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We give a brief exposition of results of Bredon and others on
passage to fixed points from stable Cy equivariant homotopy
(where Cy is the group of order two) and its relation to Ma-
howald’s root invariant. In particular we give Bredon’s easy
equivariant proof that the root invariant doubles the stem; the
conjecture of the title is equivalent to the Mahowald-Ravenel
conjecture that the root invariant never more than triples the
stem. Our main result is to verify by computation that the
algebraic analogue of this holds in an extensive range: this
improves on results of [Mahowald and Shick 1983].

1. INTRODUCTION

Let G be a cyclic group of order two and let £ be
the nontrivial representation of G on R. As usual
we let S*¢*™ denote the one point compactification
of the representation k£ @ n, so that in particu-
lar (S*+™)¢ = S". We may consider the group
[S*¢ S°1¢ of stable equivariant maps S*+" — S°
[Adams 1984]. The Bredon-Lofller conjecture con-
cerns the fixed-point homomorphism

Pk - [Sk§7 SO]S - [507 So]m

which takes a stable map f : S¥+" — SO to the
fixed-point map f¢:S"™ — S°. Let

Fr = Frm,(8°) = im gy..

Because of the natural inclusion §*¢ — S*+1¢ it
is clear that F} O Fj,;. By using the fact that the
Burnside ring splits when localized away from 2, it
is easy to see that ¢[1] is projection onto a direct
summand for every k. Accordingly we henceforth
complete at 2 without modifying the notation.
This was first considered extensively in [Bredon
1967a; 1967b]. A case of particular interest is when
n = 0, when the codomain is 7Z; Bredon made
calculations that led him to conjecture the exact
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image. The conjecture was proved in [Landweber
1969] using equivariant K-theory.

Theorem 1.1 (Landweber). Let k > 0, and define a(k)
by the relation

logy a(k)=|{i:0<i<k and k=0,1,2,4mod 8}|.

Then Fymo(S®) is the set of multiples of b(k), where
b(k) = 2a(k) if k # 0 mod 4 and b(k) = 4a(k) if
k = 0 mod 4.

The analogous theorem for G of odd prime order
is proved in [Iriye 1989].

In several ways n = 0 is exceptional, and we
now consider the case n > 0, where the codomain
is a finite 2-group. Bredon made the elementary
observation that ¢ is obviously surjective if k < n
since, for any map g : S™ — S°, themap f = gAg s
equivariant for the exchange of factors and hence
defines a map f : S™*™" — S° with ¢,.(f) = g.
Thus:

Lemma 1.2 (Bredon). 7,(S°) = Fy=F, =---=F,.

Bredon did further calculations suggesting that the
general effect of increasing k is to impose the re-
quirement that Fj, lies in 2™®) 7, (5°), where m(k)
tends to infinity with k. His calculations led him
to make the conjecture that Fy = 0 for k > 2n.

Conjecture 1.3 (Bredon-Loffler). If k > 2n > 0, the
image of

Pk - [Skgvso]g - [Sov So]n

18 zero.

Remark. The conjecture is misstated in Problem
5.16 of the problem list from the 1983 Boulder
conference [Schultz 1985]. The misstatement refers
to the forgetful map Uy : [S* S°1¢ — [S% Sk in,
which is generally much harder to understand. The
forgetful map is discussed in [Greenlees 1992], us-
ing calculations of Mahowald.

2. CONNECTION WITH THE ROOT INVARIANT

Mahowald was also led to define a filtration of
the 2-completed stable stem 7,(S°). This uses
Thom spectra on infinite projective space RP*;
if £ denotes the tautological line bundle, we let
P, := (RP>~)*. The use of the same letter ¢ is
reasonable since (EGy A SY)/G ~ BGV for any
finite group G and virtual representation V' [Lewis
et al. 1986, X.6.3]. By a theorem of Lin [1980] we
have S° = Mk Y P_;, so that for each k we have
a map S° — X P_;. Now define the Mahowald fil-
tration by

M, = My, (S°) = ker (m,5° — m,(SP_y)).
Observe that an z € My \ My, determines a coset
R(2) C [S", P_o/Poys] = muin(S°),

called the root invariant of xz. We denote by |R(z)]
the degree n + k of this coset. Similarly, if z €
F}, \ Fj1, the cofibre sequence

Sk A G+ N SkE N S(k+1)§

and the adjunction [S*AG,, S°]¢ = [S* S°],, allow
us to define a coset

B(z) C [S* 8, = msx(S°),

which we call the Bredon root invariant of x.

We begin by showing that Mahowald’s filtration
is the same as Bredon’s and that the two versions
of the root invariant agree. The proof that the
filtrations agree is extremely short, and for many
purposes (such as Corollary 2.3) this is all that is
required.

Proposition 2.1. For any k > 0 we have M = Fy.
Further, B(z) = R(z) for any z € m,(S°).

Proof. By obstruction theory, since S>¢ is nonequi-
variantly contractible, we see that

[X, Y A S®¢¢ = [X° Y€,

and in particular this applies when X = S*¢ and
Y = S° Thus ¢, is induced by the inclusion



S% — 8§~¢ and because of the cofibre sequence
EG, — S° — §=¢ we have a long exact sequence

— [S¥, EG,]] — [8%, 8% =5
ﬂ) [Sk£> SOOE]S - [Skga EEG+]S -

Hence

Fj, = im ¢y,

— ker([S, S=¢]S — [5 BEG.IS) = M,

where the last equality uses the fact that

[S*¥ ©EG,]¢ = [S°, EG, A S7F¢
=[S (ZEG. A S™)/Gl,

=[8° BP_i]n

by Adams’ isomorphism [Adams 1984, 5.4].
For the second part of the proposition, we need
a lemma.

Lemma22. Let A5 B 5L C % YA bea cofibre se-
quence, and QY LSF5X5Y a fibre sequence.
Consider the diagram

[4,QY] -2 [A, F] = [4, X] = [A,Y]
[B,QY] -2 [B,F] - [B, X] -~ [B,Y]

(C, QY] 2 [C, F] = [C, X] == [C,Y]
o o o o

[24,07] 25 (24, F] 75 [24, X] 75 [24,Y].

If f € [C, X] satisfies wfj = 0, then

—(0") (e f) € (6.) 1T () TGS

Remark. We would have equality except that the
indeterminacy on the left is (¥4)*[XB,Y], while
that on the right is (2¢)*[XB,Y] + m.[XA4, X].

Proof. This is a simple exercise in the manipulation
of cone coordinates and the standard equivalences
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Cofibre j ~ ¥ A and Fibre(7) ~ QY used to estab-
lish the Barratt—Puppe sequences. Any element of

(0*)"(m,f) C [Cofibre j, Y]

provides a null homotopy H : BAI — Y of wfj.
The adjoint H : B — F(I,Y) together with fj
defines an element of (7,)~'(j*f). The given map
f provides a null homotopy A A I — X whose
adjoint A — F(I,X) can be combined with the
map in (7.) 1(j*f) to produce an element of

(6,)7"* (1) (5" f) C |A, Fibrer].

The equivalences Cofibrej ~ ¥ A and Fibrer ~
QY then convert these maps into maps >4 — Y
and A — QY whose adjoints are negatives of one
another. O

Returning to the proof of Proposition 2.1, we take
as our cofibre sequence

Sk A G+ N SkE N S(k+1)£ N Sk+1 A G+

and as our fibre sequence the negative of the cofibre
sequence

EG, — 8" — §~ - YEG,

(recall that the negative of a fibre sequence is a cofi-
bre sequence and vice versa). Omitting the three
minus signs in each row, we have the diagram in
Figure 1.

If a € [S° 59, = [S*+1E §¢|C is in Fy, \ Fyyq,
then R(«) is the lifting to the lower right corner
while B(«) is the lifting to the upper left. Putting
the minus signs back in so that we may apply
the lemma, we see that R(a) changes sign while
B(a) does not. Hence R(a) € B(c). Finally,
the indeterminacies are the same in this case, since

[Sk, §>¢] = 0. O

This means that the results for the fixed-point fil-
tration apply equally well to Mahowald’s filtration.
It is a historical curiosity that the results about
Mahowald’s filtration were reproved later by more
complicated means. Thus Bredon’s easy observa-
tion (Lemma 1.2) that ¢ is surjective for £k < n
becomes a theorem in [Jones 1985]:
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V)

[Ska EG+]”

[Skga EG+]TGL - [Skga SO]S ‘P—k>

[Sk 80, ——— [S* §¢], =0 —— [S* BEG,],

[Skga Soog]f - [Skga EEG-F]S

o

(U0 BT — [SUD8 805 P (SO §e=e)T s [5406 B ]

[Sk+1a EG+]n ? [Sk+1a So]n [Sk+17 SOOE]n =0— [Sk+1’ EEG"‘]"

FIGURE 1.

Diagram arising from the cofibre sequence S* A G, — §* — §*+1DE _, gk+1 A G and the fibre

sequence equal to the negative of the cofibre sequence EG, — S° — §>°¢ — S EG, . See preceding page.

Corollary 2.3 (Root invariant doubles the stem). If = €
7. (S°) then |R(z)| > 2n. O

This applies also to odd primes for H. R. Miller’s
analogue, which says that if |z| = 2k—e, withe =0
or 1, then |R(s)| > 2(pk — ¢) (that is, essentially,
that the root invariant must multiply the stem by
at least p), although the equivariant proof may lose
one stem in the estimate. Bredon’s idea was used
in [Greenlees and May 1995] to give a result for
arbitrary finite groups.

The Bredon-Lofller conjecture, combined with
Proposition 2.1, becomes the Mahowald—Ravenel
conjecture bounding the degree of the root invari-
ant. Indeed if the Bredon—Lofller conjecture holds
then F5,.1 = 0 so that the last possible nontrivial
subquotient is Fy,,/Fo, 1.

Conjecture 2.4 (Mahowald-Ravenel). If z € 7,(S?),
then |R(z)| < 3n.

Mahowald and Ravenel also observe [1993, p. 871]
that |R(z)| < (p+1)|z| at odd primes in all known
cases, although they do not make the formal con-
jecture that this is generally true.

Although we will not use it here, Proposition 2.1
provides us with an interesting description of the
root invariant that is probably well known to the
experts, but does not seem to be in the literature.

Proposition 2.5. For z € m,(S°) we may calculate
the root invariant of x by finding the largest k for
which x € im ¢, and then setting R(z) = U, * ().

Proof. The Bredon root invariant is the composite
of <p,:1, for k£ maximal, with the homomorphism
induced by the attaching map S* A G — S*¢ and
the adjunction isomorphism:

[$*, S°I% — [S* A G, S =[S, S°..

Since the attaching map is the adjoint of the (non-
equivariant) identity map S* — S*¢ the result fol-
lows. g

3. THE ALGEBRAIC CONJECTURE

The groups involved in the conjecture can be calcu-
lated by Adams spectral sequences in various ways.
The algebraic version of the conjecture arises as the
FE, analogue of the geometric conjecture. In a par-
ticular case the algebraic conjecture may or may
not prove the geometric one; this is discussed in
detail in [Mahowald and Ravenel 1993, 2.9]. See
[Mahowald and Shick 1983; Shick 1987] for further
discussion of the algebraic root invariant.

Now consider the diagram in Figure 2. The con-
jecture is that for k& > 2n the map ¢, is zero, or
equivalently, that Mahowald’s map is a monomor-
phism. The diagram shows that this is equivalent
to a being a monomorphism.
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s SR §0)C £E, (ke Goot)C _Mahowald | [S¥ SEG,]S — -

=

(5o, 547

Ja

o

- [SOOE, EEG+]S,

FIGURE 2. The algebraic version of the Bredon—Lo6fller conjecture says that, for k£ > 2n, Mahowald’s map is a
monomorphism. Here the horizontal isomorphism is Lin’s Theorem [Lin 1980], and the vertical isomorphism is

elementary obstruction theory.

The advantage of considering « is that it re-
lates groups of maps into free G-spaces, for which
there is a uniform method of calculation [Greenlees
1988]. To explain this we summarise the proper-
ties of the relevant cohomology theory f&(X). We
have used the letter f (for ‘free’) to ensure consis-
tency with [Greenlees and May 1995], although the
letter ¢ was used in [Greenlees 1988]. The theory
is so named because of its representing spectrum,
and the definition of its homology theory:

f8(X) = H(EG, Ng X; TFy).

In general it is not so easy to describe the coho-
mology theory, but for our purposes it suffices to
know two facts:

(i) if X is G-free, f&(X) = H*(EG1NgX; Fy), and
(ii) f admits Thom isomorphisms

f&(8* A X) = f5(S" A X)
for any X.

These facts allow one to calculate the ring of oper-
ations

fof = H*(BG1) ® 4,

where A is the mod 2 Steenrod algebra, and the
modules f5(S*) over it, as in [Greenlees 1988].
To state the result we consider the module L =
H*(BG.)[z™!'] = Fy[z, z7'] as a module over A.
The submodule nonzero in degrees > a is denoted
L,. The quotient nonzero in degrees < b is denoted
L%, and the subquotient that is nonzero only in
degrees from [a, b] is denoted L.

Lemma 3.1. (a) f%4(5°¢) = ZL.
(b) f5(S*) = ©LFL.

(c) For 0 < k <, the inclusion maps
Sk Gt goot
induce the projections
YL — L — BL a

The main theorem of [Greenlees 1988] states in this
case that for any G-free, 2-complete, bounded be-
low spectrum Y of finite type there is an Adams
spectral sequence

E;,t = EXtS}}i(BG+)®A(fé(Y)7 fé(X)) = [Xa Y]*G

In particular this applies to calculate maps into
EG, itself. In this case, since

fo(BG.) = H*(BG.),
by change of rings the spectral sequence becomes
By = Exty (F, fo(X)) = [X, EG,]{.

Therefore, the E, analogue of Conjecture 1.3 is
as follows (where the suspension from ¥ EG, has
been cancelled with that from Lemma 3.1).

Conjecture 3.2. The natural quotient map L — LF~!
induces a monomorphism of Ext%*(Fy, -) for k >

2(t—s) > 0.

For purposes of calculation, it is more convenient
to dualize so that we are dealing with modules that
are bounded below. Suppose M, N and R are A-
modules. With the diagonal action on R ® M and
the conjugation action, (af)(m) = Xd'f(x(a")m),
on Hom(M, N), we have a natural isomorphism

Ext, (R, Hom(M, N)) = Ext4(R ® M, N),
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Ext4(Fa, L) —— Ext,(Fy, L*1)

Exta(Fy, (XL)*) — Exta(F,,

Exta(SL, Fy) —— Bxt4(SL_,, F,)

Exty(Fy, Fy) —— Exta(XL_,, Fs)

FIGURE 3.
Ext groups.

which specializes to Ext 4 (Fy, M*) =2 Ext4(M, Fy).
Using the identification L* = XL, and, more gen-
erally, (L%)* = L L™¢"], together with the isomor-
phism

Ext}' (XL, F,) = Ext5'(F,, F,),

which is the main result of [Lin et al. 1980], we
reach the following convenient algebraic statement
of 3.2. (It may help to look at Figure 3, which
displays the dualities.)

Conjecture 3.3. The natural quotient map XL , —
F, induces a monomorphism of Ext%'(-,Fy) for
k>2(t—s)>0.

This is the version of the conjecture that we have
used for calculations.

4. THE CALCULATIONS
If we let P(k,n) be the statement that

Yr : Bxty'(Fa, Fo) — Ext} (SL_,, Fs)

is a monomorphism whenever t — s = n, Conjec-
ture 3.3 is the claim that P(k,n) holds if 0 <
2n < k. The factorization XL _(441) — XL_j, — I,
shows that P(k,n) = P(k+ 1, n). Thus, to verify
the conjecture experimentally for small values of k
and n, we may confine attention to odd k.

Using the programs described in [Bruner 1992],
together with more recent extensions that com-
pute induced chain maps, we have computed

(EL_)")

Algebraic dualities and homomorphisms, and the induced isomorphisms and homomorphisms of

for odd k£ < 55, for s < 20, and a range of values
of t. The range of ¢ was chosen so as to deter-
mine, for as many elements = of Exts(Fs, Fy) as
possible in a reasonable amount of computer time,
the minimum odd k for which )y (z) is nonzero in
Exts(XL_,, F2). We refer to the number k as the
odd cell filtration of x. The Bredon—Mahowald fil-
tration of x will then be either kK — 1 or k — 2.
Table 1 displays the results obtained.

5. CONCLUSIONS

The calculations show that the conjecture holds for
all t — s < 30, and that P(65,30) holds, just short
of the conjectured P(61,30). Previously, the con-
jecture was known to hold for ¢ — s < 16 from the
calculations of Ext root invariants in [Mahowald
and Shick 1983], so our calculations nearly double
the stem through which the conjecture is known.
Note that the Adams-Barratt elements Pih, in
bidegrees (s, t—s) = (j +4i, j+ 8¢), have maximal
filtration for j = 2 or 3, showing that the conjec-
ture is sharp for these stems. The elements Pth,
have less than maximal filtration, by an amount
that suggests some influence of divisibilty by 2,
while the remaining Adams-Barratt elements (that
is, elements of least positive stem in each Adams
filtration) appear to have odd cell filtration 2 less
than maximal. Since this occurs near the vanishing
line, it may be amenable to proof by the techniques
that establish the vanishing line and the range of
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t—s|is=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 3 3 5 9 11 11 13 17 19 19 21 25 27 27 29 33 35 35 37 41

1 3

2 5

3 5 7 7

4

5

6 9

7 9 11 11 13

8 11 13

9 13 15 15

10 21

11 21 23 23

12

13

14 17 19 19 21 25

15 17 19 19 21 21,25 27 27 29

16 19 23 25

17 21 23 23 25 31 31 33

18 21 23 23,23 25 37

19 23 35 37 39

20 25 27 29

21 25 27

22 27 31 37 41

23 29 29 31 31 37 39,41 43 43 45

24 31 43 45

25 39 39 41 45 47 47

26 41 37 39 41 53

27 51 53 55

28 41 43 45

29 37 41 43

30 33 35 35 37 37 39 41 45 49 51 51 53 65

31 33 35 35,35 37 37,41 43 43 41,4545,4947,51 51 53 53,65 7 ? ?

32 35 37 39 41 43 45 ? ?

33 37 39 39 45 ? ? ? ? ? ?

34 37 39 39 41 43 45 65 49 ? ? ?

35 41 43 45 47 ? ? ?

36 43 ? 27 7

37 41 43 45 45,4747,49 7 7?7 7 7

38 41 43 43,43 45 45,45 47 49 ? ? ? ?

39 43 45 45 47,47 49 ? ? ? ? ? ? ? 7,7 ? ?

TABLE 1. At column s, row ¢ — s, we show the odd cell filtration for a basis of Exti{t (F2,F2), when the entry
is 55 or less. (For typographical reasons, we have exchanged rows and columns from the usual Adams spectral
sequence.) Thus, an entry k means that the algebraic root invariant increases the stem by k — 1 or k£ — 2, and
the conjecture for the n-th stem is that all entries in the row ¢ — s = n are at most 2n + 1. If the entry is
65, this means that the element maps nontrivially to L_g;. (We computed the map for k£ = 60 and 65 as part
of our initial exploration of the problem.) If the entry is a question mark, we have no information about this
bidegree. The values 55 and less are minimal; that is, if the entry at column s, row ¢ — s is k < 55, we have
computed the minimal resolution of L—(k—z) through at least internal degree t to verify that the entry should

not be k — 2.

Adams periodicity. Equally, one might hope to
prove the geometric conjecture on the image of J
by using an e-invariant based on equivariant K-

theory.

Inspecting Table 1, we see an interesting pattern

emerge. The line below which the homomorphism
Ext%*(IFy, Fy) — Ext%*(SL_,, ;) is monic appears
(t — s)-intercept k (in the

to have slope —

2

L and
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FIGURE 4. Exti{t(ELik, Fy), for representative values of k. Elements in the image of Exti{t(Fg,Fz) are indi-
cated by e, and all others by o. The orientation is conventional, with ¢ — s horizontal; the leftmost column of
each chart represents ¢t — s = 0. Multiplication by hg, h1, and hs is indicated by solid vertical, solid diagonal,
and dotted lines, respectively. The number of dots at each position (s, t — s) is the Fy-rank of Ext%’ (I, Fy).

conventional display with s vertical and ¢ — s hori- The results of some representative Ext calcula-
zontal), which forms a kind of k-dual to the Adams tions are displayed in Figure 4.

vanishing line. If this is true, then Conjecture 3.3 There now seems to be considerable evidence
would follow from the intersection of this line with that the Bredon-Loffler conjecture holds at the

the Adams vanishing line in Ext4(Fy,Fy). level of Ext groups.
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