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Abstract. The classical Brauer-Ostrowski Theorem gives a localization of the
spectrum of a matrix by a union of Cassini ovals. In this paper we prove a
corresponding result for operator matrices.
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1. Introduction

In [5] and [1] Ostrowski and Brauer independently observed that each eigenvalue
of a matrix A = (aj;) € C"*", n > 2 is contained in a Cassini oval

n n

AEC: |A—ap] |A—ass] < Z |ark] Z |ask|

r£k=1 s#k=1

with 7 # s. In [2] Feingold and Varga obtained the corresponding result for block
matrices. In several cases these results lead to a better localization of the spectrum
of a matrix than Gershgorin’s Theorem, compare [8] and the references given
there. Affected by Gil”s and Salas’ devolvements of Gershgorin’s Theorem [3],[7],
we study in this paper the Brauer-Ostrowski Theorem in the frame of operator
matrices.

2. Notations

Let X be a complex Banach space, and T : X — X linear and bounded. In the
sequel we consider:
the spectrum

o(T) ={X € C: A\ — T is bijective},
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the resolvent set
p(T) = C\ o(T),

the point spectrum

op(T)={AeC:3x e X :2#0,(\ —T)x =0},
the continuous spectrum

0o(T) ={r e C: X ¢ 0p(T), M =T)(X) # X, M = T)(X) = X},

the residual spectrum

o (T) = {A € C: A ¢ 0,(T), M - T)(X) # X},
the approximate point spectrum

Oup(T)={AeC:3(z,) CX: |z, =1and (M —T)z, — 0 (n — 00)},
and the compression spectrum
Teom(T) = {A € C: (A -T)(X) # X}.
Note, that 0,(T"), 0.(T) and o,(T') are pairwise disjoint, that
o(T) = op(T)Uoe(T) U on(T),
and that
0 (T) = eom(T) \ 0p(T).

Moreover let X* denote the dual space of X, let T denote the adjoint of T', and

note that
o(T) =o(T"), ocom(T) = 0p(T™) and ||T'|| = || 7.

3. Matrices of operators

Let n € Ny n > 2, and (X1, - [[1),---5 (Xn, | - |ln) complex Banach spaces. We
consider the complex Banach space

X=X1xxX,, |z|lc= mi;ilXHleZ (x = (x1,...,20) € X).
Now, let A : X — X be linear and bounded. Then
Ay A oo Ay
A= (Aj) = : : : : )
Anl An2 Ann

where Aj, : X, — Xj is linear and bounded (j,k = 1,...,n). For each j €
{1,...,n} we set,

pi(A) = > Al @A) = > [l

jAk=1 Jj#k=1
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For r,s € {1,...,n} with r # s we define the following sets, corresponding to the
ovals of Cassini:
C’SZS)) (A) = U(ATT) U U(Ass)
U {)‘ € p(Arr) N p(Ass) + (I = Ar) HIIM = Age) M) < pr(A)ps(A)} )
and

CLD(A) = 0(Arr) Uo(Ass)
U {)\ € p(Arr) N p(Ass) + (I = Ar) THIIM = Age) M) TH < qr(A)qs(A)} :
Since A* = (A;;)* = (Aj;) we have
CR(A7) = CID(A). (3.1)
Next, let
cow= ) cpw. com= |J @,
r,s=1,r#s r,s=1,r#s

and note that by means of (3.1), C?)(A*) = C(@(A). Moreover, observe that if
n =2, then C®(A) = C{2(A), hence CP)(4) = CD(A).

4. Localization of the spectrum
Theorem 4.1. Let A= (Aj;) : X — X be linear and bounded. Then
oap(A) C CP(A).

Proof. Let A\ € 04,(A). For each m € N there exists #(™) = (xgm), . .,x,(lm)) eX

such that .
20 oo =1, A2™ — Az(™]| o < —.

For m € N let r(m), s(m) € {1,...,n} be such that r(m) # s(m), and
12 ey = 2o sy = 2™ s (€ {1, n}\ {r(m), s(m)}).

