), which in turn is isomorphic to H1(X;Z2)®H3(X;Z),
and discuss the group structure of each. It is first shown that H1(X;3sWgI(^'))
and GBr°°(X) are isomorphic, as sets. Let 38 (X) be the category whose objects
are graded fiber bundles over X, with fiber Jfzx(^) and group £P ftf%x(^). A mor-
phism between objects of 3S(X) is a graded homomorphism of graded fiber bundles.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



122 E. M. PARKER

Then H1(X;3s^'st(^)) can be regarded as the set formed from the graded iso-
morphism classes of elements of 38 (X). Let £ E 38 (X). Define the functions r and
r' as follows:

r: H\X;^3L«(^)) - GBr°°(X)    by r([£]) = [r0(£)],
r': GBr°°(X) - H1(X;3f^ei(^))    by r'([A}) = [U]-

It will be shown that r and r' are well-defined natural functions, such that r' is
inverse to r.

The following proposition verifies that r and r' are well defined.

3.1. Proposition, (i) If £ and £' e 38(X) such that [£] = [£'] in
Hl(X;3t^_ZI(^)), then [T0(0] = [W)] w GBr°°(X).

(ii) //A and 5 € 5?(X) sucfc i/iai [A] = [£] m GBr°°(X), then [U] = [£b] »'n
iiHxx&itj&r)).

PROOF, (i) If /: £(£) —> £?(£') is a graded, fiber-preserving isomorphism, it is
easy to verify that r0(/) is a graded isomorphism from To(£) to ro(£').

(ii) Suppose that tp: A —► B is a graded '-isomorphism. Let x E X correspond to
ker(7r), where it is an irreducible graded representation of A. Let it' = irtp~l: B —>
£f(%?). Consider the following diagram, which defines tpx.

A        —p-+        B

A/ker(7r) -&-+ B/ker(ir')

Note that tpx is a graded isomorphism for each x E X. Hence tpx is a graded
isomorphism from each fiber of £g. Let $ = \Jx€x'Px- Then $ is a graded
isomorphism from £.4 to £3.    □

The next proposition verifies that r' is inverse to r.

3.2. PROPOSITION.   Let A E & (X) and t~, E 38 (X). Then
(i) A andTo(tlA) are isomorphic as graded C* -algebras;

(ii) £ and £r0(O are isomorphic as graded fiber bundles.

PROOF, (i) By [3, 10.5.4], there is an isomorphism which maps an element a E A
to the section sa of £^ defined by sa(x) = ax, for x E X, where ax is the image of a
in A/x. Since the projection a: A —> A/x preserves the grading, the isomorphism
a 1—> sa preserves the grading.

(ii) Let yx E Jfgx(^) = £x. There is a section s: X —► £(£) by s(x) = yx for
every x E X. Let qx: r0(£) —> ro(£)/z be the quotient map, and let sx denote
the image of s under qx. The canonical isomorphism between £x and r0(£)/x is
then defined by yx >-> sx [3, 10.5.2]. This isomorphism is graded on each fiber
since qx preserves the grading. Hence £ and £r0(£) are isomorphic as graded fiber
bundles.    □

Therefore, there is a one-to-one correspondence between Hx (X;3P % %Y(%f)) and
GBr°°(X). Before proceeding to the discussion of their operations, it will be shown
that t is natural. Suppose /: X —> Y is a map, where X and Y are locally compact
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Hausdorff spaces, each with countable base. Let £ E 38 (Y) and B E S?(Y). Then
/ induces the functions

r:k\Y;&3U,*)) - H\X;3j^zr(^))    by [£] ~ [/*(£)]
and

/: GBr°°(y) - GBr°°(X)    by [r0(£B)] ~ [ToCT^)].
Then the following diagram commutes:

H1(Y;3f^gt(^)) -£-+ jmx\&i£v(3ir))

\ 1'Ar A-

GBr°°(y) —]—* GBr°°(X).

