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We study uniform random permutations in an important class of pattern-
avoiding permutations: the separable permutations. We describe the asymp-
totics of the number of occurrences of any fixed given pattern in such a
random permutation in terms of the Brownian excursion. In the recent ter-
minology of permutons, our work can be interpreted as the convergence of
uniform random separable permutations towards a “Brownian separable per-
muton”.
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1. Introduction. The aim of this article is to study the asymptotic properties
of an important class of pattern-avoiding permutations: the separable permutations.
Our main result is the description of the asymptotics in n of the number of occur-
rences of any fixed given pattern in a uniform separable permutation of n elements.

1.1. Pattern-avoiding permutations. We first give some definitions. For any n,
the set of permutations of [n] := {1,2, . . . , n} is denoted by Sn. We write permuta-
tions of Sn in one-line notation as σ = σ1σ2 . . . σn. For a permutation σ in Sn, the
size n of σ is denoted by |σ |. For σ ∈Sn, and I ⊂ [n] of cardinality k, let patI (σ )

be the permutation of Sk induced by {σi, i ∈ I }. For example, for σ = 65831247
and I = {2,5,7} we have

pat{2,5,7}(65831247) = 312

since the values in the subsequence σ2σ5σ7 = 514 are in the same relative order as
in the permutation 312. A permutation π = patI (σ ) is a pattern involved in σ , and
the subsequence (σi)i∈I is an occurrence of π in σ .

All along this paper, we use letter σ for a (large) permutation of size n, and letter
π for a pattern of size k ≤ n. We denote by õcc(π,σ ) the proportion of occurrences
of a pattern π in σ . More formally,

õcc(π,σ ) =
1(n
k

) card
{
I ⊂ [n] of cardinality k such that patI (σ ) = π

}
.

Equivalently, õcc(π,σ ) is the probability to have patI (σ ) = π if I is randomly and
uniformly chosen among the

(n
k

)
subsets of [n] with k elements. If |π | > |σ |, we

set conveniently õcc(π,σ ) = 0.
We say that σ avoids τ if there is no occurrence of τ in σ , that is, õcc(τ, σ ) = 0.

For any (finite or infinite) set of patterns τ1, τ2, . . . , we denote by Avn(τ1, τ2, . . . )

the set of permutations of size n that avoid all the τi’s. Then the infinite union
Av(τ1, τ2, . . . ) =

⋃
n Avn(τ1, τ2, . . . ) is called a class of (pattern-avoiding) permu-

tations. Equivalently,3 a class of permutations is a set C of permutations such that,
for any σ ∈ C and any pattern π of σ , it holds that π ∈ C.

3This statement is folklore in the literature on permutation patterns. A proof can be found in [12],
paragraph 5.1.2 for instance. See also [12], paragraph 7.2.3 for a proof that an infinite set of excluded
patterns is sometimes necessary to describe a class.
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Classes of permutations have been intensively studied for their combinatorial
and algorithmic properties over the last 50 years. An account of the past and cur-
rent research on these classes can be found in [12, 28, 40]. Finding the enumeration
of specific classes, defined by the avoidance of a small number of small patterns,
has been one of the first problems studied in this field. It started with the proof
that Av(τ ) is counted by the Catalan numbers, for any τ ∈ S3, and the research on
this topic still continues, as witnessed by the summary [42]. The combinatorics of
classes of permutations has however expanded in several other directions, includ-
ing a general approach to the study of classes of permutations based on various
notions of structure, like the substitution decomposition ([2], Proposition 2 or [40],
Section 3.2) to which we shall return later in this introduction.

The probabilistic study of classes of permutations is much more recent and, just
like their combinatorial study at its beginning, it focuses on the study of specific
classes with small excluded patterns. More precisely, the probabilistic counterpart
of the study of specific classes is centered on the following interesting question:
Given a fixed pattern τ , what can we say about a typical σ in Avn(τ ) (for large n)?
Recently, many authors have considered this problem for different choices of small
patterns τ . We mention a few of them:

• The question was initiated in a paper of Madras and Liu [32] in relation with
a Monte-Carlo algorithm to approximate growth rates of permutation classes.
In subsequent papers, Atapour and Madras [4] and Madras and Pehlivan [33]
started the study of uniform permutations in Avn(τ ) for small patterns τ .

• In parallel, Miner and Pak [34] described very precisely the asymptotic shape
of a uniform element in Avn(τ ) for the 6 patterns τ in S3. Dokos and Pak
[16] have then obtained similar results for random doubly alternating Baxter
permutations. Note also that Miner and Pak discuss at the end of their paper a
possible connection with the Brownian excursion.

• Such a connection between Avn(τ ) for τ ∈ S3 and the Brownian excursion is
explained by Hoffman, Rizzolo and Slivken [21]. Many combinatorial conse-
quences are given, in particular a precise description of fixed points of such
permutations [20].

• In a parallel line of research, Bóna [10, 11] investigates the behaviour of
E[õcc(π,σ )] for σ uniform in Avn(132), and several fixed π ’s. Similar results
for other permutation classes and various patterns π have then been obtained by
Homberger [22], Chang, Eu and Fu [14] and Rudolf [38].

• The question of finding limiting distributions for õcc(π,σ ) for σ uniform in
Avn(τ ), rather than studying only its expectation, was raised by Janson, Naka-
mura and Zeilberger in [25]: the authors gave some algorithms to find limits
of moments for small π and τ . A bit later, Janson [24] has given for every π

the asymptotic behaviour of the random variable õcc(π,σ ) for σ uniform in
Avn(132). For instance, he expresses in terms of the Brownian excursion area
the asymptotic behaviour of õcc(12, σ ).
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• In his recent thesis, Bevan describes the limit shape of permutations in so-called
connected monotone grid classes [7], Chapter 6. This result is the first that deals
with an infinite family of permutation classes.

• Even if it does not involve strictly speaking pattern-avoiding permutations, we
mention the recent work of Kenyon, Kral’, Radin and Winkler [27]. They prove
a large deviation theorem for permutations seen as probability measures on the
square. Their result yields limit shapes of random permutations with fixed densi-
ties of some fixed pattern π1, . . . , πr . This parallels similar results on graphons,
which are well-studied objects in random graph theory.

In the current paper, we are specifically interested in the class of separable
permutations.

DEFINITION 1.1. A permutation σ is separable if σ avoids both 2413 and
3142.

We obtain results similar to those of Janson [24] for Av(132), namely we study
occurrences of any pattern π in uniform random separable permutations. There is
however an important difference between our work and all classes studied so far:
random permutations in any of these previously studied classes have a limit, which
is deterministic at first order, whereas random separable permutations have a limit,
which is nondeterministic at first order. The limit of random separable permuta-
tions will be discussed in Section 1.3, and the proof that it is not deterministic will
be given in Section 9.2. This is also visible on Figure 1, which shows two large
typical separable permutations obtained using a Boltzmann random sampler.

FIG. 1. Two uniform random separable permutations of sizes respectively n = 204,523 and
n = 903,073 [a permutation σ is represented here with its diagram: for every i ≤ n, there is a dot at
coordinates (i, σi)].
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There are several reasons that motivate our choice of studying the class of sep-
arable permutations, in addition to it being one of the most studied classes after
Av(τ ) for τ of size 3. Separable permutations have a very nice and robust combi-
natorial structure: they can be completely decomposed using direct sums and skew
sums and, therefore, can be represented as signed Schröder trees (see Section 2.2).
This encoding with trees is essential in proving a variety of results about separable
permutations in different fields, for instance:

• the algorithmic problem of PERMUTATION PATTERN MATCHING is NP-hard in
general, but polynomial on separable permutations [13];

• from an enumerative combinatorics point of view, in addition to being simple
to count, separable permutations display remarkable equipopularity properties,
see [1].

Besides, separable permutations appear naturally in several problems, at first sight
independent from permutation pattern theory:

• as the permutations sortable by certain sorting devices (pop-stacks in series) [5];
• as space-filling permutation matrices in bootstrap percolation [39];
• as possible polynomial interchanges (i.e., studying in which possible ways the

relative order of the values of a family of polynomials can be modified when
crossing a common zero) [18].

Finally, the class of separable permutations is the simplest case of a nontrivial
substitution-closed (also called wreath-closed [2]) class, and we believe that the
results obtained here might be extended to any substitution-closed class; see the
discussion on universality in Section 1.4.

1.2. Overview of our results. Throughout this paper, let us denote by σ n a
uniform separable permutation of size n. Our goal is to describe the limit of σ n

when n goes to infinity. Our main result gives, for any π , the asymptotics of the
distribution of õcc(π,σ n) when n tends to infinity. We will see in Section 1.3 an
equivalent formulation in terms of weak convergence of probability measures on
the square.

Our main theorem is the following.

THEOREM 1.2. Let σ n be a uniform separable permutation of size n. There
exists a collection of random variables (�π ), π ranging over all permutations,
defined on the same probability space, such that for all π , 0 ≤ �π ≤ 1 and:

(i) If π is a separable permutation of size at least 2, �π is a nondeterministic
random variable.

(If π is the permutation of size 1, �π = 1. If π is not separable, �π = 0.)
(ii) For all π , when n → +∞,

õcc(π,σ n)
d→ �π ,

where
d→ denotes the convergence in distribution.
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(iii) Moreover, the convergence holds jointly, that is, for any finite sequence of
permutations (π1, . . . , πr),

(
õcc(π1,σ n), . . . , õcc(πr ,σ n)

) d→ (�π1, . . . ,�πr ).

(On the right-hand side, the �πi
’s are not independent.)

Theorem 1.2 is not just an existential result: in this paper we give for any pattern
π a construction of �π (Definition 3.1, page 2155) that can be briefly explained
as follows. There is a natural way (reviewed in Section 2.4) to extract a (signed)
tree with |π | leaves from a realization of the (signed) Brownian excursion. The
variable �π is the probability that this tree is one of the separation trees of π (see
Section 2.2 for the definition).

Statement (i) of the theorem is proved in Section 9.2, while Statement (iii)
[Statement (ii) being just a special case] is proved in Sections 4 to 7, following
the proof schema detailed in Section 3.4.

Theorem 1.2 shows in particular that, for every separable pattern π of size k, the
number of occurrences of π in σ n must be renormalized by nk to have a nontrivial
limit in distribution. This is in contrast with the result of Janson [24], Theorem 2.1
for σ uniform in Avn(132). Indeed, in his result, the numbers of occurrences of
different patterns of the same size are normalized by different powers of n to have
nontrivial limits in distribution.

In addition to the convergence in distribution, we also prove the convergence of
all joint moments (in fact, we first prove the convergence of joint moments, and
then deduce the convergence in distribution). This is especially interesting since
the joint moments in the limit can be computed explicitly.

More precisely, all joint moments can be expressed in the limit from expecta-
tions of �π ’s (see Proposition 9.3), and the expectation of �π can be expressed
in terms of the number Nπ of signed binary trees associated with the permutation
π (these are also sometimes called separation trees of π ; see Section 2.2 for their
definition). The latter is proved in Proposition 9.1, which reads as follows.

THEOREM 1.3. For any permutation π of size k,

E
[
õcc(π,σ n)

] n→+∞−→
Nπ

2k−1 Catk−1
,

where we denote by Catk := 1
k+1

(2k
k

)
the kth Catalan number.

REMARK 1.4. Our proof of Theorem 1.3 involves the random variables �π ,
which are constructed from the Brownian excursion. We do not know if there exists
a proof using only discrete arguments.
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In addition to being defined combinatorially, the numbers Nπ are easy to com-
pute; see Observation 9.2. This gives, for example,

lim
n→+∞

E
[
õcc(12,σ n)

]
= lim

n→+∞
E
[
õcc(21,σ n)

]
=

1

2
;

lim
n→+∞

E
[
õcc(123,σ n)

]
= lim

n→+∞
E
[
õcc(321,σ n)

]
=

1

4
;

lim
n→+∞

E
[
õcc(132,σ n)

]
= lim

n→+∞
E
[
õcc(213,σ n)

]
=

1

8
;

lim
n→+∞

E
[
õcc(231,σ n)

]
= lim

n→+∞
E
[
õcc(312,σ n)

]
=

1

8
.

Limits of higher (joint) moments can also be computed explicitly, as shown in
Proposition 9.3. For example, we obtain

lim
n→+∞

Var
[
õcc(12,σ n)

]
=

1

30
;

lim
n→+∞

Var
[
õcc(132,σ n)

]
=

3

560
;

lim
n→+∞

E
[
õcc(12,σ n) · õcc(123,σ n)

]
=

43

280
.

These values have been computed automatically with a Sage program [15] that
the authors can make available on request. We refer to Section 9.1 for a discussion
on the computation of joint moments, both from the theoretical and algorithmic
points of view.

For the curious reader, we give the first few moments of �12 [i.e., the limits of
the first few moments of õcc(12,σ n)]:

E[�12] =
1

2
; E

[
�2

12
]
=

17

60
; E

[
�3

12
]
=

7

40
;

E
[
�4

12
]
=

6361

55,440
; E

[
�5

12
]
=

1741

22,176
.

We did not recognize the first moments of any “usual” distribution on [0,1].

1.3. Interpretation of our main result in terms of permutons. We recall the
notion of permutons introduced in [23]. Note that, in [23], permutons are called
limit permutations and have two equivalent definitions (see [23], Section 2.3); the
name permuton was proposed in [19] in analogy with the graph analogue graphon.

DEFINITION 1.5. A permuton is a probability measure μ on the square [0,1]2

with uniform marginals, that is, for any a and b with 0 ≤ a ≤ b ≤ 1,

μ
(
[a, b] × [0,1]

)
= μ

(
[0,1] × [a, b]

)
= b − a.
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FIG. 2. On the left, a typical permutation of size 446,699 in the substitution-closed class whose
simple permutations are 2413, 3142 and 24153. On the right, a typical permutation of size 6441 in
the nonsubstitution-closed class Av(2413,1243,2341,531642,41352).

One can associate a permuton μσ to a permutation σ of size n. We define μσ

as having density n on each square [(i − 1)/n, i/n] × [(σ (i) − 1)/n,σ (i)/n] (for
1 ≤ i ≤ n) and density 0 elsewhere; that is, each of these squares has total weight
1/n, uniformly distributed in it. This is a natural way to encode and rescale a
permutation, very close to the graphical representation that we use on Figures 1
and 2.

Since permutons are measures, it is natural to speak about weak convergence of
permutons. We will see in Section 8 that our main result, combined with previous
results on permutons, implies the following.

THEOREM 1.6. Let σ n be a uniform random separable permutation of size n.
There exists a random permuton μ such that μσ n tends to μ in distribution in the
weak convergence topology. Moreover, μ is not deterministic.

The distribution of this permuton μ is unique, since it is defined as a limit in
distribution. The proof of the existence of μ is not constructive, but involves the
variables �π , which are themselves built using a realization of the Brownian ex-
cursion. We therefore call μ the Brownian separable permuton.

REMARK 1.7. There are many examples of convergence of large combinato-
rial structures towards continuum objects built from Brownian motion (or related
processes: the Brownian bridge and excursion). One can mention:

• Random mappings and Brownian bridges;
• Random trees and Brownian trees;
• Random graphs and Brownian motion.
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A very good reference for these topics is [36]. Theorem 1.6 fits naturally in this
body of literature.