By means of the pigeon hole principle we can assume without loss of generality
that the sequences (r(m))S°_; and (s(m))>°_; are constant. Hence let r = r(m)
and s = s(m). Then r # s and, since ||z(™)| o = 1,
o™ s < 2™l < o™l =1 (i ¢ {r,s}, m e N). (41)
We define
2 = (™Y = 2™ — A2 (m e N), (4.2)
and consider the following cases:

1. Let A € 0(A,,) Uo(Ass). Then A € CE (A), thus A € C®)(A).
2. Let X € p(A,r) N p(Ass). From (4.2) we get

2 = (M — A,)x Z Apgz™ (4.3)
r#k=1



516 Herzog and Schmoeger IEOT

and

2 = (M — Ay Z Agpz™. (4.4)
s#k=1
By means of (4.3) we have

2™ = (A — A,)~ )+ Z Agr™ ],
r#k=1

thus, according to (4.1),

L= [t < IOL = Ae) 7128l + 30 T4l g™ k) (45)
r#k=1
_ 1 m
< IO = ) (24 ().
From (4.4) we get
2™ = (M — Ayy)~ )+ Z Agzi™ |,
s#k=1
hence
125 < IO = AT 1280+ D7 1Al 8™ 1l (4.6)
s#k=1
< IO = As) 7 (& + 128 lps(4))
= ”()‘I - ASS>_1H (H +ps(A)) .
We proceed by proving that there exist a > 0 and mg € N such that
[z >a (m> mo) (4.7
If not, then there is a subsequence (acs v ) of ( ) with 2™ — 0 (v — o0),

thus (4.1) gives
2™ L0 (o) (e {l,...,n}\{r}),

and, by (4.3),
(M — A.)z{™) -0 (v — o).

| =1 for all v € N, we get the contradiction
A€ gop(Arr) Co(Arr).
Thus (4.7) holds. According to (4.5) and (4.6) we have

2™ s =1 2™l

< IOL = A,) IO = 47 (5 + P e () (2 4 92

Since ||x(m” |
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and therefore, by (4.7),

LSO = A7 AT = 47 (ﬁ +pr<A>> (o +0.0)

< IO = A IOT = 47 (2 +e)) (54020

for m > mg. With m — oo we derive A € C\2) (A) € C®)(A). O

In particular we have:
Corollary 4.2. 0,(A) Uo.(A) C CP(A).
Proof. Follows from Theorem 4.1 and op,(A) U oc(A) C gap(A). O
Corollary 4.3. 0co,(A) C C@(A).
Proof. Since 0com(A) = op(A*), Corollary 4.2 shows that

Teom(A) C CP(A*) = CD(A). 0

In case n = 2 we have seen that C?)(A) = C(9)(A). Hence we have:

Corollary 4.4. If n = 2, then o(A) C CP)(A).

5. Weighted norms

Let wy,...,w, > 0. We define equivalent norms on Xy, ..., X, respectively, by
setting

Il = will€lli (€ € X, i =1,...,n).
For the operators A : X, — X, we have
[Ajkll = sup [lA;xEll;,
ll€llx=1
hence

Wy .
Al = sup [l A€lll; = =l Al Gk =1,....n).
1€l =1 w

By application of Theorem 4.1 to this situation we obtain:

Theorem 5.1. Let wy,...,w, > 0. Then

n

U e(4m)Uo(As)

r,s=1,r#s

U{X € () N p(Ass)  (IOT = Ap) M IO = Ase) 7)™

Oap(A)

N

n

< X Al ) | X Al }

r#k=1 s#k=1



518 Herzog and Schmoeger IEOT

Remark 5.2. Theorem 5.1 can be extended to the case that W; : X; — X is linear,
bounded and invertible (i = 1,...,n) and

N = (Wil (€€ Xi, i=1,...,n).
Then
Azl = W5 AW Gk =1,...m),
and the corresponding inclusion for o, (A) is valid.

Now, consider the scalar matrix

0 [[Awll [[Ass]l [ Azl
[| Az1| 0 | Aaasl (| A2n ||
B = . . . . . 5
[Apall .. oo NMAn-pll 0

and its spectral radius r(B) = mz%)é : || For each 7 > 0 we define
peoT

CT = U U(ATT> U U(ASS)

=1,r#
_ _1py -1
U{A € p(Ar) 0 () (1T = Ang) M I = A) ) T < 72
Theorem 5.3. Let B and r(B) be as above. Then
o(A) C Cp(py.

Proof. Let P denote the nxn matrix with each entry equals 1. Let € > 0. According
to [6, Theorem 10.20] there exists § > 0 such that r(B + 0P) < r(B) + . Now,
B + §P is irreducible and therefore has a strictly positive Perron eigenvector v =
(v1,...,0,) € (0,00)™.

Set w, = vy (k= 1,...,n) and let j € {1,...,n}. From (B + §P)v =
r(B + dP)v < (r(B) + €)v (coordinatewise) we derive

(r(B) +2)o; = 0+ 3 (Il + S)ue,

k=1
hence . .
wy Vk
> w—JIIAij= > o 1Akl < 7(B) +e.
gAh=1 ¥ jAh=1 J

Now Theorem 5.1 shows that 04,(A) € Cp(B)4e, and with ¢ — 0+ we obtain
Uap(A) Cc CT(B)'
By replicating this proof with A* instead of A we obtain

Ocom(A) = 0p(A") C Cr gy = Cr(p),
since B and its transposed BT have the same spectral radius. So, finally
0(A) = 0ap(A) Uocom(A)
proves 0(A) C Cp(p). O



Vol. 57 (2007) The Brauer—Ostrowski Theorem 519

6. Examples
In order to apply Theorem 4.1,5.1 or 5.3 it is comfortable if the expressions
AL = A) ™ G =L....im)

have a simple structure.
If T is a normal operator on a complex Hilbert space, then

IAL = T)7H| 7" = dist(\, o(T)) (A € p(T))

see [4, p. 277].

If T is a multiplication operator on a space of complex valued continuous
function C(K) (K a compact metric space, say, and C(K) endowed with the
maximum norm), that is (T€)(t) = ¢g(t)&(t) (t € K) for some g € C(K), then
o(T) = g(K) and likewise

I = T)7H 71 = dist(A, o(T)) = dist(X, g(K)) (A € p(T)).

For example, let X = C(K)", and let A = (Aj;) : X — X be such that
(A;;6)(t) = g;(t)&(t) with g; € C(K) (j = 1,...,n). Let B be as in section 5.
Then, according to Theorem 5.3

a(A) C U {X\ = dist(\, g (K))dist(, gs(K)) < r(B)?}.

r,s=1,r#s

In the following example let X3 = C([0,1]) be endowed with the maximum
norm || - ||3, and Xo = C*([0,1]), X1 = C%([0,1]) endowed with the norms ||| =

max{|[{][s, |€']ls} and [[€]ln = max{[|¢[|s, [|€"[ls, [I€”]ls}, respectively. Let a > 0,
and let A : X — X be defined by

() + « fol cos(ts)xs(s)ds
(Az)(t) = ' (t) = 2a(t)
2 (t) + 24 (¢) + exp(2mit)xs(t)

Note that o(A) = {\: |\| = 1} if @ = 0. Application of Theorem 5.3 proves that

o(A) C Cr) = N\ —1| <r(B)?}
U I =1 A = 1] < #(B)2Y U{A: A+ 1] []Al = 1] < (B2}
= A1 A =1 < 7B} U LA A 1] A - 1] < #(B)?),

with

0 0
B=|1 0
11

o oR

It is easy to check that r(B) = 1if a = 1/2,and if & < 1/2, then r(B) < 1 and
0 ¢ Cy(p)- Thus A is invertible in this case. Figure 1 shows C,.(g) with r(B) ~ 0.915
for « = 0.4, and r(B) = 0.231 for o = 0.01.
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FIiGure 1. a=0.4, o =0.01
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