Next, the operations for Hi(X\30<%%T(%')) and GBr°°(X) are discussed. In ad-
dition, it is shown that t and t' respect these operations. The fiberwise graded ten-
sor product of graded fiber bundles is the operation of Hl (X; 3° %gr(^)). Specif-
ically, if £, £' E 38(X), let [£]®x[£'] = [£®x£']- This fiberwise tensor product on
infinite-dimensional bundles must be carefully defined; see [9, p. 78] for a more
complete discussion of the ungraded case. Let £o denote the trivial bundle over X
with fiber Jfgr(;F). Then the identity element of Hx(X;3^/_gx(^)) is [£0].

Let A, B E &(X). Then A and B are C0(X)-modules, and we define [A]®x[-B] =
[A<g>c0(x)B]- Note that the operation ®c0(x) is not the usual algebraic tensor
product, but a graded version of a C*-algebraic construction due to Rieffel and
Green [11]. By Propositions 3.1 and 3.2, [A]®x[-B] = [F0(£a(S>x£b)]- It is clear
that the identity element of GBr°°(X) is the equivalence class of the C*-algebra
of maps from X to %f%x(%?) which vanish at oo. It is immediate that r([£o]) =
lGBr~(x)- We have, for £, £' E 38(X), that

r([£]^x[£'])=r([£])0xr([£']).

We now can proceed to the definition of the function w. Let wy: 3° %%x(%f) —►
Z2 be defined by wi([o]) = (-l)des<a). It is easy to check that wy is well defined.
Recall that the Bockstein homomorphism 8*: H^X; S}) —+ iP+1(X; Z) associated
to the exact sequence 1 —► Z —> R —* S1 —> 1 is an isomorphism. The short
exact sequence 1 —► S1 —► ^gr(^) —> 3°c2/%x(^f) —> 1 induces the following exact
sequence

(I)    -► H\X;S}) -♦ HX(X;^X(^)) - HX{X\&W v(&)) -S H2(X;S}).

Let w2 = 8*8*. Define

w: JV-iXx&ltyW)) -> H1(X;Z2)®H3(X;Z)    by w(x) = (w*y(x),w*(x)).

Using the exactness of (I) and the definition of wy, it is straightforward to verify
the following lemma.

3.3. LEMMA. Let x E Hl{X;3°^sr(^)). Then w(x) = (1,0) implies that x
is the identity element in H^jX-.S6 %%t(%?)).
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3.4. PROPOSITION. Let £, £' e38(X), and let ft be the Bockstein homomor-
phism associated to the sequence 1 —► Z-► Z -^ Z2 —► 1, where r(n) = (—1)".
Then

^[^x£']) = K([£])-<([£']),^([£]) + ̂ ([£']) + ̂ K([£'])u<([£])).

The proof parallels that of [6, Lemma 10] and will be omitted.
An explicit inverse to an arbitrary element of GBr°° (X) will now be given. Let

A E ,&(X) and let £^ be the graded fiber bundle associated to A. Let £4 be the
fiber bundle which is topologically identical to £a, and where the elements in each
fiber have the same grading as the corresponding ones of £,4. The fiber of £,4 is
^gr(^); let £,4 have the following fiberwise operations, for every x,y E J^&x(^),
cE&:

addition: (x, y) t-* x + y
scalar multiplication: (c, x) 1—► ex
multiplication: (x,y) ^ (-l)de«Wdes(y)xy
involution: x i-> x*
norm: ih ||x||

Denote the new multiplication by x x y.

3.5. PROPOSITION.   Let A E &(X).  Then [£A] is inverse to [£A] in

hHx-.&W^)).

