Integr. equ. oper. theory 57 (2007), 513–520 © 2006 Birkhäuser Verlag Basel/Switzerland 0378-620X/040513-8, *published online* December 26, 2006 DOI 10.1007/s00020-006-1472-y

Integral Equations and Operator Theory

The Brauer–Ostrowski Theorem for Matrices of Operators

Gerd Herzog and Christoph Schmoeger

Abstract. The classical Brauer-Ostrowski Theorem gives a localization of the spectrum of a matrix by a union of Cassini ovals. In this paper we prove a corresponding result for operator matrices.

Mathematics Subject Classification (2000). Primary 47A10; Secondary 47A05. Keywords. Operator matrices, localization of the spectrum, Cassini ovals.

1. Introduction

In [5] and [1] Ostrowski and Brauer independently observed that each eigenvalue of a matrix $A = (a_{jk}) \in \mathbb{C}^{n \times n}$, $n \ge 2$ is contained in a Cassini oval

$$\left\{\lambda \in \mathbb{C} : |\lambda - a_{rr}| \ |\lambda - a_{ss}| \le \left(\sum_{r \ne k=1}^{n} |a_{rk}|\right) \left(\sum_{s \ne k=1}^{n} |a_{sk}|\right)\right\}$$

with $r \neq s$. In [2] Feingold and Varga obtained the corresponding result for block matrices. In several cases these results lead to a better localization of the spectrum of a matrix than Gershgorin's Theorem, compare [8] and the references given there. Affected by Gil's and Salas' devolvements of Gershgorin's Theorem [3],[7], we study in this paper the Brauer-Ostrowski Theorem in the frame of operator matrices.

2. Notations

Let X be a complex Banach space, and $T:X\to X$ linear and bounded. In the sequel we consider:

the spectrum

$$\sigma(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is bijective}\},\$$

the resolvent set

$$\rho(T) = \mathbb{C} \setminus \sigma(T),$$

the point spectrum

$$\sigma_p(T) = \{ \lambda \in \mathbb{C} : \exists x \in X : x \neq 0, (\lambda I - T)x = 0 \},\$$

the continuous spectrum

$$\sigma_c(T) = \{ \lambda \in \mathbb{C} : \lambda \notin \sigma_p(T), \ (\lambda I - T)(X) \neq X, \ \overline{(\lambda I - T)(X)} = X \},\$$

the residual spectrum

$$\sigma_r(T) = \{ \lambda \in \mathbb{C} : \lambda \notin \sigma_p(T), \, \overline{(\lambda I - T)(X)} \neq X \},\$$

the approximate point spectrum

$$\sigma_{ap}(T) = \{\lambda \in \mathbb{C} : \exists (x_n) \subseteq X : \|x_n\| = 1 \text{ and } (\lambda I - T)x_n \to 0 \ (n \to \infty) \},$$
 and the compression spectrum

$$\sigma_{com}(T) = \{\lambda \in \mathbb{C} : \overline{(\lambda I - T)(X)} \neq X\}.$$

Note, that $\sigma_p(T)$, $\sigma_c(T)$ and $\sigma_r(T)$ are pairwise disjoint, that

$$\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T),$$

and that

$$\sigma_r(T) = \sigma_{com}(T) \setminus \sigma_p(T).$$

Moreover let X^* denote the dual space of X, let T^* denote the adjoint of T, and note that

$$\sigma(T) = \sigma(T^*), \ \sigma_{com}(T) = \sigma_p(T^*) \text{ and } \|T\| = \|T^*\|.$$

3. Matrices of operators

Let $n \in \mathbb{N}$, $n \geq 2$, and $(X_1, \|\cdot\|_1), \dots, (X_n, \|\cdot\|_n)$ complex Banach spaces. We consider the complex Banach space

$$X = X_1 \times \dots \times X_n, \quad ||x||_{\infty} = \max_{i=1}^n ||x_i||_i \ (x = (x_1, \dots, x_n) \in X).$$

