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Abstract. Let k be a commutative ring (with 1). We work with k-algebras with a
grading mod 2, and with graded modules over such algebras. Using graded notions
of tensor product, commutativity, and morphisms, we construct an abelian group
BW (k) whose elements are suitable equivalence classes of Azumaya k-algebras. The
consruction generalizes, and is patterned on, the definition of the Brauer group Br (k)
given by Auslander and Goldman. Br (k) is in fact a subgroup of BW (k), and we
describe the quotient as a group of graded quadratic extensions of k.

Introduction. The subject of this paper is a functor, BW, from commutative
rings to abelian groups. The Brauer group Br (k) introduced by Auslander and
Goldman in {1] is a subgroup of the Brauer-Wall group BW (k), and the construc-
tion of BW is patterned on the construction of Br. The “enlarged” Brauer group
was considered for fields by C. T. C. Wali in [9], and the structure theory of [9],
presented in §5 below, is an important tool in our work here. Also among the
principal sources for this paper we call attention to the Tata notes [3] of H. Bass.
Chapter III of [3] presents much of the basic material of [1]; Chapter II presents
the *“Morita theory” which, suitably translated into our graded context, is another
important tool for us; and the construction of BW is outlined in Chapter IV.

The original motivation for enlarging the Brauer group, in [3] as in [9], came
from the study of quadratic forms. Various inconveniences in this theory are
eliminated if the Clifford algebra of a form is viewed as an element of BW (k)
rather than Br (k). The Brauer-Wall group is therefore a fundamental tool towards
a general theory of quadratic forms (over an arbitrary commutative ring). This
theme is developed in [3, Chapter V].

A second motivation comes from algebraic K-theory. Karoubi has shown
(in [6] and a series of subsequent papers) that Clifford algebras play a dramatic
unifying role among the various K-theories of topology. One hopes that they,
and Azumaya algebras generally, may similarly provide the key to a more
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456 CHARLES SMALL [May

comprehensive formulation of the algebraic theory. Any such application will
have to allow algebras with a grading mod 2—hence BW (k).

A word about the organization of the paper. The first two sections contain the
basic definitions. §3 develops two long strings of lemmas, and the reader is advised
to use this section only for reference as needed in later sections, at least on a first
reading. §§4 and 5 describe the machinery used to construct the Brauer-Wall group,
and BW (k) is finally defined in §6. The first step toward an effective computation
of BW (k) is to describe the quotient BW/Br, and this is done in §7. This quotient
group can, in fact, be described quite explicitly in terms of the arithmetic (group of
units, Picard group) of k. This is not carried out here, however, and will be the
subject of a subsequent paper.

Much of the material presented here was outlined, without proofs, in Chapter IV
of [3]. While we refer to earlier chapters of [3] for some proofs, we give full details
for results stated in [3] without proof.

All rings have 1#0, and all homomorphisms preserve 1. Module, unqualified,
means left module except where right modules are explicitly specified, and all
modules, right or left, are unital.

1. Graded rings, modules, and algebras. A ring, 4, is graded if additively it is a
direct sum A=A, @ A, of subgroups which, with respect to multiplication, satisfy

(L.1) Ad, < Ay, (jeZP2).

(1.1) implies that 1, € 4, so that A, is a ring and 4, is an 4,-module. We let | 4]
denote the underlying ungraded ring. A homomorphism f: 4 — B of graded rings
is a homomorphism |4| — |B| such that f(4;)< B..

A graded A-module, M, is an |A4|-module which is additively a direct sum
M=M, ® M, satisfying

(1.2) AM; < My,  (,jeZ[22Z).

|M| denotes the underlying ungraded |A4|-module.

If X is an ungraded ring or module, (X) denotes the same object with grading,
concentrated in degree zero: (X),= X and (X),=0. If N is an ungraded R-module,
(N) is an (R)-module.

A direct sum M =] [, M! of graded 4-modules is a graded A-module if we set
M;=]Jie; ML If M'=N for all i € I, we write N for [ ,c; M.

If X is a graded ring or module, hX denotes X, U X;, the set of homogeneous
elements. £.X is a union of two subgroups whose intersection is 0, but it is not itself
a subgroup. If 0#xehX, x€ X, for i=0 or i=1 but not both, and we write
dx =i, the degree of x. For any Y<hX, (Y} will denote the subgroup of X gener-
ated by Y. Thus Y<hA{Y), with equality if and only if ¥ N X, and Y N X, are
subgroups.

Let M and N be graded A-modules. We let HOM, (M, N) denote the graded
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1971] THE BRAUER-WALL GROUP OF A COMMUTATIVE RING 457

abelian group HOM, (M, N), @ HOM, (M, N),, defined by the requirements
that fe HOM, (M, N), (that is, fe h HOM4 (M, N) and &f=j) if and only if

(a) (M) < Nyyj, and

(L.3)
(b) flax) = —19%g(fx) (achA, xe M).

(In (1.3(a)) the indices are of course read in Z/2Z.) We let Hom, (M, N) denote
HOM, (M, N),.

(1.3(b)), which can be written f(ax)= —1%%g(fx), is the first instance of a
phenomenon which will recur quite often: The presence of a sign depending upon
the degrees of certain homogeneous elements. We will usually simplify the notation
by writing —1*¥ for —12*% and — 1%*¥ for —1%*¥ = —18*+% even going so far
as to write — 1**¥ for the latter.

If fe hHOM, (M, N) and g€ h HOM, (N, X) then gfe h HOM, (M, X) and
o(gf)=0g+of. We will write END, (M) (resp. End, (M)) for HOM, (M, M)
(resp. Hom, (M, M)).

If X is a graded ring or module, a subgroup Q is called graded if

Q=(QnN X;) ®(QN Xy),

or equivalently, if Q contains the images of the projections Q — X;. By a sub-
module, or an ideal (left, right, or two-sided), of X, we will always mean a graded
subgroup Q such that |Q| is a submodule (or an ideal, of the appropriate type) of
| X|. If we wish to speak of ““possibly nongraded submodules (or ideals)” we have
to speak of submodules (or ideals) of | X|. We insist on graded subgroups so that
the quotient X/Q will also be graded.

Let A be a graded ring. A-MOD will denote the category whose objects are all
graded 4-modules, with morphisms HOM,, and 4-Mod will denote the category
with the same objects but only Hom, as morphisms. 4-Mod is abelian, but 4-MOD
is not; for example the kernel of a nonhomogeneous morphism can easily fail to be
a submodule.

7 will denote the degree-shifting function: If fe HOM, (M, N), [+M},=M;,,
(i€ Z]2Z), and “1f=f" in the obvious sense: 7/ HOM, (M, 7N), and if f is
homogeneous, d(=f)=0f. = is an automorphism of the category 4-MOD, or,
equally well, of 4-Mod. 74 is an A-module, but not a ring. TMx~M in
A-Mod = M,x M, as A,-modules, whereas, at least if 4=(4,), we have TM~ M
in A-MOD for all M.

If A is a graded ring, A° denotes the usual opposite ring, and 4" denotes the
additive group of 4 with multiplication redefined by a-b= —1%ab for a, b € hA,
and by distributivity in general. A’ is a ring: a-(b-c)= —1%0*ec+¥qhe=(g-b)-c.
If M is a graded A-module we define an action of 4’ on the additive group of M by
a-x=—1%%ax for a € hA, x € hM, and by “distributivity” in general. The result is
an A’-module (a-(b-x)= — 190 +ax+d*ghx =(q.b)- x), which we christen M’,
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458 CHARLES SMALL [May

If fe HOM, (M, N) and we view f as a map M’ — N’, we have f(a-x)
= —ex+elg( fx)= — |ox+af+aUxg. ( fx). This latter is just a- (fx), for o(fx)=of+ ox.
Thus,

(1.4) PROPOSITION. The functor A-Mod L, A’-Mod is a category isomorphism.
The ““identity” is a natural isomorphism HOM, (M, N)xHom,, (|M'|, |[N']), so
that A-MOD “is” the category whose objects are graded A’-modules, with mor-
phisms Hom 4 (| |, ] |)-

Proof. The first statement is clear. Since the computation above shows f(a-x)
=q-(fx) regardless of df, we do not get an isomorphism 4-MOD — A4’-MOD, but
only an inclusion (easily seen to be an equality) HOM 4 (M, N)<Hom, ., (|M’|, |[N'|).

REMARK. The word graded in the second part of (1.4) is important. If the given
isomorphism came from an equivalence 4-MOD — |4’'|-Mod (=the ordinary
category of ungraded modules) we would be contradicting the observation that
A-MOD is, in general, not an abelian category. The forgetful functor | ‘| is far
from surjective on objects.

(1.5) ProrosiTioN. Hom, (M, TN)=Hom, (+M, N)=HOM,. (M’, N'),.

(1.6) CoroLLARY. (a) Hom, (M, tN)xHOM, (M, N),.
(b) If A=(A,), HOM, (M, N)~Hom,,, (|M|, |N|) as graded abelian groups.

If 4 is a graded ring we let 4* denote 4> (or, what is the same, A™°). For any
subset S of h4 we let C4(S) denote {a € hAd | ab= —1%°ba ¥b € S}); for any S, this
is a (graded) subring. We let CENTER A4 denote C,(4), and we call 4 commutative
if CENTER A=A, i.e., if A and 4* coincide. Center 4 will denote the degree zero
term of CENTER A(?). Note that CENTER A4, Center A, Center [4]|, and
Center A, are, in general, distinct, although Center 4 is contained in each.

If K is a commutative graded ring, a K-algebra is a homomorphism K — A4
whose image lies in CENTER 4. (If K=(K,), ““ A4 is a K-algebra” implies ““|4| is a
|K|-algebra”, but if K; #0, [K| need not be commutative.) A homomorphism of
K-algebras is a homomorphism A4 -> B of graded rings such that

A— B

\K /‘
commutes.

If A is a K-algebra and M and N are A-modules, (ff)x=t(fx) makes
HOM, (M, N) a K-module.

(2) The general notational convention, as is now apparent, is that an object spelled with
capital letters is graded, and the same object with only the initial letter capitalized refers to its
degree zero term. However, we prefer the term *graded ring™ to the more logical alternative,
“RING”.... Another bit of notational philosophy, also clear by now, is that the price of
moving x past y is the sign —1*¥, as usual.
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1971] THE BRAUER-WALL GROUP OF A COMMUTATIVE RING 459

(1.7) PropOSITION. If A is a K-algebra (e.g. K=CENTER A, or (Z), for any
graded ring A), f—>f(1) defines an isomorphism HOM, (4, ) — “identity” of
Sunctors from A-MOD to K-MOD. Evaluating at A itself we have an isomorphism
END, (4) — A* of K-algebras.

Proof. For any A-module N, x> f,, given on homogeneous elements by
f{a)= —1°*ax, defines an inverse, N — HOM/ (4, N). The rest is routine.

Let 4 and B be K-algebras, K commutative. Although |4| and | B| may fail to be
| K|-algebras, we can view them as (right or left) | K|-modules, so the abelian group
|A] ®x; |B| is defined. Grade |4| ®, |B| by letting [|4| @k, |B|]; be the sub-
group generated by {¢a ® b|achA,behB, da+0b=i (mod 2)}, and define a
product by the rule (a ® b)(@' ® b)=—1%"(aa’ @ bb") for homogeneous genera-
tors. |4| ®k; |B|, with the grading and multiplication just described, we christen
A ®g B.

A ®x B is a graded ring, and x+>x ® 1=1 ® x makes 4 ®y B a K-algebra.
The latter follows from

{a ® b|aechCENTER A4, b h CENTER B} « h CENTER 4 ® B,

which is immediate. x> x ® 1 is an algebra homomorphism because 01=0
implies that (x ® 1)(y ® 1)=xy ® 1 and 8(x ® 1)=20x. The same remark shows
that the subalgebras 4 ® 1 and 1 ® B commute in 4 ® B:(x ® )1 ® y)
=x ® y=—10x8108(] @ y)(x ® 1). A R B is universal for this property:
if f1 A— C and g: B— C are K-algebra homomorphisms whose images commute
in C, there is a unique K-algebra homomorphism 4 ®, B — C which makes

A—>A®KB<—B

~NEA

C
commute.

(1.8) LeMMA. If A and B are K-algebras there are isomorphisms
() AQ B—>B® 4,
(i) (A QB —~A4'"Q B,
(iii) (4 ® B)°— A° ® B°,
(iv) (4 ® B)* — A* ® B*,
(V) AR K— A4,
of K-algebras, where Q@ means Q.

Proof. Define the maps by letting the image of a homogeneous generator a ® b
be —1%bh ® ain (i), —1%a ® b in (ii) and (iii), ¢ ® b itself in (iv), and ab in (v).
It suffices to check that these define homomorphisms and this is a routine calcula-
tion in each case.

If A and B are K-algebras and M (resp. N) is an A4 (resp. B) module, we define
M ®g N in the obvious way: grade [M| ®x |N| as before, and make the result
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460 CHARLES SMALL [May

an A ®x B-module by defining (¢ ® b)(x ® y)= — 1"*(ax ® by) for homogeneous
generators.

(1.9) LEMMA. Let A and B be K-algebras, let M (resp. N) be an A-(resp. B-)
module, and write & for Q. There are isomorphisms
(i) T MQNz1(MQRIN)xM QN and tM Q iNxM ® N of A ® B-modules,
(i) (M QNY~M" ® N' of (A ® BY =A" ® B'-modules, and
(iii) M @ NxN Q M of A @ B=B ® A-modules.

Note that when K=(K,), M; and N; are |K|-modules, i=0,1, so that
M Q@x N=1Ti;-01 M; ®c N; as graded K-modules. Explicitly, [M & N],
=(M; ® No) D (M, ® Ny) and [M ® N],=(M, @ N;) @ (M; Q Ny).

By way of example we introduce here several algebras we will need later. Let k
be commutative and concentrated in degree zero, and let x, y € k.

k(x> will denote |k|1 @ |k|t with t2=x, i.e., k[X]/(X?—x) with the indicated
grading. (Note that k{x>*=k{—x).) k{x} will denote k[X]/(X%2+ X—x), concen-
trated in degree zero.

Xy
(%)

will denote the “graded quaternion algebra” k{x)> ®; k{(y>; thus

()

has a k-basis {1, s, t, st} with s and ¢ of degree one, and relations s?=x, 2=y,

st+ts=0.
5
k

will denote the algebra with the same basis, and defining relations s2=x, t2=y and
st+ts=1. (This latter is the appropriate notion of ““graded quaternion algebra”
when 2=0 in k; if we forget its grading,

X,y
]
is isomorphic to the algebra (x, xy] considered in [9] (cf. [9, pp. 188 and 198-199)),
which is central simple if & is a field of characteristic two.)

Let 4 be a k-algebra, k=(k,) commutative, and let T denote k{1>. If N is an
|A]-module, T @ (N)=(1  N) ®(t @ N) is a T ® (]4|)-module. In particular
TRUAD=(1 Q |A) ®(t @ |A]), and ar>t?* @ a (for ae hA) defines a k-
algebra homomorphism f: 4 — T ® (|A4|), and T ® (N) is an A-module via f.

(1.10) PrOPOSITION. With notation as above, the functors

| |
A-Mod —— |4[|-Mod
T®()
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1971] THE BRAUER-WALL GROUP OF A COMMUTATIVE RING 461

are adjoint: for any |A|-module N and A-module M,
Hom,, (|M|, N) % Hom, (M, T ® (N)).

Proof. If geHom, (M|, N), define §: M —->T Q(N) by xr—1*Q gx.
Conversely, if h € Hom, (M, T ® (N)), t+> 1 induces a map from |M | to N. These
are easily seen to be inverse isomorphisms.

(1.11) PROPOSITION AND DEFINITION. A4 graded A-module M is projective if it
satisfies the following conditions, which are equivalent:
(i) Hom, (M, ) is exact on A-Mod.
(ii) HOM (M, ) is exact on A-Mod.
(iii) HOM, (M, ) is exact on A-MOD.
(iv) Hom,, (|M|, ) is exact on |A|-Mod.

Proof of equivalence. (iii) = (ii) = (i) are clear, and (i) = (iv) follows from
(1.10): the existence of an adjoint implies that T & ( ) is exact, and consequently
that | | preserves projectives. To complete the proof we show (iv) = (i) = (iii).

(iv) = (i). Given a diagram

M

l

M!—> M?
f

in A-Mod with f surjective, there is by (iv) an arrow g: M — M*® making the
triangle commute. Unfortunately, g need not respect the grading. However, if we
define A(x), for x € M,, to be the projection of g(x) in M}, we get an arrow
h: M — M?! in A-Mod without spoiling commutativity of the triangle.

(i) = (iii). (i) implies that Hom, (M’, ) is exact on 4’-Mod, and therefore that
Hom, . (|M’|, ) is exact on |4'|-Mod (by (i) = (iv), which we have already
proved). With (1.4), this yields (iii).

By a free module over a graded ring 4 we mean one with a homogeneous basis,
i.e., of the form F=AP @ [r4]?D, i.e., Fo=AY @ A{’ and F,=A4§> ® A{. As
usual, M is finitely presented if there is an exact sequence F2 — F! — M —> 0 with
F! and F? free of finite rank.

(1.12) CoroOLLARY. (i) An A-module is projective if and only if it is a direct
summand of a free A-module.
(ii) A finitely generated projective A-module is finitely presented.

2. Bimodules and separable algebras. By a right A-module M we mean a right
| A]-module which is additively a direct sum M =M, @ M, satisfying M A, M, ,,
(i, je Z/2Z). For right A-modules M and N we let HOM, (M, N); denote the
subgroup {f| fIM)<N,,;} of Hom, (|M|, |N]), and we write Hom, (M, N)
for HOM, (M, N), and HOM, (M, N) for the graded abelian group
Hom, (M, N) @ HOM_, (M, N),. MOD-4 and Mod-4 will mean the obvious
things.
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(2.1) Lemma. HOM,, (M, N)xHom, (M @ M, N)~Hom,4 (| M|, |N|).

(Again, theisomorphism does notcomefromanequivalence MOD-4 — Mod-|A4|.)

If M is a right A-module, the definition ax = — 1**xa makes M a left A*-module,
and conversely. This procedure matches HOM, and HOM ,.—f(xa)
= —|ox¥+afg( fxy= — [ax*ef+ e fi)g=(fx)a—so that MOD-A4 and A*-MOD are
isomorphic categories.

If M is simultaneously a left 4-module and a right B-module, where 4 and B
are K-algebras, we call M an A4, B-bimodule provided

(@) (ax)b = a(xb) (acA,xeM,be B),
(b) cx = —1%xc (x e M, ¢ € hK).

If M is an AgB-bimodule, (@ ® b)x= —1°*axb makes M a left 4 ®; B*-module,
and conversely if M is a left 4 ® B*-module, ax=(¢ ® 1)x and xb=—1°*(1 ® b)x
make M an AgB-bimodule. These recipes are inverses, so that the two notions co-
incide.

We will sometimes write ““the bimodule 4M;” instead of *““the AgB-bimodule
M when the ground ring K is fixed by the context. Our real interest is in AxA4-
bimodules, i.e., modules over the enveloping algebra A=A Qyx A* of A. A is
itself an A%-module, and a ® b+> ab defines an epimorphism ¢: A% — A4, and
thereby an exact sequence

2.2)

E(A): 00— Ju(d) —> 45 F5 450

in A%-Mod. We will usually omit the subscripts referring to the ground ring, and
when A4 is fixed we will write simply J for Jg(A).
Define 8: A —>Jbyar>a ® 1—1 ® a. 8 is K-linear but not A*-linear.

(2.3) LEMMA. The image of 8 generates J as a left ideal in A%, and 8 satisfies
S(ab)=(3a)b+a(8b) (a, b € A).

The proof is a straightforward imitation of the ungraded analog [3, Lemma
II1.1.2].
Let M be an A°module. Define

DERy (4, M) = {de tHHOMj (4, M) | d(ab) = (da)b+(—1)**a(db) Va, b € hA}>.

This is a K-submodule of HOMg (4, M). Its degree zero term s denoted
Derg (4, M), and elements of DER are called derivations.

(2.4) LeMMA. Ifde DERy (4, M) and fe HOM (M, N) then fde DER (4, N).

It suffices to prove this when d and fare homogeneous. This is a simple computa-
tion (note that a(fd)=of+ od).
Lemma (2.3) shows that 8 € Derg (4, J). For x € M, define

d, = f.6 € DERg (4, M),
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1971} THE BRAUER-WALL GROUP OF A COMMUTATIVE RING 463

where f, is the element of HOM , (4%, M) associated by (1.7) to x e M. For
homogeneous x and a, d.a=f(a ® 1 -1 ® a)=—1%*(8a)x= — 1**ax — xa. Deri-
vations of the form d, for some x € M are called inner derivations; they form a
K-submodule INDER (4, M) of DER (4, M).

(2.5) PROPOSITION. f+> f8 induces an isomorphism HOM . (J, ) -> DERy (4, )
of functors A*-MOD — K-MOD.

Proof. It suffices to show that HOM 4 (J, M) - DERy (4, M) is an isomor-
phism for every M. Injectivity follows from the fact that the image of 8 generates
J, (2.3). For surjectivity, suppose d € h DERg (4, M). Thena ® b+> —(—1)*%a(db)
defines a K-linear map f: A° — M which is homogeneous of degree 9d. Since f(8a)
=da, it suffices to show that the restriction to J of f'is actually A*-linear. This is an
unpleasant, but straightforward, computation.

We need one further definition for our 4%-module M. We let M4 denote the
K-submodule {x e M | (8a)x=0Va e A} of M. Since (8a)x=(a @ Dx—(1 ® a)x,
the definition, if we view M as an A-4-bimodule, is

M4 ={{xehM |ax = —1°*xa Va € hA}).
Now a glance at E(A4) shows that ¢ identifies HOM 4 (4, M) with
{fe HOM 4 (A%, M) | J < ker f},

and (1.7) allows us to identify this with {x € M | J<Kker £}, the “right annihilator”
of J in M. Since the image of & generates J, the initial definition of M4 shows that
it is this right annihilator. We have proved:

(2.6) PrOPOSITION. The diagram

M =~ HOM, (4%, M)
U U
M4~ HOMy (4, M)

commutes, where the right-hand inclusion is induced by ¢.
We now have, for any 4°-module M, a commutative diagram

0—> HOM ¢ (4, M) —> HOM 4« (4°, M) —> HOM ¢ (J, M)

@ L 1

0—— M4 . M DER (4, M)

nw

in which the verticals are isomorphisms. The top row is exact (it is just
HOM 4« (E(A), M)), and = is the map which assigns to x € M the inner derivation
d,. Let EXTj (A, M) denote “as usual” the right derived functors of
HOM e (4, M)~ M*. Then
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(2.8) PrROPOSITION. If M is an A°-module there is an exact sequence 0 — M4
— M — DERy (4, M) — EXT% (4, M) — 0 and it induces

EXTk (4, M) ~ DER, (4, M)/INDER (4, M).

In particular this applies to M=A4 and M=4°. A4 is just CENTER 4, and
A°* is the right annihilator of J(4) in A°. Note that ¢(A4°*)< 44, for M +—> M4 is
the functor HOM, (4, ), and ¢ € Hom,e (4° A) maps HOM e (4, A°) to
HOM 4 (A, A). In fact,

(2.9) LEMMA. ¢(A%) is an ideal in A

We omit the simple proof. It is worth noting, however, that ¢(4°*) is not a left
ideal in A itself.

(2.10) THEOREM AND DEFINITION. 4 K-algebra A is separable if it satisfies the
Jfollowing conditions, which are equivalent:

(1) Ex(A) is a split exact sequence of A%-modules.

(2) A is a projective A%-module.

(2") |4l is a projective | A%|-module.

(3) p(Ae*)=A4 (cf. 2.9).

(4) 6: A — Jx(A) is an inner derivation.

(5) Every K-derivation on A (to an A%-module) is inner.

(6) M +— M4 is an exact functor of A%-modules.

(7) For any A%-module M, the sequence

HOM e (Ex(A), M) ~ (0 > M4 — M — DERy (4, M) — 0)
is exact and splits as CENTER A¢-modules.
(8) Same as (7) but for M=J(A) only.
Proof of equivalence. Most of the implications follow from (2.7) and (2.8).
(1) < (3) follows from the commutative diagram

AeA (P 3 AA
¢ *

. &) oe——————> HOM (4, 4
HOM.« (4. 4) oM -, 9) « (4, 4)
The equivalence of (4) and (5) is analogous to the equivalence of (7) and (8); since
clearly (5) <> (1) <> (7), it is simplest to prove (4) <> (1) and (8) < (1). Assuming
(8), for example, we have that HOM 4 (4%, J) — HOM 4 (J, J) is surjective; hence
the identity map on J extends to A¢, so that E(A) splits. Similarly, for (4) < (1) we
can consider the commutative square

HOM ¢ (42, J) ——» HOM,¢ (J, J)

124 124 la

J——— DERx (4,J)
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(from (2.7)); clearly o induces Im ixIm »=INDER (4, J). Now & is the image,
under o, of the identity map on J, and therefore & is inner if and only if the identity
on J extends to A%, hence if and only if E(A) splits.

(2.11) CoroLLARY. If p: A — B is an epimorphism of K-algebras and A is K-
separable then B is K-separable and CENTER B=p(CENTER A).

In particular, any quotient of K is K-separable.

REeMARK. The equivalence of (2) and (2) in (2.10) does not mean that A is
K-separable if and only if |4]| is |[K|-separable. In the first place, as we have seen,
|A} may not even be a |K|-algebra—indeed |K| need not be commutative. But
even if |4] is a |K|-algebra, |K|-separability of |4| would mean projectivity of | 4|
as an |4|®-module, and |A4|°#|A4°| in general.

Added in proof. M. Orzech points out that when K=(KG), 4 is K-separable < | A|
is |K|-separable. For existence of f€ Hom ¢ (4, 4°) splitting ¢: 4° — A is equiv-
alent to existence of x=2 a; ® b, € 4° with

(D 2 ab,=1(fsplits ¢),

(i) S@®1-1 ®a)a; ® b)=0for all ae 4 (x € A**), and

(iii) &(a; ® b)=0 for each i (x € 4§).

Now (ii) is unchanged if we read it in [4|°=|A4| ®x |4]°, since the sign — 1@ +d)
evaporates because of (iii), and with (i) (read in |A4]) it is equivalent to |K|-
separability of |4|. Conversely, an element > a; ® b, € |A|® satisfying (i) and (ii)
in the ungraded sense can be read as an element of A° satisfying (i) and (ii), and if
it is not homogeneous of degree zero we can replace it by its projection in A4¢.

3. Lemmas on separability; graded Morita theory. In this section we assemble
a host of lemmas, translations into our graded context of results well-known in the
ungraded situation. Since the proofs as well as the statements are straightforward
imitations of their ungraded counterparts, we omit them. The ungraded theories
are treated in Chapter III of [3] and §§1-3 of [1] (separability lemmas), and Chapter
IT of [3] and Chapter II of [2] (Morita theory).

(3.1) LeMMA. Let A; be K-algebras and let M, (resp. N,) be a right (resp. left) A;-
module, i=1, 2. Let A denote A, ®y A, and let K;=CENTER A,. Then
(my @ mp) ® (ny ® nx) > —1M"(my @ ny) ® (my @ ny)
defines an isomorphism
[i (M @x M;) @4 (N; ®x Np) — (M, R4, N1) Qk (M, &4, Ny)

of C=K, ®x Ky-modules. If M, and N; are Ki-algebras, f is an isomorphism of C-
algebras. In either case the isomorphism is natural in all variables for module mor-
phisms of degree zero.

(3.2) COROLLARY. Let K; be commutative K-algebras and let A, be a K-algebra,
i=1, 2. There is a natural isomorphism

(A; ®k A5)e — Af, ®x Ay, of C = Ky ®x Ko-algebras.
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(3.3) CorOLLARY. If A and L are K-algebras, L commutative, there is a natural
isomorphism (L Qg A) — L Qx A%.

Let K, be commutative K-algebras, let 4, be a K;-algebra, and let M; and N, be
Ai-modules, i=1, 2. Define a map ¢ from HOM,, (M;, N;) ®x HOM,, (M;, N,)
to HOM,, g, 4, (M, ®x M,, N, ®x N,) asfollows. For f; € h HOM,, (M;, N)) and
x, € hM,, set (P(fi R fo))(x1 ® x5)= — V211 x; ® fox,. One sees easily that  is
well defined and K, ®y K,-linear, and that its image is indeed in

HOMA1 R Az (Ml ®K M2’ Nl ®K NZ)'

(3.4) LEMMA. ¢ is a K, ® K-isomorphism in either of the following situations:

(i) M, is a finitely generated projective A-module, i=1, 2.

(ii) M, is a finitely generated projective A,-module, M, is a finitely presented
As-module, A, is K-flat, and N, is either K-flat or finitely generated and projective
over A;.

In either case, the isomorphism is natural in all variables for module morphisms of
degree zero. (A K-module M is said to be flat if M ® is an exact functor on K-Mod.)

(3.5) COROLLARY. Let P, be finitely generated projective A-modules, where A,
are K-algebras and K, are commutative K-algebras, i=1, 2. Then there is a natural
isomorphism ENDy, (P;) ®x END, (Pz) > ENDy, g, 4, (P1 Qk P2) of K; Qg Ko-
algebras.

(3.6) LEMMA. If a K-algebra A is finitely presented as a K-module, it is finitely
presented as an A%-module.

The proof of (3.6) is a direct translation of the proofs of (2.1) and (2.2) of Chapter
III of [3].

(3.7) CorOLLARY. Let A, be K;-algebras, K; commutative K-algebras, and let M,
be an Afxi-module, i=1, 2. There is a natural isomorphism

Mt Qg Mjz — (M; Qx M) ®x4s

(as K, @y Ky-modules) in either of the following situations:

(i) A, is K;-separable, i=1, 2.

(ii) A, is Ki-separable and K-flat, A, is finitely presented (as A5, - or as Ko-
module), and M, is either K-flat or finitely generated and projective over A3, .

(3.8) CorOLLARY. (i) If A4, is K;-separable, i=1, 2, then A, @k Az is K, Qx K-
separable, and its CENTER is A} Qg Aje.

(ii) If A is a separable K-algebra and L is a commutative K-algebra then L Q¢ A
is a separable L-algebra and its CENTER is L @y A“.

(3.9) COROLLARY. Let L and A be K-algebras with L K-flat. Then
(1) If M and N are A-modules and M is finitely presented, there is a natural
isomorphism
L @x HOM, (M, N) > HOM_ g, 4 (L ®x M, L &k N).
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(ii) If L is commutative and A is finitely presented as K- or A%-module then for
any A%-module N there is a natural isomorphism

L®KNA—>(L ®KN)L®KA.

(3.10) CorOLLARY. Let A and L be K-algebras, L commutative. Assume that L is
faithfully K-flat, that is, a sequence E in K-Mod is exact if and only if L Qx E is
exact. Suppose also that A is finitely presented as K- or A%-module. Then L Qy A is
L-separable = A is K-separable.

We turn next to the so-called Morita theory. Fix a commutative ground ring
k=(k,) and let A be a (graded) k-algebra.

(3.11) LEMMA AND DEFINITION. Let M be a (graded) A-module. M is a
GENERATOR (in A-MOD) if it satisfies the following conditions, which are
equivalent:

(1) HOM, (M, ) is faithful on A-MOD(®).

(2) For every A-module N there is a surjection M® — N in A-MOD for some I.

The definition is a direct translation of the ungraded one; the equivalent con-
ditions for |M| to be a generator in |4|-Mod are faithfulness of Hom 4 (|M|, )
on |4|-Mod, and the existence of a surjective arrow | M |? — N in |4]-Mod for any
|4|-module N.

(3.12) LemMA. If A=(A,), M isa GENERATOR if and only if | M | is a generator.
(Indeed when 4=(4,), | | is an equivalence of categories, 4-MOD — |4|-Mod.)

(3.13) LeMMA. Let M be a projective A-module. Then M is finitely generated
< HOM, (M, ) preserves arbitrary coproducts.

(3.14) COROLLARY AND DEFINITION. An A-module M is called FAITHFULLY
projective if it satisfies the following conditions, which are equivalent:

(1) HOM, (M, ) is “faithfully exact” on A-Mod, that is, it is faithful and exact
and it preserves arbitrary coproducts.

(2) M is a finitely generated projective GENERATOR.

(3.15) CoroLLARY. Let M and L be k-modules.
(i) The following are equivalent:
(1) M is FAITHFULLY projective.
(2) M is finitely generated and projective and Anng (M)=0.
(3) M Q, Nxk™ @ (7k)™ for some k-module N, n+m>0.
(ii) END, (M) is FAITHFULLY projective if M is.
(iii) M ®, L is FAITHFULLY projective <> M and L are.

(®) Equivalently, on 4-Mod, since HOM, (X, Y);=Hom, (X, 7Y).
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Proof. (i) In view of (3.12), (1) < (2) follows from [2, I1.4.8] or [3, 11.5.9], and
(2) <= (3) follows from [3, 1.6.1].
(ii) and (iii) follow easily from (i).

(3.16) LEMMA. Let N be an A, B-bimodule and let M (resp. L) be a right A- (resp.
right B-) module. Then there is a degree-zero k-isomorphism

HOM, (M, HOM;; (N, L)) - HOM; (M ®, N, L).
It induces an isomorphism

Hom, ( ,HOM; (N, ))—>Homp( ®4 N, )
of k-functors, i.e.,

QaN
Mod-A T”———> Mod-B

HOM; (W, )
are adjoint.

Proof. The maps

14
HOM,, (M, HOM; (N, L)) ;? HOM, (M ®, N, L)

defined by (¢f)(m ® n)y=(fm)n, and ((Yg)m)n=g(m Q n), provide inverse iso-
morphisms.

Although (3.16) will not be directly in evidence below, it is useful in the proof of
(3.18).

Call a k-functor T: Mod-4 — Mod-B a +-k-functor if tT~Tr as functors
Mod-4 — Mod-B. Any such functor may be canonically extended to a k-functor
MOD-A4 — MOD-B which is degree-preserving on morphisms, by means of the
identifications HOM, (M, N);,=Hom, (M, TN). If T and S are k-functors
Mod-4 — Mod-B, a degree-zero natural transformation t: T — S consists of a
t. € Homg (TX, SX) for each A-module X, such that for any f€ Hom, (X, Y),

T
rx—9 1y

L)

SX_Sf—)SY

commutes. If T and S are 7-k-functors we require also that ¢ and r commute, in
the sense that
T(rX) ~ 7(TX)

tle 1Ttx

S(X) ~ 7(SX)
commutes for all X.
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With degree-zero natural transformations as morphisms,
7-k-functors (Mod-4, Mod-B)

is almost a category. Our chief concern will be with r-k-functors of the form
®4 M for some bimodule 4M;, and morphisms among such form a set by

(3.17) PROPOSITION. M +— ®, M defines a fully faithful functor
G: A ®, B*-Mod — 7-k-functors (Mod-4, Mod-B).

Let us outline the proof. One sees easily that G is a functor and that the maps
Homyg s (M, N) - Hom (®, M, ®, N) are always injective; it remains to show
that they are surjective. Let ¢ be a degree-zero natural transformation GM — GN.
In particular ¢, is a right B-morphism 4 ® , M — 4 ®, N, corresponding to a
right B-morphism f: M — N. Now for any a € 4, left multiplication by a is an
element a of HOM, (4, 4A), and therefore, by naturality, f,c(a ® M)
=(a ® N) o t, (using the extensions of GM, GN and ¢ to MOD-4 — MOD-B).
This just says that #,, and hence also £, is a bimodule morphism. It is not hard to
show that t=Gf.

Call a r-k-functor right continuous if it preserves arbitrary coproducts and is
right exact. Again, @, M is an example, for any bimodule ,M, and these are the
only examples by

(3.18) ProrosiTiON (EILENBERG, WATTS). G induces a bijection from iso-
morphism classes of Ob (A ® B*-Mod) to isomorphism classes of right continuous
r-k-functors Mod-4 — Mod-B. If the bimodule ,My (resp. zN¢) corresponds to
S (resp. T) then the bimodule (M ®g N)c corresponds to T o S.

The last statement is the observation that X @, (M @z N)2(X @, M) Qs N
for X € Ob Mod-A4. Injectivity is the assertion that M~ N as bimodules if and only
if ®4 M~ ®,4 N as functors, and this follows from (3.17). The proof of surjectivity
is similar to the proof of surjectivity in (3.17); given a right continuous r-k-
functor T: Mod-4 — Mod-B, TA is an 4, B-bimodule, and Tx ® , TA4.

(3.19) CorOLLARY AND DErFINITION. Call a bimodule ,My invertible if it satisfies
the following conditions, which are equivalent:

(1) ®4 M is an equivalence, Mod-A — Mod-B.

(2) There is a bimodule zN , and degree-zero bimodule isomorphisms M Qg N~ A,
and N @ , M~ zB;.

(3.20) PrOPOSITION. Let
T
Mod-4 _(T> Mod-B

be r-k-equivalences, and set P=TA and Q=SB. Then P (resp. Q) is an A,B- (resp.
B, A-) bimodule, and
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() Tx Q4 Pand S~ Q3 Q.
(ii) There are degree-zero bimodule isomorphisms f:P Q5 Q — 4A, and
2: 0 ®,P— zBg, and
(iii) f and g can be so chosen that

P
Pes0@.Pr L8 40,p 02.70:052%5g,0
P®g1 I la and Q®fl II J
P®B— 5P 0 @A ———>Q

B

commute, where o and B, and their counterparts in 11, are the natural isomorphisms.

(i) and (ii) are in fact contained in the statements and proofs of (3.18) and (3.19),
and (iii) is proved as in the ungraded case (cf. [3, I1.4.1]): given f and g as in (ii), we
can modify f by a unit of 4, to make I commute, and II then commutes auto-
matically.

We now abstract the situation described in (3.20).

(3.21) DEerFINITION. A set of graded pre-equivalence data (GPED) over k is a
sextuple (A, B, P, Q, f, g) where A and B are (graded) k-algebras, P (resp. Q) is an
AyB (resp. BiA) bimodule, and f (resp. g) lives in Hom s (P ®z Q, A) (resp. in
Hompe (Q ®4 P, B)), provided that (pq)p'=p(qp’) and (qp)q'=q(pq") for all

p, P €P,q,q" € Q, where pq (resp. qp) abbreviates f(p ® q) (resp. glq @ p)). It is a
set of graded equivalence data (GED) over k if f and g are isomorphisms.

(3.22) THEOREM. Let (A, B, P, Q, f, g) be a GPED over k, and assume f is sur-

Jective. Then
(i) fis an isomorphism.

(ii) P (resp. Q) is a GENERATOR in A-MOD (resp. in MOD-A).

(iii) P (resp. Q) is finitely generated and projective in Mod-B (resp. in B-Mod).

(iv) g induces degree-zero bimodule isomorphisms ;Q,~>HOM;g (P, B) and
4Py — HOM; (Q, B).

(v) The bimodule structures of P and Q induce k-algebra isomorphisms
END; (P) < A — ENDg (Q)*.

The proof of the ungraded analogue of this theorem, [3, 11.4.3], lifts, mutatis
mutandis, to prove (3.22). Capitalization of HOM and END introduces some
signs, but this poses no essential difficulty.

(3.23) THEOREM. Let (A, B, P, Q, f, g) be a GED over k. Then
(i) .Pg and 3Q, are invertible bimodules and

Q4P
Mod-4A ——— Mod-B

Qs 0
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and

0 Q.
A-Mod —— B-Mod
P R

are k-equivalences.

(ii) P (resp. Q) is FAITHFULLY projective in A-MOD and in MOD-B (resp. in
B-MOD and in MOD-A).

(iii) f and g induce degree-zero bimodule isomorphisms

HOM; (Q, B) < 4P —~HOM, (Q, 4)
and
HOM; (P, B) < 0, — HOM, (P, A).
(iv) The natural maps
END; (P) < A — END; (Q)* and END,(Q) < B> END, (P)*

are k-algebra isomorphisms.

(v) The equivalences of (i) induce k-algebra isomorphisms CENTER A
~ CENTER BxEND 4¢ (A)X ENDge (B)X END gz (P)XENDjyg 4 (Q).

(vi) The maps

{right ideals of A} — {right B-submodules of P} A+ AP
{left ideals of A} — {left B-submodules of Q} A~ QU
{right ideals of B} — {right A-submodules of Q} B~ BQ

and
{left ideals of B} — {left A-submodules of P} B+>PB

are bijective, and in each case two-sided ideals correspond to sub-bimodules. In
particular the four lattices {two-sided ideals of A}, {two-sided ideals of B}, {A,B-
submodules of P} and { B, A-submodules of Q} are isomorphic. (Recall that all ideals
and submodules are graded.)

Proof. (i) follows from (3.19), and (ii)~(iv) follow from (ii)~(v) of (3.22). For (v),
we have CENTER A=A44=END s (4)~END,g3. (P) since ®,P is an equiv-
alence, etc. For (vi), projectivity of P implies that & ®, P — %P is an isomorphism,
and we can appeal again to the fact that ®, P is an equivalence, and similarly for
the other cases.

Let P be a right B-module. Guided by (3.22), we will construct a GPED from B
and P, and give a criterion, in terms of B and P, for it to be a GED.

Put A=END;(P) and Q=HOMj; (P, B). For pe P,qe Q define pge A by
(pg)p’' =p(gp") Vp' € P; this defines a map fr: P Q5 Q — A. Defineg,: Q @, P — B
by g(g ® p)=qp=4(p).

(3.24) ProposiTION. (i) (END; (P), B, P, HOM; (P, B), fy, g¢) is a GPED
over k.
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(ii) Im f5 is a two-sided ideal of A; Im fp=A < fp is an isomorphism <> P is a
finitely generated projective B-module.

(iii) Im gy is a two-sided ideal of B; Im go=B <> gp is an isomorphism <> P is a
GENERATOR in MOD-B.

(iv) The GPED of (i) is a GED < P is a FAITHFULLY projective B-module.

(3.25) CoROLLARY. A right B-module P is projective <>3p,e hP,q,€ h HOMg (P, B)
(where i € I=some index set) with the property that for each p € P, q;p=0 for almost
all i and 3 p(q,p)=p. When P is projective we have PQ =P where Q=Im g,<B.

4. Local and punctual criteria for separability; tower properties. A useful tool
for dealing with separable algebras is localization at primes of the ground ring. To
make use of this in our present context we have first to say what we mean by § 'K
when S is a multiplicative set in a commutative graded ring K. Some caution is
required: if there are nonhomogeneous elements in S, for example, S ~*K will not
be graded.

Even if we agree to localize only at SChK we cannot imitate the ungraded
definition too naively: (s, x)~(s', x') <= At € S, t(s'x—5x")=0 does not define an
equivalence relation on §x K, because of signs which occur when we commute
elements of K. One way around this difficulty is to take the signs into account in
the definition: (s, x)~(s", x') < 3t e S, t(s'x—(—1)*sx")=0 does define an equiv-
alence relation, and the set of classes, with the obvious structure of graded K-
algebra, is a reasonable candidate for S ~1X. A more drastic solution would be to
localize only at S< Kj; for such S the sign problem evaporates, and indeed S ~1M
(for any graded K-module M) and S ~1K are already defined (because K, is a com-
mutative ring). We will see that this restricted notion of localization will suffice for
our purposes.

As usual call an ideal m of K maximal if m+ K and the only ideal properly con-
taining m is K itself. (Recall that ideal always means graded ideal.) Equivalently, m
is maximal if K/m is a simple graded ring, i.e., it has no proper (graded) ideals. If
m is a maximal ideal of K, S,=h(K—m) is a multiplicative subset, and S, K,
defined as above, is a reasonable candidate for K,,. The more drastic solution indi-
cated above would suggest looking instead at the localization with respect to
h(K—m) N Ky,=K,—m,. This is less absurd than it seems at first glance, because of

(4.1) LEMMA. m > mg=m N K, is a bijection, {maximal ideals of K} — {maximal
ideals of Ky}.

According to (4.1), the more drastic alternative amounts simply to localizing at
maximal ideals of K| instead of those of K.

(4.1) may be proved directly, or a proof can be extracted from the following two
propositions, which are also useful independent of (4.1).

(4.2) ProposITION. If K, is Ky-free, either KiK,=0 or K=Ka), a#0. In
particular, | K| is commutative.
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(4.3) ProrosiTiON. If K is simple then K, is a field and either K,=0 or
K=Ka>, a#0, and Char. K=2 in the second case.

Proof of (4.2). If «, B€ K; are distinct basis elements, d(«8)=0, and hence
(¢c)B=(eB)ex, sO that ea=ef=0 by linear independence. Similarly 88=8«=0. This
shows that if K;K,#0, K, is free of rank one over K,, and we can write K; = K.
Clearly a=t2>#0 (otherwise K, K, =0), and obviously |K,{a)| is commutative.

Proof of (4.3). If 01 < K, Kt is a nonzero ideal, hence Kt=K. Thus K, is a
field and we have the conclusions of (4.2). If K, K; =0, K is an ideal, and therefore
K, =0. Whenever K and | K| are both commutative we have 2xy=0forall x, y € K;,
for xy=yx= —xy. When K; #0, K; K, contains the nonzero element 4, and since
K, is a field this implies Char. K=2.

The reader will notice that these arguments do not require commutativity of XK.
For “(ee)B=(cf)e’’ we need K,<CENTER KX, but commutativity in the K part
is used nowhere except in the last statement (“Char. K=2"") of (4.3). Call K quasi-
commutative if K, CENTER K; then (4.2) and (4.3) hold for quasi-commutative
K, except for the statement about the characteristic in (4.3). (4.1) also holds for
quasi-commutative K, if “ideal of K’ is interpreted to mean “two-sided ideal of K.

As an immediate corollary of (4.1), we have

(4.4) PrOPOSITION. Let A be a K-algebra, finitely presented as a K- or Ag-module.
The following are equivalent:

(1) A is K-separable.

(2) A, is K,-separable for every maximal ideal m of K,.

(3) Ap, is K, -separable for every maximal ideal m of K.

Proof. (2) < (3) by (4.1), (1) = (2) by (3.8.ii), and (2) = (1) by (3.10), applied
to L=] ], K.

Further justification for the adequacy of the more restricted notion of localiza-
tion in our context is provided by two versions of Nakayama’s lemma:

(4.5) LeMMA. If M is a finitely generated (graded) K-module and J<rad K,,
JM=M => M=0.

(Here rad denotes Jacobson radical: intersection of all maximal ideals.)

(4.6) LEMMA. Let M be a finitely generated (graded) K-module where K, is local
and let m be the unique maximal ideal of K. Then mM=M = M=0,.

(4.5) and (4.6) are easy consequences of the usual Nakayama lemma.

(4.7) PrROPOSITION. Let P be a finitely generated projective K-module and asswhe
K, is local. Then P is free.

Proof. It suffices to prove this when K is a field, by (4.5), and (4.2) breaks the
proof in two cases. If KiK; =0, K, is an ideal, and in fact it is easy to see that
nonhomogeneous elements are invertible, so that | K| is a (commutative) local ring
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with maximal ideal K;. In this situation we can apply the ungraded analogue of
(4.7). If Ky =K,t, 0#1% € K,, P is free of finite rank as a K;-module, say Pyx K™,
P~ K{™, and n=m, for multiplication by ¢ is a K -isomorphism P, — P,. It is now
an easy matter to show that P is isomorphic to the free K~-module K@ @ [+K]®
where (r, s)=(n/2, n/2) if n is even and ((n+1)/2, (n—1)/2) if n is odd.

{(4.8) PROPOSITION. Let P+#0 be a finitely generated projective K-module and let
A=ENDy (P). Then A is a separable K-algebra and CENTER A~ K/Ann, (P).

Proof. We can use (4.4) to localize, and then use (4.7) to interpret A as a graded
matrix algebra; the proof can then be finished by imitating the proof in the un-
graded case, [3, I11.2.13}. Rather than carry this out, we give a proof based on the
Morita theory of §3, and valid in the case K=(K,). In this case Pis a FAITHFULLY
projective module over K=K/Anng (P), and the resulting GED (4=END, (P)
=ENDg (P), K, P, 0 =HOMg (P, K), f», g») yields immediately the isomorphism
CENTER A~CENTER K=K. For separability, we have that P (resp. Q) is
FAITHFULLY projective in A-MOD (resp. in MOD-4=A4*-MOD), so that
AxP ®z Q is A Qg A*-projective. This shows that A4 is separable over its
CENTER, K. K is K-separable by (2.10), and, anticipating (4.13(i)), we can con-
clude that A is K-separable.

Our next goal is a punctual theorem, of the form ““ A is K-separable < 4/mA
is K/m-separable for all m.” First, a lemma:

(4.9) LemMA. Let M be an A-module, A a K-algebra; let f € End, (M) and assume
either

(1) M is Noetherian (a.c.c. on (graded) submodules), or

(ii) |A] is commutative and M is finitely generated.

Then if f is surjective it is an isomorphism.

Proof. Case (i). Since fis homogeneous (of degree zero), ker (/%) is a submodule
for each iz 1. If 0#y € ker f, any x such that f(x)=y satisfies x € ker (f2)—ker f.
By induction if yeker(f*)—ker(fi~!), any x such that f(x)=y satisfies
x € ker (f**1)—ker (f*).

In case (ii), apply [2, IV.5.3] to f€ End,,, (|M]).

Note that hypothesis (ii) applies in two important cases: when 4 =K=(K,), and
(by (4.2)) when A=K and K, is a field.

(4.10) THEOREM. Let A be a K-algebra, and assume either

(i) |K| is commutative and A is finitely K-presented, or

(ii) K is Noetherian and A is a finitely generated K-module.

Then A is K-separable < A[mA is K|m-separable for every maximal ideal m of K.

The important case of (4.10) is when K=(K,), and in this case the hypothesis is
simply that A4 be finitely K-presented, as in (4.4). (4.4) shows that (4.10) (as stated,
i.e., for arbitrary K) follows from
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(4.11) ProOPOSITION. Let K be commutative with K, local and let A be a K-algebra,
finitely generated as K-module. Assume either that |K| is commutative or that K is
Noetherian. Then A is K-separable <> A/mA is K m-separable, where m is the unique
maximal ideal of K.

Proof of (4.11). = follows from (3.8(ii)). For the converse, let ’ denote the
functor, reduction mod m (i.e., '=K/m ®y). Then & € Dery (4, J) induces an inner
derivation 8': A’ - J', say 8 =d,, € e€J'. 88'=0 implies de¢’=0, so that 8'(a’)
=8"(a’)e’ for all @’ € A’. Choose pre-images a € A and e € J; for a’ and €', respec-
tively; then 8(a)=(8a)e mod mJ, and, since Im 8 generates J, J=Je+mJ. With
(4.6), this implies J=Je: right multiplication by e is surjective on J. But then (4.9)
implies it is an automorphism of J, and since it also defines an 4°-morphism, A® — J,
we can use it to split the inclusion J — A4 Thus E(4) splits, and 4 is K-separable.

To close this section we record some ‘““tower” or ““transitivity” properties of
separability.

(4.12) LeMMA. Let A and B be K-algebras and assume that A is K-projective and
that K is a direct summand of A. Then if A Qy B is K-separable, so is B.

The simple proof is a direct imitation of {1, Proposition (1.7)].

(4.13) PrOPOSITION. Let L be a commutative K-algebra and let A be an L-algebra.
(i) If A is L-separable and L is K-separable, A is K-separable(*).
(ii) If A is K-separable, A is L-separable.
(iii) If A is K-separable and L-projective and contains L as a direct summand, L is
K-separable.

Proof. (i) Since L is K-separable, E,(L) is split exact. Therefore A% Qe Ex(L)
is split exact, so that A% ®,¢ L is A%-projective. But clearly 4% ®;c L and 4§ are
isomorphic A%-modules. Thus A¢ is A%-projective, and since A4 is 4§-projective by
hypothesis, 4 is A%-projective, i.e. A is K-separable.

(i) is trivial since 4§ is a quotient of A%.

(iii) If 4 is L-projective, A% is Lg-projective, and since A is K-separable this
implies A is L-projective. Since L is an Le-direct summand of 4, our result follows.

(4.14) LEMMA. Let * denote the functor Homy ( , K) and suppose fe Homg (Q, M)
with Q finitely generated and projective. Then f has a left inverse <> f* is surjective.
If M is finitely presented, f has a left inverse <> f,, has-a left inverse for every maximal
ideal m of K.

The proof follows the ungraded pattern [3, I11.2.16].

Call a K-module M faithful if Ann, (M)=0. M is always a faithful END (M)-
module; indeed, a K-module structure for M is a K-algebra homomorphism
y: K— ENDg (M), and ker y=Ann, (M). Call M f-projective if it is finitely

(* In particular if A is separable over a quotient of K, it is K-separable; cf. (2.11).
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generated, projective, and faithful(®). If A is a K-algebra, the module structure
K — ENDy (4) factors through K— A4=END, (4)<ENDy (4), so that
Anng (d)=ker (K — A). Thus, if 4 is faithful, we can assume K< 4. In fact,

(4.15) LEMMA. If a K-algebra A is f-projective, K is a direct summand of A.
This is an immediate corollary of (4.14).

(4.16) CorOLLARY. (i) Let A and B be K-algebras and assume A is f-projective.
Then if A Qg B is K-separable, so is B.

(ii) Let L be a commutative K-algebra, A an L-algebra. If A is K-separable and
f-projective as an L-module, L is K-separable.

(4.17) CoROLLARY. Let A be a K-algebra and set C=CENTER A. Assume A is
C-projective. Then A is K-separable <> A is C-separable and C is K-separable.

REMARK. The hypothesis in (4.17), that 4 be C-projective, is satisfied auto-
matically in one important case: when C is concentrated in degree zero and 4 is
finitely generated as C-module, C-separability of A implies C-projectivity of A.
This will be a by-product of the implication (i) = (iii) in Theorem (6.1) below.

5. Structure theorems. The main theorem of this section, (5.5), describes the
structure of simple algebras, and is due to Wall [9].

Throughout this section, ideal means two-sided ideal unless otherwise indicated.
We call a ring A simple if 0 and A are the only ideals; if 4 is graded this means 0O
and A are the only graded ideals.

In the two lemmas that follow, 4 denotes a simple graded ring, and we fix the
following notations: K=CENTER 4, k=K,=Center A4, Z=Center |4], and
L=A%=|A|%. Then we have

L
TN
z L, K
.1 U I v
Z, Center 4y K,
2 v 4
k

(5.2) LEMMA. k is a field and K and Z are simple graded rings.

Proof. If ¢ is a nonzero element of 4K or hZ, At is a nonzero ideal, hence At=A4
and ¢ is invertible in 4; the given results follow.

The next lemma relates simplicity of 4 to simplicity of |4| and 4,. We omit the
proof, for which see [9, pp. 188-189].

(5) The usual term, faithfully projective, would lead to confusion; cf. (3.14) above. We
have seen (in (3.15(i))) that when K=(K,), M is f~projective <= M is FAITHFULLY projective.
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(5.3) LeMMA. Assume A,#0. Then
() A1A,=A,, and if 0#U is an ideal of Ay, then A;N+NA;=A, and A+

ANA, = A,.

(ii) If B is a proper ideal of |A|, both projections B— A; are A,-module iso-
morphisms.

(iii) If | 4| is not simple, A, is a central simple k-algebra and A=(A4,) ® k<{1}.

(iv) Either |A| or A, is a central simple k-algebra, and, provided (A : k] <, they
are not both central simple.

(5.4) LEMMA. Let D be a central division algebra over k, let F>k be a quadratic
field extension ([F: k]=2), and set D'=F ®, D. Then D’ is not a division algebra
<> there is an imbedding of F in D.

Proof. D’ is a central simple F-algebra, so that D'~ M,(E), the algebra of rxr
matrices over E, for some central F-division algebra E. Choose a simple D’-
module S (e.g., a minimal right ideal). Then [S:k]=[D’:k}/r=2[D:k])/r, and since
S'is also a D-module, r=1 or 2. D’ is not a division algebra < r=2, in which case
[S:D]=[S:k}/[D:k]=1. But when S is a one-dimensional D-module we can
identify Endj, (S) with D°, and F=F ® 1< D’ induces an imbedding

F° — Endp (S) = Endp, (S) = D°.

(5.5) THEOREM (WALL). Let A be a simple graded ring, let k, K, Z and L be as in
(5.1), and assume [A:k] <oo. Then

Case (0). If 4,=0, k=L and |A| = A, is a central simple k-algebra.

Case (1). If Z,#0, A, is a central simple k-algebra and 30+#a ek with Z=L
=k{a) and A=(A4,) ® k{a).

Case (2). If Z, =0 but A,#0, |A| is a central simple k-algebra. There is an ack
such that L=|k{a)|< A, if Char. k+#2, and L=k{a}< A, if Char. k=2; a=0 can
occur in case (i) below when Char. k=2, but is ruled out in all other cases. There is
a k-vector space W and a central k-division algebra D (both finite-dimensional) such
that one of the following occurs:

(i) Wy#0£W,, D;=0, and A=END, (W) ®, (D).
(ii)) W1=0, D,#0, and A=(End, (W)) ®; D.
(iii) W,=0=D,, and A=(End, (W)) ®, (D) ®, €, where

G = (l’k‘“) if Char. k # 2,

= [IT“ if Char. k = 2.

(5.6) CoROLLARY. Let A be a simple graded ring and put L= A% and k=[A4],.
Then, unless A, =0, dim,, (L)=2.

Proof of (5.5). The conclusions in Case (0) are clear. Suppose then that0#¢ e Z,.
Since At is a nonzero ideal, 4o=A;t and A, = At, so that 4=A4, ® k{a) where
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a=t% (a0, for otherwise 0=A4,4,=4, by (5.3()).) Clearly this yields Z=L
=k{a). A;=Ayt implies Center A,=Z,=k, so A, is central over k. Finally, if
0#Q is an ideal of Ay, 4,QA4,=A4,Qt2=Q, and, by (5.3(1)), Q=A4,. This settles
Case (1).

If Z, =0 (but 4,#0), |4| is central over Z,=k. | 4| is simple too, for if not the
degree-one generator of k(1) in (5.3(iii)) is a nonzero element of Z,. Thus |4|
M, (D) for some central k-division algebra D. It remains to determine as explicitly
as possible the graded structure of 4, and to find L. The argument breaks into
several cases.

First assume Char. k+#2. Define T: |4| — |4| by T(a,+a;)=a,—a,. T is inner
by Skolem-Noether: there is a unit u € |4| with T(x)=uxu"* for all x € [4|. Since
T(u)=u we have u € 4,, but u ¢ k since T is not the identity. However a=u?e k
(since T? is the identity), and a#0 because u is invertible. By definition of T,
Ap=|A|"=|A|"1 and A,={x€A|xu=—ux}. We “compute” the graded
structure of 4 by choosing a representation | 4|~ M, (D) in which u has a convenient
form.

Assume that k[u] is not a field, so that u>=a=>5%, 0#b € k. We can then assume
a=1 by replacing u# with u/b. Then put e=(1 —u)/2. Then e®*=e, and the right |4]|-
module e|4| is a direct sum of, say, r copies, of the simple right |4|-module, D™,
Thus dim,e|d|=rn[D:k] and r<n. Let ¢'=(4 9)eM,(D), then dim, e|4]
=dim, e'|4|, and a Skolem-Noether argument yields the existence of an inner
automorphism which interchanges e and e’. Thus assume our basis in M, (D)
chosen so that e'=e; then u=1-2e=(35"r { _), and 4,=]|4|"={F %)} and
Ay ={x|xu=—ux}={( ¥)}. Weareincase (i), withdim, (Wy)=r, dim, (W)=n—r.

If k[u] is a field, A, is simple and k[u]=L =Center A4, (e.g., by [7, Theorem 9]),
and (5.4) distinguishes two subcases. If k[u] imbeds in D, we can choose a basis in
which kfu]< D (by a Skolem-Noether argument). Then D is an invariant subspace
for T, and so inherits a grading, and |4|=(M,(k)) ®, D as graded algebras. We
are in case (ii), with dim, (W)=n.

If D'=L ®, D is a central L-division algebra, we claim first that » is even. Since
[D’: D]=2, this follows if D™ admits a D’-module structure. Now in the diagram

|AI = Endpe (Do(n)) - Endk (Do(n)) = E,
U U
L D

|4| is clearly the centralizer, in E, of D. In particular, the images of the inclusions
D—FE and L— E commute, and therefore the inclusions induce a map
D'=L ® D — E, thereby giving D°™ a D’-module structure.

Hence n is even, say n=2m. Put u, =diag, (&) ¢ M,(k), where #=(¢ }), and
a=u? as before. Since u?=a, k[u] and k[u,] are isomorphic quadratic field exten-
sions of k, and a Skolem-Noether argument allows us to assume u=u, by a
suitable choice of basis in M, (D). Then 4=(M,(D)) ® My(k), with the grading
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in My(k) induced by #. Now (¥ ) commutes with # < w=z and y=ax, and anti-
commutes <> w=—z and y= —ax. Let s=("} 9) and t=(%, }), then the degree
zero term of My(k) is |k @ kii| and the degree one term is [ks @ kt|. Since s>=1,
t?= —aq, and st= —i= —ts, this establishes an isomorphism

M,(k) ~ (l’k‘“),

and we are in case (it).

We have also seen that L=|k{a)|< A, when Char. k#2, except possibly when
k[u] was not a field, that is, in case (i). But, in any case, 4,=|A]"™ implies
k[u]=L, and, with L=|A|%, we also get L<k[u].

This completes the proof of (5.5) and (5.6) except in Case (2) when Char. k=2.
We still have |A|~M,(D), and the strategy is the same: determine the graded
structure of 4 by a convenient choice of basis for M,(D) in the various subcases.

In characteristic two, the projection p: |4| — A4,, p(a,+a;)=a,, is a derivation:
pl(ao+ay)(by+by))=a,by+aoh, =a,b+ab, because 2a,b,=0. p is inner by (2.10)
(apply (2.10(5)) to the k-algebra |A|): Fu € |A| with x, =xu+ux for all x € |4]. By
definition of p, Ao=|A|" =|A4|"™ and A,={x € 4 | x=xu+ux}. Thus u € 4, and
u ¢ k. Since p?=p, xu®+u?x=px=xu+ux for all x, hence a=u®+uc k. As in the
Char. #2 case, this description of 4, implies L=k[u]=k{a}< A,.

As before, consider first the case where klu] is not a field: p(u)=a=pd),
b e k(®). Let e=u+b, then e?=e. Put e; =(F J) € M, (k) with r <n computed from
e, as before, by the requirement dim, e|4|=rn[D:k]. As before we can assume
that e=e,, hence also that

IL+bL O )

u=e+b= ( 0 B,

It is easy to check that this puts us in case (i).

If klu) is a field which imbeds in D, we are in Case (ii) by the argument already
given in the Char. k#2 case. If D’=L ® D is a central L-division algebra, n=2m
as before, and we put u; =diag, (1) € M, (k), where #=(% 1) e My(k), and O0+#a
=£(u). As before we can arrange u=u, (because £(u;)=a), and

A = (Mu(D)) ® My(k)
with grading in My(k) given by #. Now ¢=(¥ ¥) commutes with # <> xa=y and
z=w+x, and c=ciit+ic< x=wa+y=z. Let s=(} ?9) and t=( 1), then the
degree zero term of My(k) is |k @ kiz| and the degree one term is |ks @ kt|. Since
s2=1,¢%=q, st=u and st+ts=ii+(¢ 3)=1, we have an isomorphism
1,a

M, (k) = T]’

and we are in case (iii). This completes the proof of (5.5)-(5.6).

(%) Here 9(X)= X2+ X. We are in this first case, for example, when a=0; u is then idem-
potent, so that k[u]=k{0}x k x k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



480 CHARLES SMALL [May

Using (5.5) we can get structural characterizations of separable algebras. We
start with some lemmas.

Let 4 be a graded K-algebra. We say A-MOD is semisimple if every (left) A-
module is projective.

(5.7) LemMaA. () If A is simple, A-MOD is semisimple. If K is simple, every K-
module is actually free.
(ii) If K is simple and A is K-separable, A>-MOD is semisimple.

Proof. (i) If M is an A-module, there is a surjection F — M with F free. Fis a
direct sum of simple modules (viz. A and 74), and, by a standard argument (cf. for
example [2, III.1.1]) it follows that every submodule is a direct summand. In
particular, the kernel of F— M is a direct summand, so M is projective. The
stronger result in the commutative case was essentially noted in the proof of (4.7).

(ii) Since separability of A4 implies separability of A° it suffices to show
HOM, (M, ) is exact for every M, and since HOM 4 (4, ) is exact, this follows
from

(5.8) LEMMA. There is a degree zero natural isomorphism
HOM,¢ (4, HOM, (', )) > HOM,( , )
of functors A-Mod° x A-MOD — K-MOD.

Proof. For A-modules M and N, make HOMy (M, N) an A%module by
((a ® b)f)x= —1%a(f(bx)). Then

HOM,,: (4, HOM, (M, N)) % HOM, (M, N)

defined by ¢f=7(1) and ((yg)a)x=g(ex) (a€ A, x € M) are the required inverse
isomorphisms.

(5.9) LEMMA. Let A be a simple graded ring, finitely generated as a module over
k=C,, C=A" View A as a k-algebra and let B be any ungraded k-algebra. Then
every two-sided ideal of A @, (B) is of the form A &, (J) for a two-sided ideal J of B.

Proof. Use (5.5) to distinguish two cases: either

(1) |A| is a central simple k-algebra; or

(2) A=(4,) ® k{a), 0#ack, and A, is a central simple k-algebra.

In Case (1) we apply the ungraded analogue [3, I11.3.4]. In Case (2), if I is an ideal
of A ®(B)=(4, ® B) ® ka), I=(I;) ® k<(a). But, by the ungraded case,
Iy=A, ® (an ideal of B).

(5.10) LEMMA. Let K be a simple commutative graded ring and let C be a simple
commutative K-algebra, finitely generated as K-module. Assume C is K-separable.
Then C, is Ky-separable, and C=(C,) Qx, K.
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Proof. We will obtain the first statement, C, is K -separable, in proving the
implication (1) = (2) of (5.11). For the second part, C=(Cy) ®x, K, it suffices to
see that C=C1) cannot be K=(Kj)-separable. |C|=]|Cy(1>| is the group-ring
over C, of a group of order two, and |C¢|=|C Q, C|=|C| ®x, |C| is therefore
the group-ring over C, of a group of order four. (|C ® C|=|C| ® |C| because C
has characteristic two.) Now according to [8, IX, §1, Corollary to Theorem 2], the
radical of |C*| is a maximal ideal. Thus |C¢| is a (commutative) local ring. Since
|C| is visibly not |C¢|-free, it cannot be |C¢|-projective, and we are done.

REMARK. In (5.10), “commutative” can be read in either the graded or ungraded
sense. For C is either concentrated in degree zero, or else it has characteristic two;
in either case, commutativity of C is synonymous with commutativity of |C|.

(5.11) THEOREM. Let A be a K-algebra, finitely generated as a K-module, where K
is simple. The following are equivalent:
(1) A is K-separable.
(2) A is afinite product of simple K-algebras A;; for each i, Center A, is a separable
field extension of K,, and CENTER A4;=K ®p, (Center 4,).
(3) For any algebraically closed field F= K,, (F) ®x, A is a finite product of
algebras of the types:
(a) ENDy (W),
(b) END; (V) ®r F<1),
where W and V=(V,) are finite-dimensional F-vector spaces. If K=(K,) and
Char. K#2, both types can occur, but if K, #0 only type (b) occurs, and if K=(K,)
and Char. K=2, only type (a) occurs.

Proof. (1) = (2). Assuming (1), we saw in (5.7(ii)) that every A°-module is
projective. From this it follows by a standard argument that the subgroup % of 4
generated by all simple 4°-submodules is a direct sum of simple submodules, and
that A=A. Thus A4 is a direct sum of simple 4°-submodules, that is, simple two-
sided ideals A;. Each A, is a quotient A4/ [,.; 4; of 4, so that each A, inherits the
structure of simple K-algebra, and the projections induce anisomorphism 4 — [ | 4,.

For the rest, let us simplify the notation by letting 4 denote any A4;. Then C= 44
is simple, so that A4 is C-projective, and therefore C is K-separable by (4.17). If F
is an algebraic closure of K,, (F) ®x, C is (F) Q, K-separable, and (F) ®, K is
simple by (5.9). The part of (1) = (2) already proved shows that (F) ®k, C is a
product of simple (F) ®g, K-algebras, and therefore its degree zero term,
F ®g, Co, is a product of copies of F. Thus F Q, C, is F-separable, and con-
sequently C, is Ky-separable. That C, is a separable Kj-algebra if and only if Cy/K,
is a separable field extension is proved in [3, 111.3.3].

(2) = (3). We may assume A4 is simple, with Cy/K, a separable field extension
and 44=C=(C,) Qx, K. If F> K, is algebraically closed, [F ®, Co: F1=[Cy:K,]
={Co:Kol,, and F ®g, Co=11 F,, where the F, are copies of F indexed by im-
beddings o: Co— F over K,. Thus (F) Qx, C=I1F, ®x, K and (F) Qg, 4
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=[1F, ®c,A. Now A,=F, ®c, A is simple by (5.9), and its CENTER is
F ®c¢, C=F ®y, K. Theorem (5.5) shows that 4, is one of the given types.
(3) = (1) is clear.

(5.12) CoROLLARY. Let A be a K-algebra and assume either

() |K| is commutative and A is finitely K-presented, or

(ii) K is Noetherian and A is a finitely generated K-module.

Then the following are equivalent:

(1) A is K-separable.

(2) For every maximal ideal m of K, AjmA is a finite product of simple graded
K[m-algebras, each with Center a separable field extension of K,/m, and CENTER
=K/m Qgqym, (Center).

(5.13) CoRrOLLARY. Let A be a separable K-algebra, finitely presented as K-
module, where K=(K,). Then |A|, Ao, |A%| and |A%| are | K|-separable, and A* and
A% are K-separable.

6. Azumaya algebras and the Brauer-Wall group. Throughout this section k
denotes a commutative ring, concentrated in degree zero. We will call a k-algebra
A CENTRAL if k — CENTER 4 is an isomorphism.

(6.1) THEOREM AND DEFINITION. A is an Azumaya k-algebra if it satisfies the
Jollowing conditions, which are equivalent:

(1) A4 is CENTRAL and k-separable and finitely generated as a k-module.

(2) A is CENTRAL, and a GENERATOR in MOD-A4°.

(3) A is a FAITHFULLY projective k-module and the natural representation
A¢ — END, (4) is an isomorphism.

(4) A is an invertible A°-k-bimodule and

M— M4
A¢-Mod ——— k-Mod

O
are k-equivalences.

(5) A is a finitely generated projective k-module, and for every maximal ideal m of
k, A/mA is a CENTRAL simple k/m-algebra. (Recall that simple means no proper
graded ideals.)

(6) There is a k-algebra B and a FAITHFULLY projective k-module P such that
A ®, BXEND, (P).

The proof of equivalence has essentially two ingredients: the Morita theory of
§3, and the structural theorems, (5.11) and (5.12). We omit the details, but point out
the following lemma, useful also in other contexts.

(6.2) LEMMA. With the hypothesis of (6.1(1)), every maximal two-sided ideal of A*
is of the form mA® for some maximal ideal m of k.
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Of course this follows from the Morita equivalence of (6.1(4)), but to prove it
from the hypotheses of (6.1(1)), which are the usual definition of “ Azumaya”, we
need the structure theory of §5. Indeed, let .# be a maximal two-sided ideal of A¢,
and put m=.# N k. The lemmas of §3 show that m is a maximal ideal of k, and the
structure theory of §5 shows that A¢/mA¢ is simple; (6.2) follows.

The Morita equivalence of (6.1(4)) has several further consequences.

(6.3) CorOLLARY. Let A and B be k-algebras with A Azumaya. Then

(1) A AU is a bijection, {ideals of k} — {two-sided ideals of A}.

(i) B> A Q@ B is a bijection, {two-sided ideals of B} — {two-sided ideals of
A ®, B).

(6.4) COROLLARY. If A< B are k-algebras with A Azumaya, A Q. BAx~ B.

(6.5) CorOLLARY. Fvery endomorphism of an Azumaya k-algebra is an auto-
morphism.

Proof. If fis a k-algebra endomorphism of A, ker fis a two-sided ideal, hence
ker f=0 by (6.3(i)). Then Ax A’* ®, fA by (6.4). Since A and fA4 are k-modules of
the same rank, 44 is a rank one k-module. With k< A4< 4’4 this implies
A4k, and we are done.

Let A4 be a k-algebra. The next few results concern Aut,_,;, (4), particularly when
A is Azumaya. For u € hU(A), the group of homogeneous units of 4, we define the
inner automorphism «, by e,a= —1*uau~! (a € hA4). Then u > o, is a homomor-
phism i: hU(A4) — Aut,_,, (4). Denote the image of i by In Aut,, (4). The
kernel of i is {u € hU(A) | a= —1"%uau~* Va € hA}=hU(A*), hence the sequences

4) —> —‘l"‘> fe-al
66 1 —> hU(A4%) —> hU(A) —> Autyay (A),

1 —> U([44])) —> U(Ao) %> Aut, g (4)

are exact, where i, is simply the restriction of i. Let In Aut?,, (4) denote the
image of iy, and, similarly, let In Aut} g5, (4) ={a, | u € 4,}.

Let Pic, (4) denote the set of isomorphism classes [P] of invertible A,A4-
bimodules P (Definition 3.19). The condition for [P}=[Q] in Pic, (4) is P~ Q in
A¢-Mod. Pic (4) is a group with multiplication induced by ®, and identity [4],
and [P]"'=[HOM, (P, A)]=[HOM, (P, A)]. Pic, (A4) is isomorphic to the group
of isomorphism classes of r-k-autoequivalences of Mod-4 under composition.

As an example, consider Pic (k)=Pic, (4). If [P] € Pic (k), P is a rank one pro-
jective. If k is connected(™), then P is concentrated in degree zero or one; |P| is an
invertible |k|-module, and [Plpiciy > ([P lpscixs» i), Where Py, 1 =0, defines an iso-
morphism, Pic (k) — Pic |k| ® Z/2Z. Clearly, we can never have Pic (k)={0},
since 7k represents a nontrivial element.

(") k is said to be connected if Spec |k| is a connected topological space. This is equivalent

to the requirement that e?=e, e € k, implies e=0 or e=1. Local rings and integral domains
are connected.
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Let PIC,, (4) denote the quotient of Pic, (4) obtained by the equivalence relation
of isomorphism in A°>-MOD. It is convenient to introduce also an intermediate
group. Let A-#02 be the category with the same objects as 4-MOD, but with
homogeneous morphisms only, and let 5%, (4) denote the quotient of Pic, (4)
by the equivalence relation of isomorphism in A°-#02.

For example, PIC (k)=Pic |k|. Also, since £F¥ (k) is caught between Pic (k)
and PIC (k), #S5€ (k)=PIC (k) when k is connected. In general, #I€ (A4) is
obtained simply by introducing the relations [P]=[rP] in Pic (A4).

If P is an invertible 4,4-bimodule and «, 8 € Aut,, 5, (4) we write ,P; for the
ArA-bimodule whose additive group is P, with operations a-x=(ea)x and x-a
=x(Ba) (a€ A, x € P). As in the ungraded case (cf. [3, I1.7.2]) we have

(6.7) LeMMA. If o, B, y € Auty ¢ (A) then
(1) oA4s= yeA,s (degree zero bimodule isomorphism).
(i) 1Ay R4 145~ 1Aqp (degree zero bimodule isomorphism).
(iii) There is a homogeneous isomorphism 1A, — A, of degree j <>

o € In Aut] o5, (4).

(iv) If P and Q are invertible bimodules and P~ Q as left A-modules, there exists
o € Auty g (A) such that P, Q, as bimodules. If the left A-isomorphism is homo-
geneous the bimodule isomorphism is homogeneous of the same degree.

(6.8) COROLLARY. « > [,A4,] defines homomorphisms ¢ and ¢° making

0
1 —> In Autl g (4) —> Aut,a, (4) 2> Picy (4)

and
1 —> In Autyay (4) —> Auty g (4) 2> PIE, (4)
exact, and
Im ¢® = {[P] | P = A in A-Mod}
and

Imop ={[P]|P = A4 in A-HOD}.

(6.9) CorOLLARY. If A is an Azumaya k-algebra we have exact sequences

1 U(k) U(A,) Autyqe (4) —‘& Pic (k)

and
1 — U(k) —> hU(4) — Aut, o, (4) L PIE (k),
and
Imy° = {[P]| 4 ®. P ~ A in A-Mod},
and

Imy = {[P]| A @ P~ A in A-MOD}.
Here s and 4° are defined by o+ [, A2].
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Proof. This is immediate from (6.6) and (6.8), with the observation that when 4
is Azumaya, A ®, induces an isomorphism Pic (k) — Pic, (4) (hence also an
isomorphism #S% (k) — PSE, (A)). The latter follows from the facts that 4 ®,
is an equivalence and (4 ®, M) ®,(4 R, N)x 4 ®; (M @, N).

To illustrate (6.9), suppose there is a unit » in A;. Then $%e,)={[7k]. The fact
that [rk] is in the image of 4° says that 4 ®, Tk~ 74X A in A-Mod, and this is
equivalent to the original hypothesis, that there be a unit in 4,. On the other hand,
o, is in the kernel of . Hopefully this clarifies the relation between Pic (k) and
U(A,), and between Z5% (k) and hU(A), displayed in (6.9).

(6.10) CoROLLARY (“SKOLEM-NOETHER”). If A is an Azumaya k-algebra and
PIE (k)={0}, the only endomorphisms of A (as a graded k-algebra) are the inner
automorphisms «, by homogeneous units u.

We have seen that Z5% (k)=Pic |k| when k is connected. In general, Z5% (k)
={0} is a stronger requirement than Pic |k| ={0}.
We now return to (6.1), and construct a group out of our Azumaya algebras.

(6.11) PrROPOSITION. Let A and B be Azumaya k-algebras, and write ® for ®,
and END for END,. The following are equivalent:
(i) A ® B*~END (P) for some FAITHFULLY projective k-module P.
(i) A @ END(P)~B ® END (Q) for some FAITHFULLY projective k-
modules P and Q.
(i) Mod-A and Mod-B are r-k-equivalent categories.
(iv) A=ENDyg (P) for some FAITHFULLY projective right B-module P.

The proof of equivalence is straightforward from (6.1) and the Morita theory of
§3. Write A~ B when the conditions listed in (6.11) are fulfilled. It is clear from
(6.11) that ~ is an equivalence relation, and that ®, induces a well-defined struc-
ture of an abelian group on the set of equivalence classes. This is the Brauer-Wall
group, BW (k), of k. If A is an Azumaya k-algebra, write [4] for the corresponding
element of BW (k). Then, for example, {4]=1 < A~k < AXEND, (P) for some
FAITHFULLY projective P, and [B]~1=[B*].

If K is a commutative k-algebra concentrated in degree zero, K ®, induces a
homomorphism BW (k) — BW (K), and this makes BW a functor, from com-
mutative (ungraded) rings to abelian (ungraded) groups. Another such functor is
Br, where Br (k) denotes the Brauer group of k (see [1], and Chapter III of [3]).
All of our definitions have been made in such a way that they reduce, for objects
concentrated in degree zero, to the corresponding ungraded notions: our con-
struction of BW (k) “contains” the construction of Br (k). This means that con-
centrating an Azumaya |k|-algebra in degree zero yields an Azumaya k-algebra,
and this induces an injective homomorphism Br (k) — BW (k). (This is, moreover,
natural in k.) §7 is devoted to a description of the cokernel.
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7. Graded quadratic extensions and the exact sequence 0 — Br — BW — 0, — 0,
Throughout, k is commutative and concentrated in degree zero.

In this section we require basic facts about Galois extensions of rings, for which
we refer chiefly to [4].

Suppose k is not connected, and let ¢’ € k be a nontrivial idempotent. Then,
setting e"=1—¢’, k'=ke’, and k"=ke", we have kx k' x k", a direct product of
rings. Clearly M+ (M, e"M)=(Mje"M, M|e'M) is a category isomorphism
|k|-Mod — |k’|-Mod x |k”|-Mod; an inverse is given by (R, S)+> Rx S. Equiv-
alently this provides an isomorphism k-MOD — k£’-MOD x k"-MOD (where a
morphism (g, #) in k-MOD x k"-MOD is homogeneous of degree j if and only if
both g and 4 are). In particular we get isomorphisms k-Mod — k’-Mod x k"-Mod,
and k-Alg — k’-Alg x k"-Alg. All of these will be denoted X+ (X', X").

For a finitely generated projective k-module M we let [M: k] denote the rank of
M ; this is a continuous (i.e. locally constant) function, Spec |k| — Z. In the situation
k=K' x k" above, M is finitely generated and projective <~ M’ and M " are so (over
k' and k" respectively). Moreover, a prime p of k corresponds either to a prime g’
of k' or to a prime »” of k" (the decomposition k=k’ x k” breaks Spec [k| into a
disjoint union of open-and-closed spaces which can be identified with Spec [k'|
and Spec |k"|) and [M:klp is [M':k'lp’ or [M":k"]p" as the case may be. In
particular, [M:k] is a constant, n, if and only if [M':k'l=n=[M":k"].

(7.1) LeMMA. Let L be a k-algebra, projective of rank 2 as a k-module. Then |L|
is commutative, and L is a k-separable < |L| is |k|-separable.

Proof. Localize.

We call a k-algebra L a quadratic extension (abbreviated QE) of k if it is separable,
and projective of rank 2 as a k-module. QE’s are FAITHFULLY projective (e.g.,
by [2, IIL.7.2]), and if k=k'x k", Lisa QE of k <~ L' isa QE of k" and L" is a QE
of k”.

(7.2) LemMA. If k admits a QF, L, with L, faithful, then 2 € U(k). In particular,
all QE’s are concentrated in degree zero in either of the following situations:

(1) k is connected and 2 ¢ U(k).

(2) 2 erad (k)= intersection of all maximal ideals of k.

Proof. If L, is faithful, L/mL has nonzero degree one part for every maximal
ideal m of k. If 2 ¢ U(k), 2 is in some m, and we contradict (5.10).
The key fact is

(7.3) ProroSITION. If L is a QF of k, there is a unique k-algebra automorphism
o=0(L) of L of order two such that L° ={x € L | ox=x}=k.

Proof. Since k is a direct summand of L, and [L:k]=2, [L,:k] can take no
values except 0 and 1. If k is connected, [L, : k] is constant, and if not we can write
k=k' xk" sothat [L{:k']=1 and L]=0. Clearly in the latter case the existence and
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uniqueness of o(L) are equivalent to the existence and uniqueness of o(L’) and
o(L"). Thus whether or not k is connected it suffices to treat two cases: {L,:k]=1,
and L, =0.

If o is as in the statement and xe L then ox+xeL°=k. In particular,
ox+xel, nk={0}forall xeL,,ie. o|L,=—1. Now if [L,:k]=1 it follows that
L,=k, and we have established uniqueness of o=1,;; @ —1,, in this case. It remains
to see that L7=k. This is clear unless 3 0#x € L, with x= —x. But when [L,:k]
=1, 2 e U(k) by (7.2), and this rules out 2-torsion.

Thus, for the rest of the proof, L=(L,). Assume first that L is connected. By a
theorem of Janusz [5, Theorem 1] there is a connected Galois extension E of k, with
group G, say, such that k< L< E. The subgroup H={oce G |ox=xVxe L} of G
has index [L:k]=2 and is therefore normal. Consequently L=E¥ is a Galois
extension of k with group G/H of order two. The generator of this group is a
candidate for o(L), and it is the only candidate by [4, Corollary 3.3].

If k is still connected but L is not, it is easy to see that L=k x k, and o(L) is the
transposition (x, y) — (», x).

This completes the proof for connected k. Note that this furnishes uniqueness
for all k, for to prove uniqueness we can localize, and local rings are connected.
Also the connected case extends immediately to the case where k is Noetherian,
for k is then a finite product of connected rings. Thus to complete the proof in the
general case it suffices to show the following: if L is a QE of k there is a Noetherian
subring k" of k and a QE L’ of k' contained in L such that the induced map
k ®y L' — L is an isomorphism. (For then the above arguments furnish o(L'),
and we can take o(L)=k ®;. o(L’).) This is a more or less standard descent argu-
ment, which we omit here.

(7.4) CorOLLARY. A k-algebra L is a QF of k < |L| is a Galois extension of |k|
with group of order two.

(7.3) and (7.4) give us a group of order 2 (generated by o(L)) whenever we have
a QE, L. Choose once and for all a fixed group = of order 2 with which we can
identify all such groups.

Let L and L? be QE’s of k and define

LY [¢] L* = [| Y] @ |L?[]2®%

where o;=0(L'). Although we use the ungraded ®, to form L |*| L?, we interpret
L' |%| L? as a graded k-algebra, i.e., with the grading inherited from that of L!
and L2

(7.5) THEOREM. If L' and L? are QE’s of k, so is L* |x| L2. || induces on the set
of k-algebra-isomorphism classes of QFE’s the structure of an abelian group, Q(k),
of exponent two.

Proof. |L'| ® |L?| is a Galois extension of k with group = xw, and conse-
quently, L' |*| L?is a Galois extension: o; ® 1 and 1 ® o, have the same restriction
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to L! || L%, and this automorphism is the generator of the Galois group. (See [1,
Theorem A8].) To complete the proof we show

(@) L |#| (kxk)~L for any QE, L,

(b) L |*| L~(kx k) for any QE, L, and

(c) |#| is associative (up to k-isomorphism).

Proof of (a). Clearly |L| ® |kxk|~x|L|x|L|, and the automorphism of
|L| x|L| which corresponds to o(L) @ o(kxk) is (x,y)+>(ay,ox). Thus
L |#| (kxk)={(x, ox) e Lx L}~ L.

Proof of (b). By criterion (e) of [4, Theorem 1.3], x ® y +> (xy, x(cy)) defines
a k-isomorphism |L| ® |L| — |L x L|. Clearly the subset of | L x L| corresponding
to L |#| L is precisely | L° x L?| =(k x k).

Proof of (c). One sees easily that [L! || L?] || L® and L* |*| [L? |*| L?] are both
k-isomorphic to [|L!| ® |L?| ® |L%|]*¥ where K is the kernel of the map
(x,¥,2) > xyz, XXM —> .

Unfortunately, Q, is not quite the group we need to describe the cokernel of
Br — BW. We define a new product, for QE’s L and L? of k, as follows:

Ll *LZ —_ [Ll ®L2]01®02
where o,=0o(L'). The distinction is that here we take the tensor product as graded
algebras.

(7.6) LEMMA. Let G be an abelian group of exponent 2, let p be a map Gx G — G,
let © be a homomorphism G — Z[2Z, and assume there is an element ¢ € ker 0 such
that u(x, y)=x+y+0x-0y-eVx, y € G. Then G, with + replaced by p, is an abelian
group. If 1 ¢ Im 0, or if ¢=0, then (G, +) and (G, p) coincide; conversely, if 3z with
0z =1, then (z, z)=e, so that if also ¢ #0, (G, n) has exponent 4.

The proof is a triviality; the inverse of x in the new group is x+ 0x-&. Since this
lemma is unlikely ever to find application elsewhere, we hasten to describe how it
applies to our present situation. Assume, for simplicity, that k is connected. Now
* and |+| differ only if k has a QE with nonzero degree one term, so we may as well
assume also that 2 € U(k), by (7.2). Then F=|k{—1}| is a QE of k. If L* and L?
are QE’s of k, L' » L2=L" || L? unless L} #0s L2. In the latter case it is not hard
to see that L' » L2=L* |«| L? |*| F. Thus, in any case, L' * L? is a QE of k, so that
* defines a map G X G — G, where G= Q,(k). The map which assigns to each QE
the rank of its degree one term is a homomorphism 0: G — Z/2Z, and F plays the
role of . With this dictionary, (7.5) and (7.6) imply the following theorem in the
case where k is connected.

(7.7) TueoreM. If L' and L? are QFE’s of k, so is L* x L2, % induces on the set of

k-algebra-isomorphism classes of QE’s the structure of an abelian group, Qi(k), of
exponent =4,

The general case follows immediately, since for each statement to be proved we
can break k up into pieces over which the intervening QE’s have degree one parts
of constant rank.
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Let E denote END,, (V) where V,=k= V. For any k-algebra A define L(4) = A%
and L'(4)=L(4A ®, E). When 4 is Azumaya, L and L’ “commute” (in the obvious
sense) with localizations at primes of k. We will call a finitely generated projective
k-module P nondegenerate if [P,:k] and [P,:k] are both strictly positive. (Equiv-
alently, both P, and P, are FAITHFULLY projective; cf. (3.15(1)) and [2, [11.7.2].)

(7.8) THEOREM. Let A and B be Azumaya k-algebras. Then
(i) A is a nondegenerate k-module <~ L(A) is a QF of k.
(ii) If A and B are nondegenerate, so is A @ B, and L(A ® B)=L(A) = L(B).
(iii) Let P be a finitely generated projective k-module. P is nondegenerate < A
=END, (P) is nondegenerate, in which case L(A)=(k x k).

Proof. (i) follows from (6.1(5)), (5.6) and (5.13).

(ii) The first statement is trivial. The second reduces to the situation where L(4)
and L(B) have degree one terms of constant rank. Note first that we have

(e) AXY=4,, and

(B) L(4 ® B)=(4 ® B)*®%=L(4) & L(B).

(It suffices to check (x) modulo maximal ideals of k, since clearly 4,= A4,
where it is true by (6.1(5)) and (5.5). (8) is clear since 4, ® By<(4 ® B), and A4,
and By, are k-separable by (5.13).)

The proof breaks into two cases. Assume first that [L(4),:k] and [L(B),:k] are
not both 1. Then

|L(4 @ B)| = |L(4) ® L(B)| = [L(4)| ® | L(B)|.

The latter is a Galois extension of |k| with group = x =. Since 7 x = has three sub-
groups of order two, | L(4)| @ |L(B)| has precisely three separable subalgebras of
rank two(®). Since | L(4 ® B)|, |L(4)| ® 1,1 ® |L(B)| and | L(4) * L(B)| are four
such subalgebras, it suffices to show that L(4 ® B)#L(A4) ® 1 (for then by sym-
metry (A ® B)#1 ® L(B), and clearly I(4) ® 1#L(A) * L(B)# 1 ® L(B)). But
if (A ® B)y=L(4) ® 1, we have

(4 ® B), = (4 ® B)4®P = (4 @ B8l = 41D Q B = 4, @ B.

But this implies 4, ® B, =0, contradicting nondegeneracy.

In the case where [L(A4),:k]=1=[L(B),:k], we have isomorphisms
Ay @ L(4) - A and B, ® L(B) — B, for modulo maximal ideals of ¥ we are in
Case (1) of Theorem (5.5). For the same reason, o(L(A4)) is 1 on L(4);=k and —1
on L(A), (and similarly for B). Thus

L(A)  L(B) = [L(4) ® L(B)]o = k ® [L(4); ® L(B)1].

(®) See [4, §2 and Lemma 4.1]. A bit of caution is required because of possible idempotents
in the subalgebras in question; in the language of [4], we must be able to assume that these
subalgebras are “ = x m-strong”’. The reduction to this case is immediate.
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It suffices to show that this is contained in L(4 ® B). Since

(A ® B), = (4o @ By) ® (4, ® By)
= (Ao ® Bo) @ (4, ® L(A)1 ® By ® L(B)l)
= A, ® By ® (L(4) * L(B)),

it suffices to note that L(A4) * L(B) is contained in (4 ® B)*e®5o=[(A4) ® L(B) and
in (4 ® B)X4"L®_and these are both clear.

(iii) The first statement is clear. For the second, we can realize 4 as a matrix
algebra over k, with degree zero term

(END(; * END(:, (Pl))'

By nondegeneracy, both of the blocks END, (P,) are nonzero, so that 4%
=kaCA0.

(7.9) CoroLLARY. (i) If A is a nondegenerate Azumaya k-algebra, L(4)=L'(A).
(ii) For any Azumaya k-algebras A and B, L'(A ® B)=L'(4) * L'(B).

(7.10) THEOREM. L' induces a homomorphism making 0 — Br (k) > BW (k)
L' Qq(k) — 0 exact. The sequence is natural in k, and splits when k has characteristic
two.

Proof. There are essentially two things to show: surjectivity of L’, and exactness
at BW (k). Clearly for surjectivity of L’ it is enough to note that every QE with
degree one term of constant rank is in the image. If [L,:k]=1, L is itself an Azu-
maya k-algebra, and L'(LYy=L(L)=L. If L is a QE concentrated in degree zero, let
A denote the crossed product of L with its Galois group: A=Lv, @ Lv, with
av,-bv,=ai(b)v,; and the indicated grading: dv,=3§,,,. Then 4 is a nondegenerate
Azumaya k-algebra, and L'(4)=L(A4)=L.

REMARK. When k has characteristic 2, k{a} is a QE of k for any a € k, and in fact
all QE’s are of this form; the crossed product described above is then

]

When 2 € U(k), |k<a)| is a QE for any a € U(k), and the crossed product is

()

k
A similar description can be given for arbitrary k. We do not digress to include
the details here.

Finally, we prove exactness of Br (k) > BW (k) — Qy(k). Clearly the composi-
tion is zero. Conversely, let 4 be an Azumaya k-alegbra such that L'(A)
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=k xk<A, We can assume A is nondegenerate, since [4]=[4 @ E] in BW (k).
Thus we have
Center Ay = A% = ke D k(1 —e) < A,, ecAg,edtk,e®=e0+#e# 1.

We must produce an Azumaya k-algebra B=(B,) such that [4]=[B] in BW (k).

Notice that e remains nontrivial when we localize at primes of k: nondegeneracy
of 4 implies that L(A4,,)=L(A),, has rank two at every prime m. Now set P=eA and
B=END, (P). Clearly P is a FAITHFULLY projective right A-module, and we
are done by criterion (4) of (6.11) once we show that B; =0. Since B=END, (eA)
=eAe, it remains to show that e4,e=0. It suffices to see this modulo maximal
ideals of k, and we can even assume k is an algebraically closed field. Then by
(5.11(3)) there are two cases to consider: A =END,, (W) and A =(End,, (V)) ® k{1D.
The second case is immediately ruled out: the center of the degree zero term of
(End, (V)) ® k{1>, namely k, has no nontrivial idempotents. (This amounts to the
remark that k<1 is not in the kernel of L’.) In the first case we can represent 4 as a
matrix algebra M, , (k) with degree zero term

M, (k) 0
( 0 Mq(k))'
When p+#0+#q there are two idempotents: e'=({ ) and ¢"=(§ 7)), and clearly
e'Ade’ and e"Ae” are contained in A4,. This completes the proof.

To compute BW (k) by means of the exact sequence 0 — Br — BW — Q, — 0,
we need additional information about Q,. Actually, as indicated in the Introduc-
tion, Qy(k) can be computed quite explicitly in terms of certain standard arithmetic
invariants of k. This will be presented in a subsequent paper.
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