PROOF. By Lemma 3.4, it is sufficient to show that w([£a®x£a]) = (L0). Let
dij be the transition functions for £a, i,j E I. Then the transition functions for
£4 are also dir Hence <([£a]) = w*y([U\), so w*y([U}) ■ w*y([U\) = 1-

To calculate w2([£a®x£a]), we need to do the following computation. Let gij
(respectively g'^) be the element of ^^(^f) which implements the transition func-
tion d^ for £,t (dfj for £A). Let gtJgjk = uidkglk and g'ijg'jk = u'ijkg'ik. Then

(9iMi)(9jkHk) = (-l)deg(9:j)deg(9jt)(feS^)0(^ x gfk))

= ui]ku'ijk(gik®g'lk),

since deg(g}k) + deg(gfk) = 0. Hence w*([U®xU]) = w*([U}) + w*([U])- But
Kjk = Uijk, the complex conjugate of Uijk. Therefore w2([£a]) = -u>2([£a]), or
w*2([U®xU)) = 0.    D

If A 6 &(X), the inverse element to [A] E GBr°°(X) is the element [F0(£a)]-
This completes the verification that HX(X;36'2/gr(^)) and GBr°°(X) are groups,
and that the function r: H1(X;3f^gI(^)) -» GBr°°(X) is a group homomor-
phism.

It is shown below that w is an isomorphism. Let T = %/q/S1 . Let n: Wgx(£P) —>
Z2 be defined by n(a) = (—l)des(a). Then we have the following diagram of short
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exact sequences of groups, where 7 and 7 are inclusions cf. [6]:

i      '    1
1    —      S1      -i        %        -► T -►    1

1=        1 i
(") 1   -      S1      -i   ^gr(^)    -^   ^^gr(^)    -♦    1

r; w\

Z2 = Z2

I I
1 1

Diagram (II) induces
(III)

HHX'iS1) r    > H^X;^)

-►^1(A";S1)       "f*    .  R^X-^JJT))       "' '  &1(X;&>&cAJg'))       *'     ■  i?2(X;Sl)
8- jf 8-

*                   _1 P*
1 _.

It is easy to verify that H1(X;%[JgT(%')) is a group; hence diagram (III) is a
commutative diagram of groups. The set % is contractible [18], so i71(X;^0) = 0
by [14], and therefore 7* = 0. In addition, n* is injective. Let c: Z2 —► fl/grffi) be
defined by c(+l) = (q°) and c(—1) = ("„). Then ns = lz2, so n* is surjective.
Let v* = v*(n*)~x. Then diagram (III) reduces to the following exact sequence:

0 -» i/^X;^) -£♦ fl^X:^^,^)) -£♦ ̂ (X;^1).

One result of the theorem below is the fact that <S* is surjective; hence

(IV) 0 -» tf^X; Z2) -^ i^fX;^^,,^)) -£♦ #2(X;£X) -» 0

is exact. It is also shown that the sequence (IV) splits.

3.6.   THEOREM,   w is an isomorphism.

PROOF. It is necessary to show that S* is surjective. Let 9: %(%f) -* %fgX(^)
by Ha) = (a0°a), and 9: &W(*) - 3>%x(%>) by B([a\) = [(a0°a)}. It is easy
to check that 9 is well defined. Let £2 be the trivial bundle over X with fiber
M = M2(C). The grading of M is defined by

m<o,={(o lh'<°} md M(1,={(° o):*'csc}-
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Note that #*([£]) = [£®x£2]- We have the following commutative diagram, where
the sequences are exact:

1    —      S1       -»    %x(^)    -»   3>^gX(^)    -    1

(V) I = \e \e
1    —      S1      —     ^(^)     -»    3"^(^)     -»    1

This induces the commutative diagram:

->    J^pfjS1)    —»    ^(Xi^LT))    —.    H1{X;&>%iI{%'))    -^    ^(XjS1)

(VI) = Ir j.
4- 4- 4'

-»    ^(XjS1)    ->      B1(X;&(2'))      —      ftl(X-,<?%{&))      -^    ?2(X;S1)

Since <5* is an isomorphism, <5j is surjective. Note that wyv = lz2> so w\ is
surjective. Hence w is surjective, since both w\ and tfj^i are- Lemma 3.3 implies
that w is injective.    D

4. Interpretations of the invariants w\ and w2. Let A be a separable,
stable, continuous trace C*-algebra, with spectrum X. Then the Dixmier-Douady
invariant of A, 8(A), is the image of the fiber bundle constructed from A under the
composite

kx(X;&1£(%r)) -£♦ ^(X;^1) -^ H3(X;Z).