Now, let $A: X \to X$ be linear and bounded. Then

$$A = (A_{jk}) = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix},$$

where $A_{jk}: X_k \to X_j$ is linear and bounded (j, k = 1, ..., n). For each $j \in \{1, ..., n\}$ we set,

$$p_j(A) = \sum_{j \neq k=1}^n ||A_{jk}||, \quad q_j(A) = \sum_{j \neq k=1}^n ||A_{kj}||.$$

514

Vol. 57 (2007)

515

For $r, s \in \{1, ..., n\}$ with $r \neq s$ we define the following sets, corresponding to the ovals of Cassini: $C^{(p)}(A) = \sigma(A_{m}) \sqcup \sigma(A_{m})$

$$\bigcup_{rs'} (A) = \delta(A_{rr}) \cup \delta(A_{ss}) \\ \cup \left\{ \lambda \in \rho(A_{rr}) \cap \rho(A_{ss}) : (\|(\lambda I - A_{rr})^{-1}\|\| \|(\lambda I - A_{ss})^{-1}\|)^{-1} \le p_r(A)p_s(A) \right\},$$

and

$$C_{rs}^{(q)}(A) = \sigma(A_{rr}) \cup \sigma(A_{ss})$$

 $\cup \left\{ \lambda \in \rho(A_{rr}) \cap \rho(A_{ss}) : (\|(\lambda I - A_{rr})^{-1}\|\|(\lambda I - A_{ss})^{-1}\|)^{-1} \le q_r(A)q_s(A) \right\}.$ Since $A^* = (A_{jk})^* = (A_{kj}^*)$ we have

$$C_{rs}^{(p)}(A^*) = C_{rs}^{(q)}(A).$$
(3.1)

Next, let

$$C^{(p)}(A) := \bigcup_{r,s=1, r \neq s}^{n} C^{(p)}_{rs}(A), \quad C^{(q)}(A) := \bigcup_{r,s=1, r \neq s}^{n} C^{(q)}_{rs}(A),$$

and note that by means of (3.1), $C^{(p)}(A^*) = C^{(q)}(A)$. Moreover, observe that if n = 2, then $C_{12}^{(p)}(A) = C_{12}^{(q)}(A)$, hence $C^{(p)}(A) = C^{(q)}(A)$.

4. Localization of the spectrum

Theorem 4.1. Let $A = (A_{jk}) : X \to X$ be linear and bounded. Then $\sigma_{ap}(A) \subseteq C^{(p)}(A).$

Proof. Let $\lambda \in \sigma_{ap}(A)$. For each $m \in \mathbb{N}$ there exists $x^{(m)} = (x_1^{(m)}, \dots, x_n^{(m)}) \in X$ such that

$$||x^{(m)}||_{\infty} = 1, \quad ||\lambda x^{(m)} - Ax^{(m)}||_{\infty} \le \frac{1}{m}.$$

For $m \in \mathbb{N}$ let $r(m), s(m) \in \{1, \ldots, n\}$ be such that $r(m) \neq s(m)$, and

$$\|x_{r(m)}^{(m)}\|_{r(m)} \ge \|x_{s(m)}^{(m)}\|_{s(m)} \ge \|x_i^{(m)}\|_i \quad (i \in \{1, \dots, n\} \setminus \{r(m), s(m)\}).$$

By means of the pigeon hole principle we can assume without loss of generality that the sequences $(r(m))_{m=1}^{\infty}$ and $(s(m))_{m=1}^{\infty}$ are constant. Hence let r = r(m) and s = s(m). Then $r \neq s$ and, since $||x^{(m)}||_{\infty} = 1$,

$$\|x_i^{(m)}\|_i \le \|x_s^{(m)}\|_s \le \|x_r^{(m)}\|_r = 1 \quad (i \notin \{r, s\}, \ m \in \mathbb{N}).$$

$$(4.1)$$

We define

$$z^{(m)} = (z_1^{(m)}, \dots, z_n^{(m)}) := \lambda x^{(m)} - A x^{(m)} \quad (m \in \mathbb{N}),$$
(4.2)

and consider the following cases:

1. Let $\lambda \in \sigma(A_{rr}) \cup \sigma(A_{ss})$. Then $\lambda \in C_{rs}^{(p)}(A)$, thus $\lambda \in C^{(p)}(A)$.