Note that the fact that separable permutations have a Brownian limit in some
sense should not come as a surprise. Indeed, separable permutations of size n can
be encoded by (signed) Schröder trees with n leaves (see Section 2.2). Like for
many families of trees, the limit of Schröder trees with a fixed number of leaves
(leaving signs aside) is related to the Brownian excursion: more precisely, Pit-
man and Rizzolo [37] and Kortchemski [29] proved that the contour of a uniform
Schröder tree with n leaves tends to the Brownian excursion. This result is essential
in our approach.

1.4. Perspectives. We think that the Brownian separable permuton μ is an in-
teresting object and is worth being studied. In particular, we would like to address
the following questions.

Construction of μ At the moment, μ is defined in a indirect way, as limit of dis-
crete objects. Is there a way to define/construct the random measure μ directly
in the continuum, for example, as a function of the (signed) Brownian excur-
sion?

Properties of μ It would be interesting to find some almost-sure properties of μ.
Is it absolutely continuous or singular with respect to Lebesgue measure on
the square? (Note that, since its marginals are uniform, it cannot have atoms.)
One also expects that μ is fractal in some sense, because of the link with the
Brownian excursion and the visual aspect of the simulations in Figure 1. This
raises the following question: what is the Hausdorff dimension of its support?

Universality of μ We believe that μ is the limit (in the sense of permutons) of
many other classes of random pattern-avoiding permutations. Recall indeed that
the class of separable permutations is the first nontrivial case of a substitution-
closed class of permutations. Such classes are those whose structure is well
understood using the substitution decomposition mentioned earlier in this in-
troduction, even more so when they contain a finite number of so-called sim-
ple permutations (see [40], Section 3.2). For any substitution-closed class, the
permutations it contains may be represented by trees, called (substitution) de-
composition trees. These generalize signed Schröder trees by introducing other
types of vertices, labeled by the simple permutations in the class. As the en-
coding of separable permutations by Schröder trees is crucial in this work,
our results might extend to all substitution-closed classes containing finitely
many simple permutations. Figure 2 shows two typical permutations: one in a
substitution-closed class, one in a class that is not closed under substitution. On
these examples, it seems clear that the first one looks similar to the separable
case, whereas the second one does not.

Note added after the peer-review process: after the submission of the present
article, subsequent results have been achieved on the topic. A construction of the
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Brownian separable permuton has been given by Maazoun in [31]. One can prove
from this construction that the support of μ is completely disconnected and has
Hausdorff dimension 1, with probability 1. Moreover, the authors of this paper, to-
gether with Maazoun, have proved the following universality result: under a simple
sufficient condition, a uniform random permutation in a substitution-closed class
does indeed converge towards the Brownian separable permuton (or a trivial one-
parameter deformation of it); see [6].

1.5. Outline of the paper. Our paper is organized as follows:

• Section 2 gives all the preliminaries needed to define the limit random variables
�π and records a lot of easy useful facts about permutations and trees.

• Section 3 defines the variables �π and presents the structure of the proof of
Theorem 1.2(iii).

• Sections 4 to 6 go through the several steps of this proof (the outline of the proof
itself is given in Section 3.4).

• We gather all the arguments and conclude the proof of Theorem 1.2(iii) in Sec-
tion 7.

• Section 8 contains the proof of the permuton interpretation of our main result:
Theorem 1.6.

• Section 9 studies some properties of �π : combinatorial formulas for the mo-
ments in Section 9.1 and proof of Theorem 1.2(i) (�π is not deterministic) in
Section 9.2.

• We collect several useful properties of the Brownian excursion in the Appendix.

2. Permutations, trees and excursions.

2.1. Basics on trees.

DEFINITION 2.1. A Schröder tree is either a leaf, or consists of a root vertex
with an ordered k-tuple of subtrees attached to the root (k ≥ 2), which are them-
selves Schröder trees.

Nonleaf vertices of a tree are called internal vertices.
We consider only finite Schröder trees, that is, those having finitely many leaves

and internal vertices.
In our context, the size of a tree t is its number of leaves. It is denoted |t |,

whereas #t denotes the number of vertices of t (including both leaves and internal
vertices).

Because every internal vertex of a Schröder tree has at least 2 children, it follows
immediately (by induction) the following.

OBSERVATION 2.2. For every Schröder tree t , 2|t | ≥ #t + 1.
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A binary tree is a Schröder tree where there are exactly 2 subtrees attached to
every internal vertex.

In this article, we consider unlabeled trees. Nevertheless, since we work with
plane trees (i.e., trees in which the subtrees attached to a vertex are ordered), there
is a canonical way to label the leaves of a tree (from left to right). Then a subset of
the set of leaves of a tree t is canonically represented by a subset I of [|t |].

DEFINITION 2.3. Let t be a Schröder tree and u and v be two vertices of t .
Denote by r the root of t . The (first) common ancestor of u and v is the vertex
furthest away from r that appears on both paths from r to u and from r to v in t .

DEFINITION 2.4. Let t be a Schröder tree. Any subset I of the leaves of t

induces a subtree tI of t , which is also a Schröder tree, defined as follows:

• the leaves of tI are the elements of I ;
• the internal vertices of tI are the vertices of t that are common ancestors of two

leaves in I ;
• the ancestor-descendant relation in tI is inherited from the one in t ;
• the order between the children of an internal vertex of tI is inherited from t .

Note that if t is a binary tree, then so is tI .

DEFINITION 2.5. A signed Schröder tree is a pair (t, ε), where t is a Schröder
tree and ε a function from the set of internal vertices of t to {+,−}.

DEFINITION 2.6. Let (t, ε) be a signed Schröder tree. Any subset I of the
leaves of t induces a signed subtree (tI , εI ) of (t, ε), where tI is as in Definition 2.4
and εI is the restriction of ε on the set of internal vertices of tI .

EXAMPLE 2.7. Consider the signed Schröder tree on the left-hand side of
Figure 3. To ease the presentation, we have indicated the canonical labeling of
its leaves from left to right. We take the subset of leaves I = {2,4,7} (circled on
the picture). Then the signed subtree (tI , εI ) is represented on the right-hand side
of Figure 3. (Again labels on the leaves are here to simplify the presentation, our
objects are in essence not labeled.)

FIG. 3. Subtree of a signed Schröder tree. The labels on the leaves are here only to witness the
embedding of the right tree in the left one.
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FIG. 4. Direct sum and skew sum of permutations on their diagrams. Recall that the diagram of a
permutation σ of size n is the set of points at coordinates (i, σi), for 1 ≤ i ≤ n.

2.2. Separable permutations and Schröder trees.

DEFINITION 2.8. Let π and σ be two permutations of respective sizes k and ℓ.
Their direct sum and skew sum are the permutations of size k + ℓ defined by

⊕[π,σ ] = π ⊕ σ = π1 · · ·πk(σ1 + k) · · · (σℓ + k) and

⊖[π,σ ] = π ⊖ σ = (π1 + ℓ) · · · (πk + ℓ)σ1 · · ·σℓ.

The operators ⊕ and ⊖ being associative, direct sums and skew sums with
r ≥ 2 components are defined in the obvious way. We will use the notation
⊕[π1, . . . , π r ] instead of π1 ⊕ · · · ⊕ π r (and similarly for ⊖). Examples with
k = 3, ℓ = 2 are provided in Figure 4, which also illustrates the graphical interpre-
tation of these operations on permutation diagrams.

DEFINITION 2.9. Let (t, ε) be a signed Schröder tree. The permutation asso-
ciated with (t, ε), denoted perm(t, ε), is inductively defined by:

• if t is a leaf, then perm(t, ε) = 1;
• otherwise, denoting by t1, . . . , tr the children of the root of t from left to right,

and εi the restriction of ε to the vertices of ti ,

perm(t, ε) =
{
⊕
[
perm(t1, ε1), . . . ,perm(tr , εr)

]
if the root of t has sign +;

⊖
[
perm(t1, ε1), . . . ,perm(tr , εr)

]
if the root of t has sign −.

If perm(t, ε) = σ , we say that (t, ε) is a signed tree of σ .

Note that the ith leaf of (t, ε) (from left to right) corresponds to the ith ele-
ment of perm(t, ε). Binary signed trees of a permutation σ are sometimes called
separation trees of σ .

For example, let (t, ε) be the tree on the left-hand side of Figure 3 of Exam-
ple 2.7. Then

perm(t, ε) = ⊕
[
⊕
[
⊖[1,1,1],1

]
,1,⊖[1,1]

]
= ⊕

[
⊕[321,1],1,21

]

= ⊕[3214,1,21] = 3214576.
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On the other hand, if we consider the tree (tI , εI ) on the right-hand side of Figure 3,
we have

perm(tI , εI ) = ⊕
[
⊕[1,1],1

]
= 123.

In other words, (t, ε) and (tI , εI ) are signed trees of 3214576 and 123, respectively.

OBSERVATION 2.10. There is an important consequence of the definition of
the signed tree (t, ε) of a permutation σ , which is easily seen on our figures. For
i < j , then σi < σj (resp., σi > σj ) if and only if the common ancestor of leaves
i, j has sign + (resp., −).

A consequence of this observation is that the map perm is compatible with tak-
ing substructures.

OBSERVATION 2.11. Let (t, ε) be a signed Schröder tree. Let I be a subset
of [|t |] and (tI , εI ) be the signed subtree of (t, ε) induced by I . Then it holds that
patI (perm(t, ε)) = perm(tI , εI ).

We continue Example 2.7. Taking I = {2,4,7}, we have seen in previous exam-
ples that perm(t, ε) = 3214576 and perm(tI , εI ) = 123. According to Observation
2.11, we should have pat{2,4,7}(3214576) = 123, which is indeed the case. This is
illustrated by Figure 5.

In the Introduction, separable permutations have been defined as avoiding spe-
cific patterns. In fact, they can also been characterized using signed Schröder trees.

PROPOSITION 2.12. Separable permutations are exactly those that can be
obtained as perm(t, ε) for a signed binary tree (t, ε), or equivalently, those that
can be obtained as perm(t, ε) for a signed Schröder tree (t, ε).

PROOF. The first part (with binary trees) has been established in [13].
Assume now that a permutation σ can be obtained as perm(t, ε) for a signed

Schröder tree (t, ε); we need to prove that σ can also be obtained as perm(t ′, ε′)
for a signed binary tree (t ′, ε′). To obtain (t ′, ε′) from (t, ε), it is enough to replace
every vertex with a label δ and k > 2 subtrees t1, . . . , tk by a binary tree with k

leaves on which t1, . . . , tk are pending and with all internal vertices labeled δ.

FIG. 5. One of the signed trees associated with σ = 3214576. The elements of the pattern
pat{2,4,7}(σ ) are circled/overlined.



THE BROWNIAN LIMIT OF SEPARABLE PERMUTATIONS 2147

FIG. 6. The decomposition tree of a separable permutation.

Figure 12 (page 2180) shows all binary trees that can be obtained by the above
construction from a specific signed Schröder tree. �

The advantage of Schröder trees over binary trees is that the correspondence
tree-permutation can be made one-to-one in more natural way.

PROPOSITION 2.13. The map perm is a size-preserving bijection between
separable permutations and signed Schröder trees in which the signs alternate
[i.e., all internal vertices at even (resp., odd) distance from the root have the same
sign as the root (resp., the opposite sign)].

Proposition 2.13 is a consequence of the more general substitution decomposi-
tion theorem for permutations [2], Proposition 2. In this context, the unique signed
Schröder tree (t, ε) in which the signs alternate such that perm(t, ε) = π is called
the (substitution) decomposition tree of π .

Let us return to Example 2.7. The permutation 3214576 which is induced by the
tree on the left-hand side of Figure 3 is separable and the Schröder tree in which
signs alternate that corresponds to it is shown in Figure 6.

Recall that σ n denotes a uniform random separable permutation of size n. Also,
throughout the paper, we denote by Tn a uniform random Schröder tree with n

leaves. From Proposition 2.13, we have the following.

COROLLARY 2.14. Let B be a balanced Bernoulli variable with values in
{+,−}, independent from Tn. Let En be the sign function on the internal vertices
of Tn, such that the signs alternate and the root of Tn has sign B . Then σ n has the
same distribution as perm(Tn,En).

Pitman and Rizzolo observed (see [37], Theorem 1) that Tn behaves like a
Galton–Watson tree conditioned to have n leaves (we refer to [41], Section 3 for
basics of Galton–Watson trees).

PROPOSITION 2.15. Let ν be the probability distribution defined by

ν(0) = 2 −
√

2, ν(1) = 0, ν(i) =
(

1 −
√

2

2

)i−1
(for all i ≥ 2).

Then:

• ν has mean 1 and variance 4(
√

2 − 1);
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• Tn has the same distribution as a Galton–Watson tree with offspring distribution
ν, conditioned to have n leaves.

Note that there are actually infinitely many probability distributions ν such that
Tn has the same distribution as a Galton–Watson tree with offspring distribution
ν, conditioned to have n leaves. The one chosen in Proposition 2.15 is such that ν

has mean 1. The Galton–Watson tree model is then critical, and most convergence
results in the literature are established in this case (see, e.g., Propositions 3.5 and
2.23 below).

2.3. Contours and excursions.

DEFINITION 2.16. An excursion is a continuous function f : [0,1] →
[0,+∞) with f (0) = f (1) = 0.

Note that with our convention we allow f (t) = 0 for t /∈ {0,1}. We associate
canonically with a tree an excursion, called its contour.

DEFINITION 2.17 (Contour Ct ). Let t be a (binary or Schröder) tree. Recall
that #t denotes the total number of vertices of t , and denote by V the set of vertices
of t .

Consider the function dfst : {0,1, . . . ,2#t − 2} → V (dfs stands for depth first
search) defined by:

• dfst (0) is the root of t ;
• if dfst (i) = v, then dfst (i + 1) is the leftmost child of v that has not yet been

visited, if it exists, and the parent of v otherwise.

The contour of t is the function Ct : [0,2#t − 2] → [0;+∞) such that for all
integers i in [0,2#t − 2], Ct (i) is the distance from the root of t to the vertex
dfst (i), and Ct is linear between those points.

EXAMPLE 2.18. An example of a tree t and its contour Ct is given on Figure 7
(the reader should disregard the signs for the moment). The tiny numbers beside
each vertex v indicate the times i in [0,2#t − 2] such that dfst (i) = v.

FIG. 7. A (signed) tree and its (signed) contour.
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DEFINITION 2.19 (Normalized contour C̃t ). Let t be a Schröder tree. The
normalized contour of t is the function C̃t : [0,1] → [0,+∞) defined as follows:

for all u ∈ [0,1], C̃t (u) =
1

√
|t |

Ct

(
(2#t − 2)u

)
.

By definition, both Ct and C̃t are continuous, so that C̃t is an excursion.
Some properties of the local maxima and local minima of C̃t follow from its

definition, and will be essential for our purpose.

OBSERVATION 2.20. Let t be a tree with |t | > 1. If there is a local maximum
of C̃t at u, then u = i

(2#t−2)
for some integer i and dfst (i) is a leaf of t . This defines

a bijection between the leaves of t and the local maxima of C̃t .

This allows us to identify the leaves of t with the x-coordinates of the local
maxima of C̃t . We will often do so in the sequel, and we introduce the following
notation.

DEFINITION 2.21 (ℓt ). For any tree t with |t | > 1, we define ℓ1 < · · · < ℓ|t |
to be the x-coordinates of the local maxima of C̃t (which correspond to the leaves
of t), and we set ℓt = {ℓ1, . . . , ℓ|t |} ⊂ [0,1].

OBSERVATION 2.22. Let t be a tree with |t | > 1. If there is a local minimum
of C̃t in u, then u = i

(2#t−2)
for some integer i and dfst (i) is an internal vertex of t .

Note however that a single internal vertex can correspond to several local minima
of C̃t .

Using the description of Schröder trees as Galton–Watson trees (see Proposi-
tion 2.15), Pitman and Rizzolo [37] and Kortchemski [29] have proved that the
normalized contour of a uniform Schröder tree converges in distribution to a mul-
tiple of the Brownian excursion.4 Throughout the paper, we denote by e the Brow-
nian excursion.

PROPOSITION 2.23. The following convergence holds in distribution in the
space C[0,1] of real-valued continuous functions on [0,1]:

(
C̃Tn(u)

)
u∈[0,1]

n→+∞−→
(
λ · e(u)

)
u∈[0,1],

where λ =
√

2 + 3/
√

2.

4For the readers who need background on the Brownian excursion, we have collected in the Ap-
pendix (one of) its definition(s), together with some useful properties, and bibliographical references.
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We now define signed analogues of contours and excursions.

DEFINITION 2.24. A signed excursion is a pair (f, s) where f is an excursion
and s a function from the set of the local minima of f to {+,−}.

From Observation 2.22, we may define the signed contour of a signed tree as
follows.

DEFINITION 2.25. Let (t, ε) be a signed Schröder tree. The signed contour of
(t, ε) is the pair (C̃t , s), where s associates to every local minimum of C̃t reached
in u = i

(2#t−2)
the sign of the internal vertex dfst (i) of t .

EXAMPLE 2.26. The reader is now invited to look again at Figure 7, taking
the signs into consideration.

We may also define the signed Brownian excursion by the following.

DEFINITION 2.27. The signed Brownian excursion is the pair (e, S) where e

is the Brownian excursion and S is the function assigning balanced independent
signs on the local minima of e.

The probability space and the σ -algebra on which this object is constructed will
be introduced in Section 2.5.

REMARK 2.28. Some readers may have seen the term “signed Brownian ex-
cursion” refer to an excursion of Brownian motion whose length has been nor-
malized to 1, but that may be either positive on (0,1) or negative on (0,1). The
meaning of this expression in our paper is different.

REMARK 2.29. Consider a uniform random Schröder tree Tn of size n and a
random sign function En on its internal vertices defined as in Corollary 2.14. If we
use Definition 2.25 on (Tn,En), we get a random signed excursion (C̃Tn, Sn). Since
C̃Tn converges towards a multiple of the Brownian excursion e, a natural question
is the convergence of (C̃Tn, Sn) towards the signed Brownian excursion. A first
difficulty in proving such a result would be to find a good topology on signed
excursions. Another, maybe deeper, obstacle is that the signs assigned to the local
minima in (C̃Tn, Sn) are far from independent: recall that on the corresponding tree,
signs on internal vertices alternate. Our work shows the convergence of (C̃Tn, Sn)

to (e, S) in a weaker sense. Indeed, the next subsection explains how to extract a
permutation of any fixed size from a signed excursion, and Theorem 1.2(iii) proves
the joint convergence in distribution of the permutations extracted from (C̃Tn, Sn)

to those extracted from (e, S).
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2.4. Extracting trees and permutations from excursions. Given k points in an
excursion, there is a natural way to associate a tree with this data. We now ex-
plain this construction. This is classical in the random tree literature and can, for
example, be found in Le Gall’s survey [30], Section 2.5 (except that he considers
geometric trees, that is, with edge-lengths, while we are only interested in combi-
natorial trees).

DEFINITION 2.30 (Tree). Let f be an excursion and x = {x1, . . . , xk} be a set
of k points in [0,1]. Without loss of generality, we assume x1 < · · · < xk . For all
1 ≤ i ≤ k − 1, let mi be the minimum value of f on [xi, xi+1].

We associate to (f,x) a Schröder tree Tree(f,x), defined recursively as follows.
If k = 1, then Tree(f,x) is a leaf.
Otherwise, let m = mini{mi} and denote by i1 < i2 < · · · < ip all the indices

ij such that mij = m. For notational convention, let i0 = 0 and ip+1 = k. For all
0 ≤ j ≤ p, define x(j) = {xij+1, . . . , xij+1}. Then Tree(f,x) is the tree whose root
has arity p + 1 and whose children are Tree(f,x(0)), . . . ,Tree(f,x(p)).

OBSERVATION 2.31. If all mi are distinct, then Tree(f,x) is a binary tree.

EXAMPLE 2.32. An example of the construction presented in Definition 2.30
is given on Figure 8 (the reader should disregard the signs for the moment).

OBSERVATION 2.33. By construction, the leaves of Tree(f,x) are in one-to-
one correspondence with the xi’s. Moreover, to each mi corresponds an internal
vertex of Tree(f,x); note however that several mi ’s may correspond to the same
vertex of Tree(f,x) (this happens exactly for mi and mj having the same value
such that no mk for i < k < j is smaller). In addition, the common ancestor of the
leaves corresponding to xi and xi+1 in Tree(f,x) is the internal vertex that corre-
sponds to mi . More generally, the common ancestor of the leaves corresponding
to xi and xj , with i < j , is the internal vertex that corresponds to mini≤h<j {mh}.

An interesting special case consists in considering the normalized contour C̃t of
a tree t , and choosing x to be a subset of ℓt (defined in Definition 2.21).

FIG. 8. Extracting a (signed) tree from a (signed) excursion.
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OBSERVATION 2.34. Let t be a Schröder tree, and I be a subset of its set of
leaves. Let x be the subset of ℓt corresponding to the x-coordinates of these leaves.
Then Tree(C̃t ,x) = tI , that is to say the tree extracted from x in the contour of t is
the same as the subtree of t induced by I .

A similar statement holds when extracting trees in excursions that are not nec-
essarily contours; this observation (or rather its signed analogue) will be useful in
Section 4.

OBSERVATION 2.35. Let f be an excursion and x = {x1, . . . , xk} be a set of
k points in [0,1]. Let t = Tree(f,x). Let y be a subset of x, and I be the corre-
sponding subset of the set of leaves of t . Then the tree extracted from y in f is the
substree of t induced by I , that is, Tree(f,y) = tI .

We now discuss the signed analogue of the extraction of trees from excursions.

DEFINITION 2.36 (Tree±). Let (f, s) be a signed excursion, and let also x =
{x1, . . . , xk} be a set of k points in [0,1], with x1 < · · · < xk . As in Definition 2.30,
for all 1 ≤ i ≤ k − 1, denote by mi the minimum value of f on [xi, xi+1].

We assume that the following condition holds:

(C)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• mi is reached in the interior of [xi, xi+1], that is,

for all i, there exists y ∈ (xi, xi+1) such that f (y) = mi .

• For all i, all the local minima with value mi on (xi, xi+1)

are given the same sign by s, abusively denoted s(mi).

• If mi = mj and there is no i < k < j such that mk < mi,

then s(mi) = s(mj ).

Then Tree±(f, s,x) is defined like Tree(f,x), except that, at each stage of the con-
struction, we associate with the root the sign of the corresponding local minimum
(or minima) of f . Doing so, at the end of the construction, every internal vertex of
Tree±(f, s,x) has a sign.

Condition (C) ensures that the signs are well defined. Indeed, the first condi-
tion guarantees that f has a minimum on (xi, xi+1), which is therefore a local
minimum of f (of value mi ), and consequently has a sign. The second condition
implies that, for all i, all minima of f on (xi, xi+1) have the same sign, and the
third one ensures that (with the notation of Definition 2.30) all mij have the same
sign, and recursively so.

Because a separable permutation is associated with each signed Schröder tree
(see Definition 2.9 and Proposition 2.12), we can extract a separable permutation
from a signed excursion in which k points are chosen.
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DEFINITION 2.37. Let (f, s) be a signed excursion and x = {x1, . . . , xk} be
a set of k points in [0,1]. Assume (f, s,x) satisfies Condition (C). The separable
permutation associated with (f, s,x) is

Perm(f, s,x) := perm
(
Tree±(f, s,x)

)
.

EXAMPLE 2.38. The reader is now invited to look again at Figure 8, taking
the signs into consideration. The permutation associated to the signed tree on the
right is 2341, so that in this case, Perm(f, s,x) = 2341.

OBSERVATION 2.39. When considering a signed tree (t, ε) and its signed
contour (C̃t , s), and choosing x as a subset of ℓt , then Condition (C) is always
satisfied. Indeed, all local minima of C̃t that are required to have the same sign
correspond to the same internal vertex of t .

Moreover, we have the signed equivalents of Observations 2.34 and 2.35.

OBSERVATION 2.40. Let (t, ε) be a signed Schröder tree and (C̃t , s) be its
signed contour. Let I be a subset of the set of leaves of t , and x be the correspond-
ing subset of ℓt . Then Tree±(C̃t , s,x) = (tI , εI ), that is, the signed tree extracted
from x in the signed contour of (t, ε) is defined and is the same as the signed
subtree of (t, ε) induced by I .

OBSERVATION 2.41. Let (f, s) be a signed excursion and x = {x1, . . . , xk} be
a set of k points in [0,1]. Assume that Tree±(f, s,x) is defined and let us denote
(t, ε) = Tree±(f, s,x). Let y be a subset of x, and let I be the corresponding subset
of the set of leaves of (t, ε). Then the signed tree extracted from y in (f, s) is
defined and is the substree of (t, ε) induced by I , that is, Tree±(f, s,y) = (tI , εI ).

EXAMPLE 2.42. For (f, s,x) as in Figure 8 and I = {1,3}, then the resulting

tree is Tree±(f, s, {x1, x3}) = (tI , εI ) = + .

Getting to permutations, we can combine Observations 2.11 and 2.40 to obtain
the following.

OBSERVATION 2.43. Let (t, ε) be a signed Schröder tree, and (f, s) be its
signed contour. Consider a subset I of the set of leaves of t , and denote by x the
corresponding subset of ℓt . We have

Perm(f, s,x) = patI
(
perm(t, ε)

)
.

EXAMPLE 2.44. We consider the signed Scröder tree (t, ε) from Example 2.7
and the set I = {2,4,7}. We have in this case patI (perm(t, ε)) = 123. On the other
hand, the construction of Perm(f, s,x) is illustrated on Figure 9 and also yields
the permutation 123.
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FIG. 9. Extracting a signed tree from the signed contour of a bigger tree and a subset of its leaves.

Another situation where we will extract a permutation from a signed excursion
is the following.

OBSERVATION 2.45. Let (f, s) be a realization of the signed Brownian excur-
sion (e, S) and x be a set of k points taken uniformly and independently at random
in [0,1]. Then Condition (C) is satisfied with probability 1 for (e, S,x), and the
extracted tree is binary (see Lemmas A.1 and A.2 in the Appendix).

2.5. Measurability issues. In this section, we construct a suitable probability
space and σ -algebra for the signed Brownian excursion. A possibility would be to
take a Brownian excursion e and a family of i.i.d. signs (sx)x∈[0,1], independent
from the excursion (and then consider only those indexed by minima of e). With
this construction, the function (f, s,x) → Tree±(f, s,x) would however not be
measurable. We therefore give a slightly more subtle construction.

We fix an enumeration of the rational intervals in [0,1], that is, a bijection

� : Z>0 →
{
[p,q] ∈ Q2,0 ≤ p < q ≤ 1

}
.

Denote �(i) = [pi, qi]. Let b be the position of a local minimum in an excur-
sion f . We say that b is associated with [pi, qi] if b = argmin[pi ,qi ] f and if i is
minimal with this property. Clearly, such an i always exists.

To construct the signed Brownian excursion (e, S), we now take a Brownian
excursion e and an i.i.d. sequence of balanced signs (Si)i≥1, independent from e.
Consider a (strict) local minimum b of e and let i be such that b is associated with
[pi, qi]. We then think as Si as being the sign of b.

A given interval [pi, qi] can be associated with at most one b (the position of the
minimum of e on [pi, qi]; by Lemma A.2, almost surely, this minimum is unique),
which guarantees the independence of the signs of the different local minima. Note
that some interval [pi, qi] may be associated with no local minimum b (when the
position of the minimum of e on [pi, qi] is associated with [pj , qj ], for some
j < i), which does not create any problem.

We claim that, on this probability space, the function (f, s,x) → Tree±(f, s,x)

is measurable. The unsigned version (f,x) → Tree(f,x) is a classical object in the
literature [30], Section 2.5 and it is easy to prove its measurability. The difficulty
comes from the sign, and hence we focus on the case |x| = 2, the general one
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following easily. We have
{
(f, s, x1, x2) : Tree±(f, s, x1, x2) = +

}

=
⋃

i≥1

{
(f, s, x1, x2) : argmin[x1;x2] f is associated with [pi, qi] and si = +

}
.

It is easy to check that this is a countable union of measurable sets, hence a mea-
surable set itself. Therefore, our measurability claim is proved.

The function Perm is then also measurable since Perm = perm◦Tree±. These
are the only two functions of the signed Brownian excursion of interest for this
paper.

3. The variables �π : Definition, properties and proof schema of the main

result.

3.1. Description of the limit variables �π . Recall from the Introduction that
õcc(π,σ n) denotes the proportion of occurrences of π in a uniform random sep-
arable permutation of size n. Our main result [see Theorem 1.2(ii) and (iii),
page 2138] is the (joint) convergence in distribution of õcc(π,σ n) towards a ran-
dom variable �π that we now define.

We denote by 1[A] the characteristic function of an event A.

DEFINITION 3.1. Let π be a pattern and (e, S) be the signed Brownian excur-
sion. Let also k = |π |. Let X1,X2, . . . ,Xk be k uniform and independent points
in [0,1], independent from (e, S) and set X = {X1,X2, . . . ,Xk}. The random vari-
able �π is defined by

(1) �π = P
(
Perm(e, S,X) = π | e, S

)
.

Note that this may be rephrased as �π = E(1[Perm(e, S,X) = π ] | e, S).
More precisely, we define the infinite-dimensional random vector (�π )π , in-

dexed by all patterns π of all sizes as follows: for each π , let X(π) be a set of |π |
independent uniform random variables in [0,1], taken independently for different
patterns π , then we set

(2) (�π )π = E
((

1
[
Perm

(
e, S,X(π))= π

])
π | e, S

)
.

In this definition, and throughout the paper, the event “Perm(e, S,X) = π” should
be understood as “Perm(e, S,X) is defined and is equal to π”.

Since the finite-dimensional marginals of (�π )π appear in our main theorem,
rather than the whole vector, let us write down explicitly the definition of these
finite-dimensional laws: for any patterns π1, . . . , πr we have

(�π1, . . . ,�πr ) = E
((

1
[
Perm

(
e, S,X(π1)

)
= π1

]
, . . . ,

1
[
Perm

(
e, S,X(πr )

)
= πr

])
| e, S

)
.

(3)
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Note that in the definition of �π , we condition on the random variable (e, S),
so that �π is a random variable itself. Moreover, in (2) and (3), all coordinates
are defined by conditioning on the same realization (e, S). Thus, the variables �π

corresponding to different patterns π are not independent.
The reader less familiar with probability theory might be more comfortable with

the following equivalent description of �π . For simplicity, we only discuss below
the definition of the one-dimensional random variable �π (for a fixed pattern π ),
and not of the full infinite-dimensional vector (�π )π .

Let us define a function �π on signed excursions as follows:

�π (f, s) = P
(
Perm(f, s,X) = π

)
,

where X is a set of |π | uniform and independent points in [0,1]. Then we set
�π := �π (e, S) to be the image of the signed Brownian excursion by �π .

In other words, in (1), the probability is taken with respect to X, while we con-
sider a realization of (e, S). In such situations, we will sometimes use a superscript
on P to record the source of randomness: namely, we write (1) as

�π = PX(Perm(e, S,X) = π
)
.

Similarly, we use superscripts on expectation symbols E to indicate the source of
randomness.

OBSERVATION 3.2. With this notation, we have the obvious compatibility re-
lation

Ee,S[EX(g(e, S,X)
)]

= Ee,S,X[g(e, S,X)
]
,

for any function g such that these quantities are defined. If g is the indicator func-
tion of an event A, this can be rewritten as

Ee,S[PX(A)
]
= Pe,S,X(A).

To finish this section, we discuss trivial cases of our main theorem, when π is
not separable and when π is the permutation of size 1.

REMARK 3.3. Observe that if π is not a separable permutation, from Propo-
sition 2.12 it cannot be obtained as Perm(e, S,X), and thus �π is identically equal
to 0 in this case. Clearly, õcc(π,σ n) is also identically equal to 0 in this case since
a separable permutation cannot have a nonseparable pattern (permutation classes
are by definition downward-closed for the pattern relation).

REMARK 3.4. If π = 1 is the only permutation of size 1, then regardless of
X = (X1) we have that Perm(e, S,X) is the permutation of size 1. Consequently,
�π is identically equal to 1 in this case. Similarly, õcc(π,σ n) is also identically
equal to 1, since every element of a permutation is an occurrence of the pattern
π = 1.

Thus, our main theorem is vacuous in the special cases π not separable or π = 1.
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3.2. The leaf distribution function of a tree. Before going further, we need a
detour through distribution functions, to encode the positions of the leaves in the
renormalized contour of a tree t .

A distribution function F is a right-continuous nondecreasing function from R

to [0,1] with limx→−∞ F(x) = 0 and limx→+∞ F(x) = 1. A real-valued random
variable X has distribution function F if, for all x, one has F(x) = P(X ≤ x).
In the sequel, we only consider distribution functions F such that F(0) = 0 and
F(1) = 1 (equivalently, the associated random variables have values in [0,1]); and
we identify F with its restriction on the domain [0,1].

For such a distribution function F , the pseudo-inverse F ∗ of F is defined as
follows: for u in [0,1], we set F ∗(u) = inf{x ∈ [0,1] : F(x) ≥ u}. One can check
that for all u ∈ [0,1] and ε > 0,

F
(
F ∗(u)

)
≥ u ≥ F

(
F ∗(u) − ε

)
.

Moreover, if U is a uniform random variable on [0,1], then F ∗(U) has distribution
function F .

The following distribution functions will be of particular interest in this work:

• For the uniform distribution on [0,1], we have FU (x) = min(x,1)1[x ≥ 0].
• With any tree t with set of leaves ℓt = {ℓ1, . . . , ℓ|t |} (|t | > 1), we associate its

leaf distribution function Ft defined by

(4) Ft (x) =
1

|t |

|t |∑

i=1

1[ℓi ≤ x].

By definition, taking a random variable with distribution Ft corresponds to
choosing a leaf of t uniformly at random (more precisely the x-coordinate ℓi of
the corresponding leaf in the normalized contour of t). Figure 10 shows the leaf
distribution function associated with the (unsigned) tree of Figure 7, page 2148.

The following statement was essentially proved by Pitman and Rizzolo in [37].

PROPOSITION 3.5. Let Tn be a uniform random Schröder tree with n leaves.
Defining the random distribution function FTn as above, we have the following
convergence in probability:

‖FTn − FU‖∞ → 0.

Informally, choosing uniformly at random a leaf in Tn (or rather the correspond-
ing x-coordinate in the normalized contour C̃Tn ) amounts in the limit to choosing
a uniform point in [0,1].

PROOF OF PROPOSITION 3.5. Recall from Proposition 2.15, that Tn can be
seen as a Galton–Watson tree with a specific offspring distribution, conditioned to
have n leaves.
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FIG. 10. The leaf distribution function Ft for the tree t shown in Figure 7. Note that Ft is piecewise
constant and all gaps are of height 1

|t | (here, 1
7 ), but pieces may have different widths (here, 2

20 or
3
20 ). Informally, Proposition 3.5 states that these widths are asymptotically close to each other.

In the proof of [37], Theorem 8, Pitman and Rizzolo established for such models
the convergence of the empirical distribution of the location of leaves (that they de-
note νn) to the Lebesgue measure on [0,1]. This convergence holds in probability
for the weak topology.

Weak convergence is equivalent to the convergence of distribution functions at
continuity points of the limit, so that their statement correspond to the convergence
of FTn to FU in probability for the pointwise convergence topology. Moreover,
since distribution functions are nondecreasing and since the limit FU is continu-
ous, it is well known and easy to see that pointwise convergence implies uniform
convergence, so that the proposition is proved. �

We finish by a simple lemma, that is used in Sections 5 and 6.

LEMMA 3.6. If F is a distribution function, then ‖F ∗−F ∗
U‖∞ ≤ ‖F −FU‖∞.

Note that on [0,1], F ∗
U = FU = id[0,1].

PROOF OF LEMMA 3.6. Choose u ∈ [0,1]. If u ≥ F ∗(u) then
∣∣F ∗(u) − FU (u)

∣∣= u − F ∗(u) ≤ F
(
F ∗(u)

)
− F ∗(u)

≤ sup
t∈[0,1]

∣∣F(t) − t
∣∣= ‖F − FU‖∞.

If on the contrary u < F ∗(u), then write for a small ε > 0
∣∣F ∗(u) − FU (u)

∣∣= F ∗(u) − u ≤ F ∗(u) − ε − F
(
F ∗(u) − ε

)
+ ε
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≤ sup
t∈[−ε,1−ε]

∣∣t − F(t)
∣∣+ ε

≤ ε + sup
t∈[0,1−ε]

∣∣t − F(t)
∣∣+ ε ≤ ‖F − FU‖∞ + 2ε,

and let ε → 0. �

3.3. Reformulation of the main theorem. To prove the convergence of the
quantity õcc(π,σ n) towards �π , it is useful to describe these two random vari-
ables in a similar manner. More precisely, we define a function PrPerm in such a
way that both õcc(π,σ n) and �π have a natural expression using PrPerm. Along
the way, we also define a tree analogue PrTree of PrPerm, which we shall use in the
proof of Theorem 1.2(iii).

DEFINITION 3.7 (PrTree). Let t0 be a tree with k leaves, f be an excursion
and F be a distribution function with F(0) = 0 and F(1) = 1. Let X1, . . . ,Xk

be independent random variables with distribution function F and X be the set
{X1, . . . ,Xk}. Then PrTree(t0;f,F ) = PX(Tree(f,X) = t0).

DEFINITION 3.8 (PrPerm). Let π be a permutation of size k, (f, s) be a signed
excursion and F be a distribution function with F(0) = 0 and F(1) = 1. Let
X1, . . . ,Xk be independent random variables with distribution function F and X

be the set {X1, . . . ,Xk}. Then PrPerm(π;f, s,F ) = PX(Perm(f, s,X) = π).

Note that in the above two definitions, if the event Tree(f,X) = t0 [resp.,
Perm(f, s,X) = π ] is realized, then there is no repetition in X1, . . . ,Xk .

OBSERVATION 3.9. By definition, it follows that �π = PrPerm(π; e, S,FU ).

LEMMA 3.10. Let (t, ε) be a signed tree and σ = perm(t, ε) be the corre-
sponding permutation. Let (C̃t , s) be the signed contour of (t, ε) and Ft be the
distribution function associated with t . It holds that

PrPerm(π; C̃t , s,Ft) =
(|t |)k
|t |k

õcc(π,σ ),

where (x)k denotes the falling factorial x(x − 1) · · · (x − k + 1).

PROOF. Let X1, . . . ,Xk be independent random variables with distribution
function Ft [in this case, Perm(C̃t , s,X) is always defined—see Observation 2.39].
In other terms, we take k leaves of t independently uniformly at random. The
probability that they are different is clearly (|t |)k/|t |k . Conditioned to that event,
X = {X1, . . . ,Xk} is a uniform subset of k leaves of t . From Observation 2.43, we
have

Perm(C̃t , s,X) = patI (σ ),
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where I is a uniform random k-element subset of [|t |]. The probability that the
right-hand side is equal to π is by definition õcc(π,σ ). Thus,

P
(
Perm(C̃t , s,X) = π | X is repetition-free

)
= õcc(π,σ ),

which completes the proof. �

COROLLARY 3.11. Recall that Tn denotes a uniform random Schröder tree
with n leaves, and En the sign function on the internal vertices of Tn, such that the
signs alternate and the root of Tn has a balanced sign. Denote by (C̃Tn, Sn) the
signed contour of (Tn,En). Then

õcc(π,σ n) = PrPerm(π; C̃Tn, Sn,FTn)

(
1 +O

(
1

n

))
.

Using Observation 3.9 and Corollary 3.11, our main result, that is, the joint
convergence in distribution of õcc(π,σ n) to �π [see Theorem 1.2(iii)] can now be
written as the joint convergence (for any finite family of patterns π ):

(5) PrPerm(π; C̃Tn, Sn,FTn)
d→ PrPerm(π; e, S,FU ),

3.4. Outline of the proof. The proof of (5) consists in several steps, as follows.
Recall that the normalized contour C̃Tn and the leaf distribution function FTn of Tn

converge to the Brownian excursion e and the uniform distribution function FU ,
respectively.

A natural way to proceed would be to prove the convergence of (C̃Tn, Sn) to
the signed Brownian excursion, and the continuity of PrPerm(π; ·). As discussed in
Remark 2.29, a major difficulty when trying to prove that (C̃Tn, Sn) converges to
(e, S) is that the signs on the local minima of C̃Tn are far from independent. Instead
of attacking this difficulty head-on, we have developed a proof along a different
line. Recall that our goal is to prove the convergence in distribution of õcc(π,σ n)

to �π .
The main part of our proof is to show the convergence of õcc(π,σ n) to �π

in expectation. In Section 4, we prove that this is enough to have convergence in
distribution. Indeed we shall see that all moments of �π are determined by ex-
pectations of �ρ , for larger permutations ρ. Moreover, we shall see that a similar
statement holds in the limit for õcc(π,σ n). Therefore, convergence of expecta-
tions implies convergence of all (joint) moments. And since the random variables
are bounded by 1, convergence of (joint) moments implies (multi-dimensional)
convergence in distribution.

The goal of Section 5 is to prove the convergence in distribution of the unsigned
trees extracted from the normalized contour of a uniform Schröder tree to the un-
signed trees extracted from the Brownian excursion. This is achieved by proving
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the continuity of PrTree(t0; ·), and using the convergence of C̃Tn to e and the con-
vergence of FTn to FU . Since this step does not involve signs, there is no major
difficulty here.

In Section 6, we return to signed objects, proving that the signs on extracted
trees are balanced and independent. More precisely, we examine the signs of the
internal vertices of a signed tree (t0, ε) extracted from (C̃Tn, Sn), and we prove
that, when n goes to infinity, these signs are balanced and independent. Note that a
similar statement for (e, S) is obvious, because the signs are chosen balanced and
independent in (e, S). The proof for (C̃Tn, Sn) involves the fact that the relative
distances between the points of C̃Tn corresponding to the vertices of t0 tend to
infinity, and a subtree exchangeability argument.

Finally, we put all these results together in Section 7, to conclude the proof
of Theorem 1.2(iii). More precisely, using Sections 5 and 6 we show the conver-
gence of õcc(π,σ n) to �π in expectation, which implies Theorem 1.2(iii) using
Section 4.

4. Expectations determine joint moments. Recall that, for each n, σ n de-
notes a uniform random separable permutation of size n, and that we want to
prove the convergence in distribution of the random variables õcc(π,σ n) to �π .
Since the random variables õcc(π,σ n) and the candidate limit �π are bounded by
1, (multi-dimensional) convergence in distribution is equivalent to convergence of
(joint) moments. (This can be seen, e.g., as a consequence of the Stone–Weierstrass
theorem, which ensures that polynomials are dense in the set of continuous func-
tions from [0,1]r to R.) Concretely, Theorem 1.2(iii) (page 2138) is equivalent to
the following statement.

THEOREM 4.1. For any list of patterns π1, . . . , πr (possibly with repetitions),

E

[
r∏

i=1

õcc(πi,σ n)

]
−→ E

[
r∏

i=1

�πi

]
.

Instead of proving a convergence in distribution of random variables, we can
therefore limit ourselves to proving a convergence of real numbers, which is a lot
more tractable. To make our task even simpler, we show in Corollary 4.6 below that
Theorem 4.1 follows if we prove, for all π , the convergence of E[õcc(π,σ n)] to
E[�π ]. The key point is that

∏r
i=1 õcc(πi, σ ) can be expressed combinatorially as

a linear combination of õcc(ρ, σ ) for larger patterns ρ, and that the same relation
holds between

∏r
i=1 �πi

and the �ρ’s.

DEFINITION 4.2. Let ρ be a permutation of size K and π1, . . . , πr be permu-
tations such that

∑r
i=1 |πi | = K . An ordered set-partition (Ii)1≤i≤r of {1, . . . ,K}

is compatible with ρ,π1, . . . , πr if for all i, patIi
(ρ) = πi .
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The number of ordered set-partitions compatible with ρ,π1, . . . , πr is denoted
by d

ρ
π1,...,πr . We also consider the proportion

cρ
π1,...,πr

=
d

ρ
π1,...,πr( K

|π1|,...,|πr |
)

of ordered set-partitions of {1, . . . ,K} which are compatible with ρ,π1, . . . , πr .

EXAMPLE 4.3. Let ρ = 1342, π1 = 21 and π2 = 12. There are 6 ordered set-
partitions of {1, . . . ,4}, which are ({1,2}, {3,4}), ({1,3}, {2,4}), ({1,4}, {2,3}),
({2,3}, {1,4}), ({2,4}, {1,3}), ({3,4}, {1,2}). Let (I1, I2) be one of the first four
ordered pairs, then patI1

(ρ) = 12 �= π1 thus (I1, I2) is not compatible with ρ, π1,
π2. On the contrary, the last two pairs are compatible with ρ, π1, π2. Then d1342

21,12 =
2 and c1342

21,12 = 1/3.

PROPOSITION 4.4. Fix a list of patterns π1, . . . , πr , and denote by K the sum
of their sizes. Then

r∏

i=1

�πi
=
∑

ρ∈SK

cρ
π1,...,πr

�ρ .

PROOF. We fix a realization (e, S) of the Brownian excursion all along the
proof. The main idea to prove the equality in Proposition 4.4 is to show that both
parts represent the probability of the same event. First, we describe the event.

We fix a list of patterns π1, . . . , πr and we denote by K the sum of their sizes.
Let us take K independent uniform random variables in [0,1]. We denote the
|π1| first ones (in the order of sampling) by X1

1, . . . ,X
1
|π1|, the following ones

X2
1, . . . ,X

2
|π2|, and so on until the |πr | last ones which are denoted Xr

1, . . . ,X
r
|πr |.

Let X(i) = {Xi
j | 1 ≤ j ≤ |πi |} for all i and X =

⋃r
i=1 X(i). The event we are con-

sidering is then: for each i, Perm(e, S,X(i)) = πi . Since (e, S) is a fixed realization
of the Brownian excursion, all the probabilities below should be understood with
respect to the random variables X, as indicated by the notation PX.

Let Pπ1,...,πr = PX(∀i,Perm(e, S,X(i)) = πi). Since the Xi
j are independent,

we have

P
π1,...,πr =

r∏

i=1

PX(Perm
(
e, S,X(i))= πi

)
=

r∏

i=1

�πi
.

It remains to prove that Pπ1,...,πr =
∑

ρ∈SK
c
ρ
π1,...,πr �ρ . We compute this prob-

ability by conditioning on the value of Perm(e, S,X). Since (e, S,X) satisfies Con-
dition (C) (page 2152) with probability 1 (see Observation 2.45, page 2154), the
permutation Perm(e, S,X) is almost surely defined and has size K . Thus,

P
π1,...,πr =

∑

ρ∈SK

Pρ × PX(Perm(e, S,X) = ρ
)

where Pρ = PX(∀i,Perm
(
e, S,X(i))= πi | Perm(e, S,X) = ρ

)
.

(6)
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By definition, PX(Perm(e, S,X) = ρ) = �ρ , so we just need to prove that Pρ =
c
ρ
π1,...,πr to complete the proof.

Consider a realization of the random variables X. We say that Xi
j has rank k if

it is the kth smallest value among all variables of X. Then we can associate with
X an ordered set-partition of {1, . . . ,K} that we denote abusively Part(X) and that
is defined as follows: the ith subset of Part(X) is obtained from X(i) by replacing
each Xi

j by its rank. For example,

Part
(
{0.7,0.9,0.2}, {0.5,0.8}, {0.3}

)
=
(
{1,4,6}, {3,5}, {2}

)

since 0.2 < 0.3 < 0.5 < 0.7 < 0.8 < 0.9.
Let I be the set of all ordered set-partitions of {1, . . . ,K} in r subsets such that

the ith one has |πi | elements. Then, by conditioning on the value of Part(X), we
have

Pρ =
∑

(Ii)∈I
PX(Part(X) = (Ii)

)

× PX(∀i,Perm
(
e, S,X(i))= πi | Perm(e, S,X) = ρ and Part(X) = (Ii)

)
.

Recall that, by construction, Perm = perm◦Tree±. From Observations 2.41
(page 2153) and 2.11 (page 2146),

PX(∀i,Perm
(
e, S,X(i))= πi | Perm(e, S,X) = ρ and Part(X) = (Ii)

)

=
{

1 if (Ii) is compatible with ρ,π1, . . . , πr ;

0 otherwise.

In addition, we claim that Part(X) is uniformly distributed in I , that is, for
each (Ii) in I , we have PX(Part(X) = (Ii)) = 1/

( K
|π1|,...,|πr |

)
. Indeed each possible

relative order of the (Xi
j ) occurs with the same probability. Moreover, the block

sizes of ordered set-partitions in I are prescribed: card(Ii) = |πi |. Therefore, each
ordered set-partition in I corresponds to the same number of relative orders of the
variables (Xi

j ); and this proves our claim.
Finally, we obtain that Pρ = d

ρ
π1,...,πr /

( K
|π1|,...,|πr |

)
= c

ρ
π1,...,πr . Going back to (6),

we get Pπ1,...,πr =
∑

ρ∈SK
c
ρ
π1,...,πr �ρ , which concludes the proof. �

PROPOSITION 4.5. Fix a list of patterns π1, . . . , πr , and denote by K the sum
of their sizes. Then for any permutation σ of size n,

r∏

i=1

õcc(πi, σ ) =
∑

ρ∈SK

cρ
π1,...,πr

õcc(ρ, σ ) +O

(
1

n

)
.

The constant hidden in the O symbol does depend on π1, . . . , πr , but is uniform
on σ .
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PROOF. Let ki be the size of πi . We denote by Si the set of ki -element subsets,
I , of [n] such that patI (σ ) = πi . Then

r∏

i=1

õcc(πi, σ ) =
r∏

i=1

card(Si)(n
ki

) =
∏r

i=1 card(Si)∏r
i=1
(n
ki

) .

We set Sρ = {(s1, . . . , sr) ∈ S1 × S2 × · · · × Sr such that patI (σ ) = ρ for I =⋃r
i=1 si}. Then

r∏

i=1

card(Si) = card(S1 × S2 × · · · × Sr)

= card
( ⋃

ρ∈SK

Sρ

)
+ card

(
S1 × S2 × · · · × Sr \

⋃

ρ∈SK

Sρ

)
.

Note that the sets Sρ are disjoints: indeed Sρ ∩ Sρ′ �= ∅ ⇒ ρ = patI (σ ) = ρ′.
Therefore, denoting R = S1 × S2 × · · · × Sr \

⋃
ρ∈SK

Sρ , we have

r∏

i=1

card(Si) =
∑

ρ∈SK

card(Sρ) + card(R).

We first study R. Let (s1, . . . , sr) ∈ S1 × S2 × · · · × Sr , and define I =⋃r
i=1 si . Note that card(I ) ≤ K , and that the inequality is strict if and only if

(s1, . . . , sr) ∈ R. Consequently, it holds that

R =
{
(s1, . . . , sr) ∈ S1 × S2 × · · · × Sr such that card

(
r⋃

i=1

si

)
< K

}
.

It follows that card(R) = O(nK−1), where the constant hidden in the O symbol
depends on the ki ’s but not on n. Since

∏r
i=1
(n
ki

)
∼ cstnK for some constant cst

that depends on the ki ’s only, we obtain that card(R)∏r
i=1 (

n
ki
)

= O( 1
n
), where the constant

hidden in the O symbol depends on the ki ’s only.
We now study Sρ . Each element of Sρ corresponds to an occurrence of ρ in σ .

Conversely, a given occurrence of ρ in σ may lead to one, several or no element(s)
of Sρ : this depends on the number of ways to partition the set of indices of σ

corresponding to the occurrence of ρ into an ordered sequence (s1, . . . , sr) of r

sets such that each si induces the pattern πi . The number of ways to do this ordered
partition does not depend on the occurrence of ρ that is considered, and there are
by definition d

ρ
π1,...,πr ways to do this partition. Thus,

card(Sρ) = dρ
π1,...,πr

× number of occurrences of ρ in σ

=
(

K

k1, . . . , kr

)
cρ
π1,...,πr

×
(

n

K

)
õcc(ρ, σ ).
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Putting things together,

r∏

i=1

õcc(πi, σ ) =
∑

ρ∈SK

card(Sρ)
∏r

i=1
(n
ki

) +
card(R)
∏r

i=1
(n
ki

)

=
∑

ρ∈SK

cρ
π1,...,πr

õcc(ρ, σ )

( K
k1,...,kr

)(n
K

)
∏r

i=1
(n
ki

) +O

(
1

n

)
.

By simple computations, we have
( K
k1,...,kr

)(n
K

)
∏r

i=1
(n
ki

) =
n!

K!(n − K)!
K!

k1! · · ·kr !
k1!(n − k1)!

n!
· · ·

kr !(n − kr)!
n!

= 1 +O

(
1

n

)
,

where again the constant hidden in the O symbol depends on the ki ’s only. To
conclude, we need to remark that the sum

∑
ρ∈SK

c
ρ
π1,...,πr õcc(ρ, σ ) is bounded

independently of n; indeed, each term c
ρ
π1,...,πr õcc(ρ, σ ) is bounded by 1, and

there are K! terms. It then follows that
r∏

i=1

õcc(πi, σ ) =
∑

ρ∈SK

cρ
π1,...,πr

õcc(ρ, σ ) +O

(
1

n

)
,

where the constant hidden in the O symbol does depend on π1, . . . , πr , but is
uniform on σ . �

COROLLARY 4.6. Theorem 4.1 [and therefore Theorem 1.2(iii)] is equivalent
to the following statement:

(7) For any pattern π, E
[
õcc(π,σ n)

]
−→ E[�π ].

PROOF. We assume that equation (7) holds. Let π1, . . . , πr be a list of patterns,
and denote by K the sum of their sizes. Then, from Propositions 4.4 and 4.5, we
have

E

[
r∏

i=1

õcc(πi,σ n)

]
=
∑

ρ∈SK

cρ
π1,...,πr

E
[
õcc(ρ,σ n)

]
+ o(1)

=
∑

ρ∈SK

cρ
π1,...,πr

E[�ρ] + o(1) = E

[
r∏

i=1

�πi

]
+ o(1).

Note that to get the second line, we used that
∑

ρ∈SK
c
ρ
π1,...,πr does not depend

on n. The above computations show that equation (7) implies Theorem 4.1. �

The next three sections focus on proving equation (7); the proof will be com-
pleted in Theorem 7.3.
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5. Continuity of PrTree. In this section, we prove the convergence in distri-
bution of the trees extracted from the normalized contour of a uniform Schröder
tree to the trees extracted from the Brownian excursion (in the unsigned case). This
result is stated in Corollary 5.4. It follows easily from earlier results and a conti-
nuity property of PrTree (defined in Definition 3.7, page 2159) that we establish in
Lemma 5.2 below. Let us first set up some notation.

Fix a tree t0 with k leaves. We consider the map (f,F ) → PrTree(t0;f,F ). We
use the uniform topology (i.e., the topology induced by the supremum norm) both
on the set of excursions and on the set of distribution functions.

Throughout the section, if f is an excursion and x ≤ y in [0,1], we denote
m(f ;x, y) = min[x,y] f . Let X1 ≤ X2 · · · ≤ Xk be the reordering of k uniform
i.i.d. random variables in [0,1]. We say that an excursion f has the distinct minima
property if m(f,X1,X2), . . . ,m(f,Xk−1,Xk) are distinct with probability 1 (the
probability here is taken with respect to X1, . . . ,Xk).

LEMMA 5.1. Let e be the Brownian excursion, then a.s. e has the distinct
minima property.

PROOF. This can be seen as a consequence of Lemma A.4, but since this
lemma uses a deep result of [30], let us give a more elementary proof.

If e is the Brownian excursion, and X1 < · · · < Xk is the reordering of k

i.i.d. uniform random variables in [0,1], then from Lemma A.1 with proba-
bility 1 no Xi is a one-sided minimum. When this is the case, for each i,
m(f,Xi,Xi+1) cannot be reached on the extremities of the interval [Xi,Xi+1]
and is therefore a local minimum. Consequently, using Lemma A.2, the values
m(f,X1,X2), . . . ,m(f,Xk−1,Xk) are distinct, almost surely. �

LEMMA 5.2. Let t0 be a fixed tree with k leaves. If f is an excursion with the
distinct minima property, then PrTree(t0; . . . ) is continuous in (f,FU ) with respect
to the uniform topology.

PROOF. We prove that PrTree(t0;g,G) → PrTree(t0;f,FU ) as soon as g → f

and G → FU . Fix ε, δ > 0 and consider an excursion g and a distribution function
G with ‖f − g‖∞ ≤ ε and ‖FU − G‖∞ ≤ δ.

Recall from Lemma 3.6 (page 2158) that ‖F ⋆
U − G⋆‖∞ ≤ ‖FU − G‖∞ ≤ δ

and that F ⋆
U is the identity on [0,1]. Let X1 < · · · < Xk be the reordering of k

independent uniform random variables, and let x = (X1, . . . ,Xk). Furthermore,
set Yi = G⋆(Xi). Note that G⋆ is nondecreasing, so that Y1 ≤ · · · ≤ Yk . We write
y = (Y1, . . . , Yk). By construction, we have that:

• y has the distribution of the reordering of k i.i.d. random variables of distribu-
tion G;

• and, for each i, one has |Yi − Xi | ≤ δ.
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It follows from ‖f − g‖∞ ≤ ε that |m(g,Yi, Yi+1) − m(f,Yi, Yi+1)| ≤ ε for i ≤
k − 1. This implies that, for each i ≤ k − 1,

(8)
∣∣m(g,Yi, Yi+1) − m(f,Xi,Xi+1)

∣∣≤ ε + ω(f, δ),

where ω is the modulus of continuity of f defined by

(9) ω(f, δ) = sup
|r−s|≤δ

∣∣f (r) − f (s)
∣∣.

Recall that Tree(f,x) is the tree extracted from the set of points x on the excur-
sion f . We have

(10)

∣∣PrTree(t0;f,FU ) − PrTree(t0;g,G)
∣∣

=
∣∣Px(Tree(f,x) = t0

)
− Px(Tree(g,y) = t0

)∣∣

≤ Px(Tree(f,x) �= Tree(g,y)
)
.

Above and in what follows, the randomness is only given by x, the variables y

are functions of the x’s, and hence random as well, while f is nonrandom. We
emphasize this by using the notation Px.

By construction (see Definition 2.30, page 2151), the tree Tree(f,x) only
depends on the relative order of m(f,X1,X2), . . . ,m(f,Xk−1,Xk). We denote
gap(f,x) the minimal difference between any two of these values. Since f is as-
sumed to have the distinct minima property, gap(f,x) is nonzero with probabil-
ity 1.

From (8), we see that the numbers m(g,Y1, Y2), . . . ,m(g,Yk−1, Yk) are in the
same relative order as m(f,X1,X2), . . . ,m(f,Xk−1,Xk) as soon as we have ε +
ω(f, δ) < gap(f,x)/2. If this is the case, then Tree(f,x) = Tree(g,y). Therefore,

Px(Tree(f,x) �= Tree(g,y)
)
≤ Px(gap(f,x)/2 ≤ ε + ω(f, δ)

)

ε,δ→0−→ Px(gap(f,x) = 0
)
= 0.

With (10), this completes the proof. �

By definition, the (substitution) decomposition tree of σ is the unique signed
Schröder tree (t, ε) in which the signs alternate such that perm(t, ε) = σ . By
Corollary 2.14 (page 2147), in the case where σ n is a uniform random separable
permutation of size n, then its (unsigned) decomposition tree is a uniform Schröder
tree with n leaves, denoted Tn all along the article.

PROPOSITION 5.3. Let σ n be a uniform random separable permutation of
size n and (C̃Tn) be the normalized contour of its decomposition tree. We also
define FTn as usual [see (4), page 2157]. Let e be the Brownian excursion and

define λ =
√

2 + 3/
√

2. Then we have

(C̃Tn,FTn)
d→ (λ · e,FU )

in distribution, with respect to the uniform topology.
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PROOF. From Propositions 2.23 (page 2149) and 3.5 (page 2157), we know

that C̃Tn

d→ λ · e and FTn

d→ FU . It remains to prove the joint convergence. Note
that the limit FU of FTn is deterministic.

Thus, we want to use a theorem of Billingsley ([8], Theorem 3.9) that asserts

that if X′
n

d→ X′ and X′′
n

d→ a′′ (where X′
n and X′ are random variables with values

in a metric space S′, X′′
n are random variables with values in a metric space S′′

and a′′ is a deterministic element of S′′), then (X′
n,X

′′
n)

d→ (x′, a′′), provided that
T = S′ × S′′ is separable.

The hypothesis that T is separable is in fact only needed to ensure that the Borel
σ -algebra on T is the product of the Borel σ -algebras on S′ and S′′. For this to be
the case, it is sufficient that either S′ or S′′ is separable; see [9], Lemma 6.4.2.

In our case, the functions C̃Tn and the limit λ ·e are random elements in the space
S′ = C[0,1] of continuous functions on [0,1], which is known to be separable (see
[8], Example 1.3). We can therefore use Billingsley’s theorem and the proposition
is proved. �

COROLLARY 5.4. With the above notation, for any fixed t0, we have the con-
vergence in distribution:

PrTree(t0; C̃Tn,FTn)
d→ PrTree(t0; e,FU ).

In particular, since these random variables are bounded, we have

Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
→ Ee[PrTree(t0; e,FU )

]
.

PROOF. This corollary is a simple application of the mapping theorem [8],
Theorem 2.7 because of the following facts:

• (C̃Tn,FTn)
d→ (λ · e,FU ), which is proved in Proposition 5.3;

• PrTree(t0; . . .) is invariant when the first argument is multiplied by a constant
and is continuous at (e,FU ) for almost every e, which follows from Lemmas
5.1 and 5.2. �

6. Signs are asymptotically balanced and independent. We now return to
the study of signed trees. The purpose of this section is to justify that asymptoti-
cally (when n goes large) the k −1 signs in the tree Tree±(C̃Tn, Sn,ℓ) are indepen-
dent and balanced, when ℓ is a k-element subset of the set of leaves of Tn chosen
uniformly at random.

PROPOSITION 6.1. Let σ n be a uniform random separable permutation of
size n and (t0, ε) be a signed binary tree of size k. As usual, let (C̃Tn, Sn) be
the signed contour of the decomposition tree of σ n. We also consider a uniform
random k-element subset ℓ of leaves of Tn. Then

(11) Pσ n,ℓ(Tree±(C̃Tn, Sn,ℓ) = (t0, ε)
)
=

1

2k−1
Pσ n,ℓ(Tree(C̃Tn,ℓ) = t0

)
+ o(1).
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The proof is given at the end of the present section. The core of this proof
is Lemma 6.2 below, regarding heights of branching points of marked leaves in
uniform random Schröder trees. We first introduce notation.

Recall that Tn is a uniform Schröder tree of size n. We take a set of k leaves
of Tn uniformly at random. As in Definition 2.21 (page 2149), denote their x-
coordinates by ℓ1 < · · · < ℓk , and ℓ = (ℓ1, . . . , ℓk) and let Hi be the height of ℓi in
Tn. For i = 1, . . . , k − 1, denote by Mi the height of the common ancestor of the
leaves ℓi and ℓi+1 (defining the height as the distance from the root).

LEMMA 6.2. When n → +∞, the parities of M1, . . . ,Mk−1 are asymptoti-
cally balanced, independent from each other and from the subtree t0 induced by
the k leaves.

More formally, we fix a binary tree t0 with k leaves and we condition on the
event that the subtree of Tn induced by ℓ is t0. For all δ1, . . . , δk−1 ∈ {0,1},

P
(
M1 ≡ δ1, . . . ,Mk−1 ≡ δk−1 | Tree(C̃Tn,ℓ) = t0

) n→+∞−→
1

2k−1
,

where a ≡ b means a = b mod 2.

PROOF. The proof essentially relies on a subtree exchangeability argument.
In order to give intuition, we start by the case k = 2.

In this case, there is a unique binary tree with two leaves, so the conditioning is
not relevant. We want to prove that the common ancestor of two leaves ℓ1 and ℓ2,
chosen uniformly at random in Tn among all 2-element subsets of leaves, has an
even height with probability asymptotically 1/2.

Fix two integers n,h ≥ 1. We consider the set T h
n of Schröder trees t with n

leaves, with two marked leaves ℓ1 and ℓ2 (ℓ1 < ℓ2), such that ℓ1 has height h.
Such a tree t can be canonically described as follows:

• Take a chain v0, . . . , vh = ℓ1 going from the root of t to the first marked leaf.
• Then for each x < h, glue a tree T l

x and a tree T r
x , respectively, on the left and

on the right of vx .
• One of the trees T r

x , say T r
x0

, contains the second marked leaf ℓ2. Then the vertex
vx0 is the common ancestor of ℓ1 and ℓ2 and has height M1 = x0.

For every permutation α of {0,1, . . . , h − 1}, replacing each pair (T l
x , T r

x ) by
(T l

α(x), T
r
α(x)) in the above decomposition provides a bijection from T h

n to itself.
This bijection maps a tree with M1 = x0 onto a tree with M1 = α(x0).

Applying this construction to our random tree Tn with its two marked leaves,
we get that for each h, x with 0 ≤ x ≤ h − 1

P(M1 = x | H1 = h) =
1

h
.



2170 F. BASSINO ET AL.

FIG. 11. The subtree exchangeability argument.

Therefore, we obtain

P(M1 is odd) =
∑

h≥1

P(M1 is odd | H1 = h)P(H1 = h)

=
∑

h≥1

⌊h/2⌋
h

P(H1 = h) =
1

2
−O

(
E

(
1

H1

))
,

which goes to 1/2, as soon as H1 goes to infinity in probability. This will be proved
in Lemma 6.3 below.

We now prove Lemma 6.2 in the general case k ≥ 2. Since the proof uses a lot
of notation, the reader is invited to look regularly at Figure 11, which illustrates
the main definitions.

We fix k ≥ 2 and a binary tree t0 with k leaves. We denote by Tn(t0) the set
of Schröder trees of size n with k marked leaves ℓ1 < · · · < ℓk , which induce the
subtree t0. For such a tree t , each vertex v in t0 corresponds to a vertex G(v) in t :
G(v) is either one of the marked leaves of t (if v is a leaf of t0) or a common
ancestor of two marked leaves of t (if v is an internal vertex of t0). We denote by
ht (v) the height of G(v) in t .

We fix an internal vertex v of t0. Define vc as the left child of v in t0 and
vp as the parent of v. For t in Tn(t0), the distance between G(vc) and G(vp) is
dt (v) := ht (vc)−ht (vp). [If v is the root, then vp is not defined and we shall think
of G(vp) as a virtual new root of t that is an ancestor of every vertex in t and has
height −1; in particular, we take ht (vp) = −1.]

The vertices of t0 (both leaves and internal vertices, v excluded) are partitioned
in two sets: the right subtree Rv of v and its complement set Fv . For a sequence of
heights h = (hu)u∈Fv , we define

T
v,h
n (t0) =

{
t ∈ Tn(t0), for all u ∈ Fv, ht (u) = hu

}
.

Note that, for every t in this set, dt (v) = hvc − hvp ; we denote this common value
by dh,v . (If v is the root of t0, we set hvp = −1.)
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Similar to the decomposition in the case k = 2, each tree in T v,h
n (t0) can be

decomposed as follows:

• A chain w0, . . . ,wdh,v
going from G(vp) to G(vc).

• For each 0 < x < dh,v , a tree T l
x and a tree T r

x , respectively, on the left and on
the right of wx .

• One of the trees T r
x , say T r

x0
, contains G(Rv). Then the vertex wx0 is G(v) and

has height hvp + x0.
• A “top tree” which consists of the offspring of G(vc).
• All others vertices of t form a connected subtree called the “bottom tree”. (If v

is the root of t0, there is no bottom tree.)

For every permutation α of {1, . . . , dh,v − 1}, replacing each pair (T l
x , T r

x ) by
(T l

α(x), T
r
α(x)) in the above decomposition provides a bijection from T v,h

n (t0) to
itself. Clearly, this bijection maps a tree with ht (v) = hvp + x0 onto a tree with
ht (v) = hvp + α(x0).

We now work with a uniform Schröder tree Tn of size n with k marked leaves,
and we condition on the fact that these leaves induce the subtree t0. We use the
notation Pt0(Tn ∈ A) := P(Tn ∈ A | Tn ∈ Tn(t0)). The above discussion implies
that for every hvp < x < hvc we have

Pt0

(
hTn(v) = x | Tn ∈ T

v,h
n (t0)

)
=

1

hvc − hvp − 1
=

1

dh,v − 1
=

1

dTn(v) − 1
.

Therefore,
∣∣∣∣Pt0

(
hTn(v) is even | Tn ∈ T

v,h
n (t0)

)
−

1

2

∣∣∣∣≤
1

dTn(v) − 1
.

We introduce a subset Ev
n of Tn(t0) of well-behaved trees:

Ev
n :=

{
t ∈ Tn(t0), dt (v) ≥ n1/4}.

We will prove in Lemma 6.3 that for all v, Pt0(E
v
n) → 1.

Note that if h is such that T v,h
n (t0) ⊂ Ev

n , then
∣∣∣∣Pt0

(
hTn(v) is even | Tn ∈ T

v,h
n (t0)

)
−

1

2

∣∣∣∣≤
1

n1/4 − 1
.

As a consequence, we have

(12) Pt0

(
hTn(v) is even | Tn ∈ T

v,h
n (t0)

)
=

1

2
+ o(1),

where the error term o(1) is bounded independently of h, provided that we have
T v,h

n (t0) ⊂ Ev
n .

Internal vertices of t0 can be canonically indexed by {1, . . . , k − 1}: vi is the
common ancestor of ℓi , ℓi+1. By definition, Mi = ht (vi) and we denote Ei

n := E
vi
n .
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Fix i ≥ 1. For j < i, the vertex vj lies in Fvi
, so that the fact that Tn belongs to

T
vi ,h
n (t0) determines the random variables (Mj )j<i . Clearly, this also determines

whether Tn belongs to Ei
n or not. Consequently, for all i ≤ k − 1, the event

{
M1 ≡ δ1, . . . ,Mi−1 ≡ δi−1, Tn ∈ Ei

n

}

can be written as a disjoint union (on h) of events of the form Tn ∈ T
vi ,h
n (t0). (12)

yields

Pt0

(
Mi ≡ δi | M1 ≡ δ1, . . . ,Mi−1 ≡ δi−1, Tn ∈ Ei

n

)
=

1

2
+ o(1).

Furthermore, for any event A, we have Pt0(A) = Pt0(A,Tn ∈ Ek−1
n )+o(1) because

Pt0(Tn ∈ Ek−1
n ) → 1 (Lemma 6.3)., Using this twice, we obtain

Pt0(M1 ≡ δ1, . . . ,Mk−1 ≡ δk−1)

= Pt0

(
M1 ≡ δ1, . . . ,Mk−1 ≡ δk−1, Tn ∈ Ek−1

n

)
+ o(1)

= Pt0

(
Mk−1 ≡ δk−1 | M1 ≡ δ1, . . . ,Mk−2 ≡ δk−2, Tn ∈ Ek−1

n

)

×
(
Pt0(M1 ≡ δ1, . . . ,Mk−2 ≡ δk−2) + o(1)

)
+ o(1)

=
1

2
Pt0(M1 ≡ δ1, . . . ,Mk−2 ≡ δk−2) + o(1).

Repeating this argument k − 2 times concludes the proof. �

It remains to prove that with high probability a uniform Schröder tree Tn is well
behaved: the heights Hi of marked leaves and Mj of their common ancestors and
the distances |Mi − Mj | and |Mi − Hj | are all larger than n1/4 (in fact, larger than

εnn
1
2 for all εn → 0).

LEMMA 6.3. We re-use the notation of the proof of Lemma 6.2. In particular,
Ev

n denotes the set of trees t in Tn(t0) such that dt (v) ≥ n1/4. For all internal
vertices v of t0,

P
(
Tn /∈ Ev

n | Tn ∈ Tn(t0)
)
→ 0.

In the special case where t0 = (i.e., k = 2), every pair (ℓ1, ℓ2) of marked
leaves of a Schröder tree with n ≥ 2 leaves induces t0, and the height of ℓ1 goes to
infinity in probability when n → +∞.

PROOF. First, Corollary 5.4 gives the probability of the conditioning event in
the limit

lim
n→+∞

P
(
Tn ∈ Tn(t0)

)
= P

(
Tree(e,U) = t0

)
,
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where U is a set of k i.i.d. uniform random variables in [0,1]. From Lemma A.3,
we know that this quantity is strictly larger than 0. Therefore, it is enough to prove
that P(Tn /∈ Ev

n) → 0 without the conditioning.
By definition, for each internal vertex v in t0, dt (v) is one of the following:

• the height Hi of a marked leaf;
• the height Mi of the common ancestor of two marked leaves;
• the difference of heights |Mi − Mj | between two common ancestors;
• the difference of heights |Mi − Hj | between a leaf and a common ancestor.

Thus, the first statement of the lemma will follow if we show that

P

⎛
⎜⎝

There are i ≤ k, j ≤ k − 1 such that
Hi ≤ n1/4 or Mj ≤ n1/4 or |Hi − Mj | ≤ n1/4

or |Mi − Mj | ≤ n1/4(i �= j)

⎞
⎟⎠→ 0.

Actually, we prove the stronger statement that for any two i, j , all sequences of
random variables 1√

n
Hi , 1√

n
Mj , 1√

n
|Mi − Mj |, 1√

n
|Hi − Mj | converge in distri-

bution to positive random variables.
We will only write the details for the sequence ( 1√

n
|Mi − Mj |), the proof be-

ing identical in the other cases. Recall that the x-coordinate of ℓi has the same
distribution as F ⋆

Tn
(Ui), where:

• Ui is the ith smallest value among k i.i.d. uniform random variables in [0,1].
• F ⋆

Tn
is the pseudo-inverse of FTn defined in (4) (page 2157); combining Proposi-

tion 3.5, Lemma 3.6 (page 2157), we know that F ⋆
Tn

(x) tends to x when n tends
to infinity (uniformly in x).

By construction, we have (in what follows C̃Tn is the normalized contour func-
tion of Tn, and the Ui ’s are independent from C̃Tn )

Mi = min
[F ⋆

Tn
(Ui),F

⋆
Tn

(Ui+1)]

√
n × C̃Tn .

Since (C̃Tn)n converges to λ · e (Proposition 2.23, page 2149) and F ⋆
Tn

(Ui) tends
to Ui , we have

1
√

n
|Mi − Mj |

(d)→ λ
∣∣∣ min
[Ui ,Ui+1]

e − min
[Uj ,Uj+1]

e
∣∣∣.

This completes the proof of the first statement of Lemma 6.3.
In particular, we have proved that H1 goes to infinity with n in probability. The

second statement of the lemma is just a rephrasing of this, in the particular case
where t0 = . �

REMARK 6.4. The joint convergence of the 1√
n
Hi and 1√

n
Mi is observed by

Aldous in the proof of [3], Theorem 20, with the slight difference that he works
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with uniform random vertices in the tree, while we consider uniform random
leaves.

PROOF OF PROPOSITION 6.1. Let σ n be a uniform separable permutation
of size n. From Corollary 2.14 (page 2147), it has the same distribution as
perm(Tn,En) where Tn is a uniform Schröder tree with n leaves and En is the
sign function on the internal vertices of Tn, such that the signs alternate and such
that the root r of Tn has a balanced sign: En(r) = + with probability 1/2. Recall
that C̃Tn [resp., (C̃Tn, Sn)] denotes the normalized contour of Tn [resp., the signed
contour of (Tn,En)].

As in the statement of the proposition, consider a uniform random k-element
subset ℓ of leaves of Tn. Recall from Observations 2.34 and 2.40 that Tree(C̃Tn,ℓ)

[resp., Tree±(C̃Tn, Sn,ℓ)] is the subtree of Tn [resp., the signed subtree of (Tn,En)]
induced by these leaves. We condition on the fact that Tree(C̃Tn,ℓ) = t0. It is
enough to prove that the probability that the signs in Tree±(C̃Tn, Sn,ℓ) coincide
with a fixed sign function ε on the internal vertices of t0 is 1/2k−1 + o(1). Recall
that the signs in Tree±(C̃Tn, Sn,ℓ) correspond to signs of the common ancestors
of the marked leaves in (Tn,En).

We further condition on the fact that the root of Tn has sign +. Then a vertex in
Tn has sign + if it has even height and sign − if it has odd height. Therefore, the
probability that the common ancestors have given signs correspond to the proba-
bility that their heights have given parities. This probability is 1/2k−1 + o(1) by
Lemma 6.2.

The same holds if we had conditioned on the fact that the root of Tn has sign −.
We can therefore conclude, that, conditioning only on the event Tree(C̃Tn,ℓ) = t0,
the probability that the common ancestors have given signs is 1/2k−1 +o(1), which
completes the proof of the proposition. �

7. Conclusion of the proof. In this section, we prove that the convergence of
the expectation for PrTree implies the one of the expectation for PrPerm. In order to
do that, the expectation for PrPerm is expressed in terms of the one for PrTree (as a
linear combination) in the continuous and discrete cases. This is possible since the
signs are balanced and independent as it has been proven in Proposition 6.1.

LEMMA 7.1. Let π be a pattern of size k and (e, S) be the signed Brownian
excursion

Ee,S[PrPerm(π; e, S,FU )
]
=

1

2k−1

∑

(t0,ε)

Ee[PrTree(t0; e,FU )
]
,

where the sum runs over all signed binary trees (t0, ε) of π .

PROOF. By definition,

PrPerm(π; e, S,FU ) = PX(Perm(e, S,X) = π
)
,
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where X is a set of k independent uniform variables in [0,1]. Thus, with Observa-
tion 3.2 (page 2156),

Ee,S[PrPerm(π; e, S,FU )
]
= Pe,S,X(Perm(e, S,X) = π

)
.

Since Perm(e, S,X) = perm(Tree±(e, S,X)) this is exactly the probability that
Tree±(e, S,X) is equal to one of the signed trees that are pre-images of π by
perm. In other terms,

Ee,S[PrPerm(π; e, S,FU )
]
=
∑

(t0,ε)

Pe,S,X(Tree±(e, S,X) = (t0, ε)
)
,

where the sum runs over all signed trees of π . From Observation 2.31 (page 2151),
if t0 is not binary, then Tree(e, S,X) = t0 has probability 0, since from Lemma A.2
a.s. all minima of e have distinct values. Consequently, in this case Tree±(e, S,

X) = (t0, ε) has also probability 0, and the sum above can be restricted to the
signed binary trees of π . For each such signed binary tree (t0, ε), we have

Pe,S,X(Tree±(e, S,X) = (t0, ε)
)
=

1

2k−1P
e,X(Tree(e,X) = t0

)
.

Indeed, signs are taken independently on local minima of e and thus on vertices of
t0. Finally, with Observation 3.2 again, the probability on the right-hand side is

(13) Pe,X(Tree(e,X) = t0
)
= Ee[PX(Tree(e,X) = t0

)]
= Ee[PrTree(t0; e,FU )

]
,

which completes the proof. �

Using Proposition 6.1, we obtain a discrete analogue of this lemma.

LEMMA 7.2. Let π be a pattern of size k and σ n be a uniform random sep-
arable permutation of size n. As usual, let (C̃Tn, Sn) be the signed contour of the
decomposition tree of σ n,

Eσ n
[
PrPerm(π; C̃Tn, Sn,FTn)

]
=

1

2k−1

∑

(t0,ε)

Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
+ o(1),

where the sum runs over all signed binary trees (t0, ε) of π .

PROOF. Let X be a set of k independent variables taken with distribution FTn .
Remember that this amounts to choosing k leaves of Tn independently and uni-
formly at random. Using an argument similar to that in the previous proof, we
have

(14) Eσ n
[
PrPerm(π; C̃Tn, Sn,FTn)

]
=
∑

(t0,ε)

Pσ n,X(Tree±(C̃Tn, Sn,X) = (t0, ε)
)
,

where the sum runs over all signed trees (t0, ε) of π .
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It holds that

Pσ n,X(Tree±(C̃Tn, Sn,X) = (t0, ε)
)
≤ Pσ n,X(Tree(C̃Tn,X) = t0

)

and

Pσ n,X(Tree(C̃Tn,X) = t0
)
= Eσ n

[
PX(Tree(C̃Tn,X) = t0

)]

= Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
.

If t0 is not binary, using Corollary 5.4 (page 2168), we further have

Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
→ Ee[PrTree(t0; e,FU )

]
= 0.

Recall indeed that, since a.s. all minima of e have distinct values from Lemma A.2,
the trees extracted from e at uniformly distributed points are binary with probabil-
ity 1.

Therefore, the sum in (14) can be replaced by a sum over signed binary trees
(t0, ε) of π , making only an error of o(1). For signed binary trees (t0, ε), we use
Proposition 6.1 (page 2168) to derive that

Pσ n,X(Tree±(C̃Tn, Sn,X) = (t0, ε)
)

= Pσ n,X(Tree±(C̃Tn, Sn,X) = (t0, ε) | no repetition in X
)
+ o(1)

=
1

2k−1P
σ n,X(Tree(C̃Tn,X) = t0 | no repetition in X

)
+ o(1)

=
1

2k−1P
σ n,X(Tree(C̃Tn,X) = t0

)
+ o(1).

Finally, since

Pσ n,X(Tree(C̃Tn,X) = t0
)
= Eσ n

[
PX(Tree(C̃Tn,X) = t0

)]

= Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
,

this completes the proof. �

Using these expressions of the expectation for PrPerm in terms of the one for
PrTree in the continuous and discrete cases, we can now prove our main result.

THEOREM 7.3. For any pattern π ,

E
[
õcc(π,σ n)

]
−→ E[�π ].

PROOF. From Corollary 5.4, we have that, for each tree t0,

Eσ n
[
PrTree(t0; C̃Tn,FTn)

]
→ Ee[PrTree(t0; e,FU )

]
.

Combining this with Lemmas 7.1 and 7.2, we get that for each pattern π ,

Eσ n
[
PrPerm(π; C̃Tn, Sn,FTn)

]
→ Ee,S[PrPerm(π; e, S,FU )

]
.
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From Corollary 3.11 (page 2160), õcc(π,σ n) = PrPerm(π; C̃Tn, Sn,FTn)(1 +
O( 1

n
)). Together with Observation 3.9 (stating that �π = PrPerm(π; e, S,FU )),

this completes the proof of Theorem 7.3. �

As shown by Corollary 4.6 (page 2165), Theorems 4.1 and 1.2(iii) follow from
Theorem 7.3 above.

8. Permuton interpretation of our main result. The goal of this section is to
prove Theorem 1.6 (page 2141). We first need additional material on permutons.
Recall from Definition 1.5 that permutons, which were introduced in [23], are
probability measures on [0,1]2 with uniform marginals. Given a (deterministic)
permuton μ and an integer k, there is a natural way to define a random permutation
�

μ
k of size k.

DEFINITION 8.1. Let μ be a permuton and k be an integer. Take k points
in [0,1]2 independently according to μ. A.s. these k points have distinct x-
coordinates and distinct y-coordinates (since μ has uniform marginals). Therefore,
we can order these points (X1, Y1), . . . , (Xk, Yk) such that Y1 < Y2 < · · · < Yk .
Then �

μ
k is the unique permutation such that X�

μ
k (1) < X�

μ
k (2) < · · · < X�

μ
k (k).

For a permutation π of size k, following the notation of [23], we then define
t (π,μ) as the probability that �

μ
k = π .

We say that a (deterministic) sequence of permutations (σn) with sizes going to
infinity converges to the permuton μ if, for all π , õcc(π,σn) tends to t (π,μ).

It is noticed in [23], equation (49), that the convergence of (σn) to a permuton
μ is equivalent to the weak convergence of the associated permutons (μσn) to μ.
In particular, this implies the uniqueness of limits of sequences of permutations.
Moreover, from [23], Theorem 1.6(i), if (σn) is a deterministic sequence of per-
mutations such that õcc(π,σn) has a limit for all π , then there exists a (necessarily
unique) permuton μ such that (σn) tends towards μ.

We can now proceed to the proof of Theorem 1.6.

PROOF OF THEOREM 1.6. Item (iii) in Theorem 1.2 asserts that the finite-
dimensional laws of (õcc(π,σ n))π converge to those of (�π )π (here, vectors are
indexed by all permutations).

This is equivalent to the convergence in distribution of the infinite-dimensional
vector (õcc(π,σ n))π towards (�π )π in the product topology (from the definitions
of the convergence in distribution and of the product topology). From Skorohod’s
representation theorem [26], Theorem 3.30, there exists a probability space �,
random variables (On)n≥1 and �′ such that:

(i) for each n ≥ 1, On is a random vector (On,π )π indexed by all permutations
that has the same law as (õcc(π,σ n))π ;
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(ii) �′ is a random vector (�′
π )π indexed by all permutations that has the same

law as (�π )π ;
(iii) we have sure convergence (in the product topology) of On to �′ when n

tends to infinity, that is, for any ω ∈ �, we have

for any permutation π, On,π (ω) → �′(ω)π .

We now aim at constructing random variables σ ′
n such that

(On,π )π =
(
õcc
(
π,σ ′

n

))
π ,

so that we can apply Theorem 1.6(i) of [23] in each ω ∈ �.
Fix n ≥ 1. Since (On,π )π and (õcc(π,σ n))π have the same distribution and

since this distribution is supported on a finite set, one can assume that they have
the same image set. Thus, for any ω in �, (On,π (ω))π is equal to (õcc(π,σ ))π for
some permutation σ of size n that we denote σ ′

n(ω). This defines a sequence of
random permutations σ ′

n defined on the probability space � with the property that
(On,π )π = (õcc(π,σ ′

n))π . Note that σ ′
n is measurable since, for a permutation τ

of size n, we have {ω : σ ′
n(ω) = τ } = {ω : On,τ (ω) = 1}.

Next, we claim that for any fixed n, σ ′
n has the same distribution as σ n. Indeed,

n being fixed, considering the restriction of (õcc(π,σ n))π [resp., (õcc(π,σ ′
n))π ]

to patterns π of size n gives the distribution of σ n (resp., σ ′
n). The claim then

follows since (õcc(π,σ n))π and (õcc(π,σ ′
n))π have the same distribution (both

the same as that of (On,π )π ).
From Item (iii) above, and by definition of σ ′

n, for any ω ∈ �, the following
holds:

for any permutation π, õcc
(
π,σ ′

n(ω)
)
→ �′(ω)π .

Using [23], Theorem 1.6(i), this implies that, for any ω ∈ �, there exists a (unique)
permuton μ(ω) such that σ ′

n(ω) tends to μ(ω) in the sense of Definition 8.1, or
equivalently μσ ′

n(ω) converges weakly to μ(ω). Since ω → μ(ω) is the pointwise
limit of the measurable functions ω → μσ ′

n(ω) in the metrizable weak topology, we
know that μ is measurable.

Using that pointwise convergence implies convergence in distribution and that
σ ′

n and σ n have the same distribution, we deduce that μσ n tends in distribution to
μ in the weak convergence topology, as claimed.

Finally, it should be noted that, for any π , �π
(d)= t (π,μ), using the notation t

from Definition 8.1, since both are the limit in distribution of õcc(π,σ n). From
Theorem 1.2(i) �12 is not deterministic, so neither is μ. �

9. Some properties of �π . In this section we give some additional results
concerning the limit variables �π . These results are not needed in the proof of our
main theorem [Theorem 1.2(iii)]. However, the more information we have on �π ,
the more interesting our theorem is.
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The first result, given in Section 9.1, is a way of computing (joint) moments of
the variables �π . This has been used in the Introduction to give explicit values
for the limit of (joint) moments of õcc(π,σ n). Our second result presented in Sec-
tion 9.2 is the fact that the variables �π are not deterministic when π is separable.
This corresponds to Item (i) in Theorem 1.2.

9.1. Computing expectation and other moments of �π . Recall that Nπ de-
notes the number of signed binary trees associated with the permutation π .

PROPOSITION 9.1. For any permutation π of size k,

E
[
õcc(π,σ n)

]
−→ E[�π ] =

Nπ

2k−1 · Catk−1
.

PROOF. For any π , the convergence of E[õcc(π,σ n)] to E[�π ] is given by
Theorem 7.3 (page 2176). Let π be a permutation of size k and let us prove that

E[�π ] =
Nπ

2k−1 · Catk−1
.

We consider the signed Brownian excursion (e, S). We take k points X1, . . . ,Xk

in [0,1] uniformly at random, independently from each other and from (e, S), and
we let X = (X1, . . . ,Xk). From Lemma 7.1 (see also (13) in its proof), we have

Ee,S[PrPerm(π; e, S,FU )
]
=

1

2k−1

∑

(t0,ε)

Pe,X(Tree(e,X) = t0
)
,

where the sum runs over all signed binary trees (t0, ε) of π .
Lemma A.3, a deep result on Brownian excursion, states that Tree(e,X) is a

uniform binary tree with k leaves, that is, for any binary tree t0 with k leaves,

Pe,X(Tree(e,X) = t0
)
=

1

Catk−1
.

The proposition then follows immediately. �

In addition, Nπ , the number of signed binary trees of a given permutation π , can
be expressed combinatorially from the decomposition tree of π . More precisely,
we have the following.

OBSERVATION 9.2. For any permutation π , denoting tπ its (unique) decom-
position tree, it holds that

Nπ := card
{
(t0, ε), t0 binary : perm(t0, ε) = π

}
=

∏

v int. vertex of tπ

Catdeg(v)−1,

where deg(v) is the number of children of v.
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FIG. 12. The decomposition tree of 1324765 and its Cat3 ×Cat2 ×Cat1 = 10 signed binary trees.

PROOF. Given a signed tree of π , and a vertex v with sign ε in this tree, the
following transformation produces a tree which is still a signed tree of π : assuming
that k subtrees T1, . . . , Tk are attached to v, replace v by a binary tree with k leaves
and all internal vertices labeled ε and where the ith leaf is replaced by Ti . Con-
versely, each signed binary tree of π can be obtained from the decomposition tree
tπ of π applying this transformation on all internal vertices v of tπ . An example is
given in Figure 12. �

PROPOSITION 9.3. Let π1, . . . , πr be a list of patterns, and let K =
∑r

i=1 |πi |.
We have

E

[
r∏

i=1

õcc(πi,σ n)

]
−→ E

[
r∏

i=1

�πi

]
=
∑

ρ∈SK

cρ
π1,...,πr

E[�ρ],

where for any ρ ∈ SK , c
ρ
π1,...,πr denotes the proportion of ordered set-partitions of

{1, . . . ,K} which are compatible with ρ,π1, . . . , πr ; see Definition 4.2, page 2161.

PROOF. See the proof of Corollary 4.6 for the convergence result, and Propo-
sition 4.4 for the expression of E[

∏
�πi

]. �

The results of this section enable the automatic computation of joint moments
of �π . As mentioned in the Introduction, we have implemented this in Sage. Let
us discuss quickly algorithmic questions behind this implementation:

• From Proposition 9.1, computing the expectation essentially amounts to com-
puting Nπ . Finding the degree of the root of the decomposition tree of π is easy.
To simplify the discussion (but without loss of generality), suppose that this root
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has sign +. Then its degree is the number of integers i ≤ k such that
{
π(1), . . . , π(i)

}
= {1, . . . , i}, or equivalently max

j≤i
π(j) = i.

Thanks to the second formulation, this can be computed in linear time reading
the permutation from left-to-right, keeping only in memory the maximum of the
values already read.

Degrees of all vertices can then be computed recursively, and we find Nπ

using Observation 9.2, in quadratic time.
• Higher moments or joint moments are more complex to compute. Fix a list of

patterns π1, . . . , πr of respective sizes k1, . . . , kr and set K = k1 + · · · + kr .
While convenient in proofs, the definition of the coefficients c

ρ
π1,...,πr (see Def-

inition 4.2, page 2161) is not optimal from a practical point of view. It is
however possible to generate directly the multi-set of permutations of SK ,
where each ρ appears with multiplicity d

ρ
π1,...,πr . If Pos = (Pos1, . . . ,Posr)

and Val = (Val1, . . . ,Valr) are ordered set-partitions of {1, . . . ,K} such that
card(Posi) = card(Vali) = ki , we can define a permutation ρ(Pos,Val) as fol-
lows: ρ(Pos,Val) assigns the πi(j)th smallest value in Vali to the j th smallest
value in Posi . It is easy to check that any given ρ is constructed this way from
exactly d

ρ
π1,...,πr pairs (Pos,Val). We have used this construction in our imple-

mentation of the computation of joint moments.
Even if this is more efficient than a naive implementation of Definition 4.2,

the complexity still grows very quickly.

Indeed, the number of pairs (Pos,Val) as above is equal to
( K
k1,...,kr

)2
. In prac-

tice, we have only been able to compute the first four moments of �12 with this
algorithm (the fifth moment given in the Introduction has been inferred from
the first four using the symmetry �12

(d)= 1 − �12). We believe that modifying
slightly the program to enable parallel computing may allow to compute the
fifth moment with the above algorithm in a reasonable time but that the sixth
moment, which involves more than 5 × 1013 pairs (Pos,Val), will remain out of
reach.

9.2. �π is not deterministic. Finally, we will prove Theorem 1.2(i) We have
already seen in Remark 3.3 (page 2156) that, when π is not separable, �π is identi-
cally 0 (in particular, deterministic). We have also seen in Remark 3.4 (page 2156)
that for the permutation π of size 1, �π is identically 1 (and thus, again determin-
istic). On the contrary, we now prove that if π is separable of size at least 2, then
�π is a true random variable and not a deterministic constant.

When π is separable of size at least 2, to prove that �π is not deterministic, it
would be sufficient to check that Var(�π ) > 0. Although Proposition 9.3 provides
an expression of the variance of �π , this expression does not allow us to prove
directly that Var(�π ) > 0. Instead, we prove in Proposition 9.5 that �π �= E[�π ]
with positive probability. From the expression of E[�π ] given in Proposition 9.1,
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FIG. 13. A realization of (e, S) for which Perm(e, S,X) = 123 . . . k with high probability.

it follows immediately that E[�π ] > 0 if π is separable. So the proof of Theo-
rem 1.2(i) will be completed as soon as we prove that �π takes values as close to
0 as wanted with positive probability. This is done in Lemma 9.4.

LEMMA 9.4. Let π be a separable permutation of size k ≥ 2, (e, S) be the
signed Brownian excursion and N be a positive integer. There exists an event EN =
EN (e, S) such that:

• EN occurs with positive probability;
• If (e, S) is such that EN occurs, then PX(Perm(e, S,X) = π) ≤ k2

N
, where X =

(X1, . . . ,Xk) and the Xi’s are uniform independent points in [0,1].

PROOF. Assume first that π �= 123 . . . k. The key idea of the proof is that for
some realizations of (e, S) (see a sketch in Figure 13), Perm(e, S,X) = 123 . . . k

with high probability.
We set η = 1

4N2 and define intervals as follows:

• for integers ℓ between 0 and N , we set Jℓ = [ ℓ
N

− η; ℓ
N

+ η] ∩ [0,1];
• for integers ℓ between 1 and N , we set Iℓ = [ ℓ−1

N
+ η; ℓ

N
− η].

These intervals are represented on Figure 14. We have Length(Iℓ) = 1/N − 2η for
each ℓ. Moreover, by construction Length(Jℓ) = 2η for ℓ �= 0 and ℓ �= N , while
Length(J0) = Length(JN ) = η.

Let EN = EN (e, S) be the event defined as follows:

(i) For each ℓ, minJℓ
e ≤ 1/10.

(ii) minI1∪I2∪···∪IN
e ≥ 2/10.

(iii) The signs of the N − 1 local minima of e on J1, . . . , JN−1 are all +.

FIG. 14. Intervals Iℓ and Jℓ.
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Taking f a piecewise linear excursion such that f ( ℓ
N

) = 0 for integers ℓ between
0 and N and f (x) = 3/10 for x ∈ I1 ∪ I2 ∪ · · · ∪ IN , and with δ = 1/10, it follows
from Lemma A.5 that

Pe,S(EN ) =
1

2N−1P
e(e satisfies Items (i) and (ii)

)
> 0.

Consider now a realization (e, S) of the signed Brownian excursion such that EN

is realized, and let X = (X1, . . . ,Xk) be k uniform independent points in [0,1].
The construction of EN ensures that Perm(e, S,X) = 123 . . . k as soon as each Xi

is in an interval Iℓ such that Iℓ does not contain any other Xj . Equivalently, if
Perm(e, S,X) �= 123 . . . k then one of the two following events occurs:

• For some i, Xi belongs to an interval Jℓ.
• For some i �= j , Xi and Xj belong to the same interval Iℓ.

Therefore, we get

PX(Perm(e, S,X) = π
)
≤ PX(Perm(e, S,X) �= 123 . . . k

)

≤ k

N∑

ℓ=0

PX(X1 ∈ Jℓ) +
(
k

2

)
N∑

ℓ=1

PX(X1,X2 ∈ Iℓ)

≤ k2Nη +
(
k

2

)
N

(
1

N
− 2η

)2

≤
k

2N
+
(
k

2

)
1

N
=

k2

N

(
recall that η =

1

4N2

)
.

This completes the proof of Lemma 9.4 when π �= 123 . . . k. By symmetry, the
same result holds for π �= k . . .321. Therefore, the statement of Lemma 9.4 holds
for all separable permutations of size at least 2. �

We can now establish the announced proposition.

PROPOSITION 9.5. For any separable pattern π of size at least 2,

Pe,S(�π < E[�π ]
)
> 0.

In particular, �π is not almost surely constant.

PROOF. Let k ≥ 2 be the size of π . Since E[�π ] > 0 (from Proposition 9.1)
and k is fixed, one can choose N big enough such that k2/N < E[�π ]. For such a
value of N , let EN be the event given by Lemma 9.4. If (e, S) is such that EN is
realized, then (with X = (X1, . . . ,Xk) a tuple of k uniform independent points in
[0,1])

�π = PX(Perm(e, S,X) = π
)
≤

k2

N
< E[�π ].
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Since EN has positive probability, the event �π < E[�π ] also occurs with positive
probability. �

APPENDIX: USEFUL FACTS ON THE BROWNIAN EXCURSION

For the convenience of the reader, we now record several useful properties of a
typical realization of the Brownian excursion e.

There are several ways to define the Brownian excursion, the most convenient
for us is to draw a realization of e from a realization of the Brownian motion
(Bt )t≥0, as follows (see [36], Section 0.2). Consider

(15) a = sup{t ≤ 1 : Bt = 0}, b = inf{t ≥ 1 : Bt = 0}
(almost surely a < 1 < b), and set

(
e(s)

)
0≤s≤1 :=

(
1

√
b − a

|Ba+s(b−a)|
)

0≤s≤1
.

Thus, the Brownian excursion e is seen as a dilatation of a piece of B . It follows
that some almost-sure properties of the set of local extrema of B remain true for e.

Recall that by definition, x is a one-sided local minimum for f if, for some
ε > 0,

f (x) = min
[x−ε,x]

f or f (x) = min
[x,x+ε]

f.

LEMMA A.1. The set of one-sided local minima of the Brownian excursion e

has Lebesgue measure 0, almost surely.

PROOF. We first prove an analogous statement for the Brownian motion
(Bt )t≥0. We denote Omin(B) the set of one-sided local minima of B , and
Leb(Omin(B)) its Lebesgue measure. We have

Leb
(
Omin(B)

)
=
∫ +∞

0
1u∈Omin(B) du,

so that, taking the expectation with respect to B ,

E
[
Leb

(
Omin(B)

)]
=
∫ +∞

0
P
(
u ∈ Omin(B)

)
du = 0.

In the last equality, we used that P(u ∈ Omin(B)) = 0 for every fixed u: Theo-
rem 1.27 in [35] gives a similar result for local minima (i.e., two-sided minima), but
the proof is easily adapted to the case of one-sided minima. Thus, Leb(Omin(B))

is a nonnegative random variable with expectation 0 and, therefore, is equal to 0
almost surely.

The statement then follows for Leb(Omin(e)) by dilatation, since the dilatation
of a set of measure zero has measure zero as well. �

We now discuss values of local minima.
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LEMMA A.2. With probability one, the Brownian excursion e has no two local
minima with the same value.

PROOF. For the Brownian motion, it is the statement of [26], Lemma 11.15.
This is also true for e since it is a dilatation of the Brownian motion. �

An important consequence of Lemma A.2 in the present paper is that, for all set
of k distinct points x of [0,1] and for almost all realizations of e, the tree Tree(e,x)

obtained in Section 2.4 is a binary tree (because of Observation 2.31).
A remarkable fact is that if x is uniformly distributed this random binary tree is

uniform (see [30], Section 2.6).

LEMMA A.3. Fix k ≥ 2 and a binary tree t0 with k leaves. Let U1, . . . ,Uk be
k uniform and independent random variables in [0,1], independent from e. Then

P
(
Tree

(
e, {U1, . . . ,Uk}

)
= t0

)
=

1

Catk−1
.

It is in fact even possible to describe the law of the geometric tree extracted
from e and U1, . . . ,Uk , that is, a tree with edge-lengths that are nonnegative real
numbers (see [30], Theorem 2.11). In this paper, we use a rather weak consequence
of this result.

LEMMA A.4. Take k i.i.d. uniform random variables in [0,1] independently
from e and call them U1 < · · · < Uk . Set Mi = min[Ui ,Ui+1] e. Then the random
vector

v =
(
e(U1), . . . , e(Uk),M1, . . . ,Mk−1

)

has distinct coordinates with probability 1.

PROOF. As said above, the law of the geometric tree extracted from e and
U1, . . . ,Uk is given in [30], Theorem 2.11; this law has a density with respect to
the uniform distribution on geometric trees.

Conditioning on the fact that Tree(e, {U1, . . . ,Uk}) is a given t0 with k leaves,
the coordinates of v are sums of edge-lengths of the geometric tree. Hence, the
vector v has a density with respect to the Lebesgue measure on R2k−1. Without
conditioning, v has also a density, which is simply the mean of the conditional
densities. This implies the lemma. �

Finally, we need the fact that the Brownian excursion e is arbitrary close to
any fixed Lipschitz excursion with positive probability. (A Lipschitz excursion is
simply an excursion that is also a Lipschitz function, that is, there exists C > 0
such that |f (x) − f (y)| ≤ C|x − y| for all x, y in [0,1].)
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LEMMA A.5. For every Lipschitz excursion f and δ > 0,

P
(

sup
0≤s≤1

∣∣e(s) − f (s)
∣∣≤ δ

)
> 0.

PROOF. The proof relies on a similar result for Brownian motion [17], Sec-
tion 1.4. Let us give some details.

Fix a Lipschitz excursion f and δ > 0 as in the statement of the lemma. Without
loss of generality, assume that δ < 1/2. Define gδ(t) = min(δ, t,1 − t), so that
‖gδ‖∞ = δ. Then

∣∣e(s) − f (s) − gδ/2(s)
∣∣≤ δ/2 ⇒

∣∣e(s) − f (s)
∣∣≤ δ.

Therefore, replacing if necessary f by f + gδ/2 and δ by δ/2, we can assume
without loss of generality that the following holds:

(16) for any η ≤ δ/2 and s ∈ [η,1 − η],one has f (s) ≥ η.

We extend f to the interval [−δ,1 + δ] by setting f (t) = t if t ≤ 0 and f (t) =
1− t if t ≥ 1. Let (Bt )t≥0 be a realization of the Brownian motion. Let η ∈ (0, δ/2].
Using the results of [17], Section 1.4, we know that with positive probability we
have

(17) sup
s∈[1/2−δ,3/2+δ]

∣∣∣∣Bs − f

(
s −

1

2

)∣∣∣∣< η.

Together with (16), this implies in particular that
⎧
⎪⎪⎨
⎪⎪⎩

Bs > 0 if s ∈
[

1

2
+ η,

3

2
− η

]
;

Bs < 0 if s ∈
[

1

2
− δ,

1

2
− η

]
∪
[

3

2
+ η,

3

2
+ δ

]
.

Therefore, if we define a and b as in (15), we have

(18)
1

2
− η < a <

1

2
+ η,

3

2
− η < b <

3

2
+ η.

In particular, |b − a − 1| < 2η. For s in [0,1], we can write

∣∣e(s) − f (s)
∣∣=

∣∣∣∣
1

√
b − a

Ba+s(b−a) − f (s)

∣∣∣∣

≤
1

√
b − a

∣∣∣∣Ba+s(b−a) − f

(
a −

1

2
+ s(b − a)

)∣∣∣∣

+
∣∣∣∣

1
√

b − a
− 1

∣∣∣∣ ·
∣∣∣∣f
(
a −

1

2
+ s(b − a)

)∣∣∣∣

+
∣∣∣∣f
(
a −

1

2
+ s(b − a)

)
− f (s)

∣∣∣∣.
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Using (17) and (18), the inequality |b−a−1| < 2η and the fact that f is a bounded
Lipschitz function, it is not hard to see that this upper bound is smaller than Cη

for some constant C. Since η can be chosen as small as wanted, we may assume
Cη ≤ δ and we get |e(s) − f (s)| ≤ δ (for all s in [0,1]).

In summary, for η sufficiently small, (17) implies sup0≤s≤1 |e(s) − f (s)| ≤ δ,
so that the latter occurs with positive probability, as wanted. �
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