Let 0: ^ ^(X) -+ ^ ^gr(^) be the map defined in the proof of Theorem 3.6.

The composite &> W(&) -^ ^^(JT) -^ Z2 maps every element of &>%(&)
to +1, so w*y9* is the zero map. Therefore, it is straightforward to compute the
following:

4.1. Proposition. w(9*[£,a\) = 8(A).

There is an alternate way to view w*. Since %?sx(£?) c %(%?), we can consider
the commutative diagram of short exact sequences:

1    -»      Sx      -»     ^(^F)     -»    &<&(&)     —    1

i  -»    s1    —  ^gr(^)  -* 3*%gX(2r)  -*  i

This induces the following diagram:

•■•     —      fi1(X;&{X'))      —>      //'(X;^^^))      -^    ^(XjS1)     4    #3(X;Z)

•••     —    Hl(X;%„(JT))    —    fl'fX;^^^))    -^    H^XiS1)     «    tf3(X;Z)

The homomorphism from HHX;&> ^gr(^)) to HX(X;3> W^)), which is in-
duced from the inclusion, maps [£] to [£*], where £* is the ungraded 3s1/(^')-
bundle underlying £. We now have the following proposition.
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4.2. PROPOSITION. Let A E &(X). Let £A be the 3°^gr(X)-module con-
structed from A. Let A* be A considered as an ungraded C*-algebra. Then £^* =
(£a)* is the ungraded 3"%f (%?)-bundle underlying t\A, and w2[£a] = 8(A*).

The invariant w\ measures the grading of the given graded C*-algebra. We have
the following characterization.

4.3. PROPOSITION. Let A E &(X). Then w*[£A] = 1 if and only if A sa
A'®M2(C), where A' is a separable, stable, continuous trace C* -algebra, with spec-
trum X, such that (A')<°) = A' and (A')(1) = 0.

PROOF. We have [A] = [A'®M2(C)] if and only if [£A] = [£a<®x£2] if and
only if [£a] is in the image of 9* if and only if Wj[£a] = 1-    □

We can also apply the work of J. Philips and I. Raeburn [21] to interpret w{.
Recall that associated to a graded C*-algebra is a grading automorphism of order 2.
Suppose that A is a separable, stable, continuous trace C*-algebra, with spectrum
X. Let Inn(A) denote the automorphisms of A which are implemented by unitaries
in the multiplier algebra, and let AutCo(x)(A) denote the automorphisms of A
which fix Co(X). There is a map tp: AutCo(x)(A) —► HX(X;SX) which fits into
the following short exact sequence [21, 2.1]:

(VII) 0 ^ Inn(A) -» AutCo {x) (A) ^ Hx (X; S1) sa H2 (X; Z) -* 0.

Let fl* be a Hilbert space and suppose that J is a unitary of degree 2 on %?, which is
used to define a grading on %?. It is straightforward to check that, for m E ^gr(^),
w*y[m] = (mJ)(Jm)~x is a well defined method of computing w\. Note that J
defines an automorphism of order 2 v/hich gives the grading on each fiber of £,4.
Let i: Z2 —► Sx be the inclusion, and suppose that a is the automorphism of A
which determines the grading of A. Using this definition of w*, we can calculate
that p(a) = <•»;([&»]).

A grading operator of A is a selfadjoint unitary g contained in the multiplier
algebra of A, such that A^ = {a E A: gag* = (-l)'o} for i = 0,1. The short exact
sequence (VII) then implies that w* [£A] = 1 when the grading of A is determined
by a grading operator.