2. Let $\lambda \in \rho(A_{rr}) \cap \rho(A_{ss})$. From (4.2) we get

$$z_r^{(m)} = (\lambda I - A_{rr}) x_r^{(m)} - \sum_{r \neq k=1}^n A_{rk} x_k^{(m)}$$
(4.3)

and

$$z_s^{(m)} = (\lambda I - A_{ss}) x_s^{(m)} - \sum_{s \neq k=1}^n A_{sk} x_k^{(m)}.$$
(4.4)

By means of (4.3) we have

$$x_r^{(m)} = (\lambda I - A_{rr})^{-1} \left(z_r^{(m)} + \sum_{r \neq k=1}^n A_{rk} x_k^{(m)} \right)$$

thus, according to (4.1),

$$1 = \|x_r^{(m)}\|_r \le \|(\lambda I - A_{rr})^{-1}\| \left(\|z_r^{(m)}\|_r + \sum_{r \ne k=1}^n \|A_{rk}\| \|x_k^{(m)}\|_k \right)$$

$$\le \|(\lambda I - A_{rr})^{-1}\| \left(\frac{1}{m} + \|x_s^{(m)}\|_s p_r(A)\right).$$
(4.5)

From (4.4) we get

$$x_s^{(m)} = (\lambda I - A_{ss})^{-1} \left(z_s^{(m)} + \sum_{s \neq k=1}^n A_{sk} x_k^{(m)} \right),$$

hence

$$\|x_{s}^{(m)}\|_{s} \leq \|(\lambda I - A_{ss})^{-1}\| \left(\|z_{s}^{(m)}\|_{s} + \sum_{s \neq k=1}^{n} \|A_{sk}\| \|x_{k}^{(m)}\|_{k} \right)$$

$$\leq \|(\lambda I - A_{ss})^{-1}\| \left(\frac{1}{m} + \|x_{r}^{(m)}\|_{r}p_{s}(A)\right)$$

$$= \|(\lambda I - A_{ss})^{-1}\| \left(\frac{1}{m} + p_{s}(A)\right).$$
(4.6)

We proceed by proving that there exist $\alpha > 0$ and $m_0 \in \mathbb{N}$ such that

$$\|x_s^{(m)}\|_s \ge \alpha \quad (m \ge m_0).$$
 (4.7)

If not, then there is a subsequence $(x_s^{(m_{\nu})})$ of $(x_s^{(m)})$ with $x_s^{(m_{\nu})} \to 0 \ (\nu \to \infty)$, thus (4.1) gives

$$x_i^{(m_\nu)} \to 0 \ (\nu \to \infty) \quad (i \in \{1, \dots, n\} \setminus \{r\}),$$

and, by (4.3),

$$(\lambda I - A_{rr})x_r^{(m_\nu)} \to 0 \quad (\nu \to \infty).$$

Since $||x_r^{(m_\nu)}|| = 1$ for all $\nu \in \mathbb{N}$, we get the contradiction

$$\lambda \in \sigma_{ap}(A_{rr}) \subseteq \sigma(A_{rr}).$$

Thus (4.7) holds. According to (4.5) and (4.6) we have

$$\|x_s^{(m)}\|_s = 1 \cdot \|x_s^{(m)}\|_s$$

$$\leq \|(\lambda I - A_{rr})^{-1}\| \|(\lambda I - A_{ss})^{-1}\| \left(\frac{1}{m} + \|x_s^{(m)}\|_s p_r(A)\right) \left(\frac{1}{m} + p_s(A)\right),$$

516

IEOT

Vol. 57 (2007)

for

and therefore, by (4.7),

$$1 \le \|(\lambda I - A_{rr})^{-1}\| \|(\lambda I - A_{ss})^{-1}\| \left(\frac{1}{m\|x_s^{(m)}\|_s} + p_r(A)\right) \left(\frac{1}{m} + p_s(A)\right) \\ \le \|(\lambda I - A_{rr})^{-1}\| \|(\lambda I - A_{ss})^{-1}\| \left(\frac{1}{\alpha m} + p_r(A)\right) \left(\frac{1}{m} + p_s(A)\right) \\ m \ge m_0. \text{ With } m \to \infty \text{ we derive } \lambda \in C_{rs}^{(p)}(A) \subseteq C^{(p)}(A).$$

In particular we have:

Corollary 4.2. $\sigma_p(A) \cup \sigma_c(A) \subseteq C^{(p)}(A)$. *Proof.* Follows from Theorem 4.1 and $\sigma_p(A) \cup \sigma_c(A) \subseteq \sigma_{ap}(A)$. \Box **Corollary 4.3.** $\sigma_{com}(A) \subseteq C^{(q)}(A)$.

Proof. Since $\sigma_{com}(A) = \sigma_p(A^*)$, Corollary 4.2 shows that

$$\sigma_{com}(A) \subseteq C^{(p)}(A^*) = C^{(q)}(A).$$

In case n = 2 we have seen that $C^{(p)}(A) = C^{(q)}(A)$. Hence we have:

Corollary 4.4. If n = 2, then $\sigma(A) \subseteq C^{(p)}(A)$.

5. Weighted norms

Let $w_1, \ldots, w_n > 0$. We define equivalent norms on X_1, \ldots, X_n , respectively, by setting

$$|||\xi|||_i = w_i ||\xi||_i \quad (\xi \in X_i, \ i = 1, \dots, n)$$

For the operators $A_{jk}: X_k \to X_j$ we have

$$||A_{jk}|| = \sup_{||\xi||_k=1} ||A_{jk}\xi||_j,$$

hence

$$|||A_{jk}||| := \sup_{|||\xi|||_{k}=1} |||A_{jk}\xi|||_{j} = \frac{w_{j}}{w_{k}} ||A_{jk}|| \quad (j, k = 1, \dots, n).$$

By application of Theorem 4.1 to this situation we obtain:

Theorem 5.1. Let $w_1, ..., w_n > 0$. Then

$$\sigma_{ap}(A) \subseteq \bigcup_{\substack{r,s=1,r\neq s}}^{n} \sigma(A_{rr}) \cup \sigma(A_{ss})$$
$$\cup \left\{ \lambda \in \rho(A_{rr}) \cap \rho(A_{ss}) : \left(\| (\lambda I - A_{rr})^{-1} \| \| (\lambda I - A_{ss})^{-1} \| \right)^{-1} \right\}$$
$$\leq \left(\sum_{\substack{r\neq k=1}}^{n} \frac{w_r}{w_k} \| A_{rk} \| \right) \left(\sum_{\substack{s\neq k=1}}^{n} \frac{w_s}{w_k} \| A_{sk} \| \right) \right\}.$$

Remark 5.2. Theorem 5.1 can be extended to the case that $W_i : X_i \to X_i$ is linear, bounded and invertible (i = 1, ..., n) and

$$|||\xi|||_i = ||W_i\xi||_i \quad (\xi \in X_i, \ i = 1, \dots, n).$$

Then

 $|||A_{jk}||| = ||W_j A_{jk} W_k^{-1}|| \quad (j,k=1,\ldots,n),$ and the corresponding inclusion for $\sigma_{ap}(A)$ is valid.

Now, consider the scalar matrix

$$B = \begin{pmatrix} 0 & \|A_{12}\| & \|A_{13}\| & \dots & \|A_{1n}\| \\ \|A_{21}\| & 0 & \|A_{23}\| & \dots & \|A_{2n}\| \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \|A_{n1}\| & \dots & \dots & \|A_{n(n-1)}\| & 0 \end{pmatrix},$$

and its spectral radius $r(B) = \max_{\mu \in \sigma(B)} |\mu|.$ For each $\tau \geq 0$ we define

$$C_{\tau} := \bigcup_{\substack{r,s=1,r\neq s}}^{n} \sigma(A_{rr}) \cup \sigma(A_{ss}) \\ \cup \Big\{ \lambda \in \rho(A_{rr}) \cap \rho(A_{ss}) : \big(\| (\lambda I - A_{rr})^{-1} \| \| (\lambda I - A_{ss})^{-1} \| \big)^{-1} \le \tau^2 \Big\}.$$

Theorem 5.3. Let B and r(B) be as above. Then

$$\sigma(A) \subseteq C_{r(B)}.$$

Proof. Let P denote the $n \times n$ matrix with each entry equals 1. Let $\varepsilon > 0$. According to [6, Theorem 10.20] there exists $\delta > 0$ such that $r(B + \delta P) \leq r(B) + \varepsilon$. Now, $B + \delta P$ is irreducible and therefore has a strictly positive Perron eigenvector $v = (v_1, \ldots, v_n) \in (0, \infty)^n$.

Set $w_k = v_k^{-1}$ (k = 1, ..., n) and let $j \in \{1, ..., n\}$. From $(B + \delta P)v = r(B + \delta P)v \leq (r(B) + \varepsilon)v$ (coordinatewise) we derive

$$(r(B) + \varepsilon)v_j \ge \delta v_j + \sum_{j \ne k=1}^n (\|A_{jk}\| + \delta)v_k,$$

hence

$$\sum_{j \neq k=1}^{n} \frac{w_j}{w_k} \|A_{jk}\| = \sum_{j \neq k=1}^{n} \frac{v_k}{v_j} \|A_{jk}\| \le r(B) + \varepsilon.$$

Now Theorem 5.1 shows that $\sigma_{ap}(A) \subseteq C_{r(B)+\varepsilon}$, and with $\varepsilon \to 0+$ we obtain $\sigma_{ap}(A) \subseteq C_{r(B)}$.

By replicating this proof with A^* instead of A we obtain

$$\sigma_{com}(A) = \sigma_p(A^*) \subseteq C_{r(B^\top)} = C_{r(B)},$$

since B and its transposed B^{\top} have the same spectral radius. So, finally

$$\sigma(A) = \sigma_{ap}(A) \cup \sigma_{com}(A)$$

proves $\sigma(A) \subseteq C_{r(B)}$.

IEOT

Vol. 57 (2007)

6. Examples

In order to apply Theorem 4.1,5.1 or 5.3 it is comfortable if the expressions

$$\|(\lambda I - A_{jj})^{-1}\|^{-1}$$
 $(j = 1, \dots, n)$

have a simple structure.

If T is a normal operator on a complex Hilbert space, then

n

$$\|(\lambda I - T)^{-1}\|^{-1} = \operatorname{dist}(\lambda, \sigma(T)) \quad (\lambda \in \rho(T))$$

see [4, p. 277].

