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Abstract

We present multiwavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the
intermediate Palomar Transient Factory survey at redshift z=0.07897. The optical and ultraviolet (UV) light
curves of the transient show a slow decay over 5 months, in agreement with previous optically discovered
TDEs. It also has a comparable blackbody peak luminosity of » ´L 1.5 10peak

44 -erg s 1. The inferred
temperature from the optical and UV data shows a value of (3–5)×104 K. The transient is not detected in
X-rays up to < ´L 3 10X

42 -erg s 1 within the first 5 months after discovery. The optical spectra exhibit two
distinct broad emission lines in the He II region, and at later times also Hα emission. Additionally, emission
from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad
emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These
features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column
densities >N 10H

23 cm−2. This optically thick gas would also explain the nondetection in soft X-rays. The
profile of the absorption lines with the highest column density material at the largest velocity is opposite that of
BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided
the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this
proposal.
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1. Introduction

Most of the galaxies in our nearby universe contain a
supermassive black hole (SMBH) at their cores (Kormendy &
Richstone 1995). Occasionally, accretion of gas in the vicinity
of the SMBH reveals its presence as an active galactic nucleus
(AGN). However, a large fraction of SMBHs appear to be
dormant, as their activity is not directly revealed through
observations in the electromagnetic spectrum. Sometimes the
disruption of a star in the vicinity of the SMBH—a tidal
disruption event (TDE)—will produce a bright flare, detectable
at multiple wavelengths. This new energy release episode will
shed light on these otherwise quiescent SMBHs, allowing us to
study in more detail their characteristics, such as their masses

(Mockler et al. 2019) or spin distributions (Stone et al. 2019).
In addition, the shocks, circularization, and accretion of the
stellar debris onto the SMBH can reveal clues to better
understand the more stable AGN activity or the unusual
behavior of variable quasars (LaMassa et al. 2015).
According to theory, flares from TDEs were expected to

originate in the innermost regions of the accretion disks
(Rees 1988), which translate into soft X-ray emission and
extreme-ultraviolet (EUV) emission. Consequently, searches
for TDEs in archival data started in X-rays using ROSAT and
the XMM-Newton Slew Survey (Bade et al. 1996; Komossa &
Bade 1999; Saxton et al. 2012). Subsequently, transient UV
emission was also associated with activity produced by stellar
disruptions (Gezari et al. 2006, 2008), and the search
progressed at optical (van Velzen et al. 2011; Arcavi et al.
2014), gamma-ray, and radio wavelengths (Bloom et al. 2011;
Burrows et al. 2011; Cenko et al. 2012). Currently, optical
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transient surveys are the most active discovery tool, with a total
of ∼25 optical TDE candidates reported to date.20

The majority of recent optical TDE discoveries were
monitored in the UV using broadband photometry with the
Neil Gehrels Swift Observatory (Swift; Gehrels et al. 2004).
The sample has shown significantly higher temperature in the
continuum than supernovae, with » ´( – )T 20 80 10eff

3K (see
sample in Hung et al. 2017), suggesting that the bulk of the
energy was released in the UV, inaccessible to ground-based
telescopes. To date, rest-frame UV spectra of only five TDEs
have been published, including the object discussed herein.
While the optical spectra of these events are usually marked by
He II, He I, and occasionally H broad emission lines (BELs;
Holoien et al. 2016a; Blagorodnova et al. 2017), far-UV
spectroscopy of ASASSN-14li (Cenko et al. 2016), iPTF16fnl
(Brown et al. 2018), and iPTF15af (also published in Yang
et al. 2017) have shown the presence of broad collisionally
excited lines of Lyα, C IV, N V, and Si IV. In contrast, low-
ionization lines of Fe II and Mg II dominated the UV spectra for
PS1-11af (Chornock et al. 2014) and PS16dtm (Blanchard et al.
2017). The observed diversity suggests that UV wavelengths
are especially relevant for characterizing the geometry, density,
and kinematics of the stellar debris and preexisting circum-
nuclear material.

Here we present the discovery and follow-up observations at
optical, UV, mid-IR, X-ray, and radio wavelengths of
iPTF15af, a TDE discovered by the intermediate Palomar
Transient Factory (iPTF; Rau et al. 2009) survey at redshift
z=0.07897. We show that the photometric and spectroscopic
evolution of this event resembles other tidal disruption flares
reported to date. The broad absorption component observed in
the UV spectrum suggests the presence of high-velocity
outflows, similar to the ones observed in broad absorption line
quasars (BAL QSOs).

Section 2 describes the discovery, the host galaxy, and our
multiwavelength follow-up observations. Sections 3 and 4
describe the photometric and spectroscopic analysis of the
object, respectively. In Section 5 we compare the UV spectra of
iPTF15af to those of other TDEs and QSOs. In Section 6 we
summarize our conclusions.

In this work, we assume a flat cosmology and values of
H0=70 -km s 1Mpc−1, ΩM=0.30, and ΩΛ=0.70.

2. Discovery and Observations

iPTF15af was discovered by the iPTF survey on UTC 2015
January 15.3 (MJD 57,037.3). The object was detected in three
of the five difference images taken on that night. The average
AB magnitude (Oke & Gunn 1983) measured by the pipeline
(Masci et al. 2017) was R=20.7±0.2 in the iPTF Mould R
band. Stacked forced photometry allowed us to recover the
transient in archival data at 25 days prior to its discovery in
single-epoch images.

The central location of the transient in its host galaxy (see
Figure 1) awarded the transient multiwavelength follow-up
observations and a spectroscopic classification a week later.
The spectrum confirmed the presence of strong He II lines,
characteristic of an optical TDE candidate (Gezari et al. 2012;
Arcavi et al. 2014).

From the averaged positions of the residuals in the r band,
we derive the location of the transient to be α=08h48m28 12,

δ=+22°03′33 575 (J2000), with a standard deviation in both
coordinates of 1σ=120 mas. This position is offset from the
central location of the galaxy core by 230 mas, which is
consistent with the nucleus of the galaxy within 2σ. The Milky
Way extinction along the line of sight is AV=0.093 mag
(Schlafly & Finkbeiner 2011).

2.1. Host Galaxy

The transient’s host galaxy SDSS J084828.13+220333.4 is
located inside the footprint of the Sloan Digital Sky Survey
(SDSS) DR12 (Alam et al. 2015). An archival spectrum of the
host was obtained on MJD 53,379 as part of the SDSS
spectroscopic survey. We do not identify major lines associated
with star formation or AGNs. The spectroscopic redshift of
the galaxy is z=0.07897±0.00004, which corresponds to a
luminosity distance DL=358Mpc (distance modulus μ=
37.8 mag).
Archival photometry of the host is provided in Table 1. The

limit for the GALEX far-ultraviolet (FUV) band was obtained
from synthetic photometry of the best-fit galaxy model from the
Bruzual & Charlot (2003) spectral library. The spectrum was
reddened and normalized to the SDSS g-band measurement.
Literature modeling analysis of the light profile of the galaxy

shows that the values derived for its bulge-to-total light ratios
are (B/T)g=0.50 and (B/T)r=0.56 in the g and r bands,
respectively (Simard et al. 2011). The stellar mass for the host
and its bulge, log

*
= -

+
( )M M 10.360 0.138

0.099 and log =( )M Mb

-
+9.99 0.15
0.12, show that ∼40% of the mass is concentrated in the

bulge of the galaxy (Mendel et al. 2014). Galaxies with
enhanced stellar density cores are common among TDE hosts
(Graur et al. 2018), showing unusually high B/T values (Law-
Smith et al. 2017). High-resolution spectroscopy of the galaxy
has allowed us to measure the velocity dispersion in the host,
leading to an M–σ estimate of = -( )M Mlog 6.8810 BH 0.38

0.38

(Wevers et al. 2017).
The low specific star formation rate (sSFR) of the host,

= - -
+( )log sSFR yr 14.8710 0.10
3.55 (Chang et al. 2015), shows that

at the present time the galaxy is not actively forming stars.
However, further analysis reveals that the host experienced a
short (∼25Myr) burst of star formation ∼600Myr ago (French
et al. 2017). However, this burst could account for only a small
fraction of the mass (5%).
Since 2005, the host galaxy of the transient has been

continuously monitored by the Catalina Real-time Transient
Survey (Drake et al. 2009). During the past ∼10 yr, the host
galaxy is well detected with an average magnitude of
V=17.67±0.11, which appears constant within the errors.
Nuclear activity is also unlikely, as inferred from the quiescent
mid-IR Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010) color W1–W2=0.177, away from the locus
determined by W1–W2�0.8 (Stern et al. 2012). Based on the
lack of AGN features in the spectrum, the lack of variability,
and no mid-IR excess, we can rule out previous AGN activity
in the host at least ∼10 yr before the discovery of the source.

2.2. Ground-based Photometry

After its discovery, the transient was simultaneously
monitored for 3 months in the R band with the Palomar
48-inch telescope (P48) and in the gri bands with the Palomar
60-inch telescope (P60). The P48 data reduction is described by
Laher et al. (2014), while the photometric calibration and the20 Based on reports to the TDE Open Cataloguehttps://tde.space.
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system are discussed by Ofek et al. (2012). The difference-
image photometric measurements were obtained with PTFIDE

(Masci et al. 2017) and FPipe (Fremling et al. 2016) for P48
and P60, respectively. The zero-points were calibrated using
the SDSS DR13 catalog (SDSS Collaboration et al. 2017).
Simultaneously, we also obtained follow-up photometry in the
BVgri bands with Las Cumbres Observatory’s 1 m telescope in
Texas (Brown et al. 2013). The point-spread function
photometry was obtained using lcogtsnpipe (Valenti
et al. 2016), which is calibrated to the APASS 9 (Henden
et al. 2016) and SDSS DR13 catalogs for BV and gri,
respectively. Deeper, prediscovery photometric measurements
were obtained by combining the flux from all available nightly
sets of five images. The photometric evolution of iPTF15af is
shown in Figure 2, and the difference-imaging measurements
are available as part of Table 2.

The first noticeable characteristic of this event is its slow
evolution in the UV and optical bands. Since our first

detections in r, there is a slow brightening by ∼1 mag on a
timescale of 30 days. After that, the optical bands reach a
plateau phase, lasting ∼3 months. The observed apparent
magnitudes at peak (around MJD 57,370) are mg=19.8±
0.1 mag and mr=20.2±0.1 mag, corresponding to absolute
magnitudes (corrected for foreground extinction) of Mg=
−17.9±0.1 mag and Mr=−17.7±0.1 mag. Because of the
faint apparent magnitude of the object, our follow-up
observations are nondetections in the optical bands after the
fourth month; apparently, by that time the transient had faded
below ∼21 mag in g and 22 in r.

2.3. Swift Photometry

Following the optical discovery of iPTF15af, we initiated
follow-up observations with the Ultra-Violet Optical Telescope
(UVOT; Roming et al. 2005) on board the Swift satellite. The
data were obtained in three successive campaigns in all six
UVOT filters. We used the software package UVOTSOURCE to
obtain the counts of the source within a 5″ aperture radius. The
background was computed from an off-target sky region using
an aperture of 12″. The magnitudes were derived using the
latest UVOT calibration (Poole et al. 2008; Breeveld et al.
2010). The aperture magnitude measurements are listed in
Table 2.
The evolution of the Swift photometry is shown in Figure 2.

While the reddest bands, with higher contamination from
host galaxy light, follow the plateau observed in the optical
bands, the UV bands UVW2 and UVM2 show a declining
trend after 50 days, which places an approximate date of the
peak at ∼40 days after discovery in the rest frame of the
source (around MJD 57,077.3). We note that while at later
times the UV emission has considerably faded, our measure-
ments are still 4 mag brighter than the archival ones reported
by GALEX. The flattening of UV emission at late times is
consistent with the trend observed for a sample of optical
TDEs, observed 5–10 yr after the flare (van Velzen et al.
2018).

2.4. Optical Spectroscopy

Optical spectra were obtained with the Low Resolution
Imaging Spectrometer (Oke et al. 1995) on the KeckI 10 m
telescope and were reduced using the automated reduction
pipeline in IDL lpipe,21 developed by D. Perley.
The full spectral log is provided in Table 3. Upon the

publication of the article, all spectra will be made publicly
available via the WISeREP repository (Yaron & Gal-Yam
2012).
The spectral evolution of the event from +7 to +149 days

after discovery is shown in the left panel of Figure 3. In order to
optimize the host galaxy subtraction, we used the same
configuration to obtain a late-time spectrum of the host at
+1035 days after discovery, when the TDE contribution was
completely gone. Visual inspection of our spectrum at
+149 days after discovery confirms that for that epoch there
was still significant residual flux from the transient.

2.5. UV Spectroscopy

UV spectroscopy of iPTF15af was obtained (PI S. B. Cenko,
proposal GO-13853) with the Space Telescope Imaging

Figure 1. Left: archival SDSS color composite of the host galaxy. Right: iPTF
P48 image with the transient at 10 days after discovery (around peak
magnitude). The red plus sign marks the location of the transient.

Table 1

Photometry of SDSS J084828.13+220333.4

Survey Band Magnitude References
(mag)

GALEX FUVAB >24.6a (1)
GALEX NUVAB 24.02±0.48b (1)
SDSS DR12 u 20.286±0.084c (2)
SDSS DR12 g 18.520±0.010c (2)
SDSS DR12 r 17.606±0.007c (2)
SDSS DR12 i 17.186±0.008c (2)
SDSS DR12 z 16.883±0.019c (2)
2MASS J 16.433±0.132d (3)
2MASS H 15.671±0.148d (3)
2MASS K 15.547±0.175d (3)
WISE W1 14.809±0.033d (4)
WISE W2 14.632±0.068d (4)
WISE W3 >12.309d (4)
WISE W4 >8.681d (4)
NVSS 1.4 GHz <1.8 mJy (5)
ROSAT 0.1–2.4 keV <3.9×10−13 -erg s 1 (6)

Notes.
a Synthetic photometry.
b Measured within 7 5 diameter aperture.
c Model magnitude.
d PSF magnitude.
References. (1) Bianchi et al. (2011); (2) Alam et al. (2015); (3) Skrutskie et al.
(2006); (4) Wright et al. (2010); (5) Condon et al. (1998); (6) Voges et al.
(1999).

21 http://www.astro.caltech.edu/~dperley/programs/lpipe.html
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Spectrometer on the Hubble Space Telescope (HST) on UTC
2015 March 08.1 (MJD 57,089.1), at 52 days after discovery.
The combined data from the FUV and the near-UV (NUV)

MAMA detectors provide coverage in the 1145–3145Årange.

The spectrum is represented in Figure 4, and the log of the UV
observations is provided in Table 4.
Given the good signal-to-noise ratio of the trace in the two-

dimensional images, we used the one-dimensional spectra output

Figure 2. iPTF15af photometric measurements, corrected for Galactic extinction. For display purposes, the data have been binned with a bin size of 3 days. PTF
measurements are obtained from difference photometry. The Swift measurements correspond to aperture photometry. Arrows show the upper limits. The epochs for
optical spectra are marked with “S” and the epoch of the UV spectrum with “U.” We use the discovery date as our reference epoch.

Table 2

Optical Difference Imaging and Swift UV Aperture Photometry of iPTF15af in the AB Magnitude Systema

MJD Phaseb Telescope UVW1 UVM2 UVW2 U B V g r i

(days) (days) + Instrument (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

56,664.0 −373.3 PTFP48 L L L L L L L >23.29 L

56,667.0 −370.3 PTFP48 L L L L L L L >22.20 L

56,670.0 −367.3 PTFP48 L L L L L L L >20.47 L

56,769.0 −268.3 PTFP48 L L L L L L L >21.89 L

57,012.0 −25.3 PTFP48 L L L L L L L 21.79±0.26 L

57,015.0 −22.3 PTFP48 L L L L L L L 21.73±0.12 L

57,018.0 −19.3 PTFP48 L L L L L L L 21.51±0.16 L

57,021.0 −16.3 PTFP48 L L L L L L L 21.51±0.18 L

57,036.0 −1.3 PTFP48 L L L L L L L 20.87±0.11 L

57,039.3 2.0 P60+SEDM L L L L L L 20.27±0.06 20.58±0.10 20.55±0.14
57,039.0 1.7 PTFP48 L L L L L L L 20.64±0.05 L

57,044.3 7.0 P60+SEDM L L L L L L 20.13±0.07 20.20±0.12 >20.20
L L L L L L L L L L L

Notes.
a The r-band column for P48 contains measurements in the Mould R filter system. These data are not corrected for Galactic extinction.
b The phase is with respect to the date of discovery MJD 57,037.3.

(This table is available in its entirety in machine-readable form.)

Table 3

Log of Ground-based Spectroscopic Observations of iPTF15afa

Phaseb MJD UTC Telescope P.A. Exposure
(days) (days) +Instrument (deg) (s)

+7 57,044.5 2015 Jan 22 11:38:56 Keck I+LRIS 105 1240
+36 57,073.5 2015 Feb 20 12:59:35 Keck I+LRIS 268 600
+67 57,104.3 2015 Mar 23 07:16:37 Keck I+LRIS 230 820
+121 57,158.3 2015 May 16 06:17:20 Keck I+LRIS 87 1200
+149 57,186.3 2015 Jun 13 06:11:08 Keck I+LRIS 270 610
+1035 58,072.6 2017 Nov 15 13:33:51 Keck I+LRIS 272 1160

Notes.
a All observations were conducted with a combination of grism 400/3400 and grating 400/8500, and a long 1″-wide slit, providing a resolution of ∼7 Å.
b The phase is relative to discovery date with MJD 57,037.3.
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by the HST pipeline. The spectra from each detector were
combined using an inverse-variance-weighted average of the one-
dimensional spectra.

2.6. X-Rays

We used the X-ray Telescope (XRT; Burrows et al. 2005) on
board the Swift satellite to observe iPTF15af in the
0.3–10.0 keV bandpass using the photon counting mode. The
observations, with typical exposure times of ∼2 ks, were taken
simultaneously with the UVOT exposures. The single-epoch
data only yielded nondetections, with an average 3σ upper limit
of (5±2)×10−3 counts s−1 in this bandpass.

We measured the flux assuming that the source spectrum
follows a power law with a photon index of Γ=2 and a line-
of-sight absorption in the Milky Way of = ´N 3 10H

20 cm−2

(Willingale et al. 2013). Our count rate corresponds to
an upper limit for the unabsorbed flux of = ´-

+f 1.9 0.8
0.5

-10 13 erg cm−2 s−1 in the 0.3–10.0 keV bandpass. At the
distance of iPTF15af, this value translates to an upper limit on
the X-ray luminosity of < ´L 3.0 10X

42 erg s−1.
The total flux from the source in the stacked image of 33 ks

was estimated using the 99.7% Bayesian confidence interval
(Kraft et al. 1991), encoded in the astropy Python package
(assuming only a non-negativity prior). We used the exposure-
weighted correction factor provided by the Swift XRT pipeline
to calculate the total of number of counts. The 3σ level is
[0, 3.6]×10−4 counts s−1, corresponding to an upper limit for
the luminosity of  ´L 2.2 10X

41 erg s−1 in the Swift band.
When comparing the X-ray luminosity of iPTF15af to that of

other BAL QSOs, we first used the UV spectrum to derive the
UV/X-ray luminosity relation, quantified by the αOX para-
meter (Avni & Tananbaum 1982; Just et al. 2007),

a º n

n

⎛

⎝
⎜

⎞

⎠
⎟

( )

( Å)
( )

f

f
0.3838 log

2 keV

2500
, 1OX

where fν(2 keV) is the monochromatic unabsorbed flux density
at 2 keV, derived using the stacked image counts and a power

Figure 3. Left: rest-frame optical spectra of iPTF15af obtained with LRIS on the KeckI telescope. The spectra are not corrected for Milky Way extinction. Right:
subtracted residuals for each epoch using the spectrum of the host at +1035 days plus a blackbody. The broad absorption feature around 5200 Å noticeable at +36
days is related to the dichroic, which was placed at rest frame 5600 Å. The most relevant element transition lines are marked.

Figure 4. HST/STIS spectrum of iPTF15af at 52 days after discovery (red dark line) and the best-fit blackbody emission to the segment between 2000 and 3000 Å
(black dashed line). The major broad emission lines have been marked in the upper part of the plot, and the major BALs are shown with shaded areas in the bottom,
along with a label. The spectrum has been corrected for Galactic extinction. The regions of geocoronal airglow lines are marked with ⊕ symbols.

Table 4

Log of UV Spectroscopy of iPTF15af with HST
a

UTC Grating Scale Res. Power Exposure
(Å pixel−1) (λ/Δλ) (s)

2015 Mar 8 01:12:13 G230L 1.58 500–1010 2130.0
2015 Mar 8 02:32:38 G230L 1.58 500–1010 2922.0
2015 Mar 8 04:08:06 G140L 0.60 960–1440 2922.0
2015 Mar 8 05:43:35 G140L 0.60 960–1440 2922.0
2015 Mar 8 07:19:03 G140L 0.60 960–1440 2922.0

Note.
a STIS instrument and FUV-MAMA and NUV-MAMA detectors. All
measurements were taken with slit 52×0.2.
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law with photon index Γ=2, and fν(2500Å) is the flux
density at 2500Å, both in erg s−1 cm−2Hz−1.

For iPTF15af we obtained αOX=−1.8±0.1 for the X-ray
upper confidence level interval. In order to compare this value
to that of standard QSOs, we derived the expected X-ray
luminosity for a typical QSO given its UV luminosity using the
relation found by Just et al. (2007):

a = - 
+ 

( ) ( ) ( )

( ) ( )

L L0.140 0.007 log

2.705 0.212 . 2

OX 2500 2500

The difference between the two ratios, parameterized as

a a aD º - ( ) ( )L , 3OX OX OX 2500

is used as an indication of X-ray weakness as compared to the
general QSO population.

For our TDE, we derive a value of ΔαOX=−0.63, which
indicates that the transient is weaker in X-rays by a factor of
∼43 than a typical QSO of the same UV luminosity. This value
is in agreement with the weakest X-ray BAL QSOs from
Gibson et al. (2009, their Figure 16).

2.7. Radio

Radio follow-up observations of iPTF15af were carried out
with the Jansky Very Large Array (PI A. Horesh) on UTC 2015
January 31, at 15 days after discovery. The source was not
detected in either the C (6.1 GHz), or K (22 GHz) bands with an
rms of 28 and 36 μJy, respectively. The corresponding upper
limits for the monochromatic radio luminosities are n <nL
´2.6 1037 -erg s 1 and n < ´nL 1.2 1038 -erg s 1 at 6.1 and

22 GHz.
These early-time observations of iPTF15af cannot completely

rule out an emission mechanism equivalent to that of ASASSN-
14li (Holoien et al. 2016a), which a month after discovery
registered peak luminosities of n » ´nL 9 1037 -erg s 1 and
n » ´nL 3 1038 -erg s 1 at 5 and 15.7 GHz, respectively
(Alexander et al. 2016; van Velzen et al. 2016a). In case of
jetted on-axis emission, these limits would constrain the jet
energy to <E 10j

49 erg s−1 (Generozov et al. 2017).

2.8. Mid-IR Photometry

We retrieved archival mid-IR data prior to and after the event
from the WISE survey and the 2017 release of NEOWISE
(Mainzer et al. 2014). The WISE data correspond to the all-sky
survey run in 3.4, 4.6, 12, and 22 μm (W1, W2, W3, W4) taken
in 2010. The NEOWISE data cover 3 years after the
reactivation of the mission in 2013 December in the W1 and
W2 bands.
Using the IRSA archive,22 we selected W1 and W2

magnitudes for sources detected in single exposures within 2″
of the position of the transient. After discarding the measure-
ments marked as upper limits (“U” value in the ph_qual
column), we obtained the flux-weighted average combining the
remaining ∼10 measurements per epoch. The results are shown
in Figure 5, where we also include the r-band light curve of the
transient for comparison.
Although the NEOWISE light curve shows small variations

around the archival value of the source in the allWISE catalog,
none of them are more significant than 3σ. Hence, for iPTF15af
we can rule out a detection of a strong IR echo as in the case of

Figure 5. WISE (first two epochs) and NEOWISE (last six epochs) average
weighted photometry is shown with orange and blue circles, respectively. The
dotted line and shaded areas show the co-added magnitude and uncertainties,
respectively, for the quiescent host from the AllWISE source catalog. The
r-band binned photometry for the optical emission is shown with small red
circles. An offset of −6 mag is applied.

Figure 6. Top: bolometric blackbody light curve of iPTF15af. Blue filled
circles represent the fits using extinction-corrected Swift bands. Open blue
circles represent the values estimated using the r-band scaling. The purple
square shows the temperature derived using the featureless portion of the HST
UV spectrum. The right-hand top axis shows the bolometric luminosity as a
fraction of the total Eddington luminosity for a 106.88 M SMBH. Middle:
temperature evolution. Bottom: evolution of the blackbody radius. The right-
hand axis shows the radius as a fraction of the tidal disruption radius for a
106.88 M SMBH and a 1 M star. In all three plots the epoch of discovery has
been adopted as the reference MJD.

22 http://irsa.ipac.caltech.edu
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PTF09ge (van Velzen et al. 2016b) or PS16dtm (Jiang et al.
2017).

3. Spectral Energy Distribution (SED) Analysis

For our SED analysis, we used Swift UVOT aperture
photometry for UVW1, UVM2, and UVW2 (subtracting the
host synthetic magnitude from our best-fit model spectra) and
difference-image photometry in the r and g bands, to derive
the blackbody temperature and radius of the emission from
the transient. We fixed the time of the Swift observations as
our reference epoch and interpolated the optical bands to
derive the magnitudes at the same epoch. The fluxes,
corrected for Milky Way extinction, were fit with an SED
corresponding to a single-temperature blackbody model. We
have excluded the optical Swift bands from our analysis, as
they had considerable contamination from the host galaxy,
which was still present in our last epochs. The i band from the
P60 exhibited larger scatter than usual, so it was excluded
as well.

The initial value for the temperature prior was derived from
the fit to the UV spectrum (see Section 4.2). Our posterior
distributions for temperature and radius are based on Markov
Chain Monte Carlo simulations, run using the Python

package emcee (Foreman-Mackey et al. 2013). The blackbody
bolometric luminosity, along with the best fit for the
temperature and the radius (median, 16% and 84% percentiles)
as derived from the SED, is shown as filled circles in Figure 6
and given in Table 5.

The rising part in our light curve only contains optical
measurements, mainly in R band. Our Swift measurements start
a month after the detection of the source in stacked iPTF data.
In order to derive the luminosity and the radius of the emitting
region without Swift NUV photometry, we proceed as follows.
We initially assume that the temperature of the emission does
not deviate significantly from our first estimate from Swift
photometry. We use this value of TBB≈49,000 K to simulate
blackbody emission and scale it to our r-band measurements.
The results are shown in Figure 6 as open circles. Their error
bars indicate the change in luminosity and radius if our
assumed temperature varied by ±15,000 K.

The bolometric light curve obtained for iPTF15af shows a
slow rise over the initial 30 days, reaching = ´-

+L 1.5peak 0.5
0.8

1044 -erg s 1 and gradually decaying over the next 5 months,
providing a rest-frame e-folding time of τ≈68 days. The
overall luminosity and timescales for this TDE, as shown in
Figure 6, agree well with those of PS1-10jh (Gezari et al. 2012)
and slowly evolving events like ASASSN-15oi (Holoien et al.
2016b).

The integrated bolometric light curve over the observed
interval (Figure 6) shows a total energy of L�(8.0±1.1)×
1050 erg. Assuming an efficiency of ò=0.1 for transforming
the accreted mass into the observed luminosity, Erad=òMaccc

2,
the inferred lower limit for the mass of the accreted material
is =  ´ -( )M 4.5 0.6 10acc

3
M .

Analogous to the trend seen in other optical TDEs (see Figure
11 in Hung et al. 2017), the temperature of iPTF15af remains
relatively constant for nearly 200 days. The emission initially
appears hotter, with TBB≈49,000K, and only 2 months later
evolves toward lower temperatures in the 30,000K range. The
cooling is related to an expansion of the photosphere from

» ´R 1 10BB
14 cm during the rise, up to a maximum of

3×1014 cm (4300 R ) during peak, placing the emission at ∼23
tidal radii from the SMBH. This value is similar to those reported
for other optical TDEs (Hung et al. 2017; Wevers et al. 2017).
To further constrain the characteristics of iPTF15af, we used

the same Swift UVW2, UVM2, and UVW1 bands, together with
the difference-imaging g and r photometry, to model the light
curve with the open-source code MOSFiT (Guillochon et al.
2018), based on the TDE model of Guillochon & Ramirez-Ruiz
(2013). In order to avoid host galaxy contamination, we
excluded the bands U, B, and V. Provided that the mass of
the SMBH was available from the literature (see Section 2.1),

Figure 7. Markers correspond to iPTF15af optical and UV observations used
for the modeling. The lines correspond to a set of best-fit models, obtained with
MOSFiT. The color-coding for the observations and the models is the same.

Table 5

Best Blackbody Fits to the iPTF15af SEDa

MJD Rest Epoch TBB RBB LBB
(days) (days) (104 K) (1014 cm) (1043 erg s−1)

57,012* −23.4 -
+4.90 1.50
1.50

-
+0.94 0.22
0.34

-
+3.62 2.07
2.48

57,015* −20.7 -
+4.90 1.50
1.50

-
+0.97 0.23
0.35

-
+3.83 2.19
2.62

57,018* −17.9 -
+4.90 1.50
1.50

-
+1.07 0.26
0.39

-
+4.70 2.68
3.21

57,021* −15.1 -
+4.90 1.50
1.50

-
+1.07 0.26
0.39

-
+4.70 2.68
3.22

57,036* −1.2 -
+4.90 1.50
1.50

-
+1.44 0.34
0.52

-
+8.51 4.86
5.83

57,039* 1.9 -
+4.90 1.50
1.50

-
+1.64 0.39
0.59

-
+11.02 6.29
7.54

57,049 10.8 -
+4.86 0.68
0.88

-
+1.95 0.22
0.23

-
+15.03 4.81
8.14

57,054 15.5 -
+4.11 0.49
0.62

-
+2.32 0.23
0.24

-
+10.84 2.91
4.58

57,060 21.0 -
+4.19 0.58
0.74

-
+2.38 0.27
0.30

-
+12.54 3.90
6.48

57,064 24.7 -
+3.78 0.47
0.62

-
+2.56 0.29
0.29

-
+9.56 2.64
4.34

57,070 30.3 -
+3.77 0.39
0.47

-
+2.55 0.23
0.24

-
+9.30 2.17
3.09

57,075 34.9 -
+3.30 0.50
0.62

-
+2.81 0.36
0.42

-
+6.71 2.14
3.49

57,079 38.6 -
+2.96 0.29
0.36

-
+3.16 0.32
0.33

-
+5.47 1.11
1.58

57,089 47.9 -
+3.64 0.40
0.50

-
+2.38 0.23
0.24

-
+7.12 1.72
2.65

57,100 58.1 -
+3.00 0.31
0.37

-
+2.71 0.27
0.29

-
+4.27 0.90
1.29

57,109 66.5 -
+3.44 0.37
0.56

-
+2.23 0.25
0.21

-
+4.96 1.19
2.30

57,168 121.1 -
+2.86 1.07
1.98

-
+1.89 0.82
1.96

-
+1.72 0.60
2.86

57,177 129.5 -
+3.22 1.37
2.06

-
+1.55 0.62
1.96

-
+1.84 0.80
3.07

57,185 136.9 -
+3.57 1.42
1.93

-
+1.46 0.50
1.39

-
+2.46 1.21
3.69

Note.
a Fits to the optical and UV SED, giving the temperature (TBB), radius (RBB),
and luminosity (LBB). Epochs marked with an asterisk were estimated from
r-band images only (see Section 3).
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we used it as our prior probability, allowing our uniform
distribution to vary within 3σ.

The light curves for a set of best-fit models are shown in
Figure 7. The parameters derived from the simulation
correspond to a tidal disruption of a star with mass =Mstar

-
+2.6 0.9
1.1

M by a black hole with log = -
+

( )M M 7.7BH 0.5
0.1,

consistent within the errors with our literature prior. This mass
would be on the heavy end for the sample of TDE fits from
Mockler et al. (2019), similar to the one computed for PS1-10jh.
The estimated disruption time of the star is at- -

+38.56 7.0
9.6 days.

The impact parameter, defined as the ratio between the star’s
disruption radius and the radius of the star at pericenter

b= = -
+R R 0.10T p 0.1
0.36, is the lowest compared to the previous

sample. The value β<1 would imply an extremely shallow
encounter, corresponding to only a partial disruption (Guillochon
& Ramirez-Ruiz 2013). Since the event is among the brightest in
the sample, its luminosity could be attributed to a highly efficient
conversion of Ṁ to luminosity of  = -

+0.23 0.1
0.1. The reddening in

the host estimated by the model is log =-
-
+( )n cm 20.9H

2
0.1
0.1,

corresponding to an extinction of A(V )≈0.4 mag when
assuming the relation provided by Güver & Özel (2009).

4. Spectroscopic Analysis

4.1. Optical Spectroscopy

The optical spectroscopic evolution of iPTF15af is shown in
the left panel of Figure 3. In the last two spectra, taken at 4 and
5 months after the event, the BELs have disappeared, with the
exception of a residual flux possibly associated with Hα at
+121 days. However, the contribution from a blue continuum
is still noticeable in both spectra, as compared with the
quiescent host at +1035 days.

For our line analysis, we used the late-time (+1035 days)
spectrum of the galaxy to perform host subtraction, following
the method described by Blagorodnova et al. (2017). To ensure
that the TDE features were completely gone, we compared our
spectrum to the archival SDSS pre-flare spectrum, taken ∼13 yr
before the detection of the transient. Except a small scaling
factor, we found no significant deviation between the two. We
then fit simultaneously the host and a blackbody component to

the TDE emission spectrum and subtracted this fit from the
transient spectrum. A low-order polynomial was used to level
up any leftover broad component in the continuum. The
residuals are shown in the right panel of Figure 3.
Using the Python package lmfit, we model the emission

lines of the residual spectra with one and two Gaussian profiles
and a broad exponential profile for the local continuum. The
best fits are shown in Figure 8, and the measurements are
logged in Table 6.
The Hα line is not detected in our first residual spectrum.

However, at later epochs emission is present with possibly two
distinct components at+36 days, with velocities similar to those of
the He II line. Toward +67 days, it evolves into a single broad
(∼11,000 -km s 1) line centered on its rest-frame wavelength.
The He II λ4686 line is clearly detected in all three spectra,

which show a bimodal profile. While the redshifted wing has
constant v≈4000 -km s 1 and an FWHM of ∼12,000 -km s 1,
there is a noticeable narrowing of the blueshifted component at
later times. The velocity shifts toward lower values, and the
emission becomes narrower, evolving from an average FWHM
of ∼11,000 to 7500 -km s 1.
The blueshifted component in the double-peaked He II

region is very interesting. Previous spectroscopic studies of
optical TDEs attributed the blueshifted component to a blend of
C III/N III, usually detected in Wolf-Rayet stars and supernovae
having high temperatures (Gezari et al. 2015; Brown et al.
2018). Figure 9 shows that the centroid of this line appears to
be blueshifted with respect to the rest-frame wavelengths of
N III λ4641 and C III λ4649. Here we propose that this line and
other emission features blueward of 4500Å are caused by the
Bowen fluorescence mechanism.
The Bowen fluorescence mechanism (Bowen 1934, 1935)

was initially proposed to explain the unusually strong metallic
lines observed in planetary nebulae. The source of the emission
lies in the recombination of fully ionized He II and its de-
excitation toward its ground state. While the jumps between the
outer orbits produce optical emission (such as the He II λ4686
line), the final transition corresponding to the He II Lyα
line produces an EUV 303.780Å photon. After scattering within
the nebula, this photon can either be reabsorbed by another He II
atom or enter in resonance with the O III lines at 303.800 Å (O1)
and 303.695 Å (O3). The de-excitation of these lines produces
the primary and secondary Bowen decays in the optical,
following a tertiary decay emitting a 374.436Å photon.
The O III line photons created here can easily escape from the

nebula, resulting in transitions at 3047, 3133, 3312, 3341, 3444,
and 3760 Å. However, the EUV photons are likely to be
reabsorbed, this time by the resonance N III line, with transitions
at 374.434 and 374.442Å. The recombination of the nitrogen
atom toward its ground state is converted into a primary
transition at 4640 Å and a secondary one at 4100 Å, along with a
452Å photon. While the EUV photons are optically thick and
suffer multiple absorptions and re-emissions within the nebula,
the optical photons will easily escape. Observations of planetary
nebulae suggest that high optical depths are required for the
Bowen fluorescence to work (Selvelli et al. 2007), as the O III
photons would need to suffer several scatterings in order to
increase the pumping efficiency for N III.
Bowen fluorescence was predicted to occur also around

accreting black holes several decades ago (Netzer et al. 1985).
However, only recently has it been robustly identified in

Figure 8. Best-fit line profiles to the residual emission component in iPTF15af
for He II λ4686 (top) and Hα (bottom). The center of the emission lines for
each element has been placed at zero velocity. The flux density has been
normalized for visualization purposes.
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TDEs (present work) and AGN flares (Trakhtenbrot et al.
2019).

Figure 9 shows the main Bowen transition lines overplotted on
the spectrum taken at +67 days. In the earlier spectra at +7 and
+36 days we can also identify the lines associated with nitrogen
λλ4100, 4640. However, the broader line profile at those epochs
makes the identification of the oxygen lines challenging.

In addition, in the early-time spectra we tentatively identify
an emerging line around 5700Å, close to the He I λ5875
region. However, the origin of this line is less clear, as its
blueshift velocity would be around −9000 -km s 1, higher than
the one observed for He II and Hα (−7500 to −5000 -km s 1).
Provided that other nitrogen lines were detected, another

possible candidate would be the N II forbidden line, with a
wavelength of 5754.8Å.

4.2. UV Spectroscopy

The UV spectrum of iPTF15af, corrected for Milky Way
extinction, is shown in Figure 4. Assuming negligible UV flux
contribution from the host galaxy, we use the featureless part of
the spectrum with λ�2000Å to fit a blackbody spectrum. Our
best fit provides a temperature of -

+43, 300 1,500
1,700 K, consistent

with the value derived from our Swift SED analysis at a similar
epoch, as shown in Figure 6.

Table 6

Fit Parameters for the Optical Broad Linesa

Phase Ion Velocity1 FWHM1 Velocity2 FWHM2

(days) (103 -km s 1) (103 -km s 1) (103 -km s 1) (103 -km s 1)

+7 He II −7.4±2.1 11.0±1.2 4.1±2.6 12.1±0.7
+36 Hα −5.1±0.1 4.7±0.3 3.8±0.3 10.8±1.1
+36 He II −6.8±0.3 10.4±0.4 4.1±0.1 12.1±0.1
+67 Hα 0.5±0.2 10.8±0.5 L L

+67 He II −4.9±0.2 7.6±0.3 4.1±0.4 12.1±0.3

Note.
a The index “1” indicates the blueshifted component and the index “2” the redshifted one.

Table 7

Narrow Absorption in UV Spectra of iPTF15af

Ion λ0 z λobs FWHM EW Velocity
(Å) (Å) (Å) (Å) ( -km s 1)

N I 1200.0 0.0 1200.3±0.2 2.4 0.32 75±50
Lyα 1215.9 0.0 1214.68±0.3 L L −300±74
Si II 1260.4 0.0 1260.06±0.1 2.6 0.7 −81±24
BL 1302.0 0.0 1303.0±0.3 2.4 0.2 230±70
C II 1334.5 0.0 1335.0±0.1 3.21 0.90 112±22
Si IV 1393.8 0.0 1394.2±0.1 3.86 0.54 86±22
C IV 1548.2 0.0 1548.5±0.3 1.13 0.38 58±58
Fe II 2600.2 0.0 2602.0±0.3 4.7 1.20 208±35
Mg II 2803.5 0.0 2801.1±0.3 L L −257±32

Lyα 1215.7 0.07897 1311.6±0.2 2.65 0.96 −100±50
C II 1334.5 0.07897 1439.4±0.4 L L −90±90
C IV 1548.2 0.07897 1669.7±0.6 L L −140±110
C IV 1550.8 0.07897 1672.2±0.7 L L −200±125

Figure 9. Identification of Bowen fluorescence lines in the spectrum at +67 days. The [N III] lines are marked in red and [O III] lines in green. The centroids of these
forbidden lines appear shifted by −3000 -km s 1.
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The spectrum exhibits a combination of narrow absorption
lines of low-ionization elements both in the Milky Way and in the
TDE host galaxy and broad lines associated with highly ionized
outflows in the host. The description of each set of features is
detailed below and the measurements are provided in Table 7.

4.2.1. Milky Way Absorption

Figure 10 shows the line identification for elements close to
their rest-frame values. Although the uncertainties in the flux
appear to be small, several lines show signs of blending,
biasing the line-center measurements. The average resolution
of our FUV (∼300 -km s 1) and NUV (∼400 -km s 1) spectra
makes the precise identification of nearby absorption lines
challenging. Tentatively, we identified several transitions
associated with the Galactic interstellar medium (ISM),
containing low-ionization elements N I (14.5 eV), Lyα
(13.6 eV), Si II (16.3 eV), C II (24.4 eV), Fe II (16.2 eV), and
possibly Mg II (15.0 eV). We identify and mark in the spectrum
in Figure 4 the geocoronal airglow lines of Lyα, O I λ1304,
O I] λ1356, and [O II] λ2471. The high-ionization metal
states correspond to Si IV (45.1 eV) and C IV (64.5 eV).
Around 1302Å we identify an absorption corresponding to a
blend of O I λ1302 and Si II λ1304 lines (identified as BL).

4.2.2. Host Galaxy Absorption

In agreement with the UV spectroscopic signature for
ASASSN-14li, the spectrum of iPTF15af also shows weak

Lyα absorption from the host. The majority of low-ionization
elements are also missing. Some narrow absorption lines that
were identified correspond to Lyα at 1216Å, C II λ1334, and a
higher-ionization line corresponding to the C IV λλ1548, 1551
doublet (64.5 eV). The N V λλ1239, 1243 doublet, if present, is
likely blended into the C II line at 1335Å at Galactic redshift.
We also measure a slight blueshift in our lines, with velocities
of 90–200 -km s 1. These values would be consistent with the
motion of gas inside the host galaxy. However, there is a
chance of a low-velocity outflow in this TDE as well, similar to
the one observed for ASASSN-14li (Miller et al. 2015).

4.2.3. Broad Lines

According to the classical definition by Weymann et al.
(1981), a BAL is a trough at �10% below the continuum level,
which extends for more than 2000 -km s 1. This definition has
been formalized by the so-called “balnicity index” (Weymann
et al. 1991), computing the equivalent width of the broad
(�2000 -km s 1) absorption line troughs for each element.
Using the best-fit blackbody spectrum as our continuum level,
we compute that iPTF15af has balnicity indices of 3856 for
Si V, 3495 for N V, and 3392 for C IV, consistent with the
distribution observed for BAL QSOs (Gibson et al. 2009). The
main BALs in the spectrum of iPTF15af have been identified
and marked in Figure 4.
We also identified a feature in the region around 1100Å,

known to contain the resonance multiplet of Fe III (UV1), with

Figure 10. Top: lines identified as part of the Milky Way ISM. The velocity was assumed to be zero at the rest-frame wavelength of each line. Vertical dashed lines
show the velocity of each line. The gray shaded area shows the spectrum 1σ uncertainty. Bottom: lines identified at the redshift of the host galaxy.
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a rest wavelength of 1122.5Å. However, based on the
similarity between the spectra of iPTF15af and high-ionization
BAL QSOs (HiBAL), we attribute the broad depression in that
region to P V λλ1118, 1128 (65.0 eV), observed in 3.0%–6.2%
of BAL QSOs (Hamann 1998; Capellupo et al. 2017).

Figure 4 shows several BELs that were also identified at the
host redshift. We detect strong emission from N III] λ1759
(47.5 eV) and also He II λ1641 (54.4 eV). The resonance line
transitions produced by C IV λλ1548, 1551 (64.5 eV), Si IV
λλ1394, 1403 (45.1 eV), and N V λλ1239, 1243 (97.9 eV) are
also present, accompanied by broad blueshifted absorption
analogous to BAL QSOs.

Similar to other TDEs in quiescent galaxies (Cenko et al.
2016; Brown et al. 2018), we notice the lack of emission for the
low-ionization lines of Mg II λλ2796, 2804, Al III λλ1854,
1862, and Fe II. Furthermore, C III] λ1908, having a similar
ionization potential to that of N III] (47.9 eV vs. 47.5 eV), is
also absent. Since the ratio C III]/N III] has only a moderate
dependence on the physical conditions of the gas (under local
thermodynamic equilibrium conditions), the lack of C in the
spectra of TDEs has been attributed to the unusually high
abundance ratio of N to C in the debris of the disrupted star
(Kochanek 2016; Yang et al. 2017).

Table 8 shows the bulk velocity and the FWHM of each
broad line, as modeled with combined absorption and emission
Gaussian line profiles. He II and N III] are only detected in
emission, with their centroids shifted by ∼+2600 and
−200 -km s 1, respectively. The observed widths of the
emission lines are in the 104 -km s 1 regime, corresponding to
a virialized gas orbiting a log (MBH/Me)=6.88 SMBH at a
distance of ∼1×1015 cm. This value is four times larger than
our inferred blackbody photospheric radius, suggesting that the
line formation region is located likely in an outflow outside the
continuum emitting zone.

In Figure 11, we compare the normalized absorption profile
of C IV to the other high-ionization broad lines. The velocity
shifts for broad absorption components in iPTF15af are
∼−5000 -km s 1, consistent with the outflow velocities of
5000–10,000 -km s 1 observed in BAL QSOs. Despite some
differences in the level of continuum, the widths of the
absorption troughs are consistent with each other, suggesting
that the absorption is produced by the same cloud.

Assuming that the outflow in iPTF15af was initiated around
the bolometric peak light (as observed in the spectral signature of

PS1-11af), we can estimate the distance traveled by the cloud
until the moment the UV spectrum was taken (∼30 days).
Considering the outflow’s fastest absorption component traveling
at ∼8000 -km s 1, we can deduce an upper limit for the distance
of the absorber of ∼2×1015 cm, which is in agreement with the
virial radius computed from the emission-line width.

5. Discussion

iPTF15af is one of the four optical TDEs spectroscopically
observed in the NUV and FUV. From these, PS16dtm and
ASASSN-14li were discovered in galaxies with low-ionization
nuclear emission-line regions. The latter was previously
detected in X-ray and radio. Although the host of iPTF16fnl
did not show any signs of activity, this event was the faintest
and fastest TDE among all the optical samples explored so far.
In this context, iPTF15af is quite representative of the general
TDE population that we have seen so far: slowly evolving
events with peak luminosities around 1044 -erg s 1, generally in
nonactive galaxies. iPTF15af also had nondetections in radio
and had weak (if any) soft X-ray emission. The characteristics
observed for this transient may be relevant for the interpretation
of the bulk of TDEs observed at UV wavelengths.
A comparison of iPTF15af with other optically discovered

TDEs is shown in Figure 12. Several AGN spectra are also
included: a BAL QSO from Hamann (1998), a composite QSO
from the SDSS spectroscopic survey (Vanden Berk et al.
2001), and the nitrogen-rich QSO J164148.19+223225.2
(Batra & Baldwin 2014).

Table 8

Fit Parameters for the UV Broad Linesa

Ion Velocityabs FWHMabs Velocityem FWHMem

(103 -km s 1) (103 -km s 1) (103 -km s 1) (103 -km s 1)

Si IV −6.1±0.5 11.0±2.2 L L

N III] L L −0.2±0.3 10.8±1.0
He II L L 2.6±0.4 4.1±0.9
C IV −5.3±0.5 9.1±1.4 −1.6±6.2 14.0±4.0
P V −4.60±0.2 7.4±0.8 L L

N V −5.1±0.2 7.7±0.5 4.2±0.1 6.1±0.5

Note.
a Identified in iPTF15af. The suffix em symbolizes the values corresponding to
the emission, and abs those corresponding to the absorption components. The
elements are ordered from lower to higher ionization potentials: Si IV—
45.1 eV; N III]—47.5 eV; He II—54.4 eV; C IV—64.5 eV; P V—65.0 eV; N V

—97.9 eV.

Figure 11. Comparison of the BAL of Si IV λλ1394, 1403, N V, λλ1239,
1243, and P V λλ1118, 1128 lines with the C IV λλ1548, 1551 lines. The black
line on the top indicates the separation in velocity of the doublet components.
In the P V panel, the symbol ⊕ indicates absorption lines associated with the
Milky Way.
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An initial remarkable difference is that none of the early-time
emission in TDEs shows the presence of low-ionization
elements such as Mg II (15.0 eV) and Fe II (16.2 eV), which
are commonly observed in AGN spectra. The origin of these
lines is believed to be in the partly neutral, low-ionization
regions in optically thick gas clouds, which are being irradiated
by X-ray photons from the central engine. For such lines to
exist, the broad-line region (BLR) clouds would require a lower
limit on the column density on the order of 1022 cm−2

(Blandford et al. 1990). The lack of strong lines redward of
1900Å can be attributed to insufficient shielding from high-
energy photons, which keep the ionization continuum in the
cloud well above their ionization potential of ∼16 eV.

The absorption components for low-ionization ions Mg II

and possibly Fe II can be observed for two TDEs in our
comparison sample: PS1-11af (Chornock et al. 2014) and
PS16dtm (Blanchard et al. 2017), which also differ from other
TDEs in optical wavelengths. The absorption in PS1-11af was
not present in the spectrum taken at −5 days, suggesting that it
formed in an outflow outside of the continuum region,
analogous to our interpretation of iPTF15af.

The higher redshift of iPTF15af allows us to reach shorter
wavelengths, where we putatively identify broad absorption
corresponding to the ion P V λλ1118, 1128. This element is also
observed in ∼5% of BAL QSOs, and its presence implies the
existence of large column densities of » –N 10 10H

22 23 cm−2

(Capellupo et al. 2017). In most QSOs, the P V lines do not
appear saturated, providing an impression of an extreme metal-
to-hydrogen abundance ratio for the circumnuclear gas (Hamann
1998). However, if the absorbing outflows are concentrated in
small optically thick cloudlets, they would only cover a
fraction of the background emission source, supplying an extra
continuum component.
As most BAL QSOs are weak in X-rays (Brandt et al. 2000;

Gallagher et al. 2001), we can argue that the high column density
outflows in iPTF15af would also act as an absorber for the soft
X-rays, which would explain the early-time nondetections. The
delayed reflection of high-energy emission in these cloudlets
would possibly generate a highly enhanced He II/Hα ratio, as
observed in several optical TDEs (Saxton et al. 2018). However,
the drop in density at late times would allow this emission to leak
out, explaining the soft X-ray brightening of ASASSN-15oi
reported by Gezari et al. (2017) and Holoien et al. (2018). This

Figure 12. Comparison of HST/STIS spectrum of iPTF15af (red) with UV spectra of other TDEs (blue) and QSOs (black). From top to bottom the comparison spectra
are the BAL QSO PG 1254+047 (Hamann 1998; combined HST Faint Object Spectrograph [FOS] and SDSS spectrum), TDE iPTF16fnl (Brown et al. 2018), TDE
PS1-11af (Chornock et al. 2014), TDE PS16dtm (Blanchard et al. 2017), TDE ASASSN-14li (Cenko et al. 2016), the N-rich QSO spectrum of SDSS J164148.19
+223225.2 (Batra & Baldwin 2014), and the SDSS composite QSO spectrum (Vanden Berk et al. 2001). The phase after discovery or peak for each TDE is shown in
brackets. The spectra have been corrected for Galactic extinction. The ⊕ symbol shows the region with strong Galactic Lyα absorption. The most important lines
identified in the spectra are marked at the top.
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lower density would also contribute to the narrowing of the
optical line profiles, as observed in most optical TDEs (Roth &
Kasen 2018).

The lack of detectable radio and X-ray emission for
iPTF15af further confirms that optical TDEs are predominantly
radio-quiet (van Velzen et al. 2013), which seems to contrast
with the high radio-loud fraction of AGNs among the nitrogen-
rich population (Jiang et al. 2008).

One traditional diagnostic of the gas density is the strength of
the line C III] λ1909, which has been extensively used in quasars
to derive an upper limit for the density of the line-forming gas
region (Osterbrock 1970). Collisional de-excitation of this line
becomes comparable to the spontaneous radiation rate at values
approaching its critical density » ´n 3 10c

9 cm−3. Hence, C III]
and other semiforbidden lines, such as N III] λ1750 ( » ´n 2c

1010 cm−3), O III] λ1663 ( » ´n 4.6 10c
10 cm−3), and N IV]

λ1486 ( » ´n 3.4 10c
10 cm−3), are expected to be weaker in the

interior of the BLR, where the density exceeds their critical value.
These lines are expected to gain importance in the external part of
the BLR, where the density is lower.

In the case of iPTF15af and other TDEs, we encounter a
puzzle, as the spectrum shows unequal contributions for C III]
and N III]. The nitrogen atom has similar ionization potential to
carbon and the same ionization structure dependencies. Naively,
we would expect the less dense BLR regions to form both lines
at the same time, with the N III]/N IVratio enhanced in a similar
way to C III]/C IV. However, as previously discussed in the
literature (Cenko et al. 2016; Brown et al. 2018), this assumption
fails for TDE spectra. While the semiforbidden N III] lines are
clearly detected with broad velocity spread, the C III] is lacking
in all three TDEs having FUV spectra. The origin for this
discrepancy has been associated with the nitrogen-enhanced
composition of the stellar debris for supersolar-mass stars
(Kochanek 2016; Yang et al. 2017). The carbon–nitrogen–
oxygen cycle would have substantially altered the star’s
composition with enhanced nitrogen at the expense of carbon,
translated into the observed line ratios. The debris of such a star
would pollute the BLR, providing a possible link with nitrogen-
rich QSOs (Kochanek 2016).

Additionally, the existence of strong nitrogen emission
around AGNs has been discussed by several recent studies.
Some support the hypothesis that strong nitrogen lines imply
highly supersolar metallicity in the vicinity of the SMBH
(Batra & Baldwin 2014), increased by continuous circum-
nuclear star formation. Others argue that the observed strong
emission is most likely attributed to an exceptionally nitrogen-
rich composition in the BLR, rather than overall enhanced
metallicity (Matsuoka et al. 2017). The origin for this N-rich
material would be linked to strong winds from the young
asymptotic giant branch (AGB) stellar population in the nuclear
regions of the galaxy. The studies agree, though, that the
N-loud AGN sample has on average lower SMBH masses as
compared to the general population in the sample. This is a
good indication that these galaxies are just initiating their main
growth stage via high accretion episodes.

TDE discoveries have been predominantly associated with
post-starburst galaxies having high stellar densities in the bulge
(French et al. 2016; Law-Smith et al. 2017; Graur et al. 2018).
For these galaxies, we would expect a young stellar population
actively polluting the circumnuclear regions with both metal-
rich supernova winds and N-enhanced AGB stellar winds.
Regardless of the enrichment mechanism, TDEs would

primarily be hosted in galaxies with already altered chemical
abundances, translating into an unusually strong nitrogen
component in their UV spectra. However, an additional
mechanism would need to be invoked to explain the apparent
lack of C III] and strong C IV emission, suggesting that the
composition of the star indeed plays an important role in
shaping the observed UV signature of TDEs.
One important difference between iPTF15af and BAL QSOs

is the shape of the absorption. While the TDE shows a smooth
gradient from lower to higher velocities and a sharp cut at
vmax≈9000 -km s 1, BAL QSOs generally exhibit the opposite
trend: their absorption profile is detached from their emission.
Their spectra show a sharp cut at lower velocities and a broader
wing corresponding to higher velocity outflows. In BAL QSOs
this means that the gas in our line of sight has already been
radiatively accelerated to higher speeds. Closer to the emitting
region, the gas will have higher column density but lower
velocity, appearing as a sharp trough in the spectra next to the
emission line. In the case of iPTF15af we see that most of the
absorption is caused by high-velocity gas transitioning to
lower-velocity outflows.
Outflows with ∼104 -km s 1 have been predicted to occur in

TDEs with radiatively inefficient accretion flows (Metzger &
Stone 2016). Here we present UV spectroscopic data that confirm
the existence of the outflow, and we discuss the acceleration
mechanism. For a given SMBH mass, the maximum velocity of
the TDE outflow will depend on the Eddington ratio of the flare,
the density of the gas, and its distance to the central engine, as
shown for AGNs (Risaliti & Elvis 2010). At smaller radii, the gas
will become overionized and the radiative wind will fail. At
larger radii, the UV radiation field will be too weak to provide a
noticeable acceleration. Therefore, the highest velocity for the
bulk of stellar debris is likely to be achieved for dense gas at
intermediate radius (∼100 Rs). The remaining bound material
returning to the SMBH will progressively feel weaker accelera-
tion, as the central source will be quickly fading with time, but
also the material will be less dense. As the density of the ejecta
decreases, it will become easier for the ionizing radiation to
eventually penetrate this material and escape to infinity, making
the mechanism less efficient. Continuous monitoring of these
absorption-line profiles can provide a new tool to better
understand the outflow geometry in TDEs.

6. Conclusions

iPTF15af is a TDE discovered in the core of a galaxy with
signs of a short recent starburst episode and high nuclear stellar
density in its core. The photometric optical and UV evolution of
this event is consistent with previously studied TDEs, such as
PS1-10jh and ASASSN-15oi. The event has a comparably slow
rise time of ∼60 days and peaks at » ´L 1.5 10peak

44 -erg s 1,
with an estimated temperature of = ´( – )T 40 50 10BB

4 K.
The optical spectral evolution of iPTF15af shows broad

characteristic He II and later Hα lines superposed on a blue
featureless continuum, which persists beyond 4 months past
discovery. During the first 3 months, the optical lines exhibit a
fast evolution in their line profile, with the Hα line appearing
and becoming narrower at later times. The lines are no longer
detected after ∼120 days post-discovery.
Our spectroscopic analysis reveals fluorescence lines of O III

and N III, likely related to the Bowen fluorescence mechanism
observed in planetary nebulae. The fluorescence between He II
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−O III and O III−N III would explain the pumping of EUV flux
into optical emission.

We find that the medium producing the absorption in
iPTF15af would come from a highly ionized source shielded by
high-density material, justifying the lack of low-ionization lines
of Mg II and Fe II and the appearance of BALs for highly
ionized states of C, N, Si, and P. The density of the gas would
act as an absorber of the flare in X-rays, irradiating it toward
lower-density gas enriched with nitrogen and/or metals
supplied by a young stellar population in the bulge. The
composition of the gas would then tip the N/C ratio to higher
values than usually found in AGNs. In addition, the nitrogen-
enhanced and carbon-depleted stellar debris of an evolved star
can help justify the observed lack of C III in the UV spectrum.

Contrary to BAL QSOs, the BAL profiles observed in
iPTF15af suggest that the highest column density material is
moving at the outflow maximum velocity. We propose that the
radiation pressure generated by the TDE flare at early times can
supply the acceleration mechanism for this high-density gas.
Future multi-epoch observations of TDEs in the UV would
help to constrain the geometry, density, and kinematics of the
absorbing material, allowing us to test this hypothesis. Late-
time observations in X-rays are required to verify the change in
the outflow’s density, allowing high energy to escape.
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