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Abstract

In this research the Bring-Jerrard quintic polynomial equation is investigated for a

formula. Firstly, an explanation given as to why finding a formula and the equation

being unsolvable by radicals may appear contradictory when read out of context.

Secondly, the reason why some mathematical software programs may fail to render

a conclusive test of the formula, and how that can be corrected is explained. As

an application, this formula is used to determine another formula that expresses

the gravitational constant in terms of other known physical constants. It is also

explained why up to now it has been impossible to determine this expression using

the current underlying theoretical basis.
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Introduction

As the title indicates, the objective of this contribution is to add to the research

on subjects that have occupied researchers in mathematical and physical sciences

for many centuries. The literature ( e.g. Cajori [1] and Struik [2] ) indicates that

polynomials equations, of which the quintic equation is part, were first investigated

more than four thousand years ago. However the gravitational constant is a more

recent problem - about three hundred years old. Many researchers (e.g. Cauchy [3],

Euler [4] and Lagrange [5]) seem to have given up resolving that the quintic cannot

be solved and our knowledge of the gravitational constant is getting worse rather

than better. We however have a different viewpoint.

The quintic equation

x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0, (0.1)

with rational parameters a0, a1, · · · , a4, is well known for being difficult to solve.

Abel and Ruffini have proved that it is impossible to solve it over a field of rational

numbers, see Rosen [6] and Pesic [7]. The appendage ‘over a field of rational numbers’

is usually omitted in the literature.

Bring [8] and Jerrard [9], however have shown the equation that can be reduced to

a simple form with only two parameters. That is,

x5 + bx+ c = 0. (0.2)

Glashan [10], Young [11] and Runge [12] established that some forms of this equation

(0.2), the Bring-Jerrard quintic equation as it is now called, can be solved in radicals.

They have shown that all equations of the form

x5 +
5µ4(4ν + 3)

ν2 + 1
x+

4µ5(2ν + 1)(4ν + 3)

ν2 + 1
= 0,

with rational µ and ν can be solved. A similar conclusion was arrived at by Spearman

and Williams [13] for the equation

x5 +
5e4(3± 4c)

c2 + 1
x+
−e5(±11 + 2c)

c2 + 1
= 0
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with rational c and e.

There have been other contributions; for example, Ioakimidis and Papadakis [14],

[15] and [16], as well as Chowla [17], Cockle [18], [19], Canfield and King [20], [21]

and [22].

Of course, there are other ways of solving the quintic. Numerical analysis is one,

but the results that follow from such approach would require countless iterations to

convert into radical form, and are not as such helpful in the development of algebra

and related fields. A direct route seems to be the only plausible approach.

In this contribution, we determine a general formula for expressing the roots of the

Bring-Jerrard quintic equation (0.2) in radical form. This is regardless of the nature

of such roots, be they rational or irrational, real or unreal.

Our theoretical basis and contribution cannot be well understood without first un-

packing the word solve and its derivatives as used in abstract algebra, and its arbi-

trary day-to-day interpretation. This is done in chapter 1 .

Chapter 2 is dedicated to Newton sums, witch we use to solve the Bring-Jerrard

quintic equation. Before we can do this however, we first have to present the equa-

tion in a form that is suitable for manipulations through these Newton sums. In

chapter 3 we generalise the solutions obtained in chapter 2 to the various sub-cases

of the general quintic equation. The chapter concludes with solutions to this general

equation and a numerical experiment.

Chapter 4 discusses the application. It is argued that Einstein’s gravitation theory

does not succeed in establishing a formula for the universal gravitational constant

in terms of known physical constants. This argument is then used to determine the

formula. A brief historical background should naturally include studies on quadratic,

cubic and quartic equations. Around 2000 BC Babylonians were among the first to

solve the quadratic equation

x2 + ax = b

where a and b are non-negative numbers.
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The Indians and the Greeks also appear to have known about the cubic and quartic

equations. However, the Italians, Spione del Ferro, Cardano and Niccolo Tartaglia,

were the ones who provided some convincing solutions to these equations.

The word ‘solvable’ is used herein two ways for polynomials equations. The popular

usage and a simplistic interpretation of the Abel-Ruffini theorem (see Pesic [7]) is

that the word ‘solve’ means to determine a formula for finding roots to a polyno-

mial in radicals. Quadratics, cubics and quartics are then examples of polynomials

equations that can be solved, because formulas for determining their roots do exist.

The second meaning is adopted from contemporary algebra: Let F be a field, and let

f(x) ∈ F (x). We say that f(x) is solvable by radicals over F if f(x) splits in some

extension F (a1, a2, · · · , an) of F and there exist positive integers k1, k2, · · · , kn such

that a1
k1 ∈ F and ai

ki ∈ F (a1, a2, · · · , an) for i = 1, 2, · · · , n, see [23]. According

to this definition, all three polynomials equations mentioned above are in general

not solvable, but have solvable cases. For example, the quadratic x2 + 2 = 0 is not

solvable in the field of real numbers while x2−4 = 0 is. This can also be observed in

cubics and quartics. Some are solvable while others are not, even though formulas

exist to establish their roots in radical form. This is Abel and Ruffini’s invention:

The basis of group theory.

We shall continue to italise the word and its derivatives to indicate this abstract

usage. The quintic is also not solvable in general as suggested by the Abel-Ruffini

theorem( see [7]), but has two known solvable cases. The two cases are the ones

mentioned in Glashan [10], Young [11], Runge [12] and Spearman and Williams

[13]. There have been contributions to determining formulas for them, see Dummit

[24] and independently Kobayashi and Nakagawa [25]. The formulas so determined

solve only the two cases however. Here we are interested in a formula that solves

the Bring-Jerrard Quintic equation.

The origin of the abstract interpretation of the word can justifiably be credited to

the Abel-Ruffini theorem. It is quite possible that Abel and Ruffini may have started

3



off by first trying to solve the fifth order polynomial equation, and ended up with

the definition (see Pesic [7]).

The tendency to drop the appendage from the Abel-Ruffini theorem has often led

to interesting interpretations. Some interpretations that still prevail today maintain

that it is impossible to establish a formula for finding quintic roots in radicals, see

Hamilton [26], Ibragimov [27] and Livio [28]. History has it that Erland Bring (1736-

1798) disagreed (see Adamchik [29]). He tried determining the formula using the

Tschirnhausian transformation

y = µx4 + βx3 + λx2 + γx+ δ. (0.3)

He would probably have succeeded if he had not omitted µ = 1 the leading param-

eter. Tschirnhaus, in his papers [30] and [31], had earlier used the same assumption

to solve the quartic polynomial. Our analysis shows that, in the quintic case, µ and

δ depend on one another. To avoid the pitfall Bring himself encountered, we reduce

(0.3) to a quadratic monomial by excluding terms containing µ, β and δ.

Our theoretical basis and contribution cannot be well understood without first un-

packing the word solve and its derivatives as used in abstract algebra, and its arbi-

trary day-to-day interpretation, which is done in chapter 1.

In 1666, Newton (see Scheinerman and Mircea [32]) introduced what today are

known as Newton’s identities. They relate power sums to elementary symmetric

polynomials. Tschirnhaus found transformations for the elimination of some of the

intermediate terms in polynomials and Bring [8] used these to transform the general

quintic polynomial to the simple form.

Of course, there are many ways of solving the quintic equation, but radical solutions

are the ones that are still being sought. Some believe they are impossible to find,

while others think they are simply hard to establish. The theoretical basis for this

unsolvability is field theory, which is grounded on group theory.

The quintic equation can be solved numerically to any degree of accuracy one desires.

For example, the MatLab code roots ([1, 1, 1, 1, 1, 1]) solve the polynomial equation

4



x5 + x4 + x3 + x2 + x+ 1 = 0.

Of all quintic solutions, one that is often confusing is the one resulting from differen-

tial equation solutions. This confusion revolves around the question of whether they

are radical or not. For example, in Drociuk [33] converts a Bring-Jerrard equation

into a Fuchian generalised hypergeometric differential equation, and then uses the

hypergeometric functions to solve the polynomial equation.

In 1858, Hermite investigated a quintic of the form

x5 − 3x+ 2a = 0,

where a = sin(α). He found solutions of the form x1 = 2sin(α/3), x2 = 2sin((α +

2π)/3) and x3 = 2sin((α+4π)/3). The restricting condition here is that |sin(α)| is

always less than 1.

Most contemporary writings (i.e. Pesic [7], Dummit [34], Livio [28], Spearman and

Williams [35]) hold that the quintic equation, be it the general case or the Bring-

Jerrard, cannot be solved in radicals. It is maintained that a formula for solving

this equation using radicals is impossible to establish. We agree with this and

elaborate on it in section 1.0.5. In addition, we argue that this means that not all

roots resulting from the formula, when found, will be radical numbers. Some could

simply be rational with a possibility of others being algebraically transcendental.

It is alleged that Bring (see Adamchik [29] and Hamilton [26] disagreed with what

the Abel-Ruffini theorem states, hence the attempt at solving the equation himself.

To avoid the pitfalls and mistakes that he might have unknowingly committed, we

employ differential forms to sort the parameters in our calculations. This is done in

section 2.1.

There are numerous reports (e.g. Fateman [36] and Postel [37] ) on the Internet

that some very popular mathematical software has an error which its designers have

failed to declare. Unfortunately, we did not know this at the beginning of our study.

The formula is too complicated to test using a simple hand-held calculator. The

faults encountered while trying to use this software are discussed in section 2.2.1.

5



One other formula that has mystified mathematical physicists for centuries is one

for the gravitational constant. In the past numerous attempts at finding a formula

that expresses this constant in terms of other known physical constants have not

been successful. Our study shows that such a formula is connected to the quintic

equation. As an application, discussed in section 3, we use the formula found in

section 2.2 to establish an expression for the gravitational constant.
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Chapter 1

Theoretical basis

The task at hand in this chapter is to demonstrate that the quintic equation may be

unsolvable in radicals, but this does not mean that a formula for its roots does not

exist. It may be difficult to find, but not impossible to establish. We demonstrate

that the solution to this equation is a collection of rational and radical numbers,

which is probably why its Galois group cannot have an extension field, thus rendering

it impossible to solve. This conclusion follows from the contributions by Abel and

Ruffini, Ioakimidis and Papadakis, and Dummit.

A theorem Stewart (see [38]; Gallian [23]) exists that states that, if a polynomial

is solvable by radicals, then its Galois group is solvable. The theorem by Abel

and Ruffini proves that the Galois group for the quintic polynomial is not solvable.

Ioakimidis and Papadakis [[15] and [16]] established a formula for determining real

roots from nonlinear equations, and carried out a demonstration on a Lagrange

quintic equation. Dummit [34] proved a theorem which suggests that in the case of

a sextic equation, the real root is essentially a rational number.

We will unpack this argument, draw a distinction syllogistically between radical

numbers and a solvable group, and finally lead to the conclusion.

Radical solutions

Simply put, radical solutions are solutions expressed in radical numbers. These

7



numbers represent a stage in the development of numbers, as people grappled with

equations. We will briefly outline this development from a very simple equation up

to the definition of rational numbers.

1.0.1 The linear equation

Consider the simple function

P1 : x→ a1x+ a0,

with the coefficients a0 and a1 belonging to the set of integers Z. In addition, the set

Z is closed under addition +, subtraction − and multiplication ×; division / is the

only binary operation under which integers are not closed. The root of the equation

P1(x) = 0

is a rational number:

α = −a0

a1

.

This essentially defines a rational number as a any number that can be written in

the form a0/a1.

All rational numbers Q except for zero, 0, on the other hand, are closed under

all four binary operations. Unfortunately, at some point it was realised that the

solutions to equations will not always be rational numbers.

1.0.2 Quadratic equation

Two types of number are introduced in this section, that is, complex and radical

numbers. Consider the quadratic function

P2 : x→ a2x
2 + a1x+ a0.

Note that it is immaterial whether the coefficients are integers or rational numbers;

we can easily change from one system to the other. The equation

P2(x) = 0

8



has the roots

α1 =
−a1 +

√
a2

1 − 4a2a0

2a2

and

α2 =
−a1 −

√
a2

1 − 4a2a0

2a2

.

The roots α1 and α2 are radical numbers n
√
Q, when 4 = a2

1 − 4a2a1 > 0 is not a

perfect square. It is assumed that the reader understands that we chose the symbol
n
√
Q conveniently here to represent the set of radical numbers. It was felt that, as

the other numbers already have symbols assigned to them, we may as well invent

one for radicals.

The roots are complex when 4 < 0. Complex numbers C, are not close under

division.

1.0.3 Cubic equation

The cubic function

P3 : x→ a3x
3 + a2x

2 + a1x+ a0,

also has radical numbers in its zeros. In addition to radicals in
√

or 1/2, we now

have them in the order of 1/3. One of the three zeros is

α1 = − b
3
− 21/3(−b2 + 3c)

3(−2b3 + 9bc+
√
4(−b2 + 3c)3 + (−2b3 + 9bc− 27d)2 − 27d)1/3

+
(−2b3 + 9bc+

√
4(−b2 + 3c)3 + (−2b3 + 9bc− 27d)2 − 27d)1/3

3 21/3
.

1.0.4 Quartic equation

The quartic function

P4 : x→ a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

9



also has radical numbers as its roots. That is,

α1 = −1

2

√√√√√√ 4× 21/3a5(
27a2

4 +
√

729a4
4 − 6912a3

5

)1/3
+

(
27a2

4 +
√

729a4
4 − 6912a3

5

)1/3

3× 21/3

− 1

2

√√√√√√− 4× 21/3a5(
27a2

4 +
√

729a4
4 − 6912a3

5

)1/3
−

(
27a2

4 +
√

729a4
4 − 6912a3

5

)1/3

3× 21/3
+ ξ,

where

ξ =
−a5

−1
2

√
4×21/3a5(

27a24+
√

729a44−6912a35

)1/3 +

(
27a24+
√

729a44−6912a35

)1/3

3×21/3

.

1.0.5 Quintic equation

The quintic function

P5 : x→ a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,

on the other hand, is said not to have any radical roots; its roots are simply algebraic.

Algebraic numbers are those numbers that are solutions to polynomial with rational

coefficients.

This leads to the theorem 1.1.

Theorem 1.1 Every radical number is algebraic.

The converse, however, is not true: not every algebraic number is radical. However

this does not mean all real numbers R are algebraic. The gap is filled by what are

called transcendental numbers.

This concludes our discussion on the types of number that would emerge from the

formula, when found. A problem that will arise when this formula is found is what

types of number follow from it.

10



1.1 Solvable groups

In the event that the quintic equation has no radical roots, it will have algebraic

roots, which is what the contraposition of theorem 1.1 suggests. The Galois group

associated with this equation will then be solvable over algebraic numbers.

Let us now hypothesise and assume that a formula does exist for solving the quintic

equation and that the roots are to be found in the set

A = {Z, n
√

Q},

naturally excluding transcendental numbers and some rational numbers. That is,

let one or more of the roots be an integer, Z, and the rest be radicals, n
√
Q. The

Galois group associated with the quintic in question will then not be solvable in

Z. This is because the splitting will be mixed, with some factors falling outside the

designated area. It is also not solvable in n
√
Q, and for the same reason, however

it should be solvable over A, which is impossible, as the building blocks of abstract

algebra do not allow it.

In this section, we will trace the Abel-Ruffini theorem (see Pesic [7]) from the basic

group definition to the Galois group. The aim will be to explore the definitions

and theorems, examining what they have to say on number systems like integers,

rational numbers and other known systems. In particular, we turn our attention to

whether mixed sets like A are supported.

Definition 1.1 Group

A non-empty set G with a binary operation ◦ is called a group if all its elements

a1, · · · , an satisfy the following properties:

1. Closure. If ai, aj ∈ G, then

ai ◦ aj = ak ∈ G.

2. Identity. There exists a unique element a0 ∈ G such that

ai ◦ a0 = a0 ◦ ai = ai.

11



The element a0 is an identity in G.

3. Inverses. For every ai ∈ G, there exists a−i ∈ G, such that

ai ◦ a−i = a−i ◦ ai = a0.

The element a−i is the inverse of ai.

4. Associativity. For all elements ai, aj and ak in G, we have

(ai ◦ aj) ◦ ak = ai ◦ (aj ◦ ak).

This is called the associative property.

A group is said to be Abelian if the elements commute. That is,

ai ◦ aj = aj ◦ ai.

Definition 1.2 Subgroup

A subset of G, that is, H ⊂ G is its subgroup if it is itself a group under the operation

of G. In notation form, we say

H ≤ G.

Definition 1.3 Cyclic subgroup

The set < a >= {an|n ∈ Z} is called a cyclic subgroup of G if < a >≤ G.

Definition 1.4 Centre of group

The set Z(G) ⊂ G is the called the centre of G if it commutes with all elements of

G.

Definition 1.5 Permutation

A permutation is a function that maps a set, say A, onto itself.

This will come in handy in chapter 4, when we test our formula for the Bring-Jerrard

quinctic equation.

12



Theorem 1.2 Product of disjoint cycles

Every permutation of a finite set can be written as a cycle or as a product of cycles

[23] page 89 .

Theorem 1.3 Cayley’s Theorem (see Gallian [23])

Every group is isomorphic to a group of permutations.

Definition 1.6 Solvable group

A group G is solvable if there exist normal subgroups G0, G1, ..., Gk such that

G0 ≤ G1 ≤ ... ≤ Gk = G,

where G0 is the identity of the group only.

Example 1.1 The set of integers Z is a group under addition. It is abelian, but they

are not a group under multiplication. This is because not all integers have inverses.

The integer 2, for example, has 1/2 as its inverse, but 1/2 is not an integer.

Example 1.2 The set of rational numbers Q is an abelian group under addition.

Example 1.3 The set of real numbers R is an abelian group under addition.

Example 1.4 The set of complex numbers C is an abelian group under addition.

Example 1.5 Non-zero radicals form an abelian group under multiplication.

Example 1.6 The set A, introduced earlier, is a group under addition, but not

under multiplication. The number 9, for example, has 1/9 as its inverse, but this

inverse is neither an integer nor a proper radical number and hence not in A.

1.1.1 Rings and fields

Definition 1.7 Ring (see Dummit and Foote [34] page 225)

(1) A ring R is a set together with two binary operations + and × (called addition

multiplication) satisfying the following axioms:

13



(i) (R,+) is an abelian group,

(ii) × is associative (a× b)× c = a× (b× c), for all a, b, c ∈ R

(iii) The distributive laws holds in R: for all a, b, c ∈ R

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).

(2) The ring R is commutative if Multiplication is commutative

(3) The ring R is said to have an identity (or contain a 1) if there is an element

1 ∈ R with

1× a = a× 1 = a for all a ∈ R

Definition 1.8 Subring

A subset of S, that is, S ⊂ R is its subring if it is itself a ring under the operations

of R. In notation form, we say

S ≤ R.

Example 1.7 The set integers Z is a ring.

Example 1.8 The set of rational numbers Q is a ring.

Example 1.9 The set of real numbers R is a ring.

Example 1.10 The set of complex numbers C is a ring.

Example 1.11 The set of radical numbers n
√
Q is a ring.

Example 1.12 The set A, introduced earlier, is not a ring because it is not a group

under addition.

14



1.1.2 Integral domains

Definition 1.9 Zero-divisors

An element a in a commutative ring R is called a zero-divisor if there is a nonzero

element b in R such that ab = 0.

Definition 1.10 Integral domain

A commutative ring with a unity is said to be an integral domain if it has non-zero-

divisors.

Example 1.13 The set of integers Z is not an integral domain, because it is not

closed under division.

Example 1.14 The set of rational numbers Q is an integral domain.

Example 1.15 The set of real numbers R is an integral domain.

Example 1.16 The set of complex numbers C is an integral domain.

Example 1.17 The set of radical numbers n
√
Q is an integral domain.

Example 1.18 The set A, introduced earlier, is not an integral domain as it is not

a group under addition, and also because its integers are not closed under division.

1.1.3 Fields

Definition 1.11 Field

A field is a commutative ring with a unity and multiplicicative inverses for nonzero

elements.

The set of rational numbers qualifies as a field because it is closed under the four

rational operations, namely addition, multiplication, subtraction and division. The

set of integers on the other hand, is not a field because all the nonzero integers are

not closed under division.
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Definition 1.12 Extension Field

A field E is called an extension of a field F , if it is contained in F , and shares the

same operations.

Definition 1.13 Splitting field

If E is an extension field of F and f(x) is a polynomial in F (x), then we say f(x)

splits in E if it can be factored into a product of linear factors in E(x).

1.1.4 Polynomial rings

Definition 1.14 Polynomial ring

A polynomial ring over R is that commutative ring whose elements are polynomials

with the coefficients in R. That is, p(x) ∈ R(x) means

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0,

with ai ∈ R for i = 1, 2, ..., n.

Definition 1.15 Irreducible polynomial

A polynomial f(x) from the polynomial ring R(x) is said to be irreducible over D,

an integral domain, if f(x) = g(x)h(x) means either g(x) or h(x) is a unit in R(x).

Definition 1.16 . Solvable polynomial

A polynomial f(x) in a polynomial ring R(x), is said to be solvable by radicals over

the integral domain F if there exist some positive integers k1, ..., kn such that akii ∈ F

and f(x) splits in F (see Gallian [23] page 503).

Example 1.19 The set of integers Z is not a field, because it has no units.

Example 1.20 The set of rational numbers Q is a field.

Example 1.21 The set of real numbers R is a field.

Example 1.22 The set of complex numbers C is a field.
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Example 1.23 The set of radical numbers n
√
Q is a field.

Example 1.24 The set A, introduced earlier, is not a field as it is not a group

under addition, and also because its integers have no units.

1.1.5 Solvability

Theorem 1.4 Solvable by radicals

If f(x) is solvable by radicals over a field F , then the Galois group G(E/F ) is

solvable. (see Gallian [23])

We will now discuss a few examples to shed light on the fact that the converse of

this theorem is not necessarily true.

The quadratic equation

Let f(x) be a quadratic polynomial in the polynomial ring D(x) over the integral

domain F . That is,

f(x) = a1x
2 + a2x+ a3,

where ai ∈ F with i = 1, 2, 3. Also let α1 and α2 be the solutions for f(x) = 0.

Therefore

Eα = {α1, α2}

is in the extension E of F . However a formula for these elements does exist. These

are solutions to the quadratic equation are in radical form. Can we then conclude

that the Galois group arising from this is solvable? Not quite!

Solvability over a field of integers Z

Suppose the integral domain F is a field of integers Z. This means that if E is an

extension of F , then it should also be constituted by integers. The set Eα will not

be a subset of E when

a2
2 − 4a1a3 < 0.
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Therefore, the Galois group G(F/Z) will not be solvable for integers satisfying this

condition.

Solvability over a field of rational numbers Q

Suppose the integral domain F is a field of rational numbers Q. This means if E is

an extension of F , then it should also be constituted by rational numbers. The set

Eα will not be a subset of E when

a2
2 − 4a1a3 =

√
2.

Therefore, the Galois group G(F/Q) will not be solvable if Eα ⊂ E.

Solvability over a field of real numbers R

Suppose the integral domain F is a field of real numbers R. This means that if E is

an extension of F , then it should also be constituted by real numbers. The set Eα

will not be a subset of E when

a2
2 − 4a1a3 < 0.

Therefore, the Galois group G(F/R) will not be solvable if Eα ⊂ E.

The cubic equation

Let f(x) be a cubic polynomial in the polynomial ring D(x) over the integral domain

F . That is,

f(x) = a1x
3 + a2x

2 + a3x+ a4, (1.1.1)

where ai ∈ F with i = 1, 2, 3, 4. Also let α1, α2 and α3 be the solutions for f(x) = 0.

Therefore

E = {α1, α2, α3}

is in the extension of F . However a formula for these elements does exist. One such

formula is the one for the cubic equation in radical form. Can we then conclude

that the Galois group arising from this, is solvable? Not quite!
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Solvability over a field of real numbers with a complex extension

Suppose the integral domain F is a field of real numbers, then the extension E will

not necessarily be in F . this is the case when

4(−b2 + 3c)3 + (−2b3 + 9bc− 27d)2 < 0.

Therefore, the converse of the solvability theorem is not generally true for quadratics,

as it does not generally follow that the Galois group G(E/F ) is solvable when

f(x) = 0 is solvable by radicals over a field F .

That is, it does not follow that if f(x) = 0 is not solvable over some integral domain

F , then it is not solvable by radicals.

Solvability over a field of integers with an irrational extension

Suppose the integral domain F is a field of integers, then the extension E will not

necessarily be in F . This is the case when

4(−b2 + 3c)3 + (−2b3 + 9bc− 27d)2 = 2.

It is possible to have the parameters a1, a2 and a3 assuming integer values, resulting

in α1 and α2 being irrational.

Again, the converse of the solvability theorem does not hold

The quartic equation

Let f(x) be a cubic polynomial in the polynomial ring D(x) over the integral domain

F . That is,

f(x) = a1x
4 + a3x

2 + a2x+ a4x+ a5,

where ai ∈ F with i = 1, 2, 3, 4, 5. Also let α1, α2, α3 and α4 be the solutions for

f(x) = 0. Therefore

E = {α1, α2, α3, α4}

is in the extension of F . However a formula for these elements does exist.
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This is the one for the quartic equation in radical form. Can we then conclude that

the Galois group arising from this is solvable? Not quite!

Solvability over a field of real numbers with a complex extension

Suppose the integral domain F is a field of real numbers, then the extension E

will not necessarily be in F . In the case of the quartic equation, the roots can

discriminated with

729a4
4 − 6912a3

5 < 0.

Therefore, the converse of the solvability theorem is not generally true for quartics.

It does not generally follow that the Galois group G(E/F ) is solvable when f(x) = 0

is solvable by radicals over a field F .

That is, it does not follow that if f(x) = 0 is not solvable over some integral domain

F , then it is not solvable by radicals.

Solvability over a field of integers with an irrational extension

Suppose the integral domain F is a field of integers, then the extension E will not

necessarily be in F . This is the case when

729a4
4 − 6912a3

5 = 2.

It is possible to have the parameters a1, a2 and a3 assuming integer values, resulting

in α1 and α2 being irrational. Again, the converse of the solvability theorem does

not hold.

1.2 Solvability by radicals

1.2.1 The Galois group

What the theorem proves, stems from the converse of a theorem which states that

if a polynomial is solvable in radicals, then its Galois group is solvable (see Gallian
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[23] and Stewart[38]). To understand what this means, we have to know what a

Galois group is.

Definition 1.17 Galois group

According to Gallian [23], if we let E be an extension field of the field F , then an

automorphism of E is a ring isomorphism from E to E. The automorphism group

of E fixing F , Gal(E/F ), is the set of all automorphisms of E called the Galois

group and takes every element of F to itself.

According Ioakimidis and Papadakis [15] a quintic equation has at least one real

root. Since this real root is not transcendental, it therefore possible to choose

rational parameters of the equation, such that the real root becomes an integer.

When that is the case, then we have the roots contained in the set A. Since this set,

as has been demonstrated many times in this chapter, is not a field, ring or group,

there is no way that an automorphism group of E fixing F can exist. Hence, the

Galois group Gal(E/F ) can never exist.

There is, therefore, nothing to prove or disprove, because E, F and Gal(E/F ) will

just be sets without any firm algebraic structure. We will determine the formula for

these in the next chapter.

There seems to be a pattern that could be followed in choosing a form to use in

solving polynomials above the order of the quadratic. This flows from the work

of del Ferro (1465–1526), Tartaglia (1500–1557) and Ferrari (1522–1565) in their

approach to the cubic and quartic equations. The form used for the cubic was

r3 −K − L = 0,

while the quartic required

r4 −K − L = 0.

Inductively, one could have then expected Abel to have opted for

r5 −K − L = 0, (1.2.1)
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but he chose

r5 − p5
0 − p5

1K − p5
2K

2 − p5
3K

3 − p5
4K

4 = 0

instead. Fortunately, this form can be reduced to (1.2.1). To achieve this, we

reintroduce Abel’s expression with different symbols for the parameters:

r5 − q5
0 − q5

1L− q5
2L

2 − q5
3L

3 − q5
4L

4 = 0,

After numerous experiment we then let

p5
0 + p5

2K
2 + p5

3K
3 + p5

4K
4 + q5

0 + q2L
2 + q5

3L
3 + q5

4L
4 = 0

which lead us to the correct solution with p1 = q1 = 2. Having retrieved continuity,

we proceed with the task of converting (1.2.1) into a differential equation. Hence,

the polynomial is raised to the fifth algebraic order. That is,

(
r −K1/5 − L1/5

)5
= 0,

so that

r5 − 5ρr2 + 5ρ2r − (K + L) = 0 (1.2.2)

for some parameter ρ determined by K and L. Equating this equation to (0.2) leads

to a contradiction: we get two disagreeing values for ρ. In one instance we have

ρ = 0 in the other ρ =
√
b/5. This is clearly a contradiction. Nevertheless, we were

able to overcome it using Newton’s identities and Tschirnhaus’ transformations. As

already mentioned, this came at a cost. The resulting formula is messy.

Just so that (1.2.2) can resemble (0.2), we opt for the old parameters, b and c, and

introduce a for the new term:

r5 + ar2 + br + c = 0. (1.2.3)
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1.2.2 Solvability by radicals and rationals

The conclusion we draw from this chapter is that the quintic equation is not solvable

by radicals because its extension field is not truly a field. This set is of the type

A. The rational number among the roots can be traced to the work by Abel [7],

Ioakimidis and Papadakis [16], and Dummit[24].

It was Abel [7], however, who introduced the theorem.

Theorem 1.5 Let R(x, y) be a rational function of x and y, i.e. a polynomial

divided by another polynomial, and consider y as an algebraic function y(x) of x,

i.e. as a root of a the polynomial equation f(x, y) = 0. Take the sum of all the

integrals
∫
R(x, y(x))dx computed over an interval (a real curve on the algebraic

curve f) starting at some special point and ending at (xi(t), yi(t)). Then this sum,

as a function of the parameter t, is the sum of a rational function in t, and a

logarithm of another such rational function in t.

According to Ioakimidis and Papadakis [16], the Lagrange quintic equation, a fifth-

order equation appearing in a stationary solution of the three-body problem in

celestial mechanics, has one positive root.

Their results followed from studying transcendental functions. The number could

not have been transcendental because it is algebraic, but it was not clear whether it

was rational. This matter has been cleared up by Dummit [34] in the proof of the

theorem.

Theorem 1.6 The irreducible quintic

f(x) = x5 + px3 + qx2 + rx+ s ∈ Q[x]

is solvable by radicals if and only if the sextic

x6+8ax5+40a2x4+160a3x3+400a4x2+(512a5−3125b4)x+(256a6−9375ab4) = 0

has a rational root. If this is the case, the sextic factors into the product of a linear

polynomial (x− θ) and an irreducible quintic g(x).
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It may not be clear from Dummit’s proof that g(x) = f(x). But the argument in

support of a real root for the quintic, can also be extended to the sextic. The real

root in the quintic cannot therefore differ from the one in Dummit’s theorem. The

real root is hence rational. It is true then that the quintic cannot be solved. One

reason for this is that the extension set cannot truly be a field. The formula for

the roots, when found, should generate rational and radical numbers as roots and

as solutions for the quintic. Thais is carried out in the next chapter.

24



Chapter 2

The solution by radicals

In the previous chapter it was demonstrated that the fact that the Galois group for

the Bring-Jerrard quintic equation is unsolvable does not mean it cannot be solved

in radicals. This chapter discusses the determination of the formula. There has been

attempts by others in the past, and were not successful. To avoid the challenges

most encountered, we subject the equation to a bit of mathematical rigor. The cubic

is used to demonstrate the approach.

This chapter is predominantly focused on Newton sums, which we use to solve

the Bring-Jerrard quintic equation. However before we can do so, we first have to

present the equation in a form suitable for manipulations through these identities.

This format is similar to that which the Italians deduced for cubics and quartics.

2.1 Differential forms

According to H Flanders, differential forms are the things found under integral signs.

We will use these forms to find a suitable for the that Tschirnhaus transformations

that can be used to solve the quintic equation.

According to Olver [39] the differential forms can be defined as a smooth map

F : M → N between manifolds will map smooth curves on M to smooth curves

on N , and thus induce a map between their vectors. The result is a linear map
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dF : TM |x → TNF (x) between the tangent spaces of the two manifolds, called the

differential of F . More specifically, if the parametrized curve φ(t) has a tangent

vector v|x = φ′(t) at x = φ(t), then the image curve ψ(t) = F [φ(t)] will have a

tangent vector w|y = dF (v|x) = ψ′(t) at the image point y = F (x). Alternatively,

if we regard tangent vectors as derivations, then we can define the differential by

chain rule formula

dF (v|x)[h(y)] = v[h ◦ F (x)] for any h : N → R.

In terms of local coordinates,

dF (v|x) = dF
( m∑
i=1

ξi
∂

∂xi

)
=

n∑
i=1

( m∑
i=1

ξi
∂F j

∂xi

) ∂

∂yj
.

The algebra of forms

Forms can be added:

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3.

The commutation rule takes the form

ω1 ∧ ω2 = (−1)abω2 ∧ ω1,

where a is the rank of ω1 and b that of ω1. The wedge product is totally antisym-

metric. That is,

dx1 ∧ dx2 ∧ dx3 ∧ ... =
∑
π

(−1)ππ
(
dx1 ⊗ dx2 ⊗ dx3 ⊗ ...

)
The symbol π represents a permutation of the dxi.

The calculus of forms

The exterior derivative d is a map from p−forms to (p+ 1)−forms. If

φ = φ0dx
1 ∧ dx2 ∧ dx3 ∧ ...,
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then

dφ = (dφ0)dx
1 ∧ dx2 ∧ dx3 ∧ ....

Differentiation is linear. That is,

d(φ+ ψ) = dφ+ dψ.

Leibniz rule:

d(φ ∧ ψ) = dφ ∧ ψ + (−1)aφ ∧ dψ,

where a is the rank of φ. Closure:

d(dφ) = 0.

To apply these to the quintic equation, we first assume a solution of the form

y = K1/5 + L1/5 +M1/5.

To convert this algebraic equation into a differential form, we first have to convert

it into a differential equation. For that, we introduce a function

Y = f(z).

In general, the function f : Rn → Rm is continuously differentiable in some open

convex set D ⊂ Rn. The functions f(z) are at least five times continuously differ-

entiable. In this contribution, we consider the case

z = (y, λ) ∈ D,

with
∂Y

∂λ
= K1/5 + L1/5 +M1/5.

Next, we introduce a differential 1-form ω such that

ω = −dY + ξdy + ηdλ.

27



Here the quantity (Y, y, λ) constitutes a point in M , a differential manifold with

a tangent vector space TM |(Y,y,λ) at that point. The 1-form ω, then, is simply a

smooth valued function

ω : TM |(Y,y,λ) → R.

The parameters ξ and η are new dependent variables. Sectioning gives

ω = −
(
∂Y

∂y
dy +

∂Y

∂λ
dλ

)
+ ξdy + ηdλ.

That is,

ω =

(
ξ − ∂Y

∂y

)
dy +

(
η − ∂Y

∂λ

)
dλ.

Annulling this defines ξ and η as

ξ =
∂Y

∂y
, η =

∂Y

∂λ
.

N.B.The purpose of annulling is to eliminate the risk for logical mistakes. For

example, suppose some function f(x) is given by

f(x) = ax+ b.

If it also known that the same function can be expressed as

f(x) = ξx+ η,

then is easy to deduce that ξ = a and η = b. But a complicated expression like the

one under investigation, is not as trivial. It also serves to conserve consistency in

dimensions, see Buckingham Pi-theorem in Bluman and Stephen [40]. Besides, the

solution to this equation has eluded some of the greatest mathematicians over the

centuries, including Cauchy, Newton, Galois, Ruffini, Lagrange and others. So, we

were bound to repeat their mistakes if we had chosen to follow in their foot steps

verbatimly.

Now to continue, it follows that

dω = dξ ∧ dy + dη ∧ dλ.
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Sectioning gives

dω =

(
∂ξ

∂y
dy +

∂ξ

∂λ
dλ

)
∧ dy +

(
∂η

∂y
dy +

∂η

∂λ
dλ

)
∧ dλ.

That is,

dω =
∂ξ

∂y
dy ∧ dy + ∂η

∂λ
dλ ∧ dλ+

∂ξ

∂λ
dλ ∧ dy + ∂η

∂y
dy ∧ dλ.

Since dy ∧ dy = dλ ∧ dλ = 0 and dy ∧ dλ = −dλ ∧ dy, then

dω =

(
∂ξ

∂λ
− ∂η

∂y

)
dy ∧ dλ.

Hence,
∂ξ

∂λ
=
∂η

∂y
.

These are the tools that are going to be useful for simplifying

(
−K1/5 − L1/5 −M1/5 + y

)5
= 0. (2.1.1)

When you convert the polynomial using the transformation we adopted, we end

up with a differential equation hence the derivative ∂Y
∂λ

. The reason for seeking a

differential equation is so that we could use differential forms. The differential forms

is a more secure approach for obtaining a fault free solution to the polynomial.

In expanded form, with y(i) = ∂iY /∂λi, i = 1, 2, 3, 4, 5, this equation (2.1.1) assumes

the form
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−K − 5K4/5L1/5 − 10K3/5L2/5 − 10K2/5L3/5

−5K1/5L4/5 − L− 5K4/5M1/5 − 20K3/5L1/5M1/5 − 30K2/5L2/5M1/5

−20K1/5L3/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 30K2/5L1/5

M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5 − 20K1/5L1/5M3/5

−10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + (5K4/5 + 20K3/5L1/5

+30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5 + 60K2/5L1/5M1/5

+60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 60K1/5L1/5M2/5

+30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5)
∂Y

∂λ

+(−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5 − 30K2/5M1/5

−60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5

+20K1/5M1/5 + 20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
+ (−5K1/5 − 5L1/5

−5M1/5)
∂4Y

∂λ4
+
∂5Y

∂λ5
= 0. (2.1.2)
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The fourth order partial derivative, ∂4Y /∂λ4, follows from

(
−K1/5 − L1/5 −M1/5 + y

)4
= 0,

the third order partial derivative, ∂3Y /∂λ3, from

(
−K1/5 − L1/5 −M1/5 + y

)3
= 0

and the second order partial derivative, ∂2Y /∂λ2, from

(
−K1/5 − L1/5 −M1/5 + y

)2
= 0.

We can eliminate the derivative ∂4Y /∂λ4 from the equation (2.1.2) we end with:

−K − 5K4/5L1/5 − 10K3/5L2/5 − 10K2/5L3/5 − 5K1/5L4/5 − L− 5K4/5M1/5

−20K3/5L1/5M1/5 − 30K2/5L2/5M1/5 − 20K1/5L3/5M1/5 − 5L4/5M1/5 −

10K3/5M2/5 − 30K2/5L1/5M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 20K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5

−M + (5K4/5 + 20K3/5L1/5 + 30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5

+60K2/5L1/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5)
∂Y

∂λ
+ (−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5

−10L3/5 − 30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5

−30L1/5M2/5 − 10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5

+20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
= 0. (2.1.3)

The products (KL)1/5, (KM)1/5 and (ML)1/5 occur quite frequently in the equation
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(2.1.3), so we set them to ρKL, ρKM and ρLM , respectively. Hence,

−K − 10K3/5L2/5 − 10K2/5L3/5 − 5K1/5L4/5 − L− 5K4/5M1/5

−20K3/5L1/5M1/5 − 30K2/5L2/5M1/5 − 20K1/5L3/5M1/5 − 5L4/5M1/5

−10K3/5M2/5 − 30K2/5L1/5M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 20K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5

−M + (5K4/5 + 20K3/5L1/5 + 30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5

+60K2/5L1/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5)
∂Y

∂λ
+ (−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5

−30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5

+10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl = 0. (2.1.4)

In the above equation (2.1.4) substituting (−nK1/n−nL1/n−nM1/n) with −ny

and n = 5, we have the following equation:

−K − 10K2/5L3/5 − 5K1/5L4/5 − L− 5K4/5M1/5 − 20K3/5L1/5M1/5

−30K2/5L2/5M1/5 − 20K1/5L3/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5

−30K2/5L1/5M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5

−20K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5

−M + (5K4/5 + 20K3/5L1/5 + 30K2/5L2/5 + 20K1/5L3/5 + 5L4/5

+20K3/5M1/5 + 60K2/5L1/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5

+30K2/5M2/5 + 60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5)
∂Y

∂λ
+ (−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5

−30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5

+20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl− 10K1/5ρkl2 = 0. (2.1.5)
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Replacing K4/nL1/n from the equation (2.1.5) with K3/n ρkl and n = 5, we

get the following equation:

−K − 5K1/5L4/5 − L− 5K4/5M1/5 − 20K3/5L1/5M1/5 − 30K2/5L2/5M1/5

−20K1/5L3/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 30K2/5L1/5M2/5

−30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5 − 20K1/5L1/5M3/5

−10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + (5K4/5 + 20K3/5L1/5

+30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5 + 60K2/5L1/5M1/5

+60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 60K1/5L1/5M2/5

+30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5)
∂Y

∂λ

+(−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5 − 30K2/5M1/5

−60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5

+20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl

−10K1/5ρkl2 − 10L1/5ρkl2 = 0. (2.1.6)

Replacing K3/nL2/n in the equation (2.1.6) with K1/nρkl2 and n = 5, we end

with the following equation:

−K − L− 5K4/5M1/5 − 20K3/5L1/5M1/5 − 30K2/5L2/5M1/5

−20K1/5L3/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 30K2/5L1/5M2/5

−30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5 − 20K1/5L1/5M3/5

−10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + (5K4/5 + 20K3/5L1/5

+30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5 + 60K2/5L1/5M1/5

+60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 60K1/5L1/5M2/5

+30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5)
∂Y

∂λ
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+(−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5

−30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5

+10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl− 5L3/5ρkl

−10K1/5ρkl2 − 10L1/5ρkl2 = 0. (2.1.7)

If we set K2/nL3/n for L1/nρkl2 in the equation (2.1.7) and n = 5, we end with the

following equation:

−K − L− 5K4/5M1/5 − 30K2/5L2/5M1/5 − 20K1/5L3/5M1/5 − 5L4/5M1/5

−10K3/5M2/5 − 30K2/5L1/5M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 20K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5

−M + (−10K3/5 − 30K2/5L1/5 − 30K1/5L2/5 − 10L3/5 − 30K2/5M1/5

−60K1/5L1/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5

−10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5 + 10L2/5

+20K1/5M1/5 + 20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl− 5L3/5ρkl

−20K2/5M1/5ρkl− 10K1/5ρkl2 − 10L1/5ρkl2 +
∂Y

∂λ
(5K4/5

+30K2/5L2/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5 + 60K2/5L1/5M1/5

+60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 60K1/5L1/5M2/5

+30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5 + 20K2/5ρkl) = 0. (2.1.8)

Placing K1/nL4/n for L3/nρkl in the equation (2.1.8) and n = 5, we achieve the

following equation:
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−K − L− 5K4/5M1/5 − 20K1/5L3/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5

−30K2/5L1/5M2/5 − 30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5

−20K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + (−10K3/5

−30K2/5L1/5 − 30K1/5L2/5 − 10L3/5 − 30K2/5M1/5 − 60K1/5L1/5M1/5

−30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5)
∂2Y

∂λ2

+(10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5

+10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl− 5L3/5ρkl− 20K2/5M1/5ρkl− 10K1/5ρkl2

−10L1/5ρkl2 − 30M1/5ρkl2 +
∂Y

∂λ
(5K4/5 + 20K1/5L3/5 + 5L4/5 + 20K3/5M1/5

+60K2/5L1/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5

+20K2/5ρkl+ 30ρkl2) = 0. (2.1.9)

If we exchange K3/nL1/n for K2/nρkl in the equation (2.1.9) and n = 5, we result

obtain the following:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 30K2/5L1/5M2/5

−30K1/5L2/5M2/5 − 10L3/5M2/5 − 10K2/5M3/5 − 20K1/5L1/5M3/5

−10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + (−10K3/5 − 30K2/5L1/5

−30K1/5L2/5 − 10L3/5 − 30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5)
∂2Y

∂λ2
+ (10K2/5 + 20K1/5L1/5

+10L2/5 + 20K1/5M1/5 + 20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5

−5K3/5ρkl− 5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl
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−10K1/5ρkl2 − 10L1/5ρkl2 − 30M1/5ρkl2 +
∂Y

∂λ
(5K4/5

+5L4/5 + 20K3/5M1/5 + 60K2/5L1/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5

+30K2/5M2/5 + 60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5

+20L1/5M3/5 + 5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 30ρkl2) = 0. (2.1.10)

If we put K1/nL3/n for L2/nρkl in the above eqation (2.1.10) and n = 5, we get the

following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 30K1/5L2/5M2/5

−10L3/5M2/5 − 10K2/5M3/5 − 20K1/5L1/5M3/5 − 10L2/5M3/5

−5K1/5M4/5 − 5L1/5M4/5 −M + (10K2/5 + 20K1/5L1/5 + 10L2/5

+20K1/5M1/5 + 20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3
− 4

∂5Y

∂λ5
− 5K3/5ρkl

−5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl− 30K1/5M2/5ρkl

−10K1/5ρkl2 − 10L1/5ρkl2 − 30M1/5ρkl2 +
∂2Y

∂λ2
(−10K3/5

−30K1/5L2/5 − 10L3/5 − 30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl) +
∂Y

∂λ
(5K4/5

+5L4/5 + 20K3/5M1/5 + 60K1/5L2/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5

+20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl+ 30ρkl2) = 0. (2.1.11)

If we set K2/nL1/n for K1/nρkl in the equation (2.1.11) and n = 5, the outcome is

the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/520K1/5L1/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M

+(10K2/5 + 20K1/5L1/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5 + 10M2/5)
∂3Y

∂λ3

−4∂
5Y

∂λ5
− 5K3/5ρkl− 5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl

−30K1/5M2/5ρkl− 30L1/5M2/5ρkl− 10K1/5ρkl2 − 10L1/5ρkl2 − 30M1/5ρkl2

+
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 60K1/5L1/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl)

+
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+60K1/5L1/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5

+20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl

+30ρkl2) = 0. (2.1.12)

If we replace K1/nL2/n with L1/nρkl in the above equation (2.1.12) and n = 5, it

will lead to the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−5K3/5ρkl− 5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl

−30K1/5M2/5ρkl− 30L1/5M2/5ρkl− 20M3/5ρkl− 10K1/5ρkl2

−10L1/5ρkl2 − 30M1/5ρkl2 +
∂3Y

∂λ3
(10K2/5 + 10L2/5 + 20K1/5M1/5

+20L1/5M1/5 + 10M2/5 + 20ρkl) +
∂2Y

∂λ2
(−10K3/5 − 10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5
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−30K1/5ρkl− 30L1/5ρkl− 60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5

+20K3/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5

+20L1/5M3/5 + 5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl

+60L1/5M1/5ρkl+ 60M2/5ρkl+ 30ρkl2) = 0. (2.1.13)

If we exchange K1/nL1/n with ρkl in the equation (2.1.13) and n = 5, we end up

with the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10L3/5M2/5 − 10K2/5M3/5

−10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−20K2/5M1/5ρkl− 20L2/5M1/5ρkl− 30K1/5M2/5ρkl

−30L1/5M2/5ρkl− 20M3/5ρkl− 5(K3/5 − (K1/5 + L1/5 +M1/5)3

+
∂3Y

∂λ3
)ρkl− 10K1/5ρkl2 − 10L1/5ρkl2 − 30M1/5ρkl2 +

∂3Y

∂λ3
(10K2/5

+10L2/5 + 20K1/5M1/5 + 20L1/5M1/5 + 10M2/5 + 20ρkl) +
∂2Y

∂λ2
(−10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5

−10(K3/5 − (K1/5 + L1/5 +M1/5)3 +
∂3Y

∂λ3
)− 30K1/5ρkl− 30L1/5ρkl

−60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20L3/5M1/5

+30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20M1/5(K3/5 − (K1/5 + L1/5 +M1/5)3 +
∂3Y

∂λ3
) + 20K2/5ρkl

+20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl+ 60M2/5ρkl

+30ρkl2) = 0. (2.1.14)

If we substitute y → K(1/5) + L(1/5) +M (1/5), ρkl → (KL)(1/5), ρkm → (KM)(1/5),

ρlm→ (LM)(1/5) and ρ→ (KLM)(1/5), in the the equation (2.1.14) we end up with

the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−5K3/5ρkl− 5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl

−30K1/5M2/5ρkl− 30L1/5M2/5ρkl− 20M3/5ρkl− 20M1/5ρkl2

−10∂Y
∂λ

ρkl2 +
∂3Y

∂λ3
(10K2/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5

+10M2/5 + 20ρkl) +
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl

−60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5

+30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5 + 20K2/5ρkl+ 20L2/5ρkl

+60K1/5M1/5ρkl+ 60L1/5M1/5ρkl+ 60M2/5ρkl+ 30ρkl2) = 0. (2.1.15)

Replacing Kr/n with yr− (K1/n+L1/n+M1/n)r−Kr/n] in the equation (2.1.15)

and n = 5, then simplifying we end up with the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−5L3/5ρkl+ 5(3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5

+6K1/5L1/5M1/5 + 3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5 +M3/5)ρkl

−20K2/5M1/5ρkl− 20L2/5M1/5ρkl− 30K1/5M2/5ρkl− 30L1/5M2/5ρkl

−20M3/5ρkl− 5
∂3Y

∂λ3
ρkl− 20M1/5ρkl2 − 10

∂Y

∂λ
ρkl2

+
∂3Y

∂λ3
(10K2/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5 + 10M2/5
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+20ρkl) +
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl

−60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5 + 20L3/5M1/5

+30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl

+60M2/5ρkl+ 30ρkl2) = 0. (2.1.16)

If we change −10K1/5ρkl2−10L1/5ρkl2 with −10yρkl2+10M1/5ρkl∧2 in the equation

(2.1.16) and n = 5, we get the following:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−5L3/5ρkl+ 5(3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5

+3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5 +M3/5)ρkl− 20K2/5M1/5ρkl

−20L2/5M1/5ρkl− 30K1/5M2/5ρkl− 30L1/5M2/5ρkl− 20M3/5ρkl

−20M1/5ρkl2 +
∂3Y

∂λ3
(10K2/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5

+10M2/5 + 15ρkl) +
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5

−30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl

−30L1/5ρkl− 60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5

+20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl

+60M2/5ρkl+ 20ρkl2) = 0. (2.1.17)

If we replace −5K3/5ρkl with the command −5ρkly∧3 + 5ρklExpandAll[(K1/n +

L1/n+M1/n)∧3−K3/n in the equation (2.1.17) , we end with the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M − 4
∂5Y

∂λ5

−5L3/5ρkl− 20K2/5M1/5ρkl− 20L2/5M1/5ρkl− 30K1/5M2/5ρkl

−30L1/5M2/5ρkl− 20M3/5ρkl− 20M1/5ρkl2

+
∂3Y

∂λ3
(10K2/5 + 10L2/5 + 20K1/5M1/5 + 20L1/5M1/5 + 10M2/5 + 15ρkl)

+5ρkl(L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5

+3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5 +M3/5 + 3K1/5ρkl

+3L1/5ρkl) +
∂2Y

∂λ2
(−10K3/5 − 10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5

−30K1/5ρkl− 30L1/5ρkl− 60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5

+20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl

+60L1/5M1/5ρkl+ 60M2/5ρkl+ 20ρkl2) = 0. (2.1.18)

If we put K2/5L1/5-> K1/5ρkl, K1/5L2/5->L1/5 ρkl in the above (2.1.18), we attain

the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M

+6
∂5Y

∂λ5
− 5K2/5M1/5ρkl+ 30K1/5L1/5M1/5ρkl− 5L2/5M1/5

ρkl− 15K1/5M2/5ρkl− 15L1/5M2/5ρkl− 15M3/5ρkl

+15K1/5ρkl2 + 15L1/5ρkl2 − 20M1/5ρkl2 +
∂3Y

∂λ3
(−20K1/5L1/5 + 15ρkl)
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+
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5

−30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl− 60M1/5ρkl) +
∂Y

∂λ
(5K4/5

+5L4/5 + 20K3/5M1/5 + 20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5

+20K1/5M3/5 + 20L1/5M3/5 + 5M4/5 + 20K2/5ρkl+ 20L2/5ρkl

+60K1/5M1/5ρkl+ 60L1/5M1/5ρkl+ 60M2/5ρkl+ 20ρkl2) = 0. (2.1.19)

If we replace 10K2/5 with 10y2 − 10(K1/n + L1/n +M1/n)2 −K2/n

in the equation (2.1.19) and n = 5, we end with the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + 6
∂5Y

∂λ5

−5K2/5M1/5ρkl+ 30K1/5L1/5M1/5ρkl

−5L2/5M1/5ρkl− 15K1/5M2/5ρkl− 15L1/5M2/5ρkl

−15M3/5ρkl− 35M1/5ρkl2 + 15
∂Y

∂λ
ρkl2

+
∂3Y

∂λ3
(−20K1/5L1/5 + 15ρkl)

+
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl

−60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5

+20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl

+60L1/5M1/5ρkl+ 60M2/5ρkl+ 20ρkl2) = 0. (2.1.20)

If we place 15K1/5ρkl2 + 15L1/5ρkl2->15yρkl2 − 15M1/5ρkl2 in the above equation

(2.1.20) and n = 5, we obtain the equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + 6
∂5Y

∂λ5

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl− 15K1/5M2/5ρkl

−15L1/5M2/5ρkl− 15M3/5ρkl− 5
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 + 15
∂Y

∂λ
ρkl2

+
∂2Y

∂λ2
(−10K3/5 − 10L3/5 − 30K2/5M1/5 − 30L2/5M1/5

−30K1/5M2/5 − 30L1/5M2/5 − 10M3/5 − 30K1/5ρkl− 30L1/5ρkl

−60M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5

+20L3/5M1/5 + 30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5

+5M4/5 + 20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl

+60L1/5M1/5ρkl+ 60M2/5ρkl+ 20ρkl2) = 0. (2.1.21)

If we set K1/5L1/5->ρkl in the equation (2.1.21), we achieve the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + 6
∂5Y

∂λ5

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl− 15K1/5M2/5ρkl− 15L1/5M2/5ρkl

−15M3/5ρkl− 35
∂3Y

∂λ3
ρkl− 5M1/5ρkl2 +

∂2Y

∂λ2
(−10K3/5 − 10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5

−30M1/5ρkl) +
∂Y

∂λ
(5K4/5 + 5L4/5 + 20K3/5M1/5 + 20L3/5M1/5

+30K2/5M2/5 + 30L2/5M2/5 + 20K1/5M3/5 + 20L1/5M3/5 + 5M4/5

+20K2/5ρkl+ 20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl

+60M2/5ρkl+ 35ρkl2) = 0. (2.1.22)

If we put −30K1/5ρ kl− 30L1/5ρkl->− 30yρkl+30M1/5ρkl in the equation (2.1.22)

, we end up with the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + 11
∂5Y

∂λ5

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl− 15K1/5M2/5ρkl− 15L1/5M2/5ρkl

−15M3/5ρkl− 35
∂3Y

∂λ3
ρkl− 5M1/5ρkl2 +

∂2Y

∂λ2
(−10K3/5 − 10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5

−30M1/5ρkl) +
∂Y

∂λ
(−20K3/5L1/5 − 30K2/5L2/5 − 20K1/5L3/5

−60K2/5L1/5M1/5 − 60K1/5L2/5M1/5 − 60K1/5L1/5M2/5 + 20K2/5ρkl

+20L2/5ρkl+ 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl+ 60M2/5ρkl

+35ρkl2) = 0. (2.1.23)

If we substitute 5K4/5 with 5y4 − 5(K1/n + L1/n + M1/n)4 − K4/n] in the above

equation (2.1.23) and n = 5, we achieve the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 − 10K3/5M2/5 − 10L3/5M2/5

−10K2/5M3/5 − 10L2/5M3/5 − 5K1/5M4/5 − 5L1/5M4/5 −M + 11
∂5Y

∂λ5

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl− 15K1/5M2/5ρkl

−15L1/5M2/5ρkl− 15M3/5ρkl− 35
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 +
∂2Y

∂λ2
(−10K3/5 − 10L3/5

−30K2/5M1/5 − 30L2/5M1/5 − 30K1/5M2/5 − 30L1/5M2/5 − 10M3/5

−30M1/5ρkl) +
∂Y

∂λ
(−60K2/5L1/5M1/5

−60K1/5L2/5M1/5 − 60K1/5L1/5M2/5 + 60K1/5M1/5ρkl

+60L1/5M1/5ρkl+ 60M2/5ρkl+ 5ρkl2) = 0. (2.1.24)

If we replace K3/5L1/5->K2/5ρkl, K2/5L2/5->ρkl2 and K1/5L3/5->L2/5ρkl in the

equation (2.1.24), we end up with the following:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 30K2/5L1/5M2/5 + 30K1/5L2/5M2/5

+20K2/5M3/5 + 60K1/5L1/5M3/5 + 20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5

+9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl

−15K1/5M2/5ρkl− 15L1/5M2/5ρkl− 15M3/5ρkl

−5M1/5ρkl2 +
∂2Y

∂λ2
(30K2/5L1/5 + 30K1/5L2/5

+60K1/5L1/5M1/5 − 30M1/5ρkl)

+
∂Y

∂λ
(−60K2/5L1/5M1/5 − 60K1/5L2/5M1/5

−60K1/5L1/5M2/5 + 60K1/5M1/5ρkl+ 60L1/5M1/5ρkl

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.25)

If we replace K3/5 with the command y3 − (K1/n + L1/n +M1/n)3 −K3/n] in the

above equation (2.1.25) and n = 5, we achieve the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 + 30K1/5ρkl

+30L1/5ρkl− 30M1/5ρkl)

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl

+5ρkl2) = 0. (2.1.26)

If we put K2/5L1/5->K1/5ρkl and K1/5L2/5->L1/5ρkl in the above equation (2.1.26),

we end up with the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.27)

If we put 30K1/5ρkl+ 30L1/5ρkl- >30yρkl− 30M1/5ρkl in the equation (2.1.27), we

achieve the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.28)

If we place y → K∧(1/5) + L∧(1/5) + M∧(1/5), ρkl → (KL)∧(1/5), ρkm →

(KM)∧(1/5), ρlm→ (LM)∧(1/5) and ρ→ (KLM)∧(1/5) in the equation (2.1.28),

we end up with the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.29)

If we set (−nK1/n−nL1/n−nM1/n)→ −ny in the equation (2.1.29) and n = 5, we

obtain with the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂2Y

∂λ2
(60K1/5L1/5M1/5

−60M1/5ρkl+ 30
∂Y

∂λ
ρkl)

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) = 0. (2.1.30)

If we substitute K4/nL1/n → K3/n ρkl in the equation (2.1.30) and n = 5, we obtain

the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5 +

60M2/5ρkl+ 5ρkl2) = 0. (2.1.31)

If we replace K3/nL2/n → K1/nρkl∧2 in the equation (2.1.31) and n = 5, we end up

with the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl− 15M3/5ρkl

−5M1/5ρkl2 +
∂2Y

∂λ2
(60K1/5L1/5M1/5

−60M1/5ρkl+ 30
∂Y

∂λ
ρkl)

+
∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.32)

If we put K2/nL3/n → L1/nρkl∧2 in the equation (2.1.32) and n = 5, we obtain with

the following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂2Y

∂λ2
(60K1/5L1/5M1/5

−60M1/5ρkl+ 30
∂Y

∂λ
ρkl)

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) = 0. (2.1.33)

If we set K1/nL4/n → L3/nρkl in the equation (2.1.33) and n = 5, we remain with

the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂2Y

∂λ2
(60K1/5L1/5M1/5

−60M1/5ρkl+ 30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5

M2/5 + 60M2/5ρkl+ 5ρkl2) = 0. (2.1.34)

If we place K3/nL1/n → K2/nρkl in the equation (2.1.34) and n = 5, we end up with

following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.35)

If we set K2/nL2/n → ρkl2 in the equation (2.1.35) and n = 5, we achieve the

following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl) +

∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) = 0. (2.1.36)

If we replace K1/nL3/n → L2/nρkl in the equation (2.1.36) and n = 5, we attain the

following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2

+
∂2Y

∂λ2
(60K1/5L1/5M1/5 − 60M1/5ρkl

+30
∂Y

∂λ
ρkl)

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) = 0. (2.1.37)

If we substitute K2/nL1/n → K1/nρkl into the equation (2.1.37) and n = 5, we

obtain the following g equation

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 20L2/5M3/5 + 25K1/5M4/5

+25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5

−35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 = 0. (2.1.38)

If we place K1/nL2/n → L1/nρkl in the equation (2.1.38) and n = 5, we obtain the

following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 20L2/5M3/5 + 25K1/5M4/5

+25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/535ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 + 5
∂Y

∂λ
ρkl2 = 0. (2.1.39)

If we substitute K1/nL1/n → ρkl in the above equation (2.1.39), we end up with the

following equation:

−K − L− 5L4/5M1/5 + 20K2/5M3/5 + 20L2/5M3/5 + 25K1/5M4/5

+25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 + 5
∂Y

∂λ
ρkl2 − 5K3/5ρkm = 0. (2.1.40)

If we replace y → K∧(1/5) + L∧(1/5) + M∧(1/5), ρkl → (KL)∧(1/5) ρkm →

(KM)∧(1/5), ρlm → (LM)∧(1/5) and ρ → (KLM)(1/5) in the equation (2.1.40),

we obtain the following equation:

−K − L− 5L4/5M1/5 + 20K2/5M3/5 + 20L2/5M3/5 + 25K1/5M4/5

+25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

+45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 − 5K3/5ρkm = 0. (2.1.41)

If we put (−nK1/n − nL1/n − nM1/n) → −ny in the equation (2.1.41) and n = 5,

we end up with the following equation:
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−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M

+
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2

−5K3/5ρkm+ 20M1/5ρkm2 = 0. (2.1.42)

Substituting K4/nM1/n → K3/n ρkm in the equation (2.1.42) and n = 5, we obtain

the following equation:

−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 + 5
∂Y

∂λ
ρkl2 − 5K3/5ρkm

+25M3/5ρkm+ 20M1/5ρkm2 = 0. (2.1.43)

If we put K3/nM2/n → K1/nρkm∧2 in the equation (2.1.43) and n = 5, we reach the

following equation:

−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

+45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 − 5K3/5ρkm+ 25M3/5ρkm+ 20M1/5ρkm2 = 0. (2.1.44)

If we place K2/nM3/n →M1/nρkm∧2 in the equation (2.1.44) and n = 5, we achieve

the following equation:
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−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 − 5K3/5ρkm

+25M3/5ρkm+ 20M1/5ρkm2 = 0. (2.1.45)

If we put K1/nM4/n →M3/nρkm in the equation (2.1.45) and n = 5, we obtain the

following equation:

−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 − 5K3/5ρkm

+25M3/5ρkm+ 20M1/5ρkm2 = 0. (2.1.46)

If we place K3/nM1/n → K2/nρkm in the equation (2.1.46) and n = 5, we get the

following equation:
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−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 − 5K3/5ρkm+ 25M3/5ρkm

−5K1/5ρklρkm+ 20M1/5ρkm2 = 0. (2.1.47)

If we replace K2/nM2/n → ρkm∧2 in the equation (2.1.47) and n = 5, we attain the

following equation:

−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5L2/5M1/5ρkl

+15L1/5M2/5ρkl+ 45M3/5ρkl

+30
∂3Y

∂λ3
ρkl

−5M1/5ρkl2 + 5
∂Y

∂λ
ρkl2 − 5K3/5ρkm

+25M3/5ρkm− 5K1/5ρklρkm

+15M1/5ρklρkm+ 20M1/5ρkm2 = 0. (2.1.48)

If we put K1/nM3/n →M2/nρkm in the equation (2.1.48) and n = 5, we achieve the

following equation:
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−K − L− 5L4/5M1/5 + 20L2/5M3/5 + 25L1/5M4/5 + 9M

+
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5L2/5M1/5ρkl+ 15L1/5M2/5ρkl

+45M3/5ρkl+ 30
∂3Y

∂λ3
ρkl− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 − 5K3/5ρkm

+25M3/5ρkm− 5K1/5ρklρkm+ 15M1/5ρklρkm

+20M1/5ρkm2 = 0. (2.1.49)

If we substitute K2/nM1/n → K1/nρkm into the equation (2.1.49) and n = 5, we get

the following equation:

−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) +
∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm) = 0. (2.1.50)

If we place K1/nM2/n → M1/nρkm in the equation (2.1.50) and n = 5, we get the

following equation:
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−K − L− 5K4/5M1/5 − 5L4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5

−35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl

+60L1/5ρkm) = 0. (2.1.51)

If we place K1/nM1/n → ρkm in the equation (2.1.51) and n = 5, we achieve the

following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5

+20L2/5M3/5 + 25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5

−35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) +

∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm = 0. (2.1.52)

If we put K1/nM1/n → ρkm into the equation (2.1.52) and n = 5, we remain with

the following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5 + 20L2/5M3/5

+25K1/5M4/5 + 25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl− 5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl

+5ρkl2) +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)

−5L3/5ρlm = 0. (2.1.53)
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From the equation (2.1.53) we exchange −nK1/n − nL1/n − nM1/n with −ny and

n = 5, we obtain:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5 + 25K1/5M4/5

+25L1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl

−15M3/5ρkl− 5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)

−5L3/5ρlm+ 20M1/5ρlm2 = 0. (2.1.54)

If we replace L4/nM1/n with L3/n ρlm in the above equation (2.1.54) and n = 5, we

attain the following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5 + 25K1/5M4/5

+9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) +

∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ 25M3/5ρlm

+20M1/5ρlm2 = 0. (2.1.55)

If we put L3/nM2/n for L1/nρlm∧2 in the equation (2.1.55), we reach the following:
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−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5 + 25K1/5M4/5

+9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) +

∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ 25M3/5ρlm

+20M1/5ρlm2 = 0. (2.1.56)

If we substitute L2/nM3/n → M1/n with ρlm∧2 in the equation (2.1.56), we remain

with the following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 60K1/5L1/5M3/5 + 25K1/5M4/5

+9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl

−5L2/5M1/5ρkl+ 15K1/5M2/5ρkl+ 15L1/5M2/5ρkl− 15M3/5ρkl

−5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2)

+
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm

+25M3/5ρlm+ 20M1/5ρlm2 = 0. (2.1.57)

If we swap L1/nM4/n with M3/nρlm in the equation (2.1.57), we result with the

following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 25K1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl− 5L2/5M1/5ρkl

+15K1/5M2/5ρkl+ 15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2

+
∂Y

∂λ
(−60K1/5L1/5M2/5 + 60M2/5ρkl+ 5ρkl2) +

∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ 60K1/5M2/5ρlm

+25M3/5ρlm+ 20M1/5ρlm2 = 0. (2.1.58)
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If we replace L3/nM1/n with L2/nρlm form the above equation (2.1.58), we get the

following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 25K1/5M4/5 + 9M

+
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl+ 15K1/5M2/5ρkl

+15L1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2 +
∂Y

∂λ
(−60K1/5L1/5M2/5

+60M2/5ρkl+ 5ρkl2) +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)

−5L3/5ρlm+ 60K1/5M2/5ρlm+ 25M3/5ρlm− 5L1/5ρklρlm

+20M1/5ρlm2 = 0. (2.1.59)

If we exchange L1/nM3/n for M2/nρlm into the equation (2.1.59), we attain the

following equation:

−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 25K1/5M4/5 + 9M +
∂5Y

∂λ5

+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl+ 15K1/5M2/5ρkl− 15M3/5ρkl

−5M1/5ρkl2 +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)

−5L3/5ρlm+ 60K1/5M2/5ρlm+ 25M3/5ρlm− 5L1/5ρklρlm

+15M1/5ρklρlm+ 20M1/5ρlm2 +
∂Y

∂λ
(60M2/5ρkl+ 5ρkl2

−60K1/5M1/5ρlm) = 0. (2.1.60)

If we usurp L1/nM3/n with M2/nρlm in the equation (2.1.60) , we achieve the fol-

lowing equation:
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−K − L− 5K4/5M1/5 + 20K2/5M3/5 + 25K1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3

(−10M2/5 − 35ρkl)− 5K2/5M1/5ρkl+ 15K1/5M2/5ρkl− 15M3/5ρkl

−5M1/5ρkl2 +
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm

+60K1/5M2/5ρlm+ 25M3/5ρlm− 5L1/5ρklρlm+ 15M1/5ρklρlm

+20M1/5ρlm2 +
∂Y

∂λ
(60M2/5ρkl+ 5ρkl2 − 60K1/5M1/5ρlm) = 0 (2.1.61)

If we set L2/nM1/n as L1/nρlm into the equation (2.1.61), we get the following

equation:

−K − L+ 20K2/5M3/5 + 25K1/5M4/5 + 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)

−5K2/5M1/5ρkl+ 15K1/5M2/5ρkl− 15M3/5ρkl− 5M1/5ρkl2 − 5K3/5ρkm

+
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ 60K1/5M2/5ρlm

+25M3/5ρlm− 5L1/5ρklρlm+ 15M1/5ρklρlm+ 20M1/5ρlm2 +
∂Y

∂λ
(60M2/5ρkl

+5ρkl2 − 60K1/5M1/5ρlm) = 0. (2.1.62)

If we change L1/nM2/n →M1/nρlm into the equation (2.1.62), the remaining equa-

tion is:

−K − L+ 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 15M3/5ρkl− 5M1/5ρkl2

−5K3/5ρkm+ 25M3/5ρkm− 5K1/5ρklρkm+ 15M1/5ρklρkm+ 20M1/5ρkm2

+
∂2Y

∂λ2
(−60M1/5ρkl+ 30

∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ 25M3/5ρlm

−5L1/5ρklρlm+ 15M1/5ρklρlm+ 60M1/5ρkmρlm+ 20M1/5ρlm2

+
∂Y

∂λ
(60M2/5ρkl+ 5ρkl2 − 60ρkmρlm) = 0. (2.1.63)

If we replace L1/nM1/n → ρlm into the equation (2.1.63), the outcome is:
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−K − L+ 9M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−10M2/5 − 35ρkl)− 15M3/5ρkl− 5M1/5ρkl2

−5K3/5ρkm+ (−25(K3/5 + 3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5

+6K1/5L1/5M1/5 + 3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5) + 25
∂3Y

∂λ3
)ρkm

−5K1/5ρklρkm+ 15M1/5ρklρkm+ 20M1/5ρkm2 +
∂2Y

∂λ2
(−60M1/5ρkl

+30
∂Y

∂λ
ρkl+ 60L1/5ρkm)− 5L3/5ρlm+ (−25(K3/5 + 3K2/5L1/5

+3K1/5L2/5 + L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5 + 3L2/5M1/5

+3K1/5M2/5 + 3L1/5M2/5) + 25
∂3Y

∂λ3
)ρlm− 5L1/5ρklρlm+ 15M1/5ρklρlm

+60M1/5ρkmρlm+ 20M1/5ρlm2 +
∂Y

∂λ
(60M2/5ρkl+ 5ρkl2

−60ρkmρlm) = 0 (2.1.64)

If we place K4/nM1/n → K3/n ρkm into the equation (2.1.64), the remaining equa-

tion is:

−K − L+ 9M +
∂5Y

∂λ5
− 15M3/5ρkl− 5M1/5ρkl2 − 5K3/5ρkm− 25(K3/5

+3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5 + 3L2/5M1/5

+3K1/5M2/5 + 3L1/5M2/5)ρkm− 5K1/5ρklρkm+ 15M1/5ρklρkm

+20M1/5ρkm2 +
∂2Y

∂λ2
(−0M1/5ρkl+ 60L1/5ρkm)− 5L3/5ρlm− 25(K3/5

+3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5 + 3L2/5M1/5

+3K1/5M2/5 + 3L1/5M2/5)ρlm− 5L1/5ρklρlm+ 15M1/5ρklρlm

+60M1/5ρkmρlm+ 20M1/5ρlm2 +
∂3Y

∂λ3
(−10M2/5

−5ρkl+ 25ρkm+ 25ρlm) +
∂Y

∂λ
(60M2/5ρkl+ 5ρkl2

−60ρkmρlm) = 0. (2.1.65)

From the equation (2.1.65) we replace the K2/5M3/5 → M1/5 ρkm∧2, K1/5M4/5 →

M3/5 ρkm,
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K2/5M1/5->K1/5ρ km ,K1/5M2/5->M1/5ρkm, and K1/5M1/5->ρkm, we obtain the

following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 15M3/5ρkl− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 − 5K3/5ρkm

−25(K3/5 + 3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5 + 6K1/5L1/5M1/5

+3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5)ρkm+ 15ρρkm− 5K1/5ρklρkm

+20M1/5ρkm2 − 5L3/5ρlm− 25(K3/5 + 3K2/5L1/5 + 3K1/5L2/5 + L3/5

+3K2/5M1/5 + 6K1/5L1/5M1/5 + 3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5)ρlm

+15ρρlm− 5L1/5ρklρlm+ 60M1/5ρkmρlm+ 20M1/5ρlm2 +
∂3Y

∂λ3
(−10M2/5

−5ρkl+ 25ρkm+ 25ρlm) = 0. (2.1.66)

If we replace 25M3/5 with 25y∧3−25(K1/n+L1/n+M1/n)∧3−M3/n into the equation

(2.1.66), we get to the following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 15M2/5ρ− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 − 5(−3K2/5L1/5

−3K1/5L2/5 − L3/5 − 3K2/5M1/5 − 6K1/5L1/5M1/5 − 3L2/5M1/5 − 3K1/5M2/5

−3L1/5M2/5 −M3/5 +
∂3Y

∂λ3
)ρkm+ 15ρρkm− 5K1/5ρklρkm+ 20M1/5ρkm2

−5L3/5ρlm+ 15ρρlm− 5L1/5ρklρlm+ 60M1/5ρkmρlm+ 20M1/5ρlm2

+
∂3Y

∂λ3
(−10M2/5 − 5ρkl+ 25ρkm+ 25ρlm)− 25ρkm(−3K2/5L1/5 − 3K1/5L2/5

−3K2/5M1/5 − 6K1/5L1/5M1/5 − 3L2/5M1/5 − 3K1/5M2/5 − 3L1/5M2/5 −M3/5

+
∂3Y

∂λ3
+ 6ρ+ 3K1/5ρkl+ 3L1/5ρkl+ 3K1/5ρkm+ 3M1/5ρkm+ 3L1/5ρlm

+3M1/5ρlm)− 25ρlm(−3K2/5L1/5 − 3K1/5L2/5 − 3K2/5M1/5 − 6K1/5L1/5M1/5

−3L2/5M1/5 − 3K1/5M2/5 − 3L1/5M2/5 −M3/5 +
∂3Y

∂λ3
+ 6ρ+ 3K1/5ρkl

+3L1/5ρkl+ 3K1/5ρkm+ 3M1/5ρkm+ 3L1/5ρlm+ 3M1/5ρlm) = 0. (2.1.67)

If we replace the (−60M1/5ρkl+ 60L1/5ρkm)→ 0, (60M2/5ρkl+ 5ρkl2

− 60ρkmρ lm)->5ρkl2 and M1/5ρkl → ρ into the equation (2.1.67), we achieve the
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following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 15M2/5ρ− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2

+
∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm) + 90K2/5L1/5ρkm

+90K1/5L2/5ρkm+ 5L3/5ρkm+ 90K2/5M1/5ρkm+ 180K1/5L1/5M1/5ρkm

+90L2/5M1/5ρkm+ 90K1/5M2/5ρkm+ 90L1/5M2/5ρkm+ 30M3/5ρkm

−135ρρkm− 80K1/5ρklρkm− 75L1/5ρklρkm

−75K1/5ρkm2 − 55M1/5ρkm2 + 75K2/5L1/5ρlm+ 75K1/5L2/5ρlm

−5L3/5ρlm+ 75K2/5M1/5ρlm+ 150K1/5L1/5M1/5ρlm+ 75L2/5M1/5ρlm

+75K1/5M2/5ρlm+ 75L1/5M2/5ρlm

+25M3/5ρlm− 135ρρlm− 75K1/5ρklρlm− 80L1/5ρklρlm

−75K1/5ρkmρlm− 75L1/5ρkmρlm− 90M1/5ρkmρlm

−75L1/5ρlm2 − 55M1/5ρlm2 = 0. (2.1.68)

If we replace M3/5ρkl->M2/5ρ, K2/5L1/5->K1/5ρ kl, K1/5L2/5->

L1/5ρkl ,K2/5M1/5->K1/5ρkm , K1/5L1/5M1/5 → ρ, L2/5M1/5 → L1/5ρlm

,K1/5M2/5->M1/5ρkm, L1/5M2/5->M1/5ρ lm and K3/5 with

y∧3− (K1/n + L1/n +M1/n)∧3−K3/n in the above equation (2.1.68),

we achieve the following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 15M2/5ρ− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm) + 5L3/5ρkm+ 180K1/5L1/5M1/5ρkm

+90L2/5M1/5ρkm+ 90K1/5M2/5ρkm+ 90L1/5M2/5ρkm+ 30M3/5ρkm

−135ρρkm+ 10K1/5ρklρkm+ 15L1/5ρklρkm+ 15K1/5ρkm2
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−55M1/5ρkm2 + 75K2/5L1/5ρlm+ 75K1/5L2/5ρlm− 5L3/5ρlm

+150K1/5L1/5M1/5ρlm+ 75L2/5M1/5ρlm+ 75K1/5M2/5ρlm+ 75L1/5M2/5ρlm

+25M3/5ρlm− 135ρρlm− 75K1/5ρklρlm− 80L1/5ρklρlm− 75L1/5ρkmρlm

−90M1/5ρkmρlm− 75L1/5ρlm2 − 55M1/5ρlm2 = 0. (2.1.69)

If we replace +90K2/5L1/5 → +90K1/5ρkl, 90K1/5L2/5 → 90L1/5ρ kl

with K2/5M1/5 → K1/5ρkm into the equation (2.1.69), we achieve the following

equation:

−K − L+ 9M +
∂5Y

∂λ5
− 15M2/5ρ− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm) + 5L3/5ρkm

+90L2/5M1/5ρkm+ 90K1/5M2/5ρkm+ 90L1/5M2/5ρkm

+30M3/5ρkm+ 45ρρkm+ 10K1/5ρklρkm+ 15L1/5ρklρkm

+15K1/5ρkm2 − 55M1/5ρkm2 + 75K2/5L1/5ρlm+ 75K1/5L2/5ρlm

−5L3/5ρlm+ 75L2/5M1/5ρlm+ 75K1/5M2/5ρlm+ 75L1/5M2/5ρlm

+25M3/5ρlm+ 15ρρlm− 75K1/5ρklρlm− 80L1/5ρklρlm− 75L1/5ρkmρlm

−90M1/5ρkmρlm− 75L1/5ρlm2 − 55M1/5ρlm2 = 0. (2.1.70)

If we replace K1/5L1/5M1/5 with ρ in the equation (2.1.70), we end up with the

following equation:
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−K − L+ 9M +
∂5Y

∂λ5
− 15M2/5ρ− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5

−5ρkl− 5ρkm) + 5L3/5ρkm+ 30M3/5ρkm+ 45ρρkm+ 10K1/5ρklρkm

+15L1/5ρklρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 + 75K2/5L1/5ρlm

+75K1/5L2/5ρlm− 5L3/5ρlm+ 25M3/5ρlm+ 15ρρlm− 75K1/5ρklρlm

−80L1/5ρklρlm+ 15L1/5ρkmρlm+ 75M1/5ρkmρlm

+20M1/5ρlm2 = 0. (2.1.71)

If we substitute L2/5M1/5 → L1/5 ρlm, K1/5M2/5->M1/5ρkm, L1/5M2/5

→M1/5ρlm into the equation (2.1.71), we end with the following equation:

−K − L+ 9M +
∂5Y

∂λ5
+ 10K2/5ρ− 75L2/5ρ+ 60M2/5ρ+ 15ρρkl− 5M1/5ρkl2

+5
∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm) + 30M3/5ρkm+ 45ρρkm

+15K1/5ρkm2 + 35M1/5ρkm2 + 75K2/5L1/5ρlm+ 75K1/5L2/5ρlm

−5L3/5ρlm+ 25M3/5ρlm+ 30ρρlm− 75K1/5ρklρlm

+20M1/5ρlm2 = 0. (2.1.72)

If we place L3/5ρkm->L2/5ρ, K1/5ρklρkm->K2/5ρ, L1/5ρklρkm→ ρklρ,

L1/5ρklρlm- >L2/5ρ, L1/5ρkmρlm->ρlmρ, M1/5ρkmρlm- >M2/5ρ into the equation

(2.1.72),

we attain the following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5

−5ρkl− 5ρkm) + 30M3/5ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2

+75K2/5L1/5ρlm+ 75K1/5L2/5ρlm− 5L3/5ρlm+ 25M3/5ρlm

−75K1/5ρklρlm+ 20M1/5ρlm2 + ρ(10K2/5 − 75L2/5 + 60M2/5

+15ρkl+ 45ρkm+ 30ρlm) = 0. (2.1.73)
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If we replace K2/5L1/5->K1/5ρkl, K1/5L2/5 → L1/5ρkl above equation (2.1.73), we

achieve the following equation:

−K − L+ 9M +
∂5Y

∂λ5
− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl

−5ρkm) + 30M3/5ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 − 5L3/5ρlm

+25M3/5ρlm+ 75L1/5ρklρlm+ 20M1/5ρlm2

+ρ(10K2/5 − 75L2/5 + 60M2/5 + 15ρkl+ 45ρkm+ 30ρlm) = 0. (2.1.74)

Substituting M1/5ρkl2->ρklρ ,L1/5ρklρlm->L2/5ρ ,yρkl2 with

(K∧(1/n) + L∧(1/n) +M∧(1/n)) ρkl2 in the equation (2.1.74), we achieve the fol-

lowing equation:

−K − L+ 9M +
∂5Y

∂λ5
+ 75L2/5ρ− 5ρρkl+ 5(K1/5ρkl2 + L1/5ρkl2

+M1/5ρkl2) +
∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm) + 30M3/5ρkm+ 15K1/5ρkm2

+35M1/5ρkm2 − 5L3/5ρlm+ 25M3/5ρlm

+20M1/5ρlm2 + ρ(10K2/5 − 75L2/5 + 60M2/5 + 15ρkl

+45ρkm+ 30ρlm) = 0. (2.1.75)

If we replace M1/5ρkl2->ρklρ into the above equation (2.1.75) , we get the following

equation:

−K − L+ 9M +
∂5Y

∂λ5
+ 5K1/5ρkl2 + 5L1/5ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl

−5ρkm) + 30M3/5ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 − 5L3/5ρlm

+25M3/5ρlm+ 20M1/5ρlm2 + ρ(10K2/5 + 60M2/5 + 15ρkl

+45ρkm+ 30ρlm) = 0. (2.1.76)

If we replace 5K1/5ρ kl2 + 5L1/5ρkl2 → 5yρkl2 − 5M1/5ρkl2, M1/5ρkl2->ρ klρ into

the above equation (2.1.76), we end up with the equation:
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−K − L+ 9M +
∂5Y

∂λ5
− 5M1/5ρkl2 + 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl

−5ρkm) + 30M3/5ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 − 5L3/5ρlm

+25M3/5ρlm+ 20M1/5ρlm2 + ρ(10K2/5 + 60M2/5 + 15ρkl

+45ρkm+ 30ρlm) = 0. (2.1.77)

If we substituteM1/5ρkl2->ρklρ into the equation (2.1.77) we end with the following

equation:

−K − L+ 9M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm)

+30M3/5ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 − 5L3/5ρlm+ 25M3/5ρlm

+20M1/5ρlm2 + ρ(10K2/5 + 60M2/5 + 10ρkl+ 45ρkm

+30ρlm) = 0. (2.1.78)

If we replace 30M3/5 with 30y∧3 − 30 (K1/n + L1/n + M1/n)∧3 − M3/n into the

equation (2.1.78) , we attain the following equation:

−K − L+ 9M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−10M2/5 − 5ρkl− 5ρkm)

+(−30(K3/5 + 3K2/5L1/5 + 3K1/5L2/5 + L3/5 + 3K2/5M1/5

+6K1/5L1/5M1/5 + 3L2/5M1/5 + 3K1/5M2/5 + 3L1/5M2/5)

+30
∂3Y

∂λ3
)ρkm+ 15K1/5ρkm2 + 35M1/5ρkm2 − 5L3/5ρlm

+25M3/5ρlm+ 20M1/5ρlm2 + ρ(10K2/5 + 60M2/5 + 10ρkl

+45ρkm+ 30ρlm) = 0. (2.1.79)

If we substitute; K1/5L1/5M1/5->ρ,K2/5M1/5->K1/5ρkm, K2/5L1/5

->K1/5ρkl ,K1/5L2/5->L1/5ρkl, L2/5M1/5->L1/5ρlm, K1/5M2/5->M1/5ρkm,

L1/5M2/5->M1/5 ρlm in the equation (2.1.79), we result in the following equation:
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−K − L+ 9M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 − 30K3/5ρkm− 30L3/5ρkm

−90K1/5ρklρkm− 90L1/5ρklρkm− 75K1/5ρkm2 − 55M1/5ρkm2

+
∂3Y

∂λ3
(−10M2/5 − 5ρkl+ 25ρkm)− 5L3/5ρlm+ 25M3/5ρlm

−90L1/5ρkmρlm− 90M1/5ρkmρlm+ 20M1/5ρlm2

+ρ(10K2/5 + 60M2/5 + 10ρkl− 135ρkm+ 30ρlm) = 0. (2.1.80)

If we substitute K1/5ρklρkm-> K2/5ρ, L1/5ρklρkm->ρklρ, L1/5

ρkmρlm->ρlmρ, M1/5ρkmρlm->M2/5ρ in the above equation (2.1.80), we end up

with the following equation:

−K − L+ 9M − 10M2/5∂
3Y

∂λ3
+
∂5Y

∂λ5
− 80K2/5ρ− 30M2/5ρ− 5

∂3Y

∂λ3
ρkl

−80ρρkl+ 5
∂Y

∂λ
ρkl2 − 30K3/5ρkm− 30L3/5ρkm+ 25

∂3Y

∂λ3
ρkm− 135ρρkm

−75K1/5ρkm2 − 55M1/5ρkm2 − 5L3/5ρlm+ 25M3/5ρlm− 60ρρlm

+20M1/5ρlm2 = 0. (2.1.81)

If we place M2/5y3->M2/5(K∧(1/n) + L∧(1/n) + M∧(1/n))∧3 into the equation

(2.1.81), we reach the following equation:

−K − L− 10K3/5M2/5 − 30K2/5L1/5M2/5 − 30K1/5L2/5M2/5

−10L3/5M2/5 − 30K2/5M3/5 − 60K1/5L1/5M3/5 − 30L2/5M3/5 − 30K1/5M4/5

−30L1/5M4/5 −M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 − 30K3/5ρkm

−30L3/5ρkm− 75K1/5ρkm2 − 55M1/5ρkm2

+
∂3Y

∂λ3
(−5ρkl+ 25ρkm) + ρ(−80K2/5 − 30M2/5 − 80ρkl− 135ρkm− 60ρlm)

−5L3/5ρlm+ 25M3/5ρlm+ 20M1/5ρlm2 = 0. (2.1.82)

If we substituteK3/5M2/5->K1/5ρkm∧2, K2/5L1/5M2/5->ρkmρ, K1/5L2/5M2/5- >

ρlmρ, L3/5M2/5->L1/5 ρlm∧2, K2/5M3/5->M1/5ρ km∧2, K1/5L1/5M3/5->M2/5 ρ,
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L2/5M3/5->M1/5 ρlm∧2,K1/5M4/5->M3/5ρkm, L1/5M4/5 →M3/5ρlm into the equa-

tion (2.1.82), we obtain the following equation:

−K − L−M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 − 30K3/5ρkm− 30L3/5ρkm

−30M3/5ρkm− 85K1/5ρkm2 − 85M1/5ρkm2 +
∂3Y

∂λ3
(−5ρkl

+25ρkm) + ρ(−80K2/5 − 90M2/5 − 80ρkl− 165ρkm− 90ρlm)− 5L3/5ρlm

−5M3/5ρlm− 10L1/5ρlm2 − 10M1/5ρlm2 = 0. (2.1.83)

If we replace K3/5 with y∧3− (K1/n + L1/n +M1/n)∧3−K3/n],

and K2/5L1/5ρkm-> K2/5 ρ, K1/5L2/5ρkm->ρkl ρ, K2/5M1/5ρkm→ K1/5ρkm∧2,

K1/5L1/5M1/5ρkm→ ρρkm, L2/5M1/5ρkm->ρlmρ, K1/5M2/5ρkm→M1/5ρkm∧2

and L1/5M2/5ρkm-> M2/5ρ into the equation (2.1.83), we end up with the following

equation:

−K − L−M +
∂5Y

∂λ5
+ 90K2/5ρ+ 90M2/5ρ+ 90ρρkl+ 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−5ρkl

−5ρkm) + 180ρρkm+ 5K1/5ρkm2 + 5M1/5ρkm2 + ρ(−80K2/5 − 90M2/5

−80ρkl− 165ρkm− 90ρlm)− 5L3/5ρlm− 5M3/5ρlm+ 90ρρlm

−10L1/5ρlm2 − 10M1/5ρlm2 = 0. (2.1.84)

If we substitute 5K1/5ρkm2 with 5yρkm2 − 5 ρkm2 (K1/n + L1/n +M1/n)∧1−K1/n

into the equation (2.1.84), we end up with the following equation:

−K − L−M +
∂5Y

∂λ5
+ 5

∂Y

∂λ
ρkl2 +

∂3Y

∂λ3
(−5ρkl− 5ρkm) + 5K1/5ρkm2

+5M1/5ρkm2 + ρ(10K2/5 + 10ρkl+ 15ρkm)− 5L3/5ρlm− 5M3/5ρlm

−10L1/5ρlm2 − 10M1/5ρlm2 = 0. (2.1.85)

If we put L1/5ρkm2 into ρ ρkm into the equation (2.1.85), we reach the following

equation:
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−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm) + (−5(L1/5 +M1/5)

+5M1/5)ρkm2 + ρ(10K2/5 + 10ρkl+ 15ρkm) +
∂Y

∂λ
(5ρkl2 + 5ρkm2)

−5L3/5ρlm− 5M3/5ρlm− 10L1/5ρlm2 − 10M1/5ρlm2 = 0. (2.1.86)

If we exchange M1/5ρlm2 with ρlm2 y − ρlm2 (K1/n + L1/n +M1/n)∧1−M1/n into

the above equation (2.1.86), we obtain the following:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm)− 5L1/5ρkm2 + ρ(10K2/5 + 10ρkl

+15ρkm) +
∂Y

∂λ
(5ρkl2 + 5ρkm2)− 5L3/5ρlm− 5M3/5ρlm

−10L1/5ρlm2 − 10M1/5ρlm2 = 0. (2.1.87)

From the equation (2.1.87) we substitute K1/5ρ lm2->ρlmρ and if with

M3/5ρlm- >ρlm y∧3 − ρlm (K1/n + L1/n +M1/n)∧3 −M3/n] , we end up with the

following equation:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm) + ρ(10K2/5 + 10ρkl+ 10ρkm)

+
∂Y

∂λ
(5ρkl2 + 5ρkm2)− 5L3/5ρlm− 5M3/5ρlm− 10L1/5ρlm2

−10M1/5ρlm2 = 0. (2.1.88)

If we put K3/5ρlm->K2/5ρ, K2/5L1/5ρlm->ρklρ, K1/5L2/5ρlm->L2/5ρ,

K2/5M1/5ρlm->ρkmρ, K1/5L1/5M1/5ρlm->ρρlm, L2/5M1/5ρlm->L1/5 ρlm∧2,

K1/5M2/5ρlm-> M2/5ρ into the equation (2.1.88), we result in the following equa-

tion:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm) + ρ(10K2/5 + 10ρkl+ 10ρkm)

−5L3/5ρlm− 5M3/5ρlm+ 10K1/5ρlm2 +
∂Y

∂λ
(5ρkl2 + 5ρkm2

−10ρlm2) = 0. (2.1.89)
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If we use equation (2.1.89) + y15ρlm2 − (K1/n + L1/n +M1/n)

15ρlm2, we end up with the following equation:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + 5K3/5ρlm

+15K2/5L1/5ρlm+ 15K1/5L2/5ρlm+ 15K2/5M1/5ρlm

+30K1/5L1/5M1/5ρlm+ 15L2/5M1/5ρlm+ 15K1/5M2/5ρlm

15L1/5M2/5ρlm+ ρ(10K2/5 + 10ρkl+ 10ρkm+ 10ρlm)

+
∂Y

∂λ
(5ρkl2 + 5ρkm2 − 10ρlm2) = 0. (2.1.90)

If we change K1/5ρlm2->ρlmρ, L1/5M2/5ρlm->M1/5ρlm2 in the above equation

(2.1.90) , we obtain the following equation:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + 15L1/5M2/5ρlm

+15L1/5ρlm2 + ρ(15K2/5 + 15L2/5 + 15M2/5 + 25ρkl+ 25ρkm+ 40ρlm)

+
∂Y

∂λ
(5ρkl2 + 5ρkm2 − 10ρlm2) = 0. (2.1.91)

If we replace K2/5 with y∧2− (K1/n+L1/n+M1/n)∧2−K2/n], K1/5L1/5 → ρkl] into

the equation (2.1.91),

and n = 5, we end up with the following equation:

−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + 15L1/5M2/5ρlm

−15K1/5ρlm2 − 15M1/5ρlm2 + ρ(15K2/5 + 15L2/5 + 15M2/5 + 25ρkl

+25ρkm+ 40ρlm) +
∂Y

∂λ
(5ρkl2 + 5ρkm2 + 5ρlm2) = 0. (2.1.92)

If we substitute K1/5L1/5 → ρkl, K1/5M1/5 → ρkm, L1/5M1/5 → ρlm] into the

equation (2.1.92), end up with the following equation:
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−K − L−M +
∂5Y

∂λ5
+
∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + ρ(15K2/5

+15L2/5 + 15M2/5

+25ρkl+ 25ρkm+ 25ρlm) +
∂Y

∂λ
(5ρkl2 + 5ρkm2

+5ρlm2) = 0. (2.1.93)

If replace (5 ρkl2 + 5ρkm2 + 5ρlm2) → 5(ρkl + ρkm + ρlm)∧2 − 5(2yρ) into the

equation (2.1.93), we end up with the following equation:

−K − L−M +
∂5Y

∂λ5
+ 15

∂2Y

∂λ2
ρ+

∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm)

+ρ(−30K1/5L1/5 − 30K1/5M1/5 − 30L1/5M1/5 + 25ρkl+ 25ρkm+ 25ρlm)

+
∂Y

∂λ
(5ρkl2 + 5ρkm2 + 5ρlm2) = 0. (2.1.94)

If we set −30K1/5L1/5− 30K1/5M1/5− 30L1/5M1/5 to equal 0 and 25ρkl+25ρkm+

25ρlm to be −5ρkl − 5ρkm − 5ρlm into the above equation (2.1.94), the resulting

equation is:

−K − L−M +
∂5Y

∂λ5
+ 15

∂2Y

∂λ2
ρ+

∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + ρ(−5ρkl

−5ρkm− 5ρlm) +
∂Y

∂λ
(5ρkl2 + 5ρkm2 + 5ρlm2) = 0. (2.1.95)

If we set 5ρkl2 + 5ρkm2 + 5ρlm2 to equal −10∂Y
∂λ
ρ + 5(ρkl + ρkm + ρlm)2 into the

above equation (2.1.95), the resulting equation is:

−K − L−M +
∂5Y

∂λ5
+ 15

∂2Y

∂λ2
ρ+

∂3Y

∂λ3
(−5ρkl− 5ρkm− 5ρlm) + ρ(−5ρkl

−5ρkm− 5ρlm) +
∂Y

∂λ
(−10∂Y

∂λ
ρ+ 5(ρkl+ ρkm+ ρlm)2) = 0. (2.1.96)

If we replace (ρkl+ρkm+ρ lm)→ r, (−5ρkl−5ρkm−5ρlm)→ −5r] in the equation

2.1.96 , end up with the following equation:
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−K − L−M + 5r2∂Y

∂λ
− 5r

∂3Y

∂λ3
+
∂5Y

∂λ5
− 5rρ+ 5

∂2Y

∂λ2
ρ = 0. (2.1.97)

To convert (2.1.97) into a differential form, we let yi = ∂iY (λ, y)/∂λi and define a

differential form ω5:

ω5 = −d
(
∂5Y

∂λ5

)
+ µdλ+ θ0dY + θ1dY

′ + θ2dY
′′ + θ3dY

(3).

The parameters µ, θ0, θ1, θ2 and θ3 are new dependent variables. Sectioning gives

ω5 = −∂
6Y

∂λ6
dλ− ∂

∂Y

(
∂5Y

∂λ5

)
dY

− ∂

∂Y ′

(
∂5Y

∂λ5

)
dY ′

− ∂

∂Y ′′

(
∂5Y

∂λ5

)
dY ′′ − ∂

∂Y (3)

(
∂5Y

∂λ5

)
dY (3)

+µdλ+ θ0dY + θ1dY
′ + θ2dY

′′ + θ3dY
(3). (2.1.98)

That is,

ω5 =

(
µ− ∂6Y

∂λ6

)
dλ+

(
θ0 −

∂

∂Y

(
∂5Y

∂λ5

))
dY +

(
θ1 −

∂

∂Y ′

(
∂5Y

∂λ5

))
dY ′

+

(
θ2 −

∂

∂Y ′′

(
∂5Y

∂λ5

))
dY ′′ +

(
θ3 −

∂

∂Y (3)

(
∂5Y

∂λ5

))
dY (3). (2.1.99)

Annulling: Since dY (i) ∧ dY (i) = dλ ∧ dλ = 0 and dY (i) ∧ dλ = −dλ ∧ dY (i),

dY (i) ∧ dY (j) = −dY (j) ∧ dY (i) for i and j = 0, 1, 2, 3 and Y (0) = Y , then

µ =
∂5Y

∂λ5
,

θ0 =
∂

∂Y

(
∂5Y

∂λ5

)
,

θ1 =
∂

∂Y ′

(
∂5Y

∂λ5

)
,

θ2 =
∂

∂Y ′′

(
∂5Y

∂λ5

)
,

θ3 =
∂

∂Y (3)

(
∂5Y

∂λ5

)
.
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2.2 Tschirnhausian transformations, Newton sums

and the solution

Trying to solve the quintic by determining the parameters K,L and M in (2.1.97)

from (0.2) leads to an unsolvable system, because there are more equations than

unknowns. To balance the system we employ Tschirnhausian transformations and

Newton sums.

In 1666, Newton (see Scheinerman and Mircea [32]) published a set of identities that

became known as Newton identities. These relate the roots of an equation an to its

coefficients.

Following Newton, if the roots of the polynomial

ym + am−1y
m−1 + · · · + a1y + a0 = 0

are denoted by xi, i = 1, 2, · · · ,m, then the sum of their nth powers is

Sn(y) = Sn(yk) =
m∑
k=1

ynk , for n ∈ N

Where yk is a root of the Bring-Jerrard equation (2.1.97). This can be rephrased as

Sn(y) = −nam−n −
n−1∑
j=1

Sn−jam−j(y),

with aj = 0 for j < 0. For our purpose here, we let the symbol ℵΣ be the power

sum generator in accordance with Newton’s criterion for roots, then

ℵΣ (yn) = Sn(y).

As indicated above, the parameters K,L and M are not sufficient to solve the

problem. To circumvent this, we introduce new parameters Ci, i = 0, 1, 2, 3, 4, 5,

and a new variable z that we transform to, that is,

C5z
5 + C4z

4 + C3z
3 + C2z

2 + C1z + C0 = 0. (2.2.1)
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Differential forms show that

θi = Ci/C0 for i = 1, 2, 3, 4, 5.

This determines m = K1/5, l = L1/5 and m = M1/5. How this actually happens

require that we first transform (2.1.97) from the variable y to the new variable z

using Tschirnhausian transformations. According to Admchik and Jeffrey [29], a

Tschirnhaus quadratic substitution yk = z2
k + αz + β, can be used to transform the

general quintic to the principal quintic.

For our transformation, we use the simpler relation

yk = z4
k + αz3

k + βz2
k + γzk + δ (2.2.2)

a quartic transformation, where yk is a root of the Bring-Jerrard equation (2.1.97),

and zk is root of the transformed quintic equation (2.2.1).

Applying the Newton identity operator ℵΣ then, we have

ℵΣ

[
(yk)

s − (z2
k + αz + β)s

]
= 0, s = 0, 1, 2, 3, 4, 5. (2.2.3)

From the equation (2.2.3) we now end with the following equations:

4a1

5
− C4

5
− δ = 0, (2.2.4)

−4a1
2

5
+

1

5

(
−2C3 + C4

2
)
+ 2a0αβ +

4a1β
2

5
+ 2a0γ +

8a1αγ

5

+
8a1δ

5
− δ2 = 0 (2.2.5)
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−4a1
4

5
+

1

5

(
−4C1 + 2C3

2 + 4C2C4 − 4C3C4
2 + C4

4
)
+ 4a0

3α +
84

5
a0

2a1α
2

+
52

5
a0a1

2α3 +
4a1

3α4

5
+

56

5
a0

2a1β +
156

5
a0a1

2αβ +
48

5
a1

3α2β +
24a1

3β2

5

−6a0
2α2β2 − 4a0

2β3 − 36

5
a0a1αβ

3 − 4a1
2β4

5
+

52

5
a0a1

2γ +
48

5
a1

3αγ

−4a0
2α3γ − 24a0

2αβγ − 108

5
a0a1α

2βγ − 108

5
a0a1β

2γ − 48

5
a1

2αβ2γ − 6a0
2γ2

−108

5
a0a1αγ

2 − 24

5
a1

2α2γ2 − 48

5
a1

2βγ2 + 4a0βγ
3 +

4a1γ
4

5

+
16a1

3δ

5
− 12a0

2α2δ − 36

5
a0a1α

3δ − 12a0
2βδ − 216

5
a0a1αβδ −

48

5
a1

2α2βδ

−48

5
a1

2β2δ − 108

5
a0a1γδ −

96

5
a1

2αγδ + 12a0β
2γδ + 12a0αγ

2δ +
48

5
a1βγ

2δ

−24a1
2δ2

5
+ 12a0αβδ

2 +
24

5
a1β

2δ2 + 12a0γδ
2 +

48

5
a1αγδ

2

+
16a1δ

3

5
− δ4 = 0, (2.2.6)

−((4a4
1)/5) + 1/5(−4C1 + 2C2

3 + 4C2C4 − 4C3C
2
4 + C4

4) + 4a3
0α + 84/5a2

0a1α
2

+52/5a0a
2
1α

3 + (4a3
1α

4)/5 + 56/5a2
0a1β + 156/5a0a

2
1αβ + 48/5a3

1α
2β

+(24a3
1β

2)/5− 6a2
0α

2β2 − 4a2
0β

3 − 36/5a0a1αβ
3 − (4a2

1β
4)/5 + 52/5a0a

2
1γ

+48/5a3
1αγ − 4a2

0α
3γ − 24a2

0αβγ − 108/5a0a1α
2βγ − 108/5a0a1β

2γ

−48/5a2
1αβ

2γ − 6a2
0γ

2 − 108/5a0a1αγ
2 − 24/5a2

1α
2γ2 − 48/5a2

1βγ
2

+4a0βγ
3 + (4a1γ

4)/5 + (16a3
1δ)/5− 12a2

0α
2δ − 36/5a0a1α

3δ − 12a2
0βδ

−216/5a0a1αβδ − 48/5a2
1α

2βδ − 48/5a2
1β

2δ − 108/5a0a1γδ − 96/5a2
1αγδ

+12a0β
2γδ + 12a0αγ

2δ + 48/5a1βγ
2δ − (24a2

1δ
2)/5 + 12a0αβδ

2 + 24/5a1β
2δ2

+12a0γδ
2 + 48/5a1αγδ

2 + (16a1δ
3)/5− δ4 = 0, (2.2.7)
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1

5
(−5a0

4 + 4a1
5)− C0 +

C1C4

5
− 1

5
C2(−2C3 + C4

2)− 1

5
C3(−3C2 + 3C3C4

−C4
3)− 1

5
C4(−4C1 + 2C3

2 + 4C2C4 − 4C3C4
2 + C4

4)− 19a0
3a1α

+
27

5
a0

2a1
2(−10α2 − 5β) +

17

5
a0a1

3(−10α3 − 20αβ − 5γ) +
4

5
a1

4(−5α4

−30α2β − 10β2 − 20αγ − 5δ)− δ5 − a0
3(−α5 − 20α3β − 30αβ2 − 30α2γ

−20βγ − 20αδ)− 14

5
a0

2a1(−5α4β − 30α2β2 − 10β3 − 20α3γ − 60αβγ

−10γ2 − 30α2δ − 20βδ)− 13

5
a0a1

2(−10α3β2 − 20αβ3 − 5α4γ

−60α2βγ − 30β2γ − 30αγ2 − 20α3δ − 60αβδ − 20γδ)− 4

5
a1

3(−10α2β3

−5β4 − 20α3βγ − 60αβ2γ − 30α2γ2 − 30βγ2 − 5α4δ − 60α2βδ − 30β2δ

−60αγδ − 10δ2) + a0
2(−β5 − 20αβ3γ − 30α2βγ2 − 30β2γ2 − 20αγ3

−30α2β2δ − 20β3δ − 20α3γδ − 120αβγδ − 30γ2δ − 30α2δ2 − 30βδ2)

+
9

5
a0a1(−5β4γ − 30αβ2γ2 − 10α2γ3 − 20βγ3 − 20αβ3δ − 60α2βγδ

−60β2γδ − 60αγ2δ − 10α3δ2 − 60αβδ2 − 30γδ2) +
4

5
a1

2(−10β3γ

−20αβγ3 − 5γ4 − 5β4δ − 60αβ2γδ − 30α2γ2δ − 60βγ2δ − 30α2βδ2

−30β2δ2 − 60αγδ2 − 10δ3)− a0(−γ5 − 20βγ3δ − 30β2γδ2 − 30αγ2δ2

−20αβδ3 − 20γδ3)− 4

5
a1(−5γ4δ − 30βγ2δ2 − 10β2δ3

−20αγδ3 − 5δ4) = 0 (2.2.8)
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After a very lengthy analysis, we get

−m5 =
2

15
b(15c(− 5c

4b
+

1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15ξ)1/3/(21/3152/3b))− 1

2

√
(
25c2

2b2

−(4( 2
15

)1/3b2)/(1125c2b2 −
√
15ξ)1/3 − (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2 + (4(
2

15
)1/3b2)

/(1125c2b2 −
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)))))

+12b(− 5c
4b

+
1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15ξ)1/3/(21/3152/3b))

−1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)

−(125c3)/(4b3√(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)))))2), (2.2.9)

79



l = − 1

21/354/15
(31/15((− 1

32/5
(253/5(15c(− 5c

4b
+

1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)

/(1125c2b2 −
√
15ξ)1/3 + (1125c2b2 −

√
15
√
84375c4b4 − 256b9)1/3

/(21/3152/3b))− 1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2 tb2 −

√
15ξ)1/3/(21/3152/3b))))) + 12b(− 5c

4b
+

1

2

√
(
25c2

4b2

+(4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))

−1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)))))2)2/5(− 1

151/5
((15c(− 5c

4b

+
1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3

/(21/3152/3b))− 1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))))) + 12b(− 5c

4b
+

1

2
√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3

/(21/3152/3b))− 1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)))))2)1/5) − 2bm

5
))

+
1

m6
((− 1

151/5
((15c(− 5c

4b
+

1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15ξ)1/3/(21/3152/3b))− 1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)− (125c3)/(4b3√(25c

2

4b2

+(4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15xi)1/3/(21/3152/3b))))) + 12b(− 5c

4b
+

1

2

√
(
25c2

4b2

+(4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))
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−1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3/

(21/3152/3b)− (125c3)/(4b3 √(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15ξ)1/3/(21/3152/3b)))))2)1/5)− 2bm

5
)5) −

√
(−20

3
(15c(− 5c

4b

+
1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3

/(21/3152/3b))− 1

2

√
(
25c2

2b2

−(4( 2
15

)1/3b2)/(1125c2b2 −
√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)

−(125c3)/(4b3√(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2

−
√
15ξ)1/3/(21/3152/3b))))) + 12b(− 5c

4b
+

1

2

√
(
25c2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)) − 1

2

√
(
25c2

2b2

−(4( 2
15

)1/3b2)/(1125c2b2 −
√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3/(21/3152/3b)

−(125c3)/(4b3√(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2

−
√
15ξ)1/3/(21/3152/3b)))))2)m3 + (

1

32/5
(253/5(15c (− 5c

4b
+

1

2

√
(
25c2

4b2

+(4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3 /(21/3152/3b))

−1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3

/(21/3152/3b)− (125c3)/(4b3√(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))))) + 12b(− 5c

4b
+

1

2

√
(
25c2

4b2

+(4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))

−1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3

/(21/3152/3b)− (125c3)/(4b3√(25c
2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2 −

√
15ξ)1/3

+(1125c2b2 −
√
15ξ)1/3/(21/3152/3b)))))2)2/5(− 1

151/5
((15c(− 5c

4b
+

1

2

√
(
25c2

4b2

+(4(
2

15
)1/3b2) /(1125c2b2 −

√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))
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2

4b2 + (4(
2

15
)1/3b2)/(1125c2b2

−
√
15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))))) + 12b(− 5c
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1

2
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2
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−
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15ξ)1/3 + (1125c2b2 −

√
15ξ)1/3/(21/3152/3b))− 1

2

√
(
25c2

2b2 − (4(
2

15
)1/3b2)

/(1125c2b2 −
√
15ξ)1/3 − (1125c2b2 −

√
15ξ)1/3‘
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where

ξ =
√
84375c4b4 − 256b9.

The parameter k follows from

k5 + l5 = 0.

ζ = −5 c

4 b
+

1

2

√
(
25 c2

4 b2
+

4
(

2
15

)1/3
b2

η1/3
+

η1/3

21/3 152/3 b

)
−

1

2

√
(
25 c2

2 b2
−

4
(

2
15

)1/3
b2

η1/3
− η1/3

21/3 152/3 b
−

(
125 c3

)/(
4 b3

√(25 c2

4 b2
+
(
4
( 2

15

)1/3

b2
)/

η1/3 +
1

21/3 152/3 b
η
)))

with

η = 1125 c2 b2 −
√
15
√
84375 c4 b4 − 256 b9

and

C0 = −c2 + cbζ + cζ5.

2.2.1 A criterion for avoiding bugs in the symbolic software:

Mathematica

Apparently, the engineers of the software Mathematica adopted series expansions to com-

pute formulae not recognized by their product(see Fateman [36]). This we have observed

in their versions 5 to 7. To avoid this bug, we first note that if x0 is a solution for
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the equation x5 + ax + b = 0, then snx0 turns out to be a solution for the equation

(snx)5 + as5n−1(snx) + bs5n = 0, for all any value of n. We can then avoid the bug by

using a Cauchy property on convergent sequences, that is, according the to ratio test, the

series {an} converges if |am+1

am
| < 1. We choose n < 1, which guarantees convergence.

That is, If x0 is the solution of

x5 + ax+ b = 0; (2.2.10)

then snx0 is the solution of

(snx)5 + as5n−1(snx) + bs5n = 0. (2.2.11)

Where a, b, s and n are rational numbers.

To prove this, multiply 2.2.10 with s5n. That is,

s5n(x5 + ax+ b) = 0.

This can also be expressed in the form

(snx)5 + as5n−1(snx) + bs5n = 0,

which concludes the proof.

If we choose s = 10 and n to be an integer, we note that the introduction of s5n only serves

to shift the position of the decimal.

2.3 A numerical experiment

The equations (2.2.9) and (2.2.10) led to Table 2.1. The precision in the table can be

improved. For example, the parameters (b, c) = (e×10−5000000i, π×10−4000000), led to the

five roots:

y1 = −1.1616230521691030× 10−800000 − 3.7743420924792644× 10−800001i,

y2 = −7.179225283558979× 10−800001 + 9.8813558832801133× 10−800001i,

y3 = 1.1616230521691030× 10−800000 − 3.7743420924792644× 10−800001i,

y4 = 7.179225283558979× 10−800001 + 9.8813558832801133× 10−800001i,

y5 = −1.221402758160169× 10−800000i.
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These can be improved even further. For example, y1 can be improved to

y1 = −1.161623052169103059165475850752021370715796270346724022532

542761619734886208810145197513450833674851868145568078060987

641071490992831597141615930458904504542410568400651947449935

463906096698454276862526244948403500685312299670713724062635

359978310843158634782692203727661964959698780770402176366314

373550490855313535848013285040294295463884335140511658263349

32475005579286049100789532067665772804× 10−800000

− 3.77434209247926464035392376950532672012181632704483338655828

4575592473097474990553304987967909602905649443304746704771829

0884899525034930343236995412107974741273432200463516195142374

69693742098612758783187635833438408154185676251347383407736277

62619653604432080752825495797003326633676658284380270018153606

39505162728653869799600643249709042791606352017805395379413245

87569599145186868109116289492× 10−800001i. (2.3.1)

The computer generated solutions:

y1 = −1.1616230521691030× 10−800000 − 3.7743420924792647× 10−800001i,

y2 = −7.179225283558979× 10−800001 + 9.8813558832801138× 10−800001i,

y3 = 1.1616230521691030× 10−800000 − 3.7743420924792647× 10−800001ii,

y4 = 7.179225283558979× 10−800001 + 9.8813558832801138× 10−800001i,

y5 = −5.54405555626329× 10−800026 − 1.2214027581601698× 10−800000i.

In comparison with the y1 in (2.3.1), a number that has more significant numbers, the
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computer generated

y1 = −1.1616230521691030591654758507520213707157962703467240225

3254276161973488620881014519751345083367485186814556807806

0987641071490992831597141615930458904504542410568400651947

4499354639060966984542768625262449484035006853122996707137

2406263535997831084315863478269220372766196495969878077040

2176366314373550490855313535848013285040294295463884335140

5116582633493247500557928604910078953206766577280385× 10−800001

− 3.774342092479264640353923769505326720121816327044833

38655828457559247309747499055330498796790960290564944

33047467047718290884899525034930343236995412107974741

27343220046351619514237469693742098612758783187635833

43840815418567625134738340773627762619653604432080752

82549579700332663367665828438027001815360639505162728

65386979960064324970904279160635201780539537941324587

5695991451868681091162895× 10−800001i.

This is the reason we choose sn = 10−800000 this guarantees convergence. This may seem

to reduce our equation to zero, which of course is not the case, as demonstrated by example

that follow. For example, the equation x5 + x + 1 = 0 in MatLab this can be written as

p1 = [1, 0, 0, 0, 1, 1] the roots follow from the command roots(p1). One of the five roots is

x0 = 0.87744 + 0.7786i (2.3.2)

Using our convention, we can write equation 2.2.10 in the form

(10−1x) + 10−4.(10−1x) + 10−5 = 0

to avoid confusion, let r = 10−1x therefore

r5 + 10−4r + 10−5 = 0
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in MatLab, this assumes the form P2 = [1, 0, 0, 0, 0.0001, 0.00001] one root resulting from

p2 is

r0 = 0.087744 + 0.074486i. (2.3.3)

Now compare the result in 2.3.2 and 2.3.3 that is

x0 = 0.87744 + 0.7786i,

r0 = 0.087744 + 0.074486

Table 2.1: A numerical experiment.

c× 1080 b× 1090 Analytic Numerical

105i 105i −1.0000× 10−17 + 2.0000× 10−25i −1.0000× 10−17 + 2.0000× 10−25

1000i 1000 −3.9810× 10−18 + 3.1697× 10−26i−3.9810× 10−18 + 3.1697× 10−26i

100i 100 −2.5118× 10−18 + 1.2619× 10−26i−2.5118× 10−18 + 1.2619× 10−26i

10i 10 −1.5848× 10−18 + 5.0237× 10−27i−1.5848× 10−18 + 5.0237× 10−27i

9i 9 −1.5518× 10−18 + 4.8164× 10−27i−1.5518× 10−18 + 4.8164× 10−27i

8i 8 −1.5157× 10−18 + 4.5947× 10−27i−1.5157× 10−18 + 4.5947× 10−27i

7i 7 −1.4757× 10−18 + 4.3558× 10−27i−1.4757× 10−18 + 4.3558× 10−27i

6i 6 −1.4309× 10−18 + 4.0953× 10−27i−1.4309× 10−18 + 4.0953× 10−27i

−5 5i/3 −1.0533× 10−18 − 3.4225× 10−19i−1.0533× 10−18 − 3.4225× 10−19i

5i 5 −1.3797× 10−18 − 3.8073× 10−27i−1.3797× 10−18 − 3.8073× 10−27i

4 4i −1.2549× 10−18 + 4.0774× 10−19i−1.2549× 10−18 − 4.0775× 10−19i

4i 4 −1.3195× 10−18 + 3.4822× 10−27i−1.3195× 10−18 + 3.4822× 10−27i

3i 3 −1.2457× 10−18 + 3.1036× 10−27i−1.2457× 10−18 + 3.1036× 10−27i

2i 2 −1.1486× 10−18 + 2.6390× 10−27i−1.1486× 10−18 + 2.6390× 10−27i

1i 1 −1.0000× 10−18 + 2.0000× 10−27i −1.0000× 10−18 + 2.0000× 10−27
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Chapter 3

Application: A formula for the

gravitational constant

The universal gravitational constant, also known as the “big G", has confounded many for a

long time. As Schwarzschild puts it [41], ‘our knowledge of G gets worse, rather than better.

Another states: ‘Since Cavendish first measured this constant 200 years ago, it remains

one of the most elusive constants in physics’. See the following: Goddard [42], Gillies[43],

Gunlach[[44], [45], [46]], Kuroda[47], Fujii[48], Roy and Datta[49], Duval[50], Luther[51],

Schlamminger[52] and Laporesi[53] . Our approach is hinges on several assumptions that

regard the source of a planetory’s magnetosphere.

It is believed that since magnetic fields surround electric currents, it can be surmised

that circulating electric currents in the Earth’s molten metallic core are the origin of the

magnetic field. Our approach requires that we assume that every particle constituting the

planet contributes to the magnetosphere, otherwise it would be impossible to derive it.

According to the theory of general relativity, gravitational waves are those waves caused

by the motion of matter as predicted in the theory and propagating at the speed of light.

The theory holds that an object in motion should have length contraction. Our simple

view is that gravitational waves are those electromagnetic waves that are responsible for

gravitational forces between objects and are generated by the relative motion of the positive

charges to the negative charges in an atom, neutron or any electrically neutral subatomic
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particle as the objects they constitute move. Our moving object should not only have

length contractions, but the contractions should alternate with expansions. The periods

for these alternations should be long enough to allow a gravitational wave to pass through

or for one to be generated.

In 1934 Fritz Zwicky postulated that the presence of dark matter explains some of the

motion galaxies undergo. While investigating electrodynamic equations for the “big G"

formula, we encountered a complex force whose real component is the well known gravita-

tional acceleration. With the advent of dark matter and dark energy, it is possible to find

room for the imaginary component.

Our theoretical basis cannot be explained well without going back to the question Aristotle

posed more than two thousand years ago. He (384 BC-322 BC) asked the question as to

why an arrow moves when shot from a bow. What agent acts on it all the time to cause

its motion? Galileo (1564-1642) disagreed with the answer Aristotle suggested. It is not

clear however Galileo also disagreed with the question itself.

The equations used here include Newton’s second law of motion

m
d2r

dt2
= F. (3.0.1)

This equation describes the position r = (x, y, z) in time t of an object with mass m

subjected to a force F.

The other equation is taken from gravitational law, which states that there is a force F

between any two bodies of mass m1 and m2 described by

F = G
m1 m2

r2
r̂.

We also need Cauchy(1789-1857)’s first law of motion. That is,

∂ui
∂t

+ uk
∂ui
∂xk

=
1

ρ̃

(
bi +

∂τij
∂xj

)
, i, j = 1, 2, 3. (3.0.2)

The parameter ρ̃ is the mass density, u = (u1, u2, u3) (ui = dxi/dt) being the spatial

velocity (velocity of material elements within the object) and τij being the stress tensor.

The parameter bi is the barotropic force.

Cauchy’s law answers Aristotle’s question for us, and this is what we use. Our understand-

ing is that there are material displacement within a body when that body is in motion,
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which can be explained through this law. There are, therefore, displacements within bod-

ies corresponding to the universal motion. Linking these displacements to electrodynamics

has two consequences. Firstly, we are able to deduce the gravitational law and hence the

corresponding constant. Secondly, an expression for the universal momentum can also be

deduced.

The electron-proton interaction is governed by the columbic potential

V = −Ke
q

r
,

where Ke is Coulomb’s constant, q is the charge and r the separating distance. The link

is through magnetic and electric fields described in Maxwell’s (1831-1879)’s equations:

∇ ·E =
ρ

ε0
Gauss, ∇×E = −∂B

∂t
Faraday,

∇ ·B = 0 Gauss, ∇×B = µ0J+ µ0ε0
∂E

∂t
Ampere.

The symbol E is the electric field, B is the magnetic field, ∇· is the divergence operator,

∇× is the curl operator, J is the current density, µ is permeability of free space constant,

ε is permittivity of free space and ρ is the charge density.

For small particles that are very close to one another, Coulomb’s potential is best replaced

by the Yukawa potential

V = −Ke
q

r
er/r0 ,

for some parameter r0.

3.0.1 The vector space {E,B,H}

One other equation necessary in our investigation is a wave equation. To introduce it, we

first note that a wave equation for electric magnetic fields E and B can be deduced from

Maxwell’s equation. If H is the third field associated with gravitational waves, it follows

then that the set {E,B,H} is an orthogonal group O(3, F ) of degree 3 over a field F. The

third field H is subsequently defined by

H = E×B,
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so that

∇ ·H
h0

= ∇ · (E×B)

= (∇×B) · −E(∇×B)

= −B · {−∂B
∂t
} −E · {µ0J+ µ0ε0

∂E

∂t
}

= −B · ∂B
∂t
− µ0E · J− µ0ε0E ·

∂E

∂t

(3.0.3)

∇ ·H = −µ0E · J− µ0ε0E ·
∂E

∂t
−B · ∂B

∂t
(3.0.4)

and

∇×H

h0
= ∇(E×B)

= {∇ ·B+B · ∇}E− {∇ ·E+E · ∇}B

= {0 +B · ∇}E− { ρ
ε0

+E · ∇}B

= (B · ∇)E ρ

ε0
B− (E · ∇)B.

In space , where ρ = 0, we get from the above equations:

∇× (∇×H) = µ0ε0(∇×Et)×E+ µ0ε0Et × (∇×E)− (∇×B)×Bt

−B× (∇×Bt)

= µ0ε0(−Bt)t ×E+ µ0ε0.Et × (−Bt)− (µ0ε0.Et)×Bt

−B× (µ0ε0.Et)t

= µ0ε0{−Btt ×E−B×Ett}+ µ0ε0{−Et ×Bt −Et ×Bt}

= µ0ε0{−Btt ×E−B×Ett − 2Et ×Bt}

= µ0ε0
∂2

∂t2
(B×E)

= µ0ε0.Htt (3.0.5)

a wave equation in H.

As a consequence, and after a very lengthy analysis, we get a tenth-order polynomial

α5U
10 + α4U

8 + α3U
6 + α2U

4 + α1U
2 + α0 = 0, (3.0.6)
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with the parameters

α0 = −4µ4, α1 = 8r0µ
3, α2 = −8c2r0µ

3,

α3 = 12c2r2
0µ

2, α4 = −6c2r3
0µ, α5 = c2r4

0µ,

and µ = −Ke(e
−)2/9.

The universal constant is subsequently given by

G̃ =
i

u ZH

(
−Ke

(e−)2

9

)2

2Kv
(e−)2

9

U2

2
−

(
−Ke

(e−)2

9

)
r0

3
×


U2
(
−Ke

(e−)2

9

)2

2

(
U2

2 −
(
−Ke (e−)2

9

)
r0

)3 +

r0 +
e
iπ
3

(
−Ke

(e−)2

9

)
U2

2 −
(
−Ke (e−)2

9

)
r0


2

 . (3.0.7)

The parameter u is the atomic mass unit and ZH is the atomic number of hydrogen. The

parameter G̃ has two components. That is,

G̃ = G+ iGm.

The real component G is the gravitational constant we seek. The other component Gm

can be used in Cauchy’s law to determine the stress tensor τij . The tensor, together with

a suitable constitutive law, should lead to the universal momentum. The momentum in

turn leads to the current density J appearing in Maxwell’s equations. This current density

brings us back to (3.0.6) and (3.0.7). This cycle begs the question as to whether it is the

momentum that is being sustained by the gravitational waves, or the other way around.

A closer look at equation (3.0.6) reveals the general quintic equation (0.1). This results

from letting

x = U2,

with ai = α1/α5, i = 1, 2, 3, 4 vice versa
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3.0.2 A formula for the big ‘G’

From the quintic solution x then followes the relative velocity U =
√
x. The physical

parameters needed to evaluate this velocity are

G = 6.67259× 10−11Nm2/kg2, gravitational constant from experiment,

r0 =
1

2
(0.52917720859)

◦
A, Bohr’s atom size,

r0 =
1

2
(0.528)

◦
A, hypothetical atom size,

e− = 1.602176487× 10−19C, charge of an electron,

Kv =
µ0

4π
= 1× 10−7Wb/(A m), permeability of free space,

Ke = 8.987551787× 109N/C2, permittivity of free space,

c = 2.99792458× 108m/s, speed of light in vacuum,

ZH = 1.000794, mass number of a hydrogen atom,

u = 1.660538782× 10−27kg, atomic mass unit.

The actual numerical value corresponding to Bohr’s atom size 0.529
◦
A is U = ±6.89696 i×

10−10m/s, from which the gravitational constant was found to be

G = 6.656× 10−11Nm2/kg2. (3.0.8)

Different texts give different values for atomic sizes. The best results resulted from the

atomic size 0.528
◦
A, the hypothetical hydrogen atomic size (any value above or below veers

away from the experimental result), and it led to the velocity U = ±6.90451 i×10−10m/s,

from which the gravitational constant was found to be

G = 6.671× 10−11Nm2/kg2. (3.0.9)

3.1 Conclusion

We have achieved the objectives that were set . A formula for solving the quintic polynomial

in radicals has been determined and a formula for expressing the gravitational constants

in terms of other known physical constant was determined. In addition, we have confirmed

suspicions that the computer based Symbolic package does use approximation techniques.
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