Donovan and Karoubi [6] consider the case where £ is a fiber bundle over a finite
complex X, with fiber F a simple central graded C-algebra [30]. The isomorphism
classes of such bundles form a group, GBrU(X). They prove that [6, Theorem 11]

GBrU(X) « H°(X;Z2) ®HX(X;Z2) ©Tors(i73(X; ZJ).
This isomorphism defines invariants uy[£[ E HX(X;Z2) and w2[£] E Tors(H3(X;Z))
for the element [£] E GBrU(X). Let £0 be the trivial bundle over X with fiber
JTgx(^). Given £ E GBrU(X), we can include £ into GBr°°(X) by mapping
[£] —► [£o0x£]- It can then be verified that w*[£\ = %[£], j = 1,2. The case where
the fiber is a simple central R-algebra [6, 19, 20, 30] can be considered by first
complexifying the given bundle and then mapping it into GBr°°(X) as above.

Let V be a real n-dimensional vector bundle over X with fiber F. Suppose
that V is equipped with a Riemannian metric. Let C(V) denote the Clifford al-
gebra bundle of V, and let C(V) <8>r C denote the complexification of C(V). Let
wx(V) E Hl(X;Z2), i = 1,2, denote the usual Stiefel-Whitney classes of V. Let
P: H2 (X; Z2) —» H3 (X; Z) be the Bockstein homomorphism associated to the short
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exact sequence 1 —► Z-► Z A Z2 —► 1. Then, using [6, p. 165], we obtain the
result that

Wy(V) = w*y([C(V)®RC})    and   0w2(V) = w*2([C(V) ®RC}).

5. Graded Morita equivalence. Let A be a separable graded continuous
trace C*-algebra with spectrum X. Then A®3?gX(%?) is an element of &(X).
If B is another graded continuous trace C*-algebra, we would like to define an
equivalence between A and B which would imply that [A®3?gX(%?)[ = [B®3ZfgX(%')}
in GBr°°(X). The work in this section determines that the appropriate equivalence
is graded Morita equivalence, which is based on the standard definition of strong
Morita equivalence. In [22], M. Rieffel presented the theory for ungraded C*-
algebras.

In an unpublished note [11], P. Green gives a variant on the construction of
the Dixmier-Douady invariant for ungraded continuous trace C*-algebras. We now
consider a graded version of Green's development. Let A E ^(X). By Lemma
6.2 below, there exists a locally finite open cover {^}ie/ of X such that, for every
i E I, there exists ai E A^0) with x(ai) a degree 0 rank one projection for all x E ^.
Let pi(x) = x(a,i). Suppose i,j E I and ie^fl %j. Let lm(pi(x)) = Cei,x and
lm(pj(x)) = CejtX, for ej|X and e,iX some chosen unit vectors of %?. There exists a
partial isometry b E Sfffl) whose initial space is CeJ:x and whose range is Ce^x-
Let c E A such that x(c) = b. Then x(aicaj) = x(c) ^ 0, and in some neighborhood
of x, v(alcaj) is a rank one operator.

Now replace {%/i}iei with a locally finite refinement such that for all i,j E I,
there exists Cij E A with x(aiCijOj) = x(cij) / 0 for all x E % (1 %fj. Let 6tJ(x) =
x(cij). Note that the fact that x(a^) and x(aj) are degree 0 projections implies that
bij(x) is a homogeneous operator for every x E ^ fl^y. Hence Cij is a homogeneous
element of A. Since bkj(x)bji(x) and bki(x) are, for x E ^ fl ^• D %, two partial
isometries with the same one-dimensional initial space and range, there exists an
element ~iijk(x) E S1 such that

bkj(x)bji(x)bki(x)* = iijk(x) ■ I.

The {"hjk} form a 2-cocycle in C2(X;SX). It can be verified that the cohomology
class [{7ij/c}] E fl'2(X;S1) is independent of the choices made. Let A E &(X).
Then define w'(A) = (w'y(A),w'2(A)) where w[(A) = [{(-l)*^^}} and w'2(A) =
62[{lijk}\- It can be shown that w'(A) = w[£A\.

It is appropriate now to turn to a definition of graded Morita equivalence. Let A
and B be graded C*-algebras and M a graded left A-module and right 5-module.
Then, for i,j = 0,1, one has A^M^ E M^i+^ and M^B^ C M(i+j). If A is a
graded C*-algebra and M a graded A-module, an A-valued inner product on M is
a function (    ,    )A: MxM -+A where (M^,M^)A C A^l

5.1 DEFINITION. Two graded C*-algebras A and B are graded Morita equivalent
if there exists a graded left-A-right-5-bimodule M equipped with A- and B-valued
inner products (    ,    )A and (    ,    )b satisfying:

(a) the requirements for strong Morita equivalence:
(1) (x,x)A >0; (x,x)B>0;
(2) (x,y)A = (y,x)A; (x,y)*B = (y,x)B;
(3) (ax, y)A = a(x,y)A; (x,yb)B = (x,y)Bb;
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(4) (xb,y)A = (x,yb*)A\ (ax,y)B = (x,a*y)B;
(5) (x,y)Az = x(y,z)B;
(6) (ax,ax)B < \[a\\2(x,x)B; (xb,xb)A < [[b[[2(x,x)A;

for x, y, z E M, a E A, b E B;
(b) the graded requirements:

(1) the span of (M^,M^)A is dense in A<i+^;
(2) the span of (M^,M^)B is dense in BW>.

M is called a graded A-S-equivalence bimodule.
Note that if A and B are graded Morita equivalent, they are strong Morita

equivalent. The definition of graded Morita equivalence is justified by the following
proposition.

5.2. PROPOSITION. Let A and B E &(X). If A and B are graded Morita
equivalent, then A and B are isomorphic as graded C* -algebras.

PROOF. Suppose that M is an A-J3-equivalence bimodule. It will be shown that
w[£A] = w[£B]. Let ^ = {^i}ie/ be a locally finite open cover of X with elements
ai E A'0' chosen for each i, such that x(a^) is a degree 0 rank one projection for
every x E ^, and such that for each i, there exists mj E A^ with (m,, mAA = Oj.
Property (b) of Definition 5.1 guarantees the existence of mj.

Let i,j E I. Suppose x E % C\%j. Let c^ E A be chosen as before. When A and
B are strong Morita equivalent, there is a homeomorphism between A and B [22,
6.2.7]. Let x be an irreducible representation of B associated to x under this home-
omorphism. Then x((m,i,mi)B) is a rank one projection for every i [11]. Define
Cij = (nii, Cijm,j)B. It is easy to check that x((mi, mABCij(mj, m,j)B) = x(c~ij) ̂  0.
So x(£ij) is a rank one operator with initial space equal to lm(x(mj, m,j)B) and
range equal to Im(:z;(ra;,mi)B). Using the properties of Definition 5.1, one can
compute that the Cij and the cy define the same cocycle in C2(^; S1). Therefore,
w'2(A) = w'2(B) so wftU] = W*2[1;B}.

Since the m, and mj are chosen to be of degree 0, we can see that deg(6ji) =
deg(cjj). And [A] = [B] in GBr°°(X) implies that A and B are isomorphic as
graded C*-algebras.    □

5.3. COROLLARY. Let A and B be separable, graded continuous trace C*-
algebras with spectrum X. Suppose that A and B are graded Morita equivalent.
Then A®J?gX(%?) and B®3?gX(%f) are isomorphic as graded C*-algebras.

6. The proof of Proposition 2.4. In the ungraded case, the fact that the con-
tinuous field £4 constructed from a separable, stable, continuous trace (7*-algebra
A is a fiber bundle is based on [3, 10.7.11]. Proposition 2.4 is a graded version of this
lemma. The proof of this proposition requires that we verify that the constructions
in [3, Chapter 10, §§6-7] can be done in the graded setting.

Let Fi be the category whose objects are pairs (^, e0), where X = J^°) ©^W
is a graded Hilbert space and eo E ^^ is a unit vector. A morphism between
(J^,e0) and (J^',e0) is a graded isomorphism u: %f —> SH" such that u(eo) = e'0.
Let F2 be the category whose object are pairs (A,p), where A is a graded elementary
C*-algebra of infinite dimension and p is a degree 0 projection of rank one. A
morphism between (A,p) and (A',p') in F2 is a graded isomorphism g: A —► A'
such that g(p) = p'.   Note that, given a degree 0 projection of rank one on the
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graded Hilbert space Sf, we may assume that it is a degree 0 projection whose
image is in Sf^. Let the functor a: Fy -* F2 be defined by a(Sf,e0) = (A,p),
where A = 3fgX(Sf) and p: Sf — Ce0 is the projection. If u: (Sf,e0) -» (^',e0)
is a morphism in Fi, then define a(u): JfgX(Sf) -> 3fgX(Sf) by a(u)(T)(y) =
u(T(u~x(y))), for T € Jfzx(Sf) and 1/ e Sf'. It is easy to check that a(u) is a
morphism in F2.

Let (<#",eo) E Fy, and let (A,p) = a(Sf,e0). Then Ap can be given an inner
product by (a, b)Ap = (ae0,beo)jr- A grading on Ap is defined as follows. Suppose
Po'-SfW _♦ Ce0 is the projection. Let c: Sf^ -> Sf^ and 7: Sf^ — S?W be
maps. Then a typical element of (Ap)^ has the form (f£° °) and a typical element
of (Ap)^ has the form ( °o °). An easy computation verifies that (Ap)^(Ap)^ C
(Apfi+:>\ for z',;' = 0,1. Suppose that (Sf,e0) e Fy and a(^,e0) = (A,p). If we
define tp: Ap —* Sf by <£>(a) = aeo, for a € Ap, then we can check that tp is a graded
isometric isomorphism.

Let (A,p) E F2, and construct the graded Hilbert space Ap. Note that p is a
unit vector of Ap. Then define a functor /?: F2 —► Fi by /?(A,p) = (Ap, p). If
<?: (A,p) —► (A',p') is a morphism of F2, then /3(g): (Ap,p) —► (A'p',p') is defined
by P(g)(ap) = g(a)p', for a e A. Suppose the pair (A,p) is an object of F2.
One has a/?(A, p) = (Jf(Ap),p). The homomorphism V: A —> ̂T(Ap) defined by
ip(a)(x) = ax for each a E A and 2; € Ap, is a graded isomorphism.

The functors a and /? will now be extended to the case of continuous fields.
Let k\(Sfx) be a continuous field of graded Hilbert spaces over X. Suppose that
s E T(£(^)) such that ||s(i)|| = 1 for every x E X, and that s(x) E Sfx{0) for
x E X. Then s is called a degree 0 unit section for £(Sfx). Let £ be a continuous
field of graded elementary C*-algebras over X. An element r E T(£) is called
a degree 0 rank one section if r(x) is a degree 0 rank one projection for every
x E X. Let &y be the category whose objects are pairs (k\(Sfx),s) where c\(Sfx) is
a continuous field of graded Hilbert spaces over X and s is a degree 0 unit section
of t\(Sfx). A morphism c: (£(&), s) - (i(Sf^),s') is defined by c = Uex ^
where cx: Sfx —* Sf^ is a graded isomorphism for every x E X, and c(s) = s'. Let
&1 be the category whose objects are pairs (£,p) where £ is a continuous field of
graded elementary C*-algebras and where p is a degree 0 rank one section for £. A
morphism n: (£,p) —► (£',p') is defined by n = \Jxexnx, where nx: £(z) —► £'(z)
is a graded isomorphism for every x E X and rj(p) = p'.

Suppose that (k\(Sfx), s) E &y. Then a degree 0 rank one section for the contin-
uous field i(3fgX(Sfx)) can be constructed as follows. Let rs: X —► E(t\(3H%x(Sfx)))
by rs(x)(h) = (h,s(x))^xs(x) where h E Sfx. Then rs(x) is a degree 0 rank
one projection for every x E X. There is a functor a: &[ —* &~2 defined by
a(i(Sfx),s) = (i(.SfgX(Sfx)),rs). If c: (i(Sfx),s) - (t:(SfJ),s') is a morphism of
9y, then let a(c) = \Jx€X a($x)- The next result follows immediately.

6.1. LEMMA. If c: i,(Sfx) —♦ Z,(Sfx) is a graded isomorphism, then the induced
map a(c): t\(3f%x(Sfx)) —► £(-^gr(<^x')) Z5 a graded isomorphism.

Let (£,p) E .% where £(x) = Ax. Define a functor /?: 9~2 -* 9[ by /?(£,p) =
(£(Axp(x)),p), where p(x) is the unit vector of Axp(x) for every x E X. If
rl- (£>p) —* (£'iP') is a morphism of ^, then let /?(?/) be defined as j3(n) =
Uxex P(ilx)- The following lemma is a graded version of Definition 1.1.
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6.2. LEMMA. LetAE &(X). For each x E X, there exists an element a E A^
and a neighborhood Vx of x in X such that, for every v E Vx, v(a) is a rank one
projection of degree 0.

PROOF. By Lemma 2.1, we may assume that the elements of X are graded
representations. Let x E X such that x: A —► ^(Sf), where Sfx is a separable,
graded, infinite-dimensional Hilbert space. Let eo E Sfx ' be a unit vector. Let Px
be the degree 0 projection (p0° °), where po: Sf} —> Ce0. Since Im(x) =Jf(Sfx),
there exists ay E A with x(ay) = Px. We may assume that deg(ai) = 0 since a; is a
graded homomorphism. Applying the proof of [3, 4.4.2] to ay, we can construct an
a such that x(a) = px and with the property that there exists a neighborhood Vx
of a; in X such that v(a) is a rank one projection for every v E Vx. Then deg(a) = 0
so degt>(a) = 0 for every v E Vx.    U

6.3. LEMMA. Let t]A be the continuous field constructed from A E &(X) as
defined in §2. Then there exists an open cover {%?i}i£i of X such that for every
i E I, there is a fiber-preserving, graded isomorphism

hi'. ^, x Jfgx(Sf) —► £|gA

where Sf is a graded Hilbert space.

PROOF. The continuous field £a has the following property: for each x E X,
there exists a neighborhood V of a; and a map p: V —► E(£A) such that p(y) is
a degree 0 rank one projection for every y E V [3, 10.5.8]. Let {^};e/ be a
locally finite open cover X of such neighborhoods, with associated degree 0 rank
one sections Pi. Let £A(x) = Ax. The a and (3 constructions for continuous fields
imply that

a/?(£Ak,,Pt) = (t,(5?gi(AxPi(x))),pi).

Let tpx: £a|{x} ~* <Sfgr(AxPi(x)) be the graded isomorphism constructed earlier for
each x E X. Let t/>; = (Jxe%r ipx- By [3, 10.7.6(ii)], ipl is an isomorphism. Then
ki = V't"   is a fiber-preserving, graded isomorphism.

The algebra A is stable, so £^ is locally trivial of rank K0 [21, 1.12]. Then
there is a graded isomorphism tpx: Axpi(x) —► Sf, where Sf'is a separable, graded,
infinite-dimensional Hilbert space. Let tpi = Uxssr 'Px', by [3, 10.7.6(i)] and [3,
10.8.7], tpi is a graded isomorphism between trivial continuous fields of Hilbert
spaces. Let $ = a(<p~x); jj is graded by Lemma 6.1 and is clearly fiber-preserving.
The coordinate function hi for £4 can then be defined as:

hi-.ViX 3fgX(Sf) JU £(JTgr(AxP,(x))) ■*♦ U\*r    n

Every hitX is a homeomorphism since it is a '-isomorphism. An easy argument
using the product topology for 2^ x Jfgx(Sf) verifies that hz is a homeomorphism.
Since each hi is graded, the composite h~x o hJtX coincides with an element of
Aut°(^) sa 3°f/%x(Sf), for every i and j. It is straightforward to verify that
gt] :%,iC\'%'j ^3° %%x(Sf) is continuous.

This completes the proof of Proposition 2.4.    □
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