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TH E  BRUNN-MINKOW SKI  IN EQUALITY 

 

R. J. GARDNER 

 
 

Abstract. In 1978, Osserman [124] wrote an extensive survey on the isoperi- 

metric inequality. The Brunn-Minkowski inequality can be proved in a page, 

yet quickly yields the classical isoperimetric inequality for important classes 

of subsets of Rn, and deserves to be better known. This guide explains the 

relationship between the Brunn-Minkowski inequality and other inequalities 

in geometry and analysis, and some applications. 
 

 

 

1. Introduction 

All mathematicians are aware of the classical isoperimetric inequality in the 

plane: 

(1) L2 ≥ 4πA, 
where A is the area of a domain enclosed by a curve of length L. Many, including 

those who read Osserman’s long survey article [124] in this journal, are also aware 

that versions of (1) hold not only in n-dimensional Euclidean space Rn but also 

in various more general spaces, that these isoperimetric inequalities are intimately 

related to several important analytic inequalities, and that the resulting labyrinth 

of inequalities enjoys an extraordinary variety of connections and applications to a 

number of areas of mathematics and physics. 

Among the inequalities stated in [124, p. 1190] is the Brunn-Minkowski inequal- 

ity. One form of this states that if K and L are convex bodies (compact convex 

sets with nonempty interiors) in Rn and 0  < λ < 1, then 

(2) V ((1 − λ)K + λL)
1/n  ≥ (1 − λ)V (K)1/n + λV (L)1/n. 

Here V and + denote volume and vector sum. (These terms will be defined in 

Sections 2 and 3.) Equality holds precisely when K and L are equal up to translation 

and dilatation. Osserman emphasizes that this inequality (even in a more general 

form discussed below) is easy to prove and quickly implies the classical isoperimetric 

inequality for important classes of sets, not only in the plane but in Rn. And 

yet, outside geometry, relatively few mathematicians seem to be familiar with the 

Brunn-Minkowski inequality. Fewer still know of the potent extensions of (2), some 

very recent, and their impact on mathematics and beyond. This article will attempt 
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to explain the current point of view on these topics, as well as to clarify relations 

between the main inequalities concerned. 

Figure 1 indicates that this is no easy task. In fact, even to claim that one 

inequality implies another invites debate. When I challenged a colloquium audience 

to propose their candidates for the most powerful inequality of all, a wit offered 

x2 ≥ 0 , “since all inequalities are in some sense equivalent to it.” The arrows in  
Figure 1 mean that one inequality can be obtained from the other with what I regard 

as only a modest amount of effort. With this understanding, I feel comfortable in  

claiming that the inequalities at the top level of this diagram are among the most 

powerful known in mathematics today. 

The Brunn-Minkowski inequality was actually inspired by issues around the 

isoperimetric problem and was for a long time considered to belong to geometry, 

where its significance is widely recognized. For example, it implies the intuitively 

clear fact that the function that gives the volumes of parallel hyperplane sections 

of a convex body is unimodal. The fundamental geometric content of the Brunn- 

Minkowski inequality makes it a cornerstone of the Brunn-Minkowski theory, a 

beautiful and powerful apparatus for conquering all sorts of problems involving 

metric quantities such as volume and surface area. 

By the mid-twentieth century, however, when Lusternik, Hadwiger and Ohmann, 

and Henstock and Macbeath had established a satisfactory generalization (10) of 

(2) and its equality condition to Lebesgue measurable sets, the inequality had begun 

its move into the realm of analysis. The last twenty years have seen the Brunn- 

Minkowski inequality consolidate its role as an analytical tool, and a compelling 

picture (Figure 1) has emerged of its relations to other analytical inequalities. In 

an integral version of the Brunn-Minkowski inequality often called the Prékopa- 

Leindler inequality (21), a reverse form of Hölder’s inequality, the geometry seems 

to have evaporated. Largely through the efforts of Brascamp and Lieb, this in- 

equality can be viewed as a special case of a sharp reverse form (50) of Young’s 

inequality for convolution norms. A remarkable sharp inequality (60) proved by 

Barthe, closely related to (50), takes us up to the present time. The modern view- 

point entails an interaction between analysis and convex geometry so fertile that 

whole conferences and books are devoted to “analytical convex geometry” or “con- 

vex geometric analysis”. 

Sections 3, 4, 5, 7, 13, 14, 15, and 17 are devoted to explaining the inequalities 

in Figure 1 and the relations between them. Several applications are discussed at 

some length. Section 6 explains why the Brunn-Minkowski inequality can be ap- 

plied to the Wulff shape of crystals. McCann’s work on gases, in which the Brunn- 

Minkowski inequality appears, is introduced in Section 8, along with a crucial idea 

called transport of mass that was also used by Barthe in his proof of the Brascamp- 

Lieb and Barthe inequalities. Section 9 explains that the Prékopa-Leindler inequal- 

ity can be used to show that a convolution of log-concave functions is log concave, 

and an application to diffusion equations is outlined. The Prékopa-Leindler in- 

equality can also be applied to prove that certain measures are log concave. These 

results on concavity of functions and measures, and natural generalizations of them 

that follow from the Borell-Brascamp-Lieb inequality, an extension of the Prékopa- 

Leindler inequality introduced in Section 10, are very useful in probability theory 

and statistics. Such applications are treated in Section 11, along with related con- 

sequences of Anderson’s theorem on multivariate unimodality, the proof of which 

employs the Brunn-Minkowski inequality.  The entropy power inequality (55) of 
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Figure 1. Relations between inequalities labeled as in  the text 

 

information theory has a form similar to that of the Brunn-Minkowski inequality. 

To some extent this is explained by Lieb’s proof that the entropy power inequality 

is a special case of a sharp form of Young’s inequality (49). Section 14 elaborates 

on this and related matters, such as Fisher information, uncertainty principles, and 

logarithmic Sobolev inequalities. In Section 16, we come full circle with applica- 

tions to geometry. Keith Ball started these rolling with his elegant application of 

the Brascamp-Lieb inequality (59) to the volume of central sections of the cube 

and to a reverse isoperimetric inequality (67). In the same camp as the latter is 

Milman’s reverse Brunn-Minkowski inequality (68), which features prominently in 

the local theory of Banach spaces. 

The whole story extends far beyond Figure 1 and the previous paragraph. Sec- 

tion 12 brings versions of the Brunn-Minkowski inequality in the sphere, hyper- 

bolic space, Minkowski spacetime, and Gauss space, and a Riemannian version of 

Isoperimetric for C1 domains Sobolev for C1 functions (16) 



358 R. J. GARDNER 
 

 

the Borell-Brascamp-Lieb inequality, obtained very recently by Cordero-Erausquin, 

McCann, and Schmuckenschläger. Essentially the strongest inequality for compact 

convex sets in the direction of the Brunn-Minkowski inequality is the Aleksandrov- 

Fenchel inequality (69). In Section 17 a remarkable link with algebraic geometry is 

sketched: Khovanskii and Teissier independently discovered that the Aleksandrov- 

Fenchel inequality can be deduced from the Hodge index theorem. The final section, 

Section 18, is a “survey within a survey”. Analogues and variants of the Brunn- 

Minkowski inequality include Borell’s inequality (76) for capacity, employed in the 

recent solution of the Minkowski problem for capacity; a discrete Brunn-Minkowski 

inequality (84) due to the author and Gronchi, closely related to a rich area of 

discrete mathematics, combinatorics, and graph theory concerning discrete isoperi- 

metric inequalities; and inequalities (86), (87) originating in Busemann’s theorem, 

motivated by his theory of area in Finsler spaces and used in  Minkowski geom- 

etry and geometric tomography. Around the corner from the Brunn-Minkowski 

inequality lies a slew of related affine isoperimetric inequalities, such as the Petty 

projection inequality (81) and Zhang’s affine Sobolev inequality (82), much more 

powerful than the isoperimetric inequality and the classical Sobolev inequality (16), 

respectively. Finally, pointers are given to several other applications of the Brunn- 

Minkowski inequality. 

The reader might share a sense of mystery and excitement. In a sea of mathe- 

matics, the Brunn-Minkowski inequality appears like an octopus, tentacles reaching 

far and wide, its shape and color changing as it roams from one area to the next. 

It is quite clear that research opportunities abound. For example, what is the 

relationship between the Aleksandrov-Fenchel inequality and Barthe’s inequality? 

Do even stronger inequalities await discovery in the region above Figure 1? Are 

there any hidden links between the various inequalities in Section 18? Perhaps, 

as more connections and relations are discovered, an underlying comprehensive 

theory will surface, one in which the classical Brunn-Minkowski theory represents 

just one particularly attractive piece of coral in a whole reef. Within geometry, 

the work of Lutwak and others in developing the dual Brunn-Minkowski and Lp- 

Brunn-Minkowski theories (see Section 18) strongly suggests that this might well 

be the case. 

An early version of the paper was written to accompany a series of lectures given 

at the 1999 Workshop on Measure Theory and Real Analysis in  Gorizia, Italy. I am  

very grateful to Franck Barthe, Apostolos Giannopoulos, Helmut Groemer, Paolo 

Gronchi, Peter Gruber, Daniel Hug, Elliott Lieb, Robert McCann, Rolf Schneider, 

Béla Uhrin, Deane Yang, and Gaoyong Zhang for their extensive comments on 

previous versions of this paper, as well as to many others who provided information 

and references. 

 
2. Basic notation 

 

The origin, unit sphere, and closed unit ball in n-dimensional Euclidean space 
Rn are denoted by o, Sn−1, and B, respectively. The Euclidean scalar product of x 
and y will be written  x · y, and lxl denotes the Euclidean norm of x. If u ∈ Sn−1, 

then u⊥ is the hyperplane containing o and orthogonal to u. 
Lebesgue k-dimensional measure Vk in Rn, k = 1, . . .  , n, can be identified with 

k-dimensional Hausdorff measure in Rn. Then spherical Lebesgue measure in Sn−1
 

n−1 

can be identified with Vn−1 in S . In this paper dx will denote integration with 
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Figure 2. The vector sum of a square and a disk 

 

respect to Vk for the appropriate k, and integration over Sn−1 with respect to Vn  1 

will be denoted by du.  The term measurable applied to a set in Rn  will always 

mean Vn-measurable unless stated otherwise. 

If X is a k-dimensional body (equal to the closure of its relative interior) in Rn, 

its volume is V (X ) = Vk (X ). The volume V (B) of the unit ball will also be denoted 

by κn. 
 

3. Geometrical origins 

The basic notions needed are the vector sum X + Y = {x + y : x ∈ X, y ∈ Y } of 

X and Y , and dilatate rX = {rx : x ∈ X }, r ≥ 0  of X , where X and Y are sets in  

Rn. (In geometry, the term Minkowski sum is more frequently used for the vector 
sum.) The set −X is the reflection of X in the origin  o, and X is called origin 

symmetric  if X = −X . 

As an illustration, consider the vector sum of an origin-symmetric square K of 

side length l and a disk L = εB of radius ε, also centered at o. The vector sum 

K + L, depicted in Figure 2, is a rounded square composed of a copy of K, four 

rectangles of area lε, and four quarter-disks of radius ε. 
The volume V (K + L) of K + L (i.e., its area; see Section 2) is 

V (K + L) = V (K) + 4 lε + V (L) ≥ V (K) + 2
√

πlε + V (L) 

= V (K) + 2
j
V (K)V (L) + V (L), 

which implies that  

V (K + L)1/2 ≥ V (K)1/2 + V (L)1/2. 

Generally, any two convex bodies K and L in Rn satisfy the inequality 

(3) V (K + L)1/n ≥ V (K)1/n + V (L)1/n. 

In fact, this is the Brunn-Minkowski inequality (2) in an equivalent form. To see 
this, just replace K and L in (3) by (1 − λ)K and λL, respectively, and use the 
positive homogeneity (of degree n) of volume in  Rn, that is, V (rX ) = rnV (X ) for 

r ≥ 0 . This homogeneity of volume easily yields another useful and equivalent form 

 

 
 

o 
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of (2), obtained by replacing (1 − λ) and λ by arbitrary positive real numbers s and 

t: 

(4) V (sK + tL)
1/n ≥ sV (K)1/n + tV (L)1/n. 

Detailed remarks and references concerning the early history of (2) are provided 

in Schneider’s excellent book [135, p. 314]. Briefly, the inequality for n =  3 was 

discovered by Brunn around 1887. Minkowski pointed out an error in the proof, 

which Brunn corrected, and found a different proof of (2) himself. Both Brunn and 

Minkowski showed that equality holds if and only if K and L are homothetic (i.e., 

K and L are equal up to translation and dilatation). 

If inequalities are silver currency in mathematics, those that come along with 

precise equality conditions are gold. Equality conditions are treasure boxes con- 

taining valuable information. For example, everyone knows that equality holds in 

the isoperimetric inequality (1) if and only if the curve is a circle—that a domain 

of maximum area among all domains of a fixed perimeter must be a disk. 

It is no coincidence that (2) appeared soon after the first complete proof of the 

classical isoperimetric inequality in Rn was found. To begin to understand the 

connection between these two inequalities, look again  at Figure 2. Clearly 

(5) 

V (K + εB) = V (K + L) = V (K) + 4 lε + V (εB) = V (K) + 4 lε + V (B)ε2, 

and therefore 

lim 
ε→0+ 

V (K + εB) − V (K) 
=  4 l, ε 

the perimeter of K. This simple observation opens the way to a central compo- 

nent of the Brunn-Minkowski theory, Minkowski’s mixed volumes. The expansion 

(5) of V (K + εB) as a quadratic in ε is a special case of a general phenome- 

non: Minkowski’s theorem on mixed volumes (see [135, Theorem 5.1.6]) states that 
if K1, . . . , Km are compact convex sets in Rn,  and t1, . . .  , tm  ≥ 0 ,  the volume 
V (t1K1 + · · · + tmKm) is a polynomial of degree n in the variables t1, . . . , tm. The 
coefficient V (Kj1 , . . . , Kjn ) of tj1 · · · tjn in this polynomial (by definition, unchanged 

if the arguments are permuted) is called a mixed volume. If all these arguments 

are the same set, we get the volume of that set. For example, comparing (5) with 

Minkowski’s theorem with K1  =  K,  K2  =  B,  t1  =  1,  and t2  =  ε,  we see that 

V (K, K)  = V (K), V (B, B) = V (B), and V (K, B) = V (B, K) = 2l. 

The perimeter of the square K appeared as the coefficient of ε in (5) and turned 

out to be equal to 2V (K, B). Minkowski’s definition of the surface area S(K) of a 

convex body K in Rn is 

 
(6) 

 
S(K) =  lim  

ε→0+ 

V (K + εB) − V (K) , 
ε 

and it follows immediately from Minkowski’s theorem that S(K)  = nV (K, n−1; B), 

where the notation means that K appears (n − 1) times and the unit ball B appears 

once. Up to a constant, surface area is just a special mixed volume. 

The  isoperimetric  inequality  for  convex  bodies  in  Rn  is  the  highly  nontrivial 

statement that if K is a convex body in Rn, then 

 
(7) 

  
V (K) 

 1/n
 

 

 

V (B) 

  
S(K) 

 1/(n−1) 

≤ 
S(B) 

,
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with equality if and only if K is a ball. The inequality can be derived in a few lines 

from the Brunn-Minkowski inequality! Indeed, by (6) and (4) with s = 1 and t = ε, 

 
S(K)    =  lim 

ε→0+ 

V (K + εB) − V (K) 

ε  
V (K)1/n + εV (B)1/n  n

 

 
 

 V (K) 

lim 
ε→0+ 

  −   

ε 
= nV (K)(n−1)/nV (B)1/n, 

and (7) results from recalling that S(B) = nV (B) and rearranging. 

Surely this alone is good reason for appreciating the Brunn-Minkowski inequality. 

(Perceptive readers may have noticed that this argument does not yield the equality 

condition in (7), but in Section 5 this will be handled with a little extra work.) Many 

more reasons lie ahead. 

There is a standard geometrical interpretation of the Brunn-Minkowski inequal- 

ity (2) that is at once simple and appealing. Recall that a function f on Rn is 

concave on a convex set C if 

f ((1 − λ)x + λy) ≥ (1 − λ)f (x) + λf (y), 

for all x, y ∈ C and 0  < λ < 1. If K and L are convex bodies in  Rn, then (2) is 

equivalent to the fact that the function f (t) = V ((1 − t)K + tL)
1/n 

is concave for 

0  ≤ t ≤ 1. Now imagine that K and L are the intersections of an (n+1)-dim ensional 

convex body M with the hyperplanes {x1 = 0} and {x1 = 1}, respectively. Then 

(1 − t)K + tL is precisely the intersection of the convex hull of K and L with the 

hyperplane {x1 = t} and is therefore contained in the intersection of M with this 

hyperplane. It follows that the function giving the nth root of the volumes of parallel 

hyperplane sections of an (n + 1)-dimensional convex body is concave. A picture 

illustrating this can be viewed in [66, p. 369]. 

A much more general statement than (2) will be proved in the next section, 

but certain direct proofs of (2) are still of interest. A standard proof, due to 

Kneser and Süss in 1932 and given in [135, Section 6.1], is still perhaps the simplest 

approach for the equality conditions for convex bodies. A quite different proof, due 

to Blaschke in 1917, uses Steiner symmetrization. Symmetrization techniques are 

extremely valuable in obtaining many inequalities—indeed, Steiner introduced the 

technique to attack the isoperimetric inequality—so Blaschke’s method deserves 
some explanation.  Let K be a convex body in Rn and let u ∈ Sn−1.  The Steiner 

symmetral SuK of K in the direction u is the convex body obtained from K by 
sliding each of its chords parallel to u so that they are bisected by the hyperplane u⊥

 

and taking the union of the resulting chords. Then V (SuK) = V (K), and it is not 
hard to show that if K and L are convex bodies in Rn, then Su(K +L) ⊃ SuK +SuL 

and hence 
 

(8) V (K + L) ≥ V (SuK + SuL). 

See, for example, [52, Chapter 5, Section 5] or [151, pp. 310– 314]. One can also 
prove, as in [56, Theorem 2.10 .31], that there is a sequence of directions um ∈ Sn−1

 

such that if K = K0  is any convex body and Km = Sum Km−1, then Km  converges 
to rK B in the Hausdorff metric as m → ∞, where rK  is the constant such that 

V (K) = V (rK B). Defining rL so that V (L) = V (rLB) and applying (8) repeatedly 

≥ 
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1/n 

 

through this sequence of directions, we obtain  

(9) V (K + L) ≥ V (rKB + rLB). 

By the homogeneity of volume, it is easy to see that (9) is equivalent to the Brunn- 

Minkowski inequality (2). 

 
4. The move to analysis I: 

The general Brunn-Minkowski inequality 

Much more needs to be said about the role of the Brunn-Minkowski inequality 

in geometry, but it is time to transplant the inequality from geometry to analy- 

sis. We shall call the following result the general Brunn-Minkowski  inequality in  

Rn. As always, measurable in Rn means measurable with respect to n-dimensional 

Lebesgue measure Vn. 

 
Theo rem  4 .1. Let 0  < λ < 1 and let X and Y be nonempty bounded measurable 
sets in Rn such that (1 − λ)X + λY is also measurable. Then 

 

(10) Vn ((1 − λ)X + λY )
1/n ≥ (1 − λ)Vn(X )1/n + λVn(Y )1/n. 

Again,  by the homogeneity of n-dimensional Lebesgue measure (Vn(rX )  = 

rnVn(X ) for r ≥ 0), there are the equivalent statements that for s, t > 0 , 

(11) Vn (sX + tY )
1/n ≥ sVn(X )1/n + tVn(Y )1/n, 

and this inequality with the coefficients s and t omitted. 

Yet another equivalent statement is that 

(12) Vn ((1 − λ)X + λY ) ≥ min{Vn(X ), Vn(Y )} 

holds for 0  < λ < 1 and all X and Y that satisfy the assumptions of Theorem 4.1. 

Of course, (10) trivially implies (12). For the converse, suppose without loss of 
generality that X and Y also satisfy Vn(X )Vn(Y ) /= 0 .  Replace X and Y in  

(12) by Vn(X )−1/nX and Vn(Y )−1/nY , respectively, and take 
 

λ =
 Vn (Y )

. 
Vn(X )1/n + 

Vn(Y )1/n
 

The right-hand side of (12) becomes 1, and (12) gives (11) with s and t omitted. 

The inequality (12) has some advantages over (10), since it does not require the 

sets X and Y to be nonempty and is independent of dimension. 

The assumption that the sets X and Y are bounded is easily removed and is 
retained simply for convenience.  The assumption that the set (1 − λ)X + λY is 

measurable is necessary, even when X and Y are measurable. This point is discussed 
in Section 10.  If X and Y are Borel sets, however, then (1 − λ)X + λY , being a 

continuous image of their product, is analytic and hence measurable. 

Theorem 4.1 was first proved in 1935 by Lusternik [94]. Later, Hadwiger and 

Ohmann [75] found a proof so simple and beautiful that a general mathematical 

audience can be enlightened and charmed by just two transparencies. When care- 

fully written, a page suffices (see, for example, [36, Section 8], [50, Section 6.6], [56, 

Theorem 3.2.41], or [151, Section 6.5]). In fact, the next paragraph is an essentially 

complete proof. 
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− 

n 

 

Proof of Theorem 4.1. The idea is to prove the result first for boxes, rectangular 

parallelepipeds whose sides are parallel to the coordinate hyperplanes. If X and 

Y are boxes with sides of length xi and yi, respectively, in the ith coordinate 

directions, then 

n n n 

V (X ) =  
n 

xi, V (Y ) =  
n 

yi, and V (X + Y ) = 
n

(xi + yi). 

 
Now 

I 
n

 

i=1 

 

\1/n I 
n 

i=1 

 

\1/n n 

i=1 

 

 
n 

n  xi   
+ 

n  yi   1           xi      
+ 

1           yi      
= 1,  

i=1 
xi + yi 

 
i=1 

xi + yi 
≤ 

n
 
i=1 

xi + yi n 
i=1 

xi + yi 

by the arithmetic-geometric mean inequality. This gives the Brunn-Minkowski in- 

equality for boxes. One then uses a trick sometimes called a Hadwiger-Ohmann 

cut to obtain the inequality for finite unions X and Y of boxes, as follows.  By 

translating X , if necessary, we can assume that a coordinate hyperplane, {xn = 0} 

say, separates two of the boxes in X . (The reader might find a picture illustrating 

the planar case useful at this point.) Let X+ (or X−) denote the union of the boxes 
formed by intersecting the boxes in X with {xn ≥ 0} (or {xn ≤ 0}, respectively). 

Now translate Y so that 

V (X± ) 
= 

V (Y± ) 
(13) 

V (X ) V (Y ) 
,
 

where Y+  and Y− are defined analogously to X+  and X−.  Note that X+ + Y+  ⊂ 

{xn ≥ 0}, X− + Y− ⊂ {xn ≤ 0}, and that the numbers of boxes in X+ ∪ Y+  and 

X− ∪ Y− are both smaller than the number of boxes in X ∪ Y . By induction on the 

latter number and (13), we have 

V (X + Y )   ≥ V (X+ + Y+) + V (X− + Y−) 

≥ V (X+)1/n + V (Y+)1/n
 

 
  

+   V (X− 
)1/n + V (Y )1/n  

n
 

 
= V (X+) 

  
V (Y )1/n 

 n
 

1+  
V (X )1/n

 

 
+ V (X−) 

  
V (Y )1/n 

 n
 

1+  
V (X )1/n

 

  1/n    n 
n 

= V (X ) 1+ 
V (Y ) 
V (X )1/n

 

=   V (X )1/n + V (Y )1/n . 

Now that the inequality is established for finite unions of boxes, the proof is com- 

pleted by using them to approximate bounded measurable sets. 
 

What about the equality conditions? This is not so simple, but a careful exam- 

ination of this proof allows one to conclude that if Vn(X )Vn(Y ) > 0 , then equality 

holds only when 

Vn ((conv X ) \ X ) = Vn ((conv Y ) \ Y ) = 0 , 

where conv X denotes the convex hull of X . Putting these equality conditions to- 

gether with those for (2), we see that if Vn(X )Vn(Y ) > 0 , equality holds  in the 

general Brunn-Minkowski inequality (10) or (11) if and only if X and Y are homo- 

thetic convex bodies from which sets of measure zero have been removed. See [36, 

Section 8], [77], and [151, Section 6.5] for details and further comments about the 

case when X or Y has measure zero. It is worth mentioning that in the special case 
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when X and Y are compact convex sets, equality holds in (10) or (11) if and only 

if X and Y are homothetic or lie in parallel hyperplanes; see [135, Theorem 6.1.1]. 

Since Hölder’s inequality ((25) below) in its discrete form implies the arithmetic- 

geometric mean inequality, there is a sense in which Hölder’s inequality implies the 

Brunn-Minkowski inequality. The dotted arrow in  Figure 1 reflects the controversial 

nature of this implication. 
 

5. Minkowski’s first inequality, the isoperimetric inequality, and 

the Sobolev inequality 

In order to derive the isoperimetric inequality with its equality condition, a slight 

detour via another inequality of Minkowski is needed. This involves a quantity 

V1(K, L) depending on two convex bodies K and L in Rn that can be defined by 

V (K + εL) − V (K) 
(14) nV1(K, L) =  lim  . 

ε→0+ ε 

The existence of V1(K, L) follows from Minkowski’s theorem on mixed volumes (see 

Section 3). Note that if L = B, then S(K) = nV1(K, B) is the surface area of K, 

by (6).  Minkowski’s first inequality for convex bodies K and L in Rn  states that 

(15) V1(K, L) ≥ V (K)(n−1)/nV (L)1/n, 

with equality if and only if K and L are homothetic. 

Minkowski’s first inequality is useful in its own right. For example, it plays a role 

in the solution of Shephard’s problem: If the orthogonal projection of a centrally 

symmetric (i.e., a suitable translate of K is origin symmetric) convex body onto 

any given hyperplane is always smaller in volume than that of another such body, 

is its volume also smaller? The answer is no in  general in  three or more dimensions; 

see [66, Chapter 4] and [99, p. 255]. 

The Brunn-Minkowski inequality (2) and its equality condition imply Minkowski’s 

first inequality (15), and therefore the isoperimetric inequality  (7), and their equal- 

ity conditions. With the existence of V1(K, L) in hand, the following proof avoids 

the explicit use of mixed volumes in standard proofs such as [135, p. 317]. 

Proof.  Substituting ε = t/(1 − t) in (14) and using the homogeneity of volume, we 

obtain  

nV1(K, L)    =  lim 
t→0+ 

 

= lim 

V ((1 − t)K + tL) − (1 − t)nV (K) 

t(1 − t)n−1 

V ((1 − t)K + tL) − V (K) 
+  lim

 

 

(1 − (1 − t)n  ))V (K) 

t→0+ t t→0+ t 

= lim 
t→0+ 

V ((1 − t)K + tL) − V (K) 
+ nV (K).

 

t 

Using this new expression for V1(K, L) (given in [107, p. 7]) and letting f (t)  =   

V ((1 − t)K + tL)
1/n 

for 0  ≤ t ≤ 1, we see that 

f t(0 ) = 
V1 (K, L) − V (K) 

.
 

V (K)(n−1)/n 

Therefore (15) is equivalent to f t(0 ) ≥ f (1) − f (0 ). As was noted in Section 3, 

the Brunn-Minkowski inequality (2) says that f is concave, so Minkowski’s first 
inequality follows. 
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n n 

 

Suppose that equality holds in  (15).  Then f t(0 ) = f (1) − f (0).  Since f is 

concave, we have 

f (t) − f (0 ) 
= f (1)

 

t 

 
f (0 ) 

for 0  < t ≤ 1, and this is just equality in the Brunn-Minkowski inequality (2). 

The equality condition for (15) follows immediately. To obtain (7) and its equality 

condition, simply take L = B. 

 

Conversely, the Brunn-Minkowski inequality (2) can easily be obtained from 

Minkowski’s first inequality (15), as in [66, p. 370]. 

It can be shown (see [153]) that if K is a compact domain in Rn with piecewise 

C1 boundary and L is a convex body in Rn, the quantity V1(K, L) defined by (14) 

still exists. From the general Brunn-Minkowski inequality (10) applied to compact 

domains in Rn with piecewise C1 boundary, and the above argument, one obtains 
Minkowski’s first inequality when K is such a domain. When L = B, this yields the 

isoperimetric inequality for compact domains in Rn with piecewise C1 boundary 
(where surface area can still be defined by (6)). 

Essentially the most general class of sets for which the isoperimetric inequality in 

Rn is known to hold comprises the so-called sets of finite perimeter; see, for example, 

the book of Evans and Gariepy [55, p. 190 ], where the rather technical setting, 

sometimes called the BV theory, is expounded. It is still possible to base the proof 

on the Brunn-Minkowski inequality, as Fonseca [60 , Theorem 4.2] demonstrates, 

by first obtaining the isoperimetric inequality for suitably smooth sets and then 

applying various measure-theoretic approximation arguments. In fact, Fonseca’s 

result is more general (see the next section on Wulff shape of crystals). A strong 

form of the Brunn-Minkowski inequality is also used by Fonseca and Müller [61], 

again in the more general context of Wulff shape, to establish the corresponding 

equality conditions (the same as for (7)). 

The distinction between geometry and analysis is blurred even at the level of the 
isoperimetric inequality. The following inequality, called the Sobolev inequality, is 

equivalent to the isoperimetric inequality for compact domains with C1 boundaries: 

If f is a C1 function on Rn with compact support, then 
 

(16) 
r 

 
Rn 

 
l∇f (x)l dx ≥ nκ1/nlf l 

 

n/(n−1) 

 

 r 

= nκ1/n 

Rn 

 
 (n−1)/n 

|f (x)|n/(n−1) dx , 
 

where κn = V (B). 

The proof for n = 2 is sketched by Osserman [124, Theorem 3.1]. For a complete 

proof, see [63, Theorem 8.2]. As for the isoperimetric inequality, there is a more 

general version of the Sobolev inequality in the BV theory. This is called the 

Gagliardo-Nirenberg-Sobolev inequality and it is equivalent to the isoperimetric 

inequality for sets of finite perimeter; see [55, pp. 138 and 192]. 

The inequality (16) is only one of a family, all called Sobolev inequalities. See 

[91, Chapter 8], where it is pointed out that such inequalities bound averages of gra- 

dients from below by weighted averages of the function and can thus be considered 

as uncertainty principles. 

− 
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6. Wulff shape of crystals and surface area measures 

A crystal in contact with its melt (or a liquid in  contact with its vapor) is modeled 

by a bounded Borel subset M of Rn of finite surface area and fixed volume. If f is 

a nonnegative function on Sn−1 representing the surface tension, assumed known 
by experiment or theory, then the surface energy is given by 

r 

(17) F (M ) =  f (ux) dx, 
∂M 

where ux is the outer unit normal to M at x and ∂M denotes the boundary of 

M . (Measure-theoretic subtleties are ignored in  this description; it is assumed 

that f and M are such that the various ingredients are properly defined.) By the 

Gibbs-Curie principle, the equilibrium shape of the crystal minimizes this surface 

energy among all sets of the same volume. This shape is called the Wulff shape. 

For example, in the case of a soapy liquid drop in air, f is a constant (neglecting 

external potentials such as gravity) and the Wulff shape is a ball. For crystals, 

however, f will generally reflect certain preferred directions. In 1901, Wulff gave a 

construction of the Wulff shape W : 

W = ∩u∈Sn−1 {x ∈ R : x · u ≤ f (u)}; 

each set in the intersection is a half-space containing the origin with bounding 

hyperplane orthogonal to u and containing the point f (u)u at distance f (u) from 

the origin. The Brunn-Minkowski inequality can be used to prove that, up to 

translation, W is the unique shape among all with the same volume for which F is 

minimum; see, for example, [144, Theorem 1.1]. This was done first by A. Dinghas 

in 1943 for convex polygons and polyhedra and then by various people in greater  

generality. In particular, Busemann [37] solved the problem when f is continuous, 

and Fonseca [60] and Fonseca and Müller [61] extended the results to include sets 

M of finite perimeter in Rn. Good introductions with more details and references 

are provided by Taylor [144] and McCann [116]. In fact, McCann [116] also proves 

more general results that incorporate a convex external potential, by a technique 

developed in his paper [115] on interacting gases; see Section 8. 

To understand how the Brunn-Minkowski inequality assists in the determination 

of Wulff shape, a glimpse into later developments in the Brunn-Minkowski theory 

is helpful. There are (see [135, Theorem 5.1.6]) integral representations for mixed 

volumes and, in particular, 
 

(18) 1 
r 

V1(K, L) =  
∂K 

hL(ux) dx, 

for convex bodies K and L in Rn. Here hL(u) is the support function of the convex 
body L, the function on Sn−1  giving the signed distance from the origin to the 

hyperplane supporting L with outward normal vector u. The vector ux is again the 

outer unit normal to K at x.  Thus V1(K, L) is essentially the surface energy (17) 

when the crystal M = K is convex and f happens to be the support function of L. 

The minimum surface energy among all convex bodies M of fixed volume is then  

provided by Minkowski’s first inequality (15), and it occurs when M is homothetic 

to L. 
In convex geometry, the alternative expression 

1 
r 

(19) 
V1(K, L) = 

n
 
 

Sn−1 

hL(u)dS(K, u) 

n 

n 



THE BRUNN-MINKOWSKI INEQUALITY 367 
 

− 

 

is more common than (18).  Here the measure S(K, ·) is a finite Borel measure 

in Sn−1  called the surface area measure of K, an invention of A. D. Aleksandrov, 

W. Fenchel, and B. J essen from around 1937 that revolutionized convex geometry 

by providing the key tool to treat convex bodies that do not necessarily have smooth 

boundaries.  If E is a Borel subset of Sn−1, then S(K, E) is the Vn 1-measure of 

the set of points x ∈ ∂K where the outer normal ux ∈ E. When K is sufficiently 

smooth, it turns out that dS(K, u)  = fK (u) du, where fK (u) is the reciprocal of 

the Gauss curvature of K at the point on ∂K where the outer unit normal is u. 

A fundamental result called Minkowski’s existence theorem gives necessary and 
sufficient conditions for a measure µ in  Sn−1 to be the surface area measure of some 
convex body. Minkowski’s first inequality (15) and (19) imply that if S(K, ·) = µ, 

then K minimizes the functional 
r 

L → 

Sn−1 

 
hL(u) dµ 

 

under the condition that V (L) = 1, and this fact motivates the proof of Minkowski’s 

existence theorem. See [66, Theorem A.3.2] and [135, Section 7.1], where pointers 

can also be found to the vast literature surrounding the so-called Minkowski prob- 

lem, which deals with existence, uniqueness, regularity, and stability of a closed 

convex hypersurface whose Gauss curvature is prescribed as a function of its outer 

normals. 

 

 
7. The move to analysis II: The Prékopa-Leindler inequality 

The general Brunn-Minkowski inequality (10) appears to be as complete a gen- 

eralization of (2) as any reasonable person could wish. Yet even before Hadwiger 

and Ohmann found their wonderful proof, a completely different proof, published 

in 1953 by Henstock and Macbeath [77], pointed the way to a still more general 

inequality. This is now known as the Prékopa-Leindler inequality. 

Theo rem  7.1. Let 0  < λ < 1 and let f , g, and h be nonnegative integrable func- 

tions on Rn satisfying 
 

(20) 

for all x, y ∈ Rn.  Then 

h ((1 − λ)x + λy) ≥ f (x)1−λg(y)λ, 

 
(21) 

r 

h(x) dx ≥ 

Rn 

 r  1−λ  r 
f (x) dx 

Rn Rn 

 λ 

g(x) dx . 

The Prékopa-Leindler inequality (21), with its strange-looking assumption (20), 

looks exotic at this juncture. It may be comforting to see how it quickly implies 

the general Brunn-Minkowski inequality (10). 

Suppose that X and Y are bounded measurable sets in  Rn such that (1 − λ)X + 

λY is measurable. Let f = 1X , g = 1Y , and h = 1(1−λ)X+λY , where 1E denotes the 
characteristic function of E. If x, y ∈ Rn, then f (x)1−λg(y)λ > 0  (and in fact equals 

1) if and only if x ∈ X and y ∈ Y . The latter implies (1 − λ)x + λy ∈ (1 − λ)X + λY , 
which is true if and only if h ((1 − λ)x + λy) = 1. Therefore (20) holds. We conclude 
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i 

p 

 

by Theorem 7.1 that 

Vn ((1 − λ)X + λY )    =  

≥ 

 

r 

1(1−λ)X+λY  (x) dx 

Rn 

 r 1−λ   r 

1X (x) dx 

 
 
 
 

 λ 

1Y (x) dx 

Rn Rn 

= Vn(X )1−λVn(Y )λ. 

We have obtained the inequality 

(22) Vn ((1 − λ)X + λY ) ≥ Vn(X )1−λVn(Y )λ. 

To understand how this relates to the general Brunn-Minkowski inequality (10), 
some basic facts are useful. If 0  < λ < 1 and p /= 0 , we define 

Mp(a, b, λ) = ((1 − λ)ap + λbp)
1/p

 

if ab /= 0  and Mp(a, b, λ) = 0  if ab = 0 ; we also define 

M0(a, b, λ) = a1−λbλ, 

M−∞(a, b, λ) = min{a, b}, and M∞(a, b, λ) = max{a, b}. These quantities and 

their natural generalizations for more than two numbers are called pth means or 

p-means. The classic text of Hardy, Littlewood, and Pólya [76] is still the best 

general reference. (Note, however, the different convention here when p > 0  and 

ab = 0 .) The arithmetic and geometric means correspond to p =  1 and p = 0 , 

respectively.  Jensen’s inequality for means (see [76, Section 2.9]) implies that if 

−∞ ≤ p < q ≤ ∞, then 

(23) Mp(a, b, λ) ≤ Mq (a, b, λ), 

with equality if and only if a = b or ab = 0 . 

Now we have already observed that (10) is equivalent to (12), the inequality that 
results from replacing the (1/n)-mean of Vn(X ) and Vn(Y ) by the −∞-mean. In  

(22) the (1/n)-mean is replaced by the 0-mean, so the equivalence of (10) and (22) 

follows from (23). 

If the Prékopa-Leindler inequality (21) reminds the reader of anything, it is prob- 
ably Hölder’s inequality with the inequality reversed. Recall that if fi ∈ Lpi (Rn), 
pi ≥ 1, i = 1, . . .  ,m are nonnegative functions, where 

 
(24) 

1 1 
+ · · · + 

1 m 

 
= 1, 

then Hölder’s inequality in Rn states that 

r m m m    r  1/pi 

(25) 
n 

fi(x) dx ≤ 
n 

lfilp = 
n

 fi(x)pi   dx . 
Rn 

i=1 i=1 i=1 Rn
 

Let 0  < λ < 1. If m = 2, 1/p1 = 1 − λ, 1/p2 = λ, and we let f = f
p1  and g = f

p2 , 

we get  
r 

f (x)1−λg(x)λ dx ≤ 

Rn 

 
 r 1−λ   r 

f (x) dx 

Rn Rn 

1 2 

 
 λ 

g(x) dx . 

p 
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The Prékopa-Leindler inequality can be written in the form 

 
 

 

(26) 

r 

sup{f (x)1−λg(y)λ : (1 − λ)x + λy = z} dz 

Rn 

 r 1−λ   r 

≥ f (x) dx 

Rn Rn 

 λ 

g(x) dx , 

because the supremum can be used for h in (20). A straightforward generalization 

is 

r ( 
m m  

x 
m 

(27) sup 
n 

fi(xi) : 
 

 
i 

= z dz ≥ 
n 

lfilp , 
Rn 

i=1 
p 

i=1 i=1 
 

where pi ≥ 1 for each i and (24) holds. 

Thus the Prékopa-Leindler inequality is indeed a reverse form of Hölder’s in- 

equality, and as such, of course, it requires some extra condition. The inequality 

(21) can only hold when h is not too small, and this is ensured by (20). To in- 
terpret (20), fix 0  <  λ < 1 and z ∈ Rn, and choose any x, y ∈ Rn  such that 
z = (1 − λ)x + λy. Then the value of h at z must be at least the weighted geometric 

mean of the values of f at x and g at y. 

Looking back at Figure 1,  we see Hölder’s inequality on the right and the 

Prékopa-Leindler inequality over towards the left, in different hemispheres, as it 

were, of the planet of inequalities. The four inequalities directly above these two in 

Figure 1 comprise two pairs, each containing an inequality and a reverse form of it . 

Notice that the upper Lebesgue integral is used on the left in (26) and (27). This 

is because the integrands there are generally not measurable, a point discussed in  

Section 10. 

Any graduate student can understand the proof of Theorem 7.1. We close this 

section with a complete proof for n = 1 containing crucial ideas for later develop- 

ments, as well as some remarks about the general case and an alternative proof. 

 
Proof of Theorem 7.1 with n = 1.  We can assume without loss of generality that 

r 

f (x) dx = F > 0  and 
R 

r 

g(x) dx = G > 0 . 
R 

Define u, v : (0 , 1) → R such that u(t) and v(t) are the smallest numbers satisfying 

 
(28) 

1 
r u(t)  

f (x) dx = 
1 

r v(t)  
g(x) dx = t. 

F  −∞ G  −∞ 

Then u and v may be discontinuous, but they are strictly increasing functions and 

so are differentiable almost everywhere. Let 

w(t) = (1 − λ)u(t) +  λv(t). 

Take the derivative of (28) with respect to t to obtain 

f (u(t)) ut(t) 
= 

g (v(t)) vt(t) 
= 1.

 

F G 

i 
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Using  this  and  the  arithmetic-geometric  mean  inequality,  we  obtain  (when 

f (u(t)) /= 0  and g (u(t)) /= 0) 

wt(t) =    (1 − λ)ut(t) + λvt(t) 

≥   ut(t)1−λvt(t)λ
 

 
 

 
Therefore 

r r 1 

  
F
 

= 
f (u(t)) 

 1−λ   
G 

 λ 

g (v(t)) 
.
 

h(x) dx ≥ 
R 

h (w(t)) wt(t) dt 
0 

r 1 

 
  

F 1−λ G λ 

f (u(t))
1−λ 

g (v(t))
λ   

 

0 f (u(t)) 

 
 

g (v(t)) 
dt = F 1−λGλ. 

 

 

 

The proof for general n is just as accessible. This is by induction on n and can 

be found in [63, Theorem 4.2]. 

The Prékopa-Leindler inequality (21) was explicitly stated and proved by 

Prékopa [128], [129] and Leindler [88]. (See the historical remarks after Theo- 

rem 10.1, however.) There are two basic ingredients in the above proof: the in- 

troduction in (28) of the volume parameter t, and use of the arithmetic-geometric 

mean inequality in estimating wt(t). The same method was basically used by Hen- 

stock and Macbeath [77] in their proof of the general Brunn-Minkowski inequality 

(10). The parametrization idea goes back at least to Bonnesen; see [46] and the 

references given there. Since the Hadwiger-Ohmann cut (13) is tantamount to a 

parametrization by volume, the same two ingredients appear in the proof of (10) 

in Section 4. 

Recall that if f is a nonnegative measurable function on Rn and t ≥ 0 , the level 

set L(f, t) is defined by 

(29) L(f, t) = {x : f (x) ≥ t}. 

Brascamp and Lieb [34, Theorem 3.1] constructed a completely different, and indeed 

somewhat shorter, proof of Theorem 7.1. Their method is to obtain the result for  

n = 1 by proving (10) with n = 1, applying this to the level sets of f , g, and h, and 

using Fubini’s theorem. This proof is reproduced in  [127, Theorem 1.1] (or see [63, 

Section 4]). The same ingredients mentioned above appear in this proof, though 

the parametrization is somewhat disguised in  the use of the level sets. The general 

case again  follows by induction on n. 

Quite complicated equality conditions for the Prékopa-Leindler inequality in R 

are given in [44] and [147], but equality conditions in Rn seem to be unknown. 

 
8. Gases and transport of mass 

The Brunn-Minkowski inequality appears in work of McCann [115] on interacting 

gases. A gas of particles in Rn is modeled by a nonnegative mass density ρ(x) 

of total integral 1, that is, a probability density on Rn, or, equivalently, by an  

absolutely continuous probability measure in Rn.  To each state corresponds an 

≥ 
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energy  
E(ρ) = U (ρ) +  

G(ρ)
 

2 
r 

 
 
 

1 
r r 

= A(ρ(x)) dx + 

Rn 2 Rn   Rn 
V (x − y) dρ(x) dρ(y). 

Here U represents the internal energy with A a convex function (i.e., −A is concave) 

defined in terms of the pressure, and G(ρ)/2 is the potential energy defined by a 

strictly convex interaction potential V .   The problem is that E(ρ) is generally 

not convex, making it nontrivial to prove the uniqueness of an energy minimizer. 
McCann gets around this by defining for each pair ρ, ρt of probability densities on 

Rn and 0  < t < 1 an interpolant probability density ρt such that 

(30) U (ρt) ≤ (1 − t)U (ρ) + tU (ρt) 

(and similarly for G and hence for E). McCann calls (30) the displacement convexity 

of U .  The function ρt is not (1 − t)ρ + tρt, but instead is defined by means of a 

process called transport of mass. 

Transport of mass is an increasingly important tool that is also used in proofs 

of the inequalities in Section 15.  The term arises from a familiar construction 

in measure theory.  Let µ be a finite Borel measure in Rn  and T : Rn  → Rn  a 

Borel-measurable map defined µ-almost everywhere. For Borel sets M in  Rn, let 

ν(M )  = (T µ)(M ) = µ(T −1(M )). 

The Borel measure ν = Tµ is the push-forward of µ by T , and T is said to push 

forward or transport the measure µ to ν. If µ and ν are also absolutely continuous 

with respect to Lebesgue measure, so that 
r 

µ(M ) =  
M 

r 

f (x) dx and ν(M ) =  
M 

 

g(x) dx 

for Borel sets M in Rn, and T is a differentiable bijection, then we can also talk of 

T transporting f to g. If in  addition n = 1 and µ(R) = ν(R), then there is always a 

monotonic T that transports µ to ν, defined by letting T (t) be the smallest number 

such that 

 
(31) 

r t 
f (x) dx = 

−∞ 

r T (t) 

−∞ 

 

g(x) dx. 

In fact, transport of mass was used in the above proof of the Prékopa-Leindler 

inequality (21) in R. Comparing (28) with (31), we see that in the notation of 

that proof, u and v transport the characteristic function 1[0,1] of [0 , 1] to f/F and 

g/G, respectively. In other words, u and v transport Lebesgue measure in [0 , 1] to 

the measures in R with densities f/F and g/G, respectively. In higher dimensions, 

suitable maps T are harder to find, but they do exist. For example, the induction 

on n used in the method described in Section 7 can be avoided and the Prékopa- 

Leindler inequality proved at once in  Rn by a transport of mass in Rn provided 

by the so-called Knothe map, as in [121, p. 186]. Generally, one can ask: If µ 

and ν are measures in Rn, absolutely continuous with respect to Lebesgue measure 

and with µ(Rn) = ν(Rn), is there a T with some suitable monotonicity property 

that transports µ to ν? It turns out that an ideal answer has recently been found. 

This is the Brenier map: Providing µ vanishes on Borel sets in Rn with Hausdorff 
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C(x) 0    0    C(x0)    0 
λ 

 

dimension n − 1, there is a convex function ψ : Rn → R such that if T = ∇ψ, then 

T transports µ to ν. See [16] for more details and references. 

McCann’s definition of the probability density ρt in (30 ) uses the Brenier map. 
If ψ is such that ∇ψ transports ρ to ρt, then ρt is the result of transporting ρ by 
the map (1 − t)In + t∇ψ, where In is the identity map on Rn. 

McCann [114], [115] exploits the Brenier map as a localization technique to 

derive new global convexity inequalities which imply the Brunn-Minkowski and 

Prékopa-Leindler inequalities as special cases. In particular, he is able to recover 
the Brunn-Minkowski inequality from (30) by taking A(ρ) = −ρ(n−1)/n and ρ and 

ρt to be the densities corresponding to the uniform probability measures in  the two 

sets. 

9. p-Concave and log-concave functions, and diffusion equations 

A nonnegative function f on Rn is called p-concave on a convex set C if 

f ((1 − λ)x + λy) ≥ Mp(f (x), f (y), λ), 
for all x, y ∈ C and 0  < λ < 1, where the right-hand side is the p-mean defined as 

in Section 7. Note that if p > 0 , then f is p-concave if and only if fp is concave, and 

in particular, 1-concave is just concave in the usual sense. If p = 0 , the previous 

inequality reads 

(32) f ((1 − λ)x + λy) ≥ f (x)1−λf (y)λ, 
which is equivalent to saying that log f is concave on C. In this case, therefore, the 

convention is to call f log concave instead. It follows from J ensen’s inequality (23) 

that a p-concave function is q-concave for all q ≤ p. 
If f and g are log concave on C and D, respectively, then h(x, y) = f (x)g(y) is 

clearly log concave on C × D. In  view of its hypothesis (20), it is not surprising that 

the Prékopa-Leindler inequality (21) has much to say about log-concave functions. 

For example, suppose that f is an integrable log-concave function on an open convex 
set C in Rm+n, and for each x in the orthogonal projection C|Rm of C onto Rm

 

we let C(x) = {y ∈ Rn : (x, y) ∈ C} and define 
r 

F (x) =  
 

C(x) 
f (x, y) dy. 

The Prékopa-Leindler inequality quickly implies that F , sometimes called a section 
of f , is also log concave on C|Rm . To see this, let xi ∈ C|Rm and gi(y) = f (xi, y) 

for y ∈ C(xi), i = 0 , 1. Suppose that 0  < λ < 1 and that x = (1 − λ)x0 + λx1, and 

let g(y) = f (x, y) for y ∈ C(x). If yi ∈ C(xi ), i = 0 , 1, and y = (1 − λ)y0 + λy1, then 

the log concavity of f implies that g ((1 − λ)y0 + λy1) ≥ g0(y0)1−λg1(y1)λ. Also, 

C(x) ⊃ (1 − λ)C(x0 ) + λC(x1), from which it follows that 

g(y)1 (y) ≥ g (y )1 (y )  
1−λ

 

 
g1(y1)1C(x1 )(y1)

    
. 

Comparing with (20), we can apply the Prékopa-Leindler inequality (21) to obtain  
r 

F ((1 − λ)x0 + λx1) = F (x) =  

 r 

f (x, y)1C(x)(y) dy 

Rn 

 1−λ   r λ 

≥ f (x0, y0)1C(x0 )(y0) dy0 

Rn 

f (x1, y1)1C(x1 )(y1) dy1 

Rn 

= F (x0)
1−λF (x1)

λ, 
as required. 
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2 

 

Recall that 

(33) 

 
r 

(f ∗ g)(x) =   
Rn 

 
f (x − y)g(y) dy 

is the convolution of measurable functions f and g on Rn. Suppose that f and g are 
log concave on open convex sets C and D, respectively, in  Rn. Then f (x − y)g(y) 

is log concave for (x − y, y) ∈ C × D, that is, for x ∈ C + D. The log concavity of 

sections of log-concave functions now implies that f ∗ g is log concave on C + D. 

In short, the convolution of log-concave functions is  log  concave.  This fact finds 

uses in probability theory (see Section 11). For now, an application to diffusion 

equations will be sketched. 

Let V be a nonnegative continuous potential defined on a convex domain C in  

Rn and consider the diffusion equation 

∂ψ 
= 

1 
(34) 

∂t 2 
L.ψ − V (x)ψ(x, t) 

with zero Dirichlet boundary condition (i.e., ψ tends to zero as x approaches the 

boundary of C for each fixed t). Denote by f (x, y, t) the fundamental solution of 

(34); that is, ψ(x, t) = f (x, y, t) satisfies (34) and its boundary condition, and 

lim 
t→0+ 

f (x, y, t) = δ(x − y), 

where δ is the Dirac δ-function. For example, if V = 0  and C = Rn, one can show 

that 

f (x, y, t) = (2πt)−n/2e−|x−y| /2t, 
which is log concave on C2 for each t. Brascamp and Lieb [34] used the Prékopa- 

Leindler inequality (21) to show that f (x, y, t) is actually log concave on C2 when- 
ever V  is convex.  Basically, it is shown that f is given as a pointwise limit of 

convolutions of log-concave functions, and these convolutions, as we now know, are 

log concave. Borell [29] uses a version of Theorem 10 .1 to show that the stronger 
assumption that V is −1/2-concave implies that t log(tnf (x, y, t2)) is concave on 

C2 × R+. 

In a further study, Borell [31] generalizes all of these results (and the Prékopa- 

Leindler inequality) by considering potentials V (σ, x) that depend also on a pa- 

rameter σ. This work yields a “Brownian motion” proof of the Brunn-Minkowski 

inequality. 

McCann’s displacement convexity (30) plays an essential role in recent work of 

Otto [125], who observed that various diffusion equations can be viewed as gradient 

flows in the space of probability measures with the Wasserstein metric (formally, at 

least, an infinite-dimensional Riemannian structure). McCann’s interpolation using 

the Brenier map gives the geodesics in this space, and Otto uses the displacement 

convexity to derive rates of convergence to equilibrium. 

 
10 . The Borell-Brascamp-Lieb inequality and other extensions 

Figure 1 shows several far-reaching generalizations of the Brunn-Minkowski and 

Prékopa-Leindler inequalities that will be discussed later. This section will address 

some others that lie closer to (10) and (21). 

Firstly, there are convenient forms of these inequalities that avoid measurability 

assumptions. The assumption in the general Brunn-Minkowski inequality (10) that 
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∗n 

1/n 

− 

 

the set (1 − λ)X + λY is measurable is necessary, since an old example of Sierpiński 

[138] shows that this set may not be measurable even when X and Y are measurable. 

There are a couple of ways around this. One can simply replace the measure on 
the left of (10) by inner Lebesgue measure V∗n, the supremum of the measures of 

compact subsets, thus: 

V ((1 − λ)X + λY )
1/n

 ≥ (1 − λ)Vn(X ) + λVn(Y )1/n. 

A better solution is to obtain a slightly improved version of the Prékopa-Leindler  

inequality, and then deduce a corresponding improved Brunn-Minkowski inequality, 

as follows. 

Recall that the essential supremum of a measurable function f on Rn is defined 
by 

ess sup f (x) = in f{t : f (x) ≤ t for almost all x ∈ Rn}. 
x∈Rn 

Brascamp and Lieb [34] proved the following essential  form  of  the Prékopa- 

Leindler  inequality.   (According to Uhrin  [147],  the idea  of using  the essential 

supremum in connection with our topic occurred independently to S. Dancs.) Let 
0  < λ < 1 and let f, g ∈ L1(Rn) be nonnegative. Let 

 
(35) 

 
s(x) = ess sup f 

y 

  
x − y 

 1−λ 

1 − λ 

 

g  
y  λ 

. 
λ 

Then s is measurable and 
r r 

 

 1−λ   r λ 

(36) s(x) dx ≥ 

Rn 

f (x) dx 

Rn 

g(x) dx . 
Rn 

For the proof, the measurability of s is first established by observing that 
r 

s(x) = sup 
φ∈D  Rn 

  
x y 

 1−λ 

f 

1 − λ g  
y  λ 

λ 

 
φ(y) dy, 

where D is a countable dense subset of the unit ball of L1(Rn). Therefore s is the 

supremum of a countable family of measurable functions. With the measurability 

of s in hand, the proof of (36) follows that of the usual Prékopa-Leindler inequality 

outlined in  Section 7. 

The essential form (36) of the Prékopa-Leindler inequality implies the usual form 
(21). To see this, replace x by z and y by λyt in (35) and then let x = (z−λyt)/(1−λ) 

to obtain 
 

s(z)   =  ess sup f 
yl  

  
z − λyt 

 1−λ
 

1 − λ 

g(yt)λ
 

= ess sup{f (x)1−λg(y)λ :  z = (1 − λ)x + λy}. 

Now if h is any integrable function satisfying 

h ((1 − λ)x + λy) ≥ f (x)1−λg(y)λ, 
then h ≥ s almost everywhere and (21) follows directly. 

The corresponding improvement of the Brunn-Minkowski inequality requires one 

new concept. Note that the usual vector sum of X and Y can be written  

X + Y = {z : X ∩ (z − Y )} /= ∅. 

Adjust this by defining the essential sum of X and Y by 

X +e Y = {z : Vn (X ∩ (z − Y )) > 0}. 
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The essential form of the Brunn-Minkowski inequality states that if 0  < λ < 1 and 

X and Y are nonempty bounded measurable sets in Rn, then 

(37) Vn ((1 − λ)X +e λY )
1/n ≥ (1 − λ)Vn(X )1/n + λVn(Y )1/n. 

A direct proof of this result is given in [34, Appendix]. It is not difficult to derive 

it from (36), as in [63, Theorem 9.2]. 

The following theorem, the Borell-Brascamp-Lieb inequality, uses the p-means 

Mp introduced in Section 7 to generalize the Prékopa-Leindler inequality, which is 

just the case p = 0 . The number p/(np + 1) is interpreted in  the obvious way; it is 

equal to −∞ when p = −1/n and to 1/n when p = ∞. 

Theo rem  10 .1. Let 0  < λ < 1, let −1/n ≤ p ≤ ∞,  and let f , g, and h be 

nonnegative integrable functions on Rn satisfying 

h ((1 − λ)x + λy) ≥ Mp (f (x), g(y), λ) , 

for all x, y ∈ Rn.  Then 

(38) 

r r 

h(x) dx ≥ Mp/(np+1) 

Rn Rn 

r 

f (x) dx, 
Rn 

  

g(x) dx, λ  . 

This result has some significant consequences in probability theory that are dis- 

cussed in the next section. With a single technical lemma concerning p-means in 

hand, Theorem 10 .1 can be proved by essentially the same argument given in Sec- 

tion 7 for the proof of Theorem 7.1; see [63, Section 10 ] for the details. The result 

was first proved (in slightly modified form) for p > 0  by Henstock and Macbeath 

[77] (when n = 1) and Dinghas [49]. The limiting case p =  0  was also proved 

by Prékopa and Leindler, as noted above, and rediscovered by Brascamp and Lieb 

[32]. In general form Theorem 10 .1 is stated and proved by Brascamp and Lieb [34, 

Theorem 3.3] and by Borell [27, Theorem 3.1] (but with a much more complicated 

proof; see also the paper of Rinott [131]). The method of proof just indicated is 

employed in [43] and [46] (see also [48, Theorem 3.15]), but still draws on methods 

introduced by Henstock, Macbeath, and Dinghas. Das Gupta’s survey [46] con- 

tains a very thorough examination and assessment of the various contributions and 

proofs before 1980 . Brascamp and Lieb [34] obtain an “essential” form of Theo- 

rem 10 .1, as in the case p = 0  (see (36)). Dancs and Uhrin [43] also offer a version 

of Theorem 10 .1 for −∞ ≤ p < −1/n. 

In  calling  Theorem 10 .1  the  Borell-Brascamp-Lieb  inequality  we are  following 

the authors of [41] (who also generalize it to a Riemannian manifold setting; see 

Section 12) and placing the emphasis on the negative values of p. In fact, it can be 
shown (see [41] and [63, Section 10]) that Theorem 10 .1 for p = −1/n implies The- 

orem 10 .1 for all p > −1/n. The approach of Brascamp and Lieb [34], incidentally, 

was to observe that Theorem 10 .1 also holds for n =  1 and p = −∞, and then to 

derive Theorem 10 .1 for n =  1 and p ≥ −1 from this and the technical lemma for 

p-means mentioned earlier. 

An interesting sharpening of the Brunn-Minkowski inequality was found by Bon- 

nesen in 1929 (see [43]). If X is a bounded measurable set in Rn, the inner section 

function mX  of X is defined by 

mX (u) = sup Vn−1   X ∩ (u⊥ + tu)  , 
t∈R 

for u ∈ Sn−1. (In 1926, Bonnesen asked if this function determines a convex body 

in Rn, n ≥ 3, up to translation and reflection in the origin, a question that remains 
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unanswered; see [66, Problem 8.10]).  Bonnesen proved that if 0  <  λ  < 1 and 

u ∈ Sn−1, then 

(39) 
Vn (X ) Vn (Y ) 

 
 

Vn ((1 − λ)X + λY ) ≥ M1/(n−1) (mX (u), mY (u), λ) (1 − λ) 
X 

+ λ 

(u) mY 
(u) 

.
 

It is not hard to show that this is indeed stronger than (10). As Dancs and Uhrin  

[43, Theorem 3.2] show, an integral version of (39), in a general form similar to 

Theorem 10 .1, can be constructed from the ideas already presented here. 

At present, the most general results in Euclidean space of the type considered in 

this section are contained in the papers of Uhrin; see [147], [148], and the references 

given there. In particular, Uhrin states in [148, p. 306] that all previous results 

of this sort are contained in  [148, (3.42)]. The latter inequality has as ingredients 

two kinds of curvilinear convex combinations of vectors, and its proof reintroduces 

geometrical methods. 

 
11. Applications to probability and statistics 

In 1955, Anderson [2] used the Brunn-Minkowski inequality in his work on mul- 

tivariate unimodality. He began with the following simple observation. If a nonneg- 
ative integrable function f on R is (i) symmetric (f (x) = f (−x)) and (ii) unimodal 

(f (cx) ≥ f (x) for 0  ≤ c ≤ 1), and I is an interval centered at the origin , then 

r 
 

I+y 

f (x) dx 

is maximized when y = 0 .  In probability language, if a random variable X has 

probability density f and Y is an independent random variable, then 

Prob {X ∈ I} ≥ Prob {X + Y ∈ I}. 

To see this, recall that if X and Y are independent random vectors on Rn with prob- 
ability densities f and g, respectively, then f ∗ g (defined by (33)) is the probability 

density of X + Y ; see, for example, [82, Section 11.5]. So, by Fubini’s theorem, 

Prob {X + Y ∈ I}  = 

r r r r 

f (z − y)g(y) dy dz = f (z − y)g(y) dz dy 
I  R 

r r r 

= f (x)g(y) dx dy ≤ 

R  I 
r 

f (x)g(y) dx dy 

R  I−y R   I 
r 

= f (x) dx = Prob {X ∈ I}. 
I 

The next result, Anderson’s theorem, is a generalization of this that applies to 

unimodal functions f on Rn, those whose level sets L(f, t) (see (29)) are convex for 
each t ≥ 0 . 

Theo rem  11.1. Let K be an origin-symmetric convex body in Rn and let f be a 

nonnegative, symmetric, and unimodal function integrable on Rn. Then 

r 

 
K 

for 0  ≤ c ≤ 1 and y ∈ Rn. 

f (x + cy) dx ≥ 

r 

f (x + y) dx, 
K 

m 
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This says that the integral of a symmetric unimodal function f over an n- 

dimensional centrally symmetric convex body K does not decrease when K is 

translated towards the origin. Since the graph of f forms a hill whose peak is 

over the origin, this is intuitively clear. However, it is no longer obvious, as it was 

in the 1-dimensional case! There may be points x ∈ K at which the value of f is 
larger than it is at the corresponding translate of x. 

As above, we can conclude from Anderson’s theorem that if a random variable 

X has probability density f on Rn and Y is an independent random variable, then 

Prob {X ∈ K} ≥ Prob {X + Y ∈ K}, 

where K is any origin-symmetric convex body in Rn. 

The proof of Anderson’s theorem hinges on a property of a function gK,L on Rn
 

associated with convex bodies K and L in Rn, defined by 

gK,L(x) =  V (K ∩ (L + x)) . 

The Brunn-Minkowski inequality (2) can be used to show that gK,L is 1/n-concave 

on its support (see [63, Theorem 13.1]), but its log concavity is all that is required 

for Anderson’s theorem. This follows from observing that gK,L is a convolution of 

characteristic functions, since 

 

gK,L(x) = 

r 

1K∩(L+x)(y) dy = 
Rn 

r 

r 

1K (y)1L+x(y) dy 

Rn 

= 1K (y)1L(y − x) dy = (1−L ∗ 1K )(x). 
Rn 

It was proved in  Section 9 that the convolution of log-concave functions is log 

concave, and it follows that gK,L is log concave on its support. Of course, the 

Prékopa-Leindler inequality (21) has been at work behind the scenes. 

The relevance of gK,L to Anderson’s theorem comes from taking f (x) = 1L(x), 

where 1L is the characteristic function of an origin-symmetric convex body L in  

Rn. Then f (x + y) = 1L(x + y) = 1L −y (x) and 

r 

f (x + y) dx = 
K 

r 

1L−y (x) dx = V (K ∩ (L − y)) = gK,L(−y) = gK,L(y). 
K 

The log concavity of gK,L  allows one to  conclude that  gK,L(cy)  ≥ gK,L(y)  for 

0  ≤ c ≤ 1 (see [63, Theorem 13.1] for the details), and the theorem follows for this 

special case. The general case results from applying this special case to the origin- 

symmetric convex bodies L = L(f, t) formed by the level sets of f , and integrating 
over t ≥ 0 . 

The function gK  = gK,K  associated with a single convex body K in  Rn, and 

giving the volumes of its intersection with its translates, is called the covariogram 

of K and is of considerable interest in its own right. The name stems from the theory 
of random sets, where the covariance is defined for x ∈ Rn as the probability that 

both o and x lie in the random set. The covariogram is also useful in mathematical 

morphology; see [136, Chapter 9]) and [141, Section 6.2]. In 1986, G. Mathéron  

(see the references in [133]) asked if the covariogram determines convex bodies, up 

to translation and reflection in the origin. Remarkably, this question is open for 

n = 2! Bianchi [22] has shown that the answer is affirmative for a large class of 

planar convex bodies. He has also found pairs of convex polyhedra that represent 

counterexamples in R4. 
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Anderson’s theorem has many applications in probability and statistics, where, 

for example, it can be applied to show that certain statistical tests are unbiased. See 

[2], [35], [48], and [145]. Certain of these applications are also associated with the 

Prékopa-Leindler inequality (21) and its generalization, the Borell-Brascamp-Lieb 

inequality (38). 

In Section 9 it was shown that the Prékopa-Leindler inequality yields the log 

concavity of certain functions. It can also provide the log concavity of measures. 

Suppose that f is a nonnegative integrable function defined on a measurable subset 

C of Rn, and µ is defined by 

 

µ(X ) =  

r 
 

C∩X 

 

f (x) dx, 

for all measurable subsets X of Rn. Then we say that µ is generated by f and 

C. With an argument similar to that in Section 9 showing that sections of a log- 

concave function are log concave, the Prékopa-Leindler inequality (21) implies that 

if f is log concave and C is an open convex subset of its support, then the measure 

µ generated by f and C is also log concave in the sense that 

µ ((1 − λ)X + λY ) ≥ µ(X )1−λµ(Y )λ, 

for all measurable sets X and Y in  Rn and 0  < λ < 1. The details can be found in  

[63, Section 10]. 

Prékopa [128], [130, Chapter 8] explains the applications of this result, and those 

in Section 9 on log-concave functions, to stochastic programming. It can be seen in  

action, however, when applied to the multivariate normal distribution on Rn with 
mean m ∈ Rn and n × n positive definite symmetric covariance matrix A. This has 

probability density 

 
f (x) = c exp 

(x − m) · A−1(x − m) 
 

 

− 
2 

, 

where c = (2π)−n/2(det A)−1/2. Since A is positive definite, the function −(x − m) · 

A−1(x−m) is concave and so f is log concave. It follows that the measure generated 

by f is also log concave. The same conclusion can be drawn for other important 

distributions, such as the Wishart, multivariate β, and Dirichlet distributions; see 

[128]. 

The Borell-Brascamp-Lieb inequality (38) provides concavity properties of sec- 

tions and convolutions of functions, just as its special case p = 0 , the Prékopa- 

Leindler inequality (21), does (see Section 9). Details can be found in [63, Sec- 

tion 11]. Concavity properties of measures can also be obtained. A finite (non- 

negative) measure µ defined on (Lebesgue) measurable subsets of Rn is p-concave 

if 

µ ((1 − λ)X + λY ) ≥ Mp(µ(X ), µ(Y ), λ), 
for all measurable sets X and Y in  Rn and 0  < λ < 1. Then a 0 -concave measure is 

log concave, and it follows from J ensen’s inequality (23) that a p-concave measure 

is q-concave for all q ≤ p. Theorem 10 .1 and an argument similar to that for the 

log-concave case yield the following corollary. 

Co ro llary 11.2 . Let −1/n ≤ p ≤ ∞ and let f be an integrable p-concave function 

on a convex set C in Rn. Then the measure generated by f and C is p/(np + 1)- 

concave. 
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See [63, Corollary 10 .3] or [48, Theorem 3.16]. Much of the book [48] is de- 

voted to such results and their applications to probability. The extra generality 

may seem superfluous, but even the negative values of p are useful. For example, 

Borell [27] noted that the density functions of the multivariate Pareto (the Cauchy 

distribution is a special case), t, and F distributions are not log concave, but are p- 

concave for some p < 0 , and the more general result furnishes concavity properties 

of corresponding probability measures. 

The general Brunn-Minkowski inequality (10) says that Lebesgue measure in Rn
 

is 1/n-concave, and Theorem 10 .1 supplies plenty of measures that are p-concave 
for −1/n ≤ p ≤ ∞. Borell [27] (see also [48, Theorem 3.17]) proves a sort of 
converse to Corollary 11.2: Given −∞ ≤ p ≤ 1/n and a p-concave measure µ with 

n-dimensional support S, there is a p/(1 − np)-concave function on S that generates 

µ. Borell also observed that when p > 1/n, no nontrivial p-concave measures exist 

in Rn, and that any 1/n-concave measure is a multiple of Lebesgue measure; see 

[48, Theorem 3.14]. Dancs and Uhrin [43, Theorem 3.4] find a generalization of 

Theorem 10 .1 in which Lebesgue measure is replaced by a q-concave measure for 
some −∞ ≤ q ≤ 1/n. 

Corollary 11.2 and Anderson’s theorem are related. If K is a convex body in Rn, 

y ∈ Rn, p ≥ −1/n, and f is an integrable p-concave function on Rn, Corollary 11.2 
can be used to show that the function 

r 

h(y) =  f (x + y) dx 

K 

is p/(np + 1)-concave on Rn and hence unimodal. (See [63, Section 13] for the 

details.) In particular, h(cy) is unimodal in c for a fixed y, as in the conclusion of 

Theorem 11.1. Anderson’s theorem replaces the restriction that f is p-concave for 

p ≥ −1/n with a much weaker condition, but requires in exchange the symmetry 
of f and K. 

 

12. Brunn-Minkowski and Prékopa-Leindler in other spaces 

Like the isoperimetric inequality, the inequalities met in previous sections have 

versions that hold in  other spaces. These versions also act as portals to active 

research areas already detailed in separate surveys. Naturally, it is only possible 

here to touch on these captivating topics. 

Let X be a measurable subset of Rn and let rX be the radius of a ball of the 

same volume as X . If ε > 0 , the general Brunn-Minkowski inequality (11) implies 

that 

 

(40) 
Vn(X + εB) ≥  Vn(X )1/n + εVn(B)1/n

 
 

n 

 

 
For any set A, let 

=   Vn(rX B)1/n + εVn(B)1/n
 

 = Vn(rX B + εB). 

(41) Aε = A + εB = {x : d(x, A) ≤ ε}. 

Then we can rewrite (40) as 

(42) 

 

Vn(Xε) ≥ Vn((rX B)ε). 

Notice that (42), by virtue of (41), is now free of the addition and involves only a 

measure and a metric. 

n 
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2 

2 

− 

 

With the appropriate measure and metric replacing Vn and the Euclidean metric, 

(42) remains true in  the sphere Sn−1 and hyperbolic space, equality holding if and 

only if X is a ball. (Of course, in these spaces, the ball centered at x and with radius 
r > 0  is the set of all points whose distance from x is at most r. In Sn−1, balls 
are just spherical caps.) Though in Rn (42) is only a special case of (11), in Sn−1

 

and hyperbolic space, (42) is called the Brunn-Minkowski inequality. According 
to Dudley [51, p. 184], (42) was first proved in Sn−1 under extra assumptions by 

P. Lévy in 1922, with weaker assumptions by E. Schmidt in the 1940’s, and in full 

generality by Figiel, Lindenstrauss, and Milman in 1977. In hyperbolic space, (42) 

is due to E. Schmidt. A proof using symmetrization techniques for both Sn−1 and 

hyperbolic space can be found in [36, Section 9]. 

Perhaps more significant than (42) for recent developments is a surprising result 
that holds in Sn−1, n ≥ 3, with the chordal metric (i.e., the metric inherited 
from the Euclidean distance in Rn).   It can be shown that if X ⊂ Sn−1  and 

n−1 

Vn−1(X )/Vn−1(S ) ≥ 1/2 and 0  < ε < 1, then 
 

(43) 

  Vn− 1 (Xε )   

Vn−1(Sn−1)  
≥

 1 
π  1/2 

e
 

8 

−(n−2)ε /2. 

This inequality, which again goes back to P. Lévy, is proved in [121, p. 5]. Results 

of the form (43) are called approximate isoperimetric inequalities, and can be de- 

rived from the general Brunn-Minkowski inequality (10), as in [4, Theorem 2]. In 

particular, by taking X to be a hemisphere, we see that for large n, almost all the 

measure is concentrated near the equator! This is an example of the concentration 

of measure phenomenon that Milman applied in his 1971 proof of Dvoretzky’s theo- 

rem and that with contributions by Talagrand and others has quickly generated an  

extensive literature surveyed by Ledoux [85], [86]. An excellent, but more selective, 

introduction is Ball’s elegant and insightful expository article [12, Lecture 8]. 

Analogous results hold in Gauss space, Rn with the usual metric but with the 

standard Gauss measure γn in Rn with density 

(44) dγn(x) = (2π)−n/2e− x   /2 dx. 

Indeed, for bounded Lebesgue measurable sets X and Y in Rn for which (1 − λ)X + 

λY is Lebesgue measurable, there is the inequality 

(45) γn((1 − λ)X + λY ) ≥ γn(X )1−λγn(Y )λ
 

corresponding to (22). This follows from the Prékopa-Leindler inequality (21) (be- 

cause the density function is log concave); see, for example, [32]. It can also be 

derived directly from the general Brunn-Minkowski inequality (10) by means of 

the “Poincaré limit”, a limit of pro jections of Lebesgue measure in  balls of in- 

creasing radius; this and an abundance of additional information and references 

can be found in  Ledoux and Talagrand’s book [87, Section 1.1]. To describe some 

of this work briefly, let Φ(r)  = γ1((−∞, r)) for r ∈ R.  Borell [26] and Sudakov 
and Tsirel’son [142] independently showed that if X is a measurable subset of Rn

 

and γn(X )  = Φ(rX ), then γn(Xε) ≥ Φ(rX + ε), with equality if X is a half-space. 

Ehrhard [53], [54] gave a new proof using symmetrization techniques that also yields 

the following Brunn-Minkowski-type inequality: If K and L are convex bodies in  

Rn and 0  < λ < 1, then 

(46) Φ−1 (γn((1 − λ)K + λL)) ≥ (1 − λ)Φ−1 (γn(K)) +  λΦ−1 (γn(L)) . 
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While (46) is stronger than (45) for convex bodies, it is unknown whether it holds 

for Borel sets; see [84] and [87, Problem 1]. An approximate isoperimetric inequality 

similar to (43) also holds in Gauss space; Maurey [113] (see also [12, Theorem 8.1]) 

found a simple proof employing the Prékopa-Leindler inequality (21). As in Sn−1, 
there is a concentration of measure in Gauss space, this time in  spherical shells of 

thickness approximately 1 and radius approximately 
√

n. Closely related work on 

logarithmic Sobolev inequalities is outlined in Section 14. 

Borell [30] applies his Brunn-Minkowski inequality in Gauss space to option 

pricing, assuming that underlying stock prices are governed by a joint Brownian 

motion. 

Bahn and Ehrlich [5] find an inequality that can be interpreted as a reversed 

form of the Brunn-Minkowski inequality in Minkowski spacetime, that is, Rn+1 

with a scalar product of index 1. 

Cordero-Erausquin [40] utilizes results of McCann to prove a version of the 

Prékopa-Leindler inequality on the sphere, remarking that a similar version can  

be obtained for hyperbolic space. These results are generalized in a remarkable 

paper [41] by Cordero-Erausquin, McCann, and Schmuckenschläger, who establish 

a beautiful Riemannian version of Theorem 10 .1. 

 
13. Young’s inequality 

Convolutions have already been featured in  this story, in Sections 9 and 11. 

By 1976, it was known that a sharp convolution inequality actually implies the 

Brunn-Minkowski inequality. This sharp convolution inequality is a refinement of 

an earlier one with roots in  Fourier analysis. The classical Young inequality states 

that if p, q, r ≥ 1, 
 

(47) 
1 1 1 

+ =  1 +   , 
p q r 

and f ∈ Lp(Rn) and g ∈ Lq (Rn) are nonnegative, then 

(48) lf ∗ glr ≤ lf lplglq. 

This was proved by W. H. Young around 1912 (see [76, Sections 8.3 and 8 .4] and 

the references given there); a few lines and Hölder’s inequality (25) suffice, as in  

[91, p. 99]. 

The next theorem provides two convolution inequalities with sharp constants, 

the first a sharp form of (48) proved independently by Beckner [20] and Brascamp 

and Lieb [33], and the second a reverse form found by Brascamp and Lieb [33] 

(refining an earlier version due to Leindler [88]). 

Theo rem  13 .1. Let 0  < p, q,r satisfy (47), and let f ∈ Lp(Rn) and g ∈ Lq (Rn) 

be  nonnegative.  Then 

(Young’s inequality) 

(49) 

and 

lf ∗ glr  ≤ Cnlf lplglq, for p, q, r ≥ 1, 

(Reverse Young inequality) 

(50) lf ∗ glr  ≥ Cnlf lplglq, for p, q, r ≤ 1. 
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s 

 

Here C = CpCq/Cr , where 

 
(51) 

1/s 

C2 | 

s =  
| 

|st|1/sl  

for 1/s + 1/st =  1 (i.e., s and st are Hölder conjugates). 

The inequality (49), when expanded, reads as follows: 

 r r 

 
Rn Rn 

 r 

f (x − y)g(y) dy 

 1/r 

dx 

 r 

≤ Cn
 

Rn 

 1/p  r 

f (x)p dx 

Rn 

 1/q 

g(x)q dx . 

Inequalities (49) and (50) together show that equality holds in both when p = q = 
r = 1. In fact, since Cp → 1 as p → 1, when p = q = r =  1 we have C = 1; and 
substituting u = x − y, v = y in the left-hand side of (49) and (50), we see that 

this case reduces to the familiar equation 
r r 

 
Rn   Rn 

 
f (u)g(v) dv du = 

r r 

f (x) dx 

Rn Rn 

 
g(x) dx. 

The relevance of these convolution inequalities stems from Brascamp and Lieb’s 
remarkable discovery that the limiting case r → 0  of the reverse Young inequality 

(50) is the essential form (36) of the Prékopa-Leindler inequality. The clever proof 

can be found in [33] (or see [63, Theorem 14.2]). One first observes that it suffices to 

prove (36) when f and g are bounded measurable functions with compact support. 

If the function s is defined by (35), then it can be shown that 

r r Ir 
s(x) dx = lim  f 

Rn m→∞  Rn Rn 

  
x − y 

 (1−λ)m 

1 − λ g   
y  λm 

λ 

\1/(m−1) 

dy 

 

dx. 

(If we replaced the exponent 1/(m − 1) by 1/m, this would follow from the fact that 

the mth integral mean tends to the supremum as m → ∞; compare [76, p. 143]. 

But this replacement is irrelevant in the limit.) Now (36) results from applying the 
reverse Young inequality (50) with m > max{(1 − λ)−1, λ−1}, p = 1/((1 − λ)m), 
q = 1/(λm), and r = 1/(m − 1). This sketch is somewhat unsatisfying, of course, 

since one has to complete all the computations to see how the constant Cn in (50) 

magically evaporates in the limit. 

Even the simplest known proofs of (49) or (50), due to Barthe [17], necessarily 

also require a considerable amount of computation. It is worth mentioning, how- 

ever, that the method includes both the parametrization technique and induction 

on dimension employed in  Section 7 for proving the Prékopa-Leindler inequality. 

Barthe’s ingenious proof supplies (49) and (50) at once, together with the following 

equality condition, originally established by Brascamp and Lieb [33]: When n = 1  

and p, q /= 1, equality holds in (49) or (50 ) if and only if f and g are Gaussians: 
2 l  2 

f (x) = ae−c|pl|(x−α)  , g(x) = be−c|q |(x−β)  , 

for some a, b, c, α, β with a, b ≥ 0  and c > 0 . 

The classical Young inequality (48) was motivated by the classical Hausdorff- 
Young inequality: If 1 ≤ p ≤ 2 and f ∈ Lp(Rn), then 

 
(52) lf̂  l  ≤ lf l , 

lp p 
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where f̂  denotes the Fourier transform 
r 

f̂ (x) =  
Rn 

 

f (y)e2πix·y dy 

of f , and p and pt are Hölder conjugates. This was proved by Hausdorff and Young 

for Fourier series, and extended to integrals by Titchmarsh in 1924. Beckner [20], 
improving on earlier partial results of Babenko, showed that when 1 ≤ p ≤ 2, 

(53) lf̂  l  ≤ Cnlf lp, 
lp p 

where Cp is given by (51). (Lieb [90] proved that equality holds only for Gaussians.) 

This improvement on (52) is related to Young’s inequality (49). To see the con- 
nection, suppose that (53) holds, n = 1, and 1 ≤ p, q, rt ≤ 2. If p, q, r satisfy (47), 

then their  Hölder conjugates satisfy 1/pt + 1/qt = 1/rt.  Using this and Hölder’s 

inequality (25), we obtain 

lf ∗ glr ≤ Crl  lf̂ ĝlrl  

≤ Crl  lf̂  l  lĝl l  

lp q 

≤ Crl  (Cplf lp)(Cq lglq) = Clf lplglq. 

A similarly easy argument (see [20, pp. 169– 70 ]) shows that Young’s inequality (49) 
yields (52) when pt is an even integer. 

Later on the following second  form  of  Young’s  inequality  will be useful.   Let 

0  < p, q,r satisfy 
1 1 1 

+ + 
p q r 

= 2, 

and let f ∈ Lp(Rn), g ∈ Lq (Rn), and h ∈ Lr (Rn) be nonnegative. Then 
 

(54) 

r r 

 
Rn   Rn 

f (x)g(x − y)h(y) dy dx ≤ C 

n 

lf lplglqlhlr, 

where C = CpCq Cr is defined using (51). The second form of Young’s inequality is 

actually equivalent to (49); see [91, p. 99] or [66, Section 13] for the proof. 

 

14. Information theory, physics, and logarithmic Sobolev 

inequalities 

Young’s inequality (49) implies a famous inequality from information theory 

called the entropy power inequality. This section explains the connection and 

touches on some aspects that relate to physics and logarithmic Sobolev inequal- 

ities. 
Suppose that X is a discrete random variable taking possible values x1, . . . , xm 

with probabilities p1, . . . , pm, respectively, where 
),

i pi = 1. Shannon [137] intro- 

duced a measure of the average uncertainty removed by revealing the value of X . 
This quantity, 

m 

Hm(p1,..., pm) = −     pi log pi, 
i=1 

is called the entropy of X .  It can also be regarded as a measure of the missing 

information; indeed, the function Hm is concave and achieves its maximum when 

p1  = · · · = pm = 1/m, that is, when all outcomes are equally likely.  The words 
“uncertainty” and “information” already suggest a connection with physics, and 
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a derivation of the function Hm from a few natural assumptions can be found in 

textbooks on statistical mechanics; see, for example, [6, Chapter 3]. 

If X is a random vector in  Rn with probability density f , the entropy h1(X ) of 

X is defined analogously: 
r 

h1(X ) = h1(f )  = − 

Rn 

 
f (x) log f (x) dx. 

This notation is convenient when h1(X ) is regarded as a limit as p → 1 of the pth 

Rényi entropy hp(X ) of X , defined for p > 1 by 

p 

hp(X ) = hp(f ) = 
1
 

log lf lp. 
− 

The entropy of X may not be well defined. However, if f ∈ L1(Rn) ∩ Lp(Rn) for 

some p > 1, then h1(X ) = h1(f ) is well defined, though its value may be +∞. 

The entropy power N (X ) of X is 

1 2 

N (X ) = 
2πe 

exp 
h1(X )   . 

n 

With this background, the entropy power inequality can be stated: Let X and Y be 

independent random vectors in Rn with probability densities in Lp(Rn) for some 
p > 1.  Then 

(55) N (X + Y ) ≥ N (X ) + N (Y ). 

In 1948, Shannon [137, Theorem 15 and Appendix 6] published this inequality 

and used it to obtain a lower bound [137, Theorem 18] for the capacity of a channel. 

Shannon’s proof shows that equality holds in (55) if X and Y are multivariate 

normal with proportional covariances. In fact equality holds only for such X and 

Y , as Stam’s different proof [139] (simplified in [23] and [47]) of (55) shows. 

The most accessible direct proof of (55) seems to be that of Blachman [23]. As 
Lieb [89] discovered, however, the limiting case r → 1 of Young’s inequality  (49) 

yields the entropy power inequality  (55).  A complete proof of this arresting fact 

can be found in  [89] (or see [63, Section 18]), but Deane Yang noticed the following 

equivalent and more intuitive approach. Let p > 1 and let X be a random vector 
in Rn with probability density f ∈ Lp(Rn). Define 

1 

Np(X ) = 
2π 

p−
 

 

pl  /p lf l−2pl/n, 

where pt is the Hölder conjugate of p (see (51)).  Then Np(X ), which might be 
called the pth Rényi entropy power of X , converges to N (X ) as p → 1+. Suppose 

that 0  < λ < 1, and for r > 1, let  

p = p(r) =  
r
 

(1 − λ) + λr 
and q = q(r)  =  

r 
. 

λ + (1 − λ)r 

Then p, q > 1, and (47) is satisfied. Let X and Y be independent random vectors 
in Rn with probability densities f ∈ Lp(Rn) and g ∈ Lq (Rn), respectively. Young’s 

inequality (49) implies that 
  

Np(X )   
1−λ    

Nq (Y )   
λ
 

(56) Nr (X + Y ) ≥ 
. 

1 − λ λ 

p 
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(The computations required are tedious but routine.)  As r → 1+, p, q → 1 and 

(56) becomes 
 

  
N (X )   

1−λ    
N (Y )   

λ
 

(57) N (X + Y ) ≥ 
. 

1 − λ λ 

By differentiating the log of the right-hand side, it can be verified that this is a 

maximum when λ = N (X )/(N (X ) + N (Y )).  Substituting this value into (57), we 

obtain  (55). 

Presumably Lieb, via his papers [33] and [89], first saw the connection between 

the entropy power inequality (55) and the general Brunn-Minkowski inequality (10), 
the former being a limiting case of Young’s inequality (49) as r → 1 and the latter 

a limiting case of the reverse Young inequality (50) as r → 0 .  Later, Costa and 

Cover [42] specifically drew attention to the analogy between the two inequalities, 

apparently unaware of the work of Brascamp and Lieb. The paper [73] and further 

exciting work of Lutwak, Yang, and Zhang [106], [109] reinforce this fascinating 

bridge between information theory and convex geometry. 

An important concept called Fisher information was employed by Stam [139] in 

his proof of (55). Named after the statistician R. A. Fisher, Fisher information is 

claimed in a recent book [62] by Frieden to be at the heart of a unifying principle 

for all of physics! If X is a random variable with probability density f on R, the 

Fisher  information  I(X ) of  X  is 

r 

I(X ) = I(f ) = − 
R 

r 

f (x)(log f (x))tt dx = 
R 

f t(x)2
 

f (x)  
dx,

 

assuming these integrals exist. The multivariable form of I is a matrix, the natural 

extension of this definition. The quantity I is another measure of the “sharpness” 

of f or the missing information in X ; see [62, Section 1.3] for a comparison of I 

and h1. Stam [139] (see also [47]) showed that I can be used to obtain the Weyl- 

Heisenberg uncertainty inequality, and this inspired Frieden’s work. Frieden’s idea 

is that for any physical system, I represents how much information can possibly be 

obtained by measurements, while another quantity, J , is the amount of information 

bound up in  the system. Then I − J leads to a Lagrangian, and the corresponding 
law of physics arises from its minimization, the second derivative usually present 

in such a law arising from the first derivative present in  I. 

Needless to say, Frieden’s claim has stirred some controversy. Some opinions can 

be found in [81] and in the Mathematical Reviews review. 

A complex system of inequalities swirls like a cyclone around these concepts. 

For example, Dembo, Cover, and Thomas [47] explore several related inequalities 

involving entropy, Fisher information, and uncertainty principles. Another rich 

area surrounds the logarithmic Sobolev inequality proved by Gross [72]: 

1 
(58) 

Entγn (f ) ≤ 
2 

Iγn (f ), 

where f is a suitably smooth nonnegative function on Rn, γn is the Gauss measure 

in Rn defined by (44), 

r 

Entγn (f ) =  
Rn 

 r 

f (x) log f (x) dγn(x) − 

Rn 

   r 

f (x) dγn(x) 
Rn 

  

log f (x) dγn(x)  , 
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i 

f 
1/ci 

R 

 

and r 

Iγn (f ) =  
Rn 

l∇f (x)l2 

f (x) 

 

dγn(x). 

Here Entγn (f ) and Iγn (f ) are essentially the negative entropy −h1(f ) and Fisher 

information, respectively, of f , defined with respect to Gauss measure. There are 

several variants of (58), some discovered earlier. An excellent introduction to such 

inequalities is provided by Lieb and Loss [91, Chapter 8], where it is shown that 

they can be deduced from Young’s inequality (49) and used to estimate solutions of 

the heat equation. Bobkov and Ledoux [24] derive (58) from the Prékopa-Leindler  

inequality (the “Brascamp-Lieb” in the title of [24] refers not to (59) below but to a 

different inequality of Brascamp and Lieb proved in [34]). Cordero-Erausquin [39] 

proves (58) directly using the transport of mass idea from Section 8. 

McCann’s displacement convexity (30) is utilized by Otto and Villani [126], who 

find a new proof of an inequality of Talagrand for the Wasserstein distance between 

two probability measures in  an n-dimensional Riemannian manifold, and show that 

Talagrand’s inequality is very closely related to the logarithmic Sobolev inequality 

(58). The interested reader may also consult Ledoux’s survey [85]. 
 

15. The Brascamp-Lieb inequality and Barthe’s inequality 

The inequalities presented in this section approach the most general known in  

the direction of Young’s inequality and its reverse form and represent a research 

frontier that can be expected to move before too long. 
Each m × n matrix A defines a linear transformation from Rn to Rm, and this 

linear map can also be denoted by A. The Euclidean adjoint A∗ of A is then an  
n × m matrix or linear transformation from Rm to Rn satisfying Ax · y = x · A∗y 

for each y ∈ Rm and x ∈ Rn. 

Theo rem  15.1. Let ci > 0  and ni ∈ N, i = 1, . . .  , m, with 
), 

cini = n.  Let fi ∈ 

L1( 

Then 

) be nonnegative and let Bi : Rn →  ni
 be a linear surjection, i = 1, . . .  , m. 

(Brascamp-Lieb  inequality) 

r m m    r  ci 

(59) 
n 

fi(Bix)ci dx ≤ D−1/2 
n

 fi(x) dx 

 
and 

Rn 
i=1 i=1 Rni 

(Barthe’s inequality) 

(60) 
r 

sup 

( 
m

 

n 
fi(zi)

ci  : x =       ciB
∗zi, zi ∈ Rni

 

m    r 

dx ≥ D1/2 
n

 

 ci 

fi(x) dx , 
Rn 

where 

(61) 

i=1 

 

 
 

det (
),m

 

i 
 

 

 

ciB∗AiBi) 

i=1 Rni 

D = inf i=1 i  m : Ai is a positive definite ni × ni matrix   . 

i=1(det Ai)ci 

Theorem 15.1 is a bit intimidating at first sight! We can begin to understand it 

a little by taking in (59) ni = n, Bi = In, the identity map on Rn, replacing fi by 

i , and letting ci = 1/pi, i = 1, . . .  , m. Then 
),

i 1/pi = 1 and the log concavity 
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i 

 

of the determinant of a positive definite matrix (see, for example, [19, p. 63]) yields 

D = 1. Therefore 
r m m n 

fi(x) dx ≤ 
n 

lfilp , 
Rn 

i=1 

which is just Hölder’s inequality (25). 

i=1 

Next, take m = 2, n1 = n2 = n, B1 = B2 = In, c1 =  1 − λ, and c2 = λ in (60). 
Again we have D = 1, so 

r 

sup 
{
f1(z1)

1−λf2(z2)
λ :   x = (1 − λ)z1 + λz2

} 
dx 

Rn 

 r 1−λ   r 

≥ f1(x) dx 

Rn Rn 

 λ 

f2(x) dx , 

the Prékopa-Leindler inequality (26). 

The true power of Theorem 15.1 begins to emerge when we see that the Brascamp- 

Lieb  inequality  (59)  implies  Young’s  inequality.   In (59),  take m = 3, n1  = n2  = 
n3  = n, and Bi  : R2n  → Rn, i = 1, 2, 3, the linear maps taking (z1, . . . ,  z2n) to 

(z1,... , zn), (z1 − zn+1,... , zn − z2n), and (zn+1,..., z2n), respectively; then re- 

place fi by f 
1/ci 

, i = 1, 2, 3, and let c1 = 1/p, c2 = 1/q, and c3 = 1/r. In this case 
it can be shown that D = C

−2n
, where C = C C C is defined using (51); compare 

[33, Theorem 5]. This gives 
p   q   r 

r r 

 
Rn   Rn 

f1(x)f2(x − y)f3(y) dy dx ≤ C 

 
n 

lf1lplf2lq lf3lr, 

the second form (54) of Young’s inequality. 

Let A be an n × n positive definite symmetric matrix, and let 

GA(x) = exp(−Ax · x), 
for x ∈ Rn. The function GA is called a centered Gaussian. Lieb [90] proved (59) 

and showed that the supremum of the left-hand side of (59) for functions fi of 

norm one is the same as the supremum of the left-hand side of (59) for centered 

Gaussians of norm one; in  other words, the constant D can be computed using 
centered Gaussians. The special (but important—see the next section) case of (59) 

when ni =  1 and Bix = x · vi, where x ∈ Rn and vi ∈ Rn, i = 1, . . . , m, was first 
obtained earlier by Brascamp and Lieb [33]. 

There is also a version of (59) in  which a fixed centered Gaussian appears in  the 

integral on the left-hand side and the constant is again determined by taking the 

functions fi to be Gaussians; see [33, Theorem 6], where an application to statistical 

mechanics is given, and [90, Theorem 6.2]. 

Barthe [16] proved (60), giving at the same time a simpler approach to (59) and 

its equality condition.  The main idea behind Barthe’s approach is transport of 
mass, introduced in Section 8.  When ni =  1 and Bix = x · vi, where x ∈ Rn and 

vi ∈ Rn, i = 1, . . . , m, this can be applied as in the proof of the Prékopa-Leindler 

inequality at the end of Section 7 and results in  (59) and (60) simultaneously. 

The details, only a couple of pages, are given in [13] (or see [63, Section 17]). In  

the general case, Barthe uses the Brenier map. In connection with the latter, it 

is appropriate to highlight the contribution of McCann, whose 1994 Ph.D. thesis 

[114] disclosed the relevance of measure-preserving convex gradients to geometric 
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inequalities and helped attract the attention of the convex geometry community to 

Brenier’s result. 

 

16. Back to geometry 

As Ball [12] remarks, some geometry comes back into view if we replace f (x) by 

f (−x) in Young’s inequality (54) in R: 
 

(62) 

r r 

f (−x1)g(x1 − x2)h(x2) dx2 dx1 ≤ Clf lplglqlhlr. 
R   R 

Define φ : R2  → R3  by φ(x1 , x2) = z = (z1, z2, z3), where z1  = −x1, z2  = x1 − x2, 

and z3 = x2. Then φ(R2) = S, where S is the plane {(z1, z2, z3) : z1 + z2 + z3 = 0} 

through the origin . Let f = g = h = 1[ 

r 
−1,1] and C0 

r 
= [−1, 1]3. By (62), 

V2(C0 ∩ S)    = 1C0 (z) dz = 
S 

f (z1)g(z2)h(z3) dz 

S 

=   J (φ)−1
 

r r 

f (−x1)g(x1 − x2)h(x2) dx2 dx1, 
R   R 

where J (φ) is the J acobian of φ. So Young’s inequality might be used to provide 

upper bounds for volumes of central sections of cubes. In fact, Ball [9] used the 

following special case of the Brascamp-Lieb inequality (59) to do just this. 

Suppose that ci > 0  and ui ∈ Sn−1, i = 1, . . .  , m, satisfy 
m 

x =        ci(x · ui)ui, 
i=1 

for all x ∈ Rn. This says that the ui’s are acting like an orthonormal basis for Rn. 

The condition is often written 

 
(63) 

m 

  
ciui ⊗ ui = In, 

i=1 

where In is the identity on Rn and u ⊗ u denotes the rank one orthogonal projection 

onto the span of u, that is, the map that sends x to (x · u)u. Taking traces in (63), 

we see that 

 

(64) 

m   
ci = n. 

i=1 

Theo rem  16 .1. Let ci > 0  and ui ∈ Sn−1, i = 1, . . .  , m, be such that (63) and 

hence (64) holds. If fi ∈ L1(R) is nonnegative, i = 1, . . .  , m, then 

(Geometric  Brascamp-Lieb  inequality) 

r m m    r  ci 

(65) 
n 

fi(x · ui)
ci dx ≤ 

n
 fi(x) dx 

 
and 

Rn 
i=1 i=1 R 

(Geometric Barthe inequality) 

(66) 
r 

sup 

( 
m

 

n 
fi(zi)

ci  : x =      ciziui, zi ∈ R 

m    r 

dx ≥ 
n

 

 ci 

fi(x) dx . 
Rn 

i=1 i i=1 R 
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If we take, in  the inequalities (59) and (60), ni = 1 and Bix = x·ui, i = 1, . . . , m, 

then B∗zi = ziui ∈ Rn for zi ∈ R and these inequalities become (65) and (66), 

respectively, because the hypotheses of the theorem and (61) imply that D = 1. 

This vital fact was observed by Ball [9]; see [16, Proposition 9] for the details. 

Inequality (66) was first proved by Barthe [13]. As in the general case, equality 

holds in (65) and (66) for centered Gaussians. 

Barthe [14, Section 2.4] also discovered a generalization of Young’s inequality 

(49) that contains the geometric Brascamp-Lieb and geometric Barthe inequalities 

as limiting cases. The geometric Barthe inequality (66) still implies the Prékopa- 

Leindler inequality (21) in R, with the geometric consequences already explained. 
Ball [9] used (65) to obtain the best-possible upper bound 

√   

Vk (C0 ∩ S) ≤ ( 2)n−k 

for sections of the cube C0 = [−1, 1]n by k-dimensional subspaces S, 1 ≤ k ≤ n − 1, 

when 2k ≥ n. (For smaller values of k, the best-possible bound is not known except 

for some special cases; see [9].) He also showed that (65) provides best-possible 

upper bounds for the volume ratio vr(K) of a convex body K in Rn, defined by 
  

V (K)   
1/n

 

vr(K) =  
V (E) 

,
 

where E is the ellipsoid of maximal volume contained in K. The ellipsoid E is 

called the John ellipsoid of K, after Fritz J ohn.  J ohn’s result, as refined by Ball, 

states that the J ohn ellipsoid of a convex body K in  Rn is the unit ball B if and 
only if B ⊂ K and there is an m ≥ n, ci > 0  and ui ∈ Sn−1 ∩ ∂K,  i = 1, . . . , m, 

such that (63) holds and 
), 

ciui = o. 

To bound vr(K), Ball argues as follows. Since vr(K) is affine invariant, we may 
assume that the J ohn ellipsoid of K is B. If we can show that V (K) ≤ 2n, then 
vr(K) ≤ vr(C0 ), where C0 = [−1, 1]n. Let ci and ui be as in J ohn’s theorem, and 

note that the points ui are contact points, points where the boundaries of K and B 
meet. If K is origin symmetric and ui is a contact point, then so is −ui; therefore 
K ⊂ L, where 

L = {x ∈ Rn : |x · ui| ≤ 1, i = 1, . . .  , m} 

is the closed slab bounded by the hyperplanes {x : x·ui = ±1}. Also, if fi = 1[ 

then 

 
−1,1], 

 

 
 

By (65) and (64), 

m 

1L(x) = 
n 

fi(x · ui)
ci . 

i=1 

r m m    r  ci m 

V (K) ≤ V (L) =  
n 

fi(x · ui)
ci dx ≤ 

n
 fi(x) dx = 

n 
2ci  = 2n. 

Rn 
i=1 i=1 R i=1 

This argument shows that vr(K) is maximal for centrally symmetric K when K is 

a parallelotope, that is, an affine image of a cube. 

One consequence of this estimate is the following remarkable reverse isoperimet- 

ric inequality for centrally symmetric convex bodies:  Let K be a centrally symmetric 
convex body in Rn and let C0 = [−1, 1]n. There is an affine transformation φ such 

that 

 
(67) 

  
S(φK) 

 1/(n−1) 
 

 

S(C0) 

  
V (φK) 

 1/n
 

≤ 
V (C0) 

. 
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This result is due to Ball [11] (Behrend [21] proved it for n = 2). For the proof, 

choose φ so that the J ohn ellipsoid of φK is B. The above argument shows that 

V (φK) ≤ 2n. Since B ⊂ φK, we have, by (6), 
 

S(φK)   =  lim 
ε→0+ 

V (φK + εB) − V (φK) 
ε 

V (φK + εφK) − V (φK) 

 

(1 + ε)n − 1 
lim 

ε→0+ ε 
= V (φK)  lim 

ε→0+ ε 

= nV (φK) = nV (φK)(n−1)/nV (φK)1/n  ≤ 2nV (φK)(n−1)/n. 

Since V (C0) = 2n and S(C0) = 2nn, this is equivalent to (67). 

Of course, one cannot expect a reverse isoperimetric inequality without use of 

an affine transformation, since we can find convex bodies of any prescribed volume 

that are very flat and so have large surface area. 

In [11], Ball used the same methods to show that for arbitrary convex bodies 

the volume ratio is maximal for simplices, and to obtain a corresponding reverse 

isoperimetric inequality. The fact that the volume ratio is only maximal for paral- 

lelotopes (in the centrally symmetric case) or simplices was shown by Barthe [16] as 

a corollary of his study of the equality conditions in  the Brascamp-Lieb inequality. 

For other results of this type that employ Theorem 16.1, see [10], [15], and [134]. 

Barthe [16] states a multidimensional generalization of Theorem 16.1, also derived 

from Theorem 15.1, that leads to a multidimensional Brunn-Minkowski-type theo- 

rem. 

In 1986, Milman found a reverse Brunn-Minkowski inequality. At first such an 

inequality seems impossible, since if K and L are convex bodies in Rn of volume 

1, the volume of K + L can be arbitrarily large. As with the reverse isoperimetric 

inequality (67), however, linear transformations come to the rescue. Milman’s result 

states that there is a constant c independent of n such that if K and L are centrally 

symmetric convex bodies in Rn, there are volume-preserving linear transformations  

φ and ψ for which 
 

(68) V (φK + ψL)1/n ≤ c 
 

 (φK)1/n + V (ψL)1/n    . 

This inequality is important in the local theory of Banach spaces; see [92, Sec- 

tion 4.3] and [127, Chapter 7]. 

 
17. The Aleksandrov-Fenchel inequality 

In Sections 3 and 5 it was mentioned that the Brunn-Minkowski inequality 
(2) for convex bodies K and L in Rn  is equivalent to the concavity of f (t)  = 

V ((1 − t)K + tL)
1/n  

for 0  ≤ t ≤ 1, and also to Minkowski’s first inequality (15). 

This remains true for arbitrary compact convex sets K and L.  The one inequal- 

ity in Figure 1 that remains to be discussed, the Aleksandrov-Fenchel inequality, 

generalizes these statements. Discovered by A. D. Aleksandrov and W. Fenchel 

independently around 1937, it is a relation between mixed volumes (introduced in  

Section 3), stating that if K1, . . .  , Kn are compact convex sets in Rn and 1 ≤ i ≤ n, 
then 

 
(69) 

i 

V (K1, K2, . . . , Kn) i ≥ 
n 

V (Kj, i; K i+1,... , Kn) . 
j=1 

≤ 



THE BRUNN-MINKOWSKI INEQUALITY 391 
 

2 

 

See, for example, [36, p. 143] and [135, (6.8 .7)], and also [135, p. 322] for interesting 
historical comments. If we put i = n in (69) and then let K1 = L and K2 = · · · = 

Kn = K, we retrieve Minkowski’s first inequality (15) and therefore the Brunn- 

Minkowski inequality for compact convex sets. For such sets, (69) is essentially the 

most powerful extension of the Brunn-Minkowski inequality available. No simple 

proof is known; that in [135, Theorem 6.3.1] follows one of Aleksandrov’s, which 

establishes the inequality for certain convex polytopes and then uses approximation. 

Equality conditions are not fully settled even today. 
The Aleksandrov-Fenchel inequality (69) is equivalent to the concavity on 0  ≤ 

t ≤ 1 of the function 

(70) f (t) = V ((1 − t)K0 + tK1, i; K i+1,...,  Kn)1/i, 
where K0, . . . , Kn are compact convex sets in Rn, 1 ≤ i ≤ n. See [36, p. 146] and 

[135, Theorem 6.4.3]. Readers familiar with the basic properties of mixed volumes 

can derive (69) from the concavity of f in (70) by setting i = 2 and expanding 
the resulting inequality to extract the constants (1 − t) and t. Inequality (69) with 

i = 2 results, and the general case follows by induction on i. 

An analog of the Aleksandrov-Fenchel inequality for mixed discriminants (see 

[135, Theorem 6.8 .1]) was used by G. P. Egorychev in  1981 to solve the van der 

Waerden conjecture concerning the permanent of a doubly stochastic matrix. See 

[135, Chapter 6] for a wealth of information and references. 

Khovanskii, who with Teissier independently discovered that the Aleksandrov- 

Fenchel inequality can be deduced from the Hodge index theorem, wrote a readable 

account of this surprising development in [36, Section 27]. The connection originates 

in the fact (due to D. M. Bernstein) that the number of complex roots of a generic 

system of n polynomial equations in n variables equals n! times the mixed volume 

of the corresponding Newton polytopes, P1, P2, . . .  Pn, say. (The Newton polytope 

is the smallest convex polytope in Rn containing each point (m1, . . .,  mn) for which 
czm1 · · · zmn

 is a term of the polynomial.)   The (n − 2) of these n polynomial 
1 n 

equations corresponding to P3, . . . , Pn define an algebraic surface in Cn on which 

the remaining polynomial equations describe two complex curves. The number of 

intersection points of these two curves is the number of roots of the system of n 

equations. Roughly speaking, the Hodge index theorem is an inequality involving 
the number (Γ1, Γ2) of intersections of two complex curves Γ1, Γ2 in  a compact 
complex algebraic surface and those (Γ1, Γ1), (Γ2, Γ2) of each curve with a slightly 

deformed copy of itself: 

(Γ1, Γ2) ≥ (Γ1, Γ1)(Γ2, Γ2). 

Using the above observations, this can be translated into 

V (P1, P2, P3, . . . , Pn)2  ≥ V (P1, P1, P3, . . . , Pn)V (P2, P2, P3, . . . , Pn). 

The case i = 2 of (69) (and hence, by induction, (69) itself) can be shown to follow 

by approximation by polytopes with rational coordinates. See [36, Section 27] for 

many more details and also [71] and [123] for more recent advances in this direction. 

Alesker, Dar, and Milman [1] are able to use the Brenier map (see Section 8) to 

prove some of the inequalities that follow from the Aleksandrov-Fenchel inequality, 

but the method does not seem to yield a new proof of (69) itself. 

In contrast to the Brunn-Minkowski inequality, the Aleksandrov-Fenchel inequal- 

ity and some of its weaker forms, and indeed mixed volumes themselves, have found 
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only partially successful extensions to nonconvex sets. See [36, pp. 177– 181], [135, 

p. 343], and [146]. 
 

18. A survey 

The subsections below provide an overview of the various known extensions and 

analogs of the Brunn-Minkowski inequality not yet covered. Without being com- 

prehensive, it should alert the reader to the main developments. 

18.1. Min ko w ski-co ncave  fun ctio ns . A real-valued function φ defined on a class 

of sets in Rn closed under vector addition and dilatation is called Minkowski concave 

if 

(71) φ((1 − λ)X + λY ) ≥ (1 − λ)φ(X ) + λφ(Y ), 

for 0  <  λ < 1 and sets X, Y in the class. For example, the Brunn-Minkowski 

inequality (2) implies that V 
1/n 

is Minkowski concave on the class of convex bod- 

ies. When Hadwiger published his extraordinary book [74] in 1957, many other 

Minkowski-concave functions had already been found, and several more have been 

discovered since. We shall present some of these; all the functions have the required 

degree of positive homogeneity to allow the coefficients (1 − λ) and λ to be deleted 
in (71). Other examples can be found in [74, Section 6.4] and in Lutwak’s papers 

[96] and [102]. 

Knothe [83] gave a proof of the Brunn-Minkowski inequality (2) for convex bod- 

ies, sketched in [135, pp. 312– 314], and the following generalization. For each 
convex body K in Rn, let F (K, x), x ∈ K, be a nonnegative real-valued function 

continuous in K and x. Suppose also that for some m > 0 , 

F (λK + a, λx + a) = λmF (K, x) 

for all λ > 0  and a ∈ Rn, and that 

log F ((1 − λ)K + λL, (1 − λ)x + λy) ≥ (1 − λ) log F (K, x) + λ log F (L, y) 

whenever x ∈ K, y ∈ L, and 0  ≤ λ ≤ 1. For each convex body K in Rn, define 
r 

 

 
Then 

G(K) =  F (K, x) dx. 
K 

(72) G(K + L)1/(n+m)  ≥ G(K)1/(n+m)  + G(L)1/(n+m), 

for all convex bodies K and L in Rn. This is a consequence of the Prékopa-Leindler 
inequality (21). Indeed, taking f = F (K, ·), g = F (L, ·), and h = F ((1 − λ)K + 
λL, ·), Theorem 7.1 implies that G is log concave.  The 1/(n + m)-concavity (72) 

of G follows from its log concavity in the same way that (2) follows from (22) (see 

Section 7). The Brunn-Minkowski inequality (2) for convex bodies is obtained by 
taking F (K, x) = 1 for x ∈ K. Dinghas [49] found further results of this type. 

Let 0  ≤ i ≤ n.  The mixed volume V (K, n − i; B, i) is denoted by Wi(K), and 

called the ith quermassintegral of a com pact convex set K in  Rn. Then W0(K) =  

Vn(K). It can be shown (see [135, (5.3.27), p. 295]) that if K is a convex body and 
1 ≤ i ≤ n − 1, then 

 

(73) W (K) =  
κn

 
i κn i 

r 
 

G(n,n−i) 

V (K|S) dS, 
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where dS denotes integration with respect to the usual rotation-invariant probabil- 
ity measure in the Grassmannian G(n, n − i) of (n − i)-dimensional subspaces of 
Rn and K|S is the orthogonal projection of K onto S. Thus the quermassintegrals 
are averages of volumes of projections on subspaces. 

Letting Ki+1 = · · · = Kn = B in  (70) and using the concavity of the resulting 
function, we obtain a Brunn-Minkowski inequality for quermassintegrals:  If K and 

L are convex bodies in Rn and 0  ≤ i ≤ n − 1, then 

(74) Wi (K + L)1/(n−i)  ≥ Wi(K)1/(n−i) + Wi(L)1/(n−i), 
with equality for 0  < i < n − 1 if and only if K and L are homothetic. See 

[135, (6.8.10), p. 385], where the equality condition is also discussed. The special 

case i = 0  is the usual Brunn-Minkowski inequality (2) for convex bodies. As was 

explained in Section 3, the quermassintegral W1(K) equals the surface area S(K), 

up to a constant, so the case i = 1 of (74) is a Brunn-Minkowski-type inequality 
for surface area. When i = n − 1, (74) becomes an identity. 

Let K be a convex body in  Rn, define Φ0(K) = V (K) and for 1 ≤ i ≤ n − 1, 

define 

Φ (K) =   
κn

 
i κn i 

Ir 

G(n,n−i) 

V (K|S)−n
 

\−1/n 

dS , 

the ith affine  quermassintegral  of K.   Note the similarity to (73);  the ordinary 
mean has been replaced by the −n-mean. As its name suggests, Φi(K) is invari- 

ant under volume-preserving affine transformations. Lutwak’s inequality for affine 

quermassintegrals, proved in  [97], says that if K and L are convex bodies in Rn and 

0  ≤ i ≤ n − 1, then 

(75) Φi(K + L)1/(n−i)  ≥ Φi(K)1/(n−i) + Φi(L)1/(n−i). 

Let K be a convex body in Rn, n ≥ 3. The capacity Cap (K) of K is defined by 
 r 

Cap (K) = inf 
Rn 

l∇f l2 dx :  f ∈ C∞(Rn), f ≥ 1K , 

where C∞(Rn) denotes the infinitely differentiable functions on Rn with compact 

support. Here we are following Evans and Gariepy [55, p. 147], where Cap (K) = 

Cap n−2(K) in   their notation. Several definitions are possible;  see [78],  [112, 

pp. 110– 116], and especially the discussion in [91, Section 11.15].  The notion of 

capacity has its roots in  electrostatics and is fundamental in potential theory. Note 

that capacity is an outer measure but is not a Borel measure, though it enjoys some 

convenient properties listed in [55, p. 151]. Borell’s inequality for capacity states 
that if K and L are convex bodies in  Rn, n ≥ 3, then 

(76) Cap (K + L)1/(n−2) ≥ Cap (K)1/(n−2) + Cap (L)1/(n−2). 

The proof can be found in  [28]. Caffarelli, J erison, and Lieb [38] showed that 

equality holds if and only if K and L are homothetic. J erison [78] employed the in- 

equality and its equality condition in solving the corresponding Minkowski problem 

(see Section 6). 
 

18.2. Blaschke additio n . If K and L are convex bodies in  Rn, then there is a 

convex body K + L, unique up to translation, such that 

S(K + L, ·) = S(K, ·) +  S(L, ·), 
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where S(K, ·) denotes the surface area measure of K. This is a consequence of 

Minkowski’s existence theorem (see Section 6). The operation + is called Blaschke 
addition. 

The Kneser-Süss inequality says that if K and L are convex bodies in Rn, then 

(77) V (K + L)(n−1)/n ≥ V (K)(n−1)/n + V (L)(n−1)/n, 

with equality if and only if K and L are homothetic. A proof is given in [135, 

Theorem 7.1.3]. 

Using Blaschke addition, a convex body called a mixed body can be defined from 
(n − 1) other convex bodies in Rn. Lutwak [98, Theorem 4.2] exploits this idea, due 

to Blaschke and Firey, to produce another strengthening of the Brunn-Minkowski 

inequality (2) for convex bodies. 

18.3. The  Lp-Brun n -Min ko w s ki theo ry. For convex bodies K and L in Rn, 

vector or Minkowski addition can be defined by 

hK+L(u) = hK (u) + hL(u), 
for u ∈ Sn−1, where hK denotes the support function of K (see Section 6). If p ≥ 1 

and K and L contain the origin in their interiors, a convex body K +p L can be 
defined by 

hK+ L(u)p
 = hK (u)p

 + hL(u)p, 
for u ∈ Sn−1.  The operation +p  is called p-Minkowski addition.  Firey’s inequality 

(see [58]) states that if K and L are convex bodies in Rn containing the origin in  
their interiors, 0  ≤ i ≤ n − 1, and p ≥ 1, then 

(78) Wi(K +p L)p/(n−i) ≥ Wi(K)p/(n−i) + Wi(L)p/(n−i), 

with equality when p > 1 if and only if K and L are equivalent by dilatation. The 

Brunn-Minkowski inequality for quermassintegrals (74) is the case p = 1. Note that 

translation invariance is lost for p > 1. Both the definition of p-Minkowski addition  

and the case i = 0  of Firey’s inequality are extended to nonconvex sets by Lutwak, 

Yang, and Zhang [105]. 

Firey’s  ideas were transformed into  a remarkable extension  of the  Brunn- 

Minkowski theory by Lutwak [101], [104], who also calls it the Brunn-Minkowski- 
Firey theory. Lutwak found the appropriate p-analog Sp(K, ·), p ≥ 1, of the surface 

area measure of a convex body K in Rn containing the origin in its interior. In  
[101], Lutwak generalized Firey’s inequality (78). He also generalized Minkowski’s 

existence theorem, deduced the existence of a convex body K +p L for which 

Sp(K +p L, ·) = Sp(K, ·) + Sp(L, ·) 

(when K and L are origin-symmetric convex bodies), and proved the following 

result, Lutwak’s p-surface area measure inequality: If K and L are origin-symmetric 

convex bodies in  Rn and n /= p ≥ 1, then 

V (K +p L)(n−p)/n ≥ V (K)(n−p)/n + V (L)(n−p)/n, 

with equality when p > 1 if and only if K and L are equivalent by dilatation. Note 

that the Kneser-Süss inequality (77) corresponds to p = 1. 

Lutwak, Yang, and Zhang [107] study the Lp version of the Minkowski problem 

(see Section 6). Stancu [140] treats a version of the Lp-Minkowski problem corre- 

sponding to p = 0 , related to an earlier investigation of Firey [59] of the shapes 
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of worn stones in which he used the Brunn-Minkowski inequality. There is a con- 

nection here (as well as for the topic of shapes of crystals described in Section 6) 

with an active area concerning curvature-driven flows; see, in particular, Andrews’ 

solution [3] of a conjecture of Firey in [59]. 

18.4. Ran do m  and in tegral vers io ns . Let X be a random compact set in Rn, 

that is, a Borel measurable map from a probability space Ω to the space of nonempty 
compact sets in Rn with the Hausdorff metric. A random vector X :  Ω → Rn is 

called a selection of X if Prob (X ∈ X ) = 1. If C is a nonempty compact set in Rn, 

let lCl = max{lxl : x ∈ C}. Then the expectation EX of X is defined by 

EX = {EX : X is a selection of X and ElX l < ∞}. 

It turns out that if ElXl < ∞, then EX is a nonempty compact set. 

With  this  background,  Vitale’s  random  Brunn-Minkowski  inequality  can be 
stated: If X is a random  com pact set in  Rn with ElXl < ∞, then 

(79) