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The Brownian Burglar: conditioning
Brownian motion by its local time process

J. WARREN1 and M. YOR2

Imagine a Brownian crook who spent a month in a large metropolis. The number
of nights he spent in hotels A,B, C... etc. is known; but not the order, nor his itinerary.
So the only information the police has is total hotel bills.....

Let (Wt; t > 0) be reflecting Brownian motion issuing from zero, and let l(t, y),
for y E R+ and t > 0, denote the local time that W has accrued at level y by time t.
Throughout this paper our normalisation of local time is such that it is an occupation
density with respect to Lebesgue measure. Let Ti be the first time t such that Wt = 1.
The celebrated Ray-Knight theorem describes the law of (l(Ti,l- y); 0  y  1)
as being that of a diffusion; specifically a squared Bessel process of dimension two,
started from zero. The question now naturally arises of obtaining some description of
W conditional on these local times.

To begin one may look for functionals of W for which we can describe the condi-
tional law. Such a functional is the process (l(Ta, y); 0  y  a) for some a E (0,1).
Specifically we find that

(0.1) 
l(Ta, y) l(T1,y) 

= Y2,0aydx l(T1,s),

where is a diffusion, independent of (~(Ti, 1 2014 y); 0  y  1), and with generator
- + 2(1 - y)D. It belongs to a class of diffusions on [0,1] known as Jacobi

diffusions. We were then motivated to try and obtain a process W, which we call
the burglar, whose local times would give rise to such diffusions. Define W via the
space-time change

(0.2) = WAn

for 0  t  Ti where

At t = o and g (y) - o y .

With probability one, the function 0 maps [0,1) onto R+, and A maps [0, Ti) onto
both being continuous and strictly increasing. The main result of this paper

is to show that the burglar, so defined, is independent of the local times accrued by
W at time Ti .

Theorem 1. The reflecting Brownian motion (Wt; 0  t  Tl) admits the represen-
tation (0.2) in terms of its local times y); 0  y  1) and an independent burglar
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Although we leave to a future article a thorough study of the law of the burglar,
including Markovian properties and martingale characterisations, already (0.1) may
be interpreted as a Ray-Knight theorem for the local times of W. In fact, we now

present burglar variants of the two classical Ray-Knight theorems for Brownian local
times. We first observe that the burglar W possesses a jointly continuous local time
process (p(t, y); t > 0, y > 0) . Recall the definitions of 0 and A.

Lemma 2. Define, for 0  t  Ti, and 0  y  1,

03C1(At, 03B8(y)) = l(t,y) l(T1,y),

then p is a jointly continuous local time process for the burglar, in that for any positive
measurable function f on 1~+,

t0 f(s) ds = ~0 f(y)03C1(t, y) dy.

Theorem 3. The local times (p(t, y); y E R+, t E R+) of a Brownian burglar W
admit the following descriptions.

For a > 0 let Ta = inf{t : Wt = a}. Then we have

(p(Ta~ a - y)i ~ ~ y  a) law ~Yy ,o; ~ ~ y  a), ,

where = 0.

For 0  s  1 let Ts = inf{u : > s}. Then we have

y)~ y ~ ~) law (~0~2i Y ~ ~) ~

where Y°’2 = s.
In the above denotes a Jacobi diffusion with generator 2y(1 - y)D2 - 2yD.
Our paper is organised as follows.

. Section 1 contains a discussion showing how a group action on a probability
space can induce a factorisation. This is illustrated with reference to the stan-

dard Brownian bridge and the skew-product representation of planar Brownian
motion. 

’

. In Section 2 we prove the independence of the burglar and (d(Ti, y); 0  y  1)
as an application of the general method presented in the previous section.

. Section 3 contains a proof of the Ray-Knight theorems for the burglar (Theorem
3 above).

. In Section 4 we give an application of the burglar to the problem of describing
W conditional on y); y E 1~+~, where Tl = inf~t : l(t, 0) = 1}. In order to
do this we must decompose the path of W at its maximum. The result of this
section can be seen as describing a contour process for the Fleming-Viot process,
and should be compared with the skew-decomposition of super-Brownian motion
in terms of its total mass process and an independent Fleming-Viot process
achieved by March and Etheridge [7] ; see also Dawson [5].
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1 Group actions and factorisations

Suppose that (03A9, F, ) is a probability space and that Q a sub-03C3-algebra of F. It is
well known (and the cause of much grief!) that, in general, there are many different
independent complements to g. That is sub-03C3-algebras 1i such that F =  V 1i and
such that 9 and 1i are independent. However it is usual to have some additional
structure on H which allows one to single out some distinguished complement in
a natural manner. Here we will be concerned with cases in which this additional
structure arises from the action of a group G on H.

We suppose that we have a second probability space (E, ~, f/) on which there is a
G-action also defined; and a measurable S~ ’-~ E so that v is the image 
under and so that ~ is a homomorphism of G-spaces, that is,

(1.1) ) ~(9w) = 9~(w)~

for all g E G and w E n. We assume that the measures  and v are quasi-invariant
under the action of G on nand E, and denote their images under the transformation
associated with an element g E G by ~u9 and V9 respectively. In the dynamical systems
literature the space E is known as a factor of H, see, for example, Cornfeld, Fomin
and Sinai [4].

We are interested in conditions under which the space (H, ,~, ~u) can be identified
with the product of (E, £, v) and some complementary space. To develop this fully
would involve us in much measure theoretic detail, as described by Rohlin [16]. This
would be, for our purpose, unnecessary, and we can be satisfied with the following
elementary lemma. Recall that the action of G on E is said to be ergodic if every
~-measurable, G-invariant function on E is constant modulo a set of measure zero.

Lemma 4. Consider a probability space ~~,,~’,~u) upon which a group G acts. Let ~
be a homomorphism between this space and a factor (E, ~, v) . Let ~ = and ?~l
be the ~-algebra of G-invariant subsets of ~, thus

1i = {H = 0 for all g E G}.

Then if the Radon-Nikodým densities are G-measurable for all g E G, and if
the action of G on E is ergodic, the 03C3-algebras and H are independent.

Proof. . Let H and consider the conditional expectation ~ . For any g E G,
we find that for -almost all w E n,

(w) = (9w) _ ~9 (9w)~

But, since d~9 /d~ is ~-measurable, we have

~g [ZHp] . .

Thus (gw) for -almost all w. Now the ergodicity of the G-
action implies that ~ [ZH (~] is equal to some constant ~-almost always, and thus the
(7-algebras ~ and 1i are independent. Q
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This lemma says nothing to guarantee that 7 == g V ~l; indeed in general this is
manifestly false. However in the examples we consider it will be evident that g and
~M do generate everything.

We now illustrate the above discussion with some concrete examples. It is im-

portant to stress that there are alternative treatments of these than the one we will
describe. However we hope that our rather unusual approach will pay dividends in
demonstrating that the Burglar is constructed in a very natural way.

Our first example is that of the Brownian bridge. Let (Xt; 0  t  1) be a
Brownian motion issuing from zero. We wish to find an independent complement to
XI. We take (5~,,~’, ~) to be Wiener space and consider (Xt; 0  t  1) to be the
co-ordinate projection maps on H. Introduce the action of the group G - (R, +) on
S~ by defining, for any a E G and w E n,

(1.2) Xt(aw) = Xt(w) + at,
for 0  t  1. Of course the measure ~c~ is the law of Brownian motion with drift a,
and the absolute continuity relation,

1.3 
a 

= exp{aX1 - 1 2a2},

holds. For the factor we take the X I, and the probability space (E, E, v) is

just the real line equipped with its Borel o-algebra and standard Gaussian measure,
with G acting by translation. Now consider the bridge (Xt; 0  t  l), defined by

(1.4) Xt(w) = Xt(w) - Xl (w)t,
for 0  t  1. Note X is invariant under the action of G:

(1.5) Xt(aw) = 
for all w ~ 03A9 and a E G. Thus, since G acts transitively on E, and the Radon-
Nikodym derivatives (1.3) are 03C3(03C6)-measurable, Lemma 4 is applicable and the bridge
X is independent of Xi. Bridges of the gamma process, see Vershik and Yor [17], may
be treated in exactly the same manner.

Our second example, slightly more involved, is that of the decomposition of planar
Brownian motion into its radial and angular parts. However before we present this,
let us introduce a group and a probability space that will play a central role both in
this example and in the construction of the burglar. Let G be the group of increasing
C2-diffeomorphisms of [0,1]. Let (E, E, v) be the space of continuous paths indexed
by [0,1], together with the usual Borel a-algebra, and v the law of the squared Bessel
process of dimension two starting from zero. Let (Zt; 0 _ t  1) be the co-ordinate
projection maps on E. We can define an action of G on E as follows. For any g E G
define for each w e E its image gw under the action of g via,

(1.6) = 

for all 0  t  1. Under v9, (Zt; 0  t  1) is a time-inhomogeneous diffusion with
generator

( 1.7 ) 2zd2 dz2 + (2Fg(t)z + 2) d dz,
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where = -h"(t)~2h’(t), if h = Such diffusions are considered by Pitman
and Yor [13]. .

Lemma 5. The action of G on (E, £, v) is ergodic.
Proof. The law vg is absolutely continuous with respect to v with Radon-Nikodym
derivative

d03BDg d03BD = exp 10 
Fg(t)dMt - 1 2 

10 
F2g(t)Ztdt} ,

where 2Mt = Zt - 2t. Let E be the collection of random variables which are propor-
tional to d03BDg/d03BD for some g E G, and lie in ,C2(v). We will show that 0396 is total in
,C2(v). The ergodicity of the G-action follows easily from this, for if $ is a bounded
random variable that is invariant under the action of G, then ~ - JE ~dv is orthogonal
to each member of E, and thus almost surely zero.

Suppose that F9 is continuously differentiable, then

Fg(1)Z1 = 10Fg(t)dZt + 10 ZtdFg(t),
and we may write

d03BDg d03BD 
= exp {1 2Fg(1)Z1 - 

10 
Fg(t)dt - 1 2 

10 

Zt [dFg(t) + F2g(t)dt]} .

So the £2-closure of E contains every random variable of the form

where a is a positive measure on [0, l~; and the collection of all such random variables
is closed under multiplication and generates £. Thus if &#x26; is orthogonal to E, on

application of the monotone class lemma, we may deduce that ~ is orthogonal to all
of and must be zero. D

Returning to the planar Brownian motion let (Xt; t E ~0,1~) be the co-ordinate
projection maps on H, the space of all continuous paths in the plane R~, issuing from
the origin, indexed by time in [0,1]. We may take ~ to be the law of planar Brownian
motion issuing from zero. We define the action of G on H as follows. For g E G the

image of w E ~ under the action of g satisfies

(1.8) = 

for all t E [0,1]. Under g the process X has a radial drift. In fact it satisfies

(1.9) Xt = 03B2t + t0Fg(s)Xsds,

where (3, under g, is a planar Brownian motion. The measure g is absolutely
continuous with respect to tc with the Radon-Nikodym derivative being

(1.10) 
d g d  

- exp{10 Fg(t)dMt -1 1 FZ t X 2dt l >
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where 2Mt = 
The factor space is to be the radial part of Xt. Specifically define the operator

(i.n) = !~)!~

for all t e [0, 1]. It is well known that the measure v, the law of the squared Bessel
process of dimension two starting from zero, is the image of /~ under ~. Observe that
the Radon-Nikodým derivative (1.10) is a(qJ)-measurable. Now consider the angular
part of X appropriately time-changed:

(1.12) 1tdv |Xv|2 = Xt |Xt|

With probability one, this defines a process (X~;0  u  oo), which is, in fact, a
Brownian motion on the unit circle. It is easy to check that ~ is invariant under the
action of G on ~, and consequently we deduce, with the aid of Lemma 4, that it is
independent of the radial process.

Define Eo C E by,

(1.13) and 10+dt Zt(~)=~).
Observe that v(Eo) = 1. For yy ~ Eo define a process (~t;0 ~ t  1) on the
probability space (n,.F,~), via,

(1.14) 

~ is a process with radial part and (time-changed) angular part Its law J-L11
is supported on the fibre ~(y/) C ~. The family of laws (~; ~ ~ Eo) form a regular
probability distribution for  given 03C6, see Parthasarathy [12].

2 The Burglar
We shall now apply the technique we have demonstrated in the previous section to
our original problem of conditioning with respect to local times. For presentational
reasons it is convenient to reverse the roles that zero and one take in the introduction.
Thus our Brownian motion is reflected down from level one and stopped on first
reaching level zero.

We take H to be the space of continuous paths taking values in the interval [0,1],
starting from 1, and stopped at which is the first time the path reaches 0. The cr-
algebra F is the Borel a-algebra generated by the uniform topology, and the measure ,
will be the law of Brownian motion on [0, 1] with reflection at the boundaries, stopped
on hitting level 0. Denote the co-ordinate projections by (Xt; 0 ~  To). A path
admits a bicontinuous local time (~,~/); 0~7o~OT/l) with probability one,
and we extend to the whole of H, defining it to be identically zero otherwise. We will
be concerned with exactly the same group G as that featured in the second example
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of the preceding section, but this time the group action is defined very differently. For
g E G define the image of w E SI under the action of g via,

(2.1) 9(Xt(w)) = 

where

t

(2.2) 
~ 

Ht = 

It is simple to check that this does indeed define a G-action. Under ~u9 the co-ordinate
process satisfies

t

2.3 Xt = pt - 2d(t,1) + ~ 
where 03B2 is a g-Brownian motion. Thus g is absolutely continuous with respect to

~ and the Radon-Nikodym derivative is given by,

(2.4) d = exp ( o Fg(Xt)dBt - 1 2 T0 0F2g(Xt)dt} ,

where Bt = Xt + 2l(t,1).
We retain the space (E, ~, v) as before; but 03C6 : SI H E now takes the form:

(2.5) zy(~) = y)(w)~

for y E [0,1]. The Ray-Knight theorem states that v is indeed the image of  under
~. That ~ is a homomorphism of G-spaces follows immediately from the following
lemma.

Lemma 6. If the path w admits a bicontinuous local time (l(t, y); 0  t  To, 0 

y  1), then the path gw defined by equation (2.1) does adso, and denoting this by
(lg(t, y); 0  t  To , 0  y  1), the two are related by,

lg (Ht ~ 9(y)) = y), i

and 0  t  To.

Proof. For any bounded, measurable test function f we have, for 0  t  To,

Ht = t = t 0 0 0

1

- / f (9(y))9’’(y)2l(t~ 0

Thus, defining l9 g(y)) = g’(y)l (t, y), we find, substituting u = Ht and z = g(y),
u 1

% f = ~ z)dz,

and so l9 forms a bicontinuous local time for gw. D



335

The arguments of Bouleau and Yor, [3], show that,

(2.6) - /" = / /" 
Using this, the Radon-Nikodým derivative (2.4) may be re-written in the form:

(2.7) d g d  = exp{10Fg(y)dMy-1 2 10F2g(y)l(T0,y)dy} ,

where 2My = - 2y, and is now evidently 7(~)-measurable. Define X via the
space-time change

(2.8) 

for 0  ~  To, where

’"’ ~’~’~’ °
With probability one, 0  u  ~) is well-defined, and satisfies limu~~ u = oo.
The process > 0), or more generally any process with the same law, will be
called a Brownian burglar. The following invariance property is the key to proving
the independence claimed in Theorem 1. .

Lemma 7. The burglar  defined by equations (2.8) and (2.9) is invariant under the
action of G on ~~

Proof. Fix g ~ G. Write A9 and 03B8g for the functions A and 0 translated by the action
of g; that is

= and ~(2/)(~) = 

Now we make repeated use of the previous lemma. For any y 6 (0,1], ,

03B8g(g(y)) = 1g(y) dz lg(Tg0,z) = 1y g’(x)dx lg(Tg0,g(x)) = 1ydx l(T0,x) = 03B8(y).

Similarly we find,

~ = 
~ 

_ ~ o ~(~~(~))’"7o~(T~x~(~))’
~ 
= 

7o o ~(T~~(X.(~)))’ 7o o 
= At.

Now consider the definition of the burglar,
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and the same relationship at gw,

= 

Replacing t by Ht, this latter equation becomes,

= 

and now, using equation (2.1) and the relationships that we have just derived, we
obtain,

e(Xt(~)) = 

But comparing this with the original equation defining the burglar, we deduce,

= 

for all u, and the invariance is proven. D

In order to prove Theorem 1 we apply Lemma 4, having now confirmed that its
premises hold.

Recall the definition of Eo, made in the previous section. For 1] E Eo, let k R~ ’->-

(0,1] be the function

(2.10) k(a) = sup y ~( dz z ) > a ,
and then define a process X~ on (S~, ,~’, ~C) via the space-time change,

(2.11) k(Xt) = ,

where

Kt = t0k’(s)2ds.
The process 0  t  To) can be thought of as X conditioned on = ~().
In fact, if we denote the law of X ~, which is supported on ~-1 (r~) C S~, by ~~,, then
the family ( ~:~ E Eo) form a regular probability distribution for  given 03C6.

3 Some Ray-Knight Theorems

We denote by a diffusion on [0, 1] with infinitesimal generator

(3.1) 22/(1 - + (d - (d + d’)y) D.
These diffusions, called Jacobi diffusions with dimensions d and d’, have been well

studied, particularly in relations to models in genetics, see for example Ethier-Kurtz

[8], Karlin-Taylor [9] and Kimura [10], or more recently in financial models, see
Delbaen-Shirakawa [6]. For other studies and motivations, including hypercontrac-
tivity, see Bakry [1] and Mazet [11]. Some further results are given by the authors
of this paper in [18], where the Jacobi diffusions are introduced via the following
proposition.
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Proposition 8. Let (Zt; t > 0) and (Z§; t > 0) be two independent squared Bessel
processes of dimensions d and d’ starting from z and z’ respectively, with z + z’ > 0,
and let T = inf{u : Zu + Z£ = 0) . Then there exists a Markov process (Yd,d’u : u > 0) ,
a diffusion on [0, 1] with infinitesimal generator given by (3.1) such that

Zt Zt + Z’t = Yd,d’(t0ds zs+z’s), for 0 ~ t  T,

with Yd,d’ being independent of (Zt + Z§; t > 0) .
The above skew-product decomposition also holds when Z and Z’ are replaced by

processes 2 and 2’ obtained from Z and Z’ via,

Zt = 1 u’(t) Zu(t) 
and Z’t = 1 u’(t) Z’u(t),

with u : [0, cxJ) e [0, cxJ) a strictly increasing, C1-function, and u(0) = 0.

Proof. We give a proof based on the stochastic calculus. The squared Bessel processes
Z and Z’ satisfy

Zt = z + ~ + dt ,

Z§ = z’ + ~ t 2 J#d$§ + d’t,
where $ and $’ are independent Brownian motions. Now we sum these two expressions
and use ’Pythagoras’:

Zt + Z§ = z + z’ + ~ + + (d + d’)t,

where q is the Brownian motion:

03B3t = t0 Zsd03B2s + Z’sd03B2’s Zs + Z’s ,

defined up to the time T. Now one introduces,

03BEt = 
Zt Zt + Z’t,

for 0  t  T. We deduce with the aid of Itô’s formula that

03BEt = 03BE0 + 2 t0 03BEs(1 - 03BEs)1 - 03BEsd03B2s - 03BEsd03B2’s Zs + Z’s + t0 (d - (d + d’)03BEsds Zs + Z’s.

The process Yd,d’ is obtained as a time-change of (, thus Yd,d’u = where au =

inf(t : j§ ds/(Zs + Z§) > u). Applying this time-change to the above equation we
obtain

Yd,d’u = Yd,d0
, 

+ 2 
u0 

Yd,d’03BD ( I - Yd,d’03BD )d03BD, + 
u 

(d - (d + d’)Yd,d’03BD) dv,
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where fi is the time-change of

/~ .

o zs + zg

Observe that this martingale is orthogonal to q, and thus we deduce using Knight’s
Theorem on continuous orthogonal martingales that the Brownian motions fi and
q are independent. Now is adapted to the filtration of fi, and consequently
independent of (Zt + Z§; t > 0) .

The extension to 2 and 2’ follows immediately on making the deterministic time
change t e u(t). D

Before proceeding to the proofs of the Ray-Knight theorems for the burglar, we
must prove Lemma 2 which confirms that the burglar possesses local times.

Proof of Lemma 2. This is really the same argument as for Lemma 6, but it bears

repeating. For any bounded and compactly supported, measurable test function f on
[0 , 1 ) , we have,

/ 0 At f(Wv)dv , = / 0 t f(WAS , ) dAs = / 0 t f(°Ws» ds l(T1,Ws)2
= 10f(03B8(y)) l(t,y) l(T1,y)2 dy.

Consequently, if p is defined by,

~q g( ) _ 
i(Tl, Y) ~

for y e [0, 1) and 0  t  Ti , then, substituting z = 0(y) and u = At, we obtain,

u0 f(v)dv = ~0 f(z) p(u, z)dz.
D

Proof of first part of Theorem 3. Fix z e (0, 1). Consider the local times of the re-

flecting Brownian motion (Wt; 0  t  Ti) , stopped when it first hits level 1, split
into a contribution from before time Tx = inf{u : Wu = z) and a contribution from
between times Tx and Ti. It follows from the Ray-Knight theorems for Brownian
motion, and arguments familiar in excursion theory, that

Y ~ ") ~’# (z~(" ~ Y ~ "l ’

where Z2 is a squared Bessel process of dimension two starting from zero and Z° is
an independent squared Bessel process of dimension zero starting from I(Ti , z). By
Lemma 2, proved above,

03C1( 03B8(x),03B8(y) = l(Tx,y) l(T1,y),



339

and so we deduce from Proposition 8 that

(p(TB(~), 9(x) - y); 0  y  e(x)) Iaw ( y2,o~ ~  Y  B(x)), i

where Yo’° - 0. Now p is independent of e(x), since the burglar is independent of
(l(Tl, y); y E l~+), whence for each fixed a we must have,

(P(Ta, " a - y); 0  y  a) iaw ~Yy 2,0, ’ ~  Y  a) ~
as desired. p

Proof of second part of Theorem ~. Fix s E ~0, l~. Let ~ = l (Ti, 0), and then 
inf~t : l(t, o) > sl(T1, o)}. This time we split the local times that W has attained by
time Tl into a contribution from before time and a contribution from between
times T~~ and Tl. We find that,

~ y  1) law y  1)~ ,

where denotes the bridge of the squared Bessel process of dimension d, from x
to 0. The two bridges appearing in the above equation are taken to be independent.
By virtue of Lemma 2 we have, since = Ts,

P( T s, 9 ( x )) 
i " ) 

,P ~S’ 

and since, see Revuz and Yor, ~15~,

 t  1) taw ((1- t)2Z ~(1-t); ~  t  1)
we may apply Proposition 8 to obtain the result. D

4 Stopping at Tl
In this section we describe (Wt; 0  t  Tl) conditional on (L(Tl, y); y E R+) where,
as usual, Tl = inf~u : l( u, o) > 1}.

Theorem 9. We consider a reflecting Brownian motion, (Wt; 0  t  Tl), with its
maximum M = Wt attained at time TM. Then, there exists a Jacobi diflu-
sion, Y2’2, independent of (l(Tl, y); y E 1~+), such that, for 0  y  M,

t(TM, l y) - Y2,2 ry dx l"(Tl ) y) (JO 1 rl,x l 
’

with = l(TM, o) having uniform distribution.
We define a process u > 0) by

wt dy 
- 

0 l(TM, y) 
- 

’



340

for 0  t  TM, and a process ((2)u; u > 0) by

Wt0 dy l(1 ,y)-l(TM, y) = (2)(r1 r1-1 ds (l(1,Ws)-l(TM,Ws))2),
for TM  t  Tl . Then and W(2) both have the law of the Brownian burglar.
The four processes W(1), 1%V(2), Y2,2 and L(Tl, ~) are independent, and from them we
can reconstruct ( Wt; 0  t  Tl) .

We use the following lemma which is a combination of the agreement formula of
Pitman-Yor [14] and the relationship between the bridge and the pseudo-bridge given
by Biane-Le Gall-Yor ~2~..
Lemma 10. Let and be two independent BES(1) processes starting from
0, and let and T (2) be their respective hitting times of level 1. Define R(+) by
connecting the paths of and R(2) back to back:

R(+)t = R(1)t if t ~ T(1)R(2)T(1)+T(2)-t if T(1) ~ t ~T(1) + T(2).~ T(i)+T(2)-t f - - 

°

Now finally let R be obtained by scaling R(+) so as to normalise its local time:

Rt - _ 
(1) 

1 

(2) R(+) l(1) + l(2) 2t , for t  
T(1) .+ 

2’+ 
~ 

~l(1) + l(2)~ 
where is the local time at level 0 that has accrued by time and l(2) is

similarly defined. Then the law of R is equivalent to the law of the reflecting Brownian
motion W run until its local time at level 0 first reaches 1, and for any suitable path-
functional F

E[F(R)l ’ E 2M ( ) ’

where M = Wt 

We will be satisfied with sketching the proof of this lemma. The above mentioned
references give some more detail. Let LW be the local time at zero that W has accrued
when it attains its maximum Begin by observing that,

e-1/a~
(4.1 ) E dm, LW E dl) = 2m 2 

dmdl.

Using the law of and l(2), a simple calculation confirms that,
e-1/Z~

(4.2) LR E dl~ = 4m 3 

where LR and MR have the obvious meaning. Thus the conclusion of the lemma

holds for F depending only on the maximum level attained and the local time at zero
when this occurs. In order to lift the result to an equality of laws on path space, we
condition on these two quantities. We can then easily confirm, using Brownian scaling
and Williams’ description of the Ito excursion measure, that the excursions from zero
have identical conditional law under the two regimes.
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Proof of Theorem 9. Consider the construction of the preceding lemma. Define bur-
glars and from the processes and R(2) in the usual manner. Define Y2’2
via,

(4.3) l(1)(y) l(1)(y)+ l(2)(y) = Y2,2y0dz l(1)(z)+l(2)(z) ,

where is the local time at level y accrued by before and 1~2~(y) is

similarly defined. As is used in the proof of Theorem 3 we have

l~l~ ~ ~  !/ ~ 1) law (Z2(1 -  1) Iaw  1) ~

and Y2>2 is a Jacobi diffusion by virtue of Proposition 8. The four processes 

R~2~, and l (Tl, .) must be independent as a consequence of the independence of
the two BES(l) processes, and the results of Theorem 1 and Proposition 8.

Now let the reflecting Brownian motion W be obtained by completing the con-
struction of R, and then making the appropriate change of measure. It is simple to
check that = and R(2) = W ~2~. The process just defined by (4.3) is also
identical to that defined in the statement of the theorem. Since the change of measure
we have made affects only the marginal law of l(Tl, ~) the theorem is proved. 0
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