If T is a multiplication operator on a space of complex valued continuous function C(K) (K a compact metric space, say, and C(K) endowed with the maximum norm), that is $(T\xi)(t) = g(t)\xi(t)$ ($t \in K$) for some $g \in C(K)$, then $\sigma(T) = g(K)$ and likewise

$$\|(\lambda I - T)^{-1}\|^{-1} = \operatorname{dist}(\lambda, \sigma(T)) = \operatorname{dist}(\lambda, g(K)) \quad (\lambda \in \rho(T)).$$

For example, let $X = C(K)^n$, and let $A = (A_{jk}) : X \to X$ be such that $(A_{jj}\xi)(t) = g_j(t)\xi(t)$ with $g_j \in C(K)$ (j = 1, ..., n). Let B be as in section 5. Then, according to Theorem 5.3

$$\sigma(A) \subseteq \bigcup_{r,s=1, r \neq s} \{\lambda : \operatorname{dist}(\lambda, g_r(K)) \operatorname{dist}(\lambda, g_s(K)) \leq r(B)^2 \}.$$

In the following example let $X_3 = C([0,1])$ be endowed with the maximum norm $\|\cdot\|_3$, and $X_2 = C^1([0,1])$, $X_1 = C^2([0,1])$ endowed with the norms $\|\xi\|_2 = \max\{\|\xi\|_3, \|\xi'\|_3\}$ and $\|\xi\|_1 = \max\{\|\xi\|_3, \|\xi'\|_3, \|\xi''\|_3\}$, respectively. Let $\alpha \ge 0$, and let $A: X \to X$ be defined by

$$(Ax)(t) = \begin{pmatrix} x_1(t) + \alpha \int_0^1 \cos(ts) x_3(s) ds \\ x'_1(t) - x_2(t) \\ x''_1(t) + x'_2(t) + \exp(2\pi i t) x_3(t) \end{pmatrix}.$$

Note that $\sigma(A) = \{\lambda : |\lambda| = 1\}$ if $\alpha = 0$. Application of Theorem 5.3 proves that

$$\begin{aligned} \sigma(A) &\subseteq C_{r(B)} = \{\lambda : |\lambda^2 - 1| \le r(B)^2\} \\ &\cup \{\lambda : |\lambda - 1| \ ||\lambda| - 1| \le r(B)^2\} \cup \{\lambda : |\lambda + 1| \ ||\lambda| - 1| \le r(B)^2\} \\ &= \{\lambda : |\lambda - 1| \ ||\lambda| - 1| \le r(B)^2\} \cup \{\lambda : |\lambda + 1| \ ||\lambda| - 1| \le r(B)^2\}, \end{aligned}$$

with

$$B = \left(\begin{array}{rrr} 0 & 0 & \alpha \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right).$$

It is easy to check that r(B) = 1 if $\alpha = 1/2$, and if $\alpha < 1/2$, then r(B) < 1 and $0 \notin C_{r(B)}$. Thus A is invertible in this case. Figure 1 shows $C_{r(B)}$ with $r(B) \approx 0.915$ for $\alpha = 0.4$, and $r(B) \approx 0.231$ for $\alpha = 0.01$.

Figure 1. $\alpha = 0.4, \alpha = 0.01$

References

- A. Brauer, Limits for the characteristic roots of a matrix. II. Duke Math. J. 14 (1947), 21-26.
- [2] D.G. Feingold; R.S. Varga, Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem. Pacific J. Math. 12 (1962), 1241-1250.
- [3] M.I. Gil', Invertibility conditions and bounds for spectra of operator matrices. Acta Sci. Math. (Szeged) 67 (2001), 299-314.
- [4] T. Kato, Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
- [5] A. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helv. 10 (1937), 69-96.
- [6] W. Rudin, *Functional analysis*. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.
- [7] H.N. Salas, Gershgorin's theorem for matrices of operators. Linear Algebra Appl. 291 (1999), 15-36.
- [8] R.S. Varga, Geršgorin and his circles. Springer Series in Computational Mathematics, 36. Springer-Verlag, Berlin, 2004.

Gerd Herzog and Christoph Schmoeger Institut für Analysis, Universität Karlsruhe D-76128 Karlsruhe Germany e-mail: Gerd.Herzog@math.uni-karlsruhe.de christoph.schmoeger@math.uni-karlsruhe.de

Submitted: April 19, 2006 Revised: November 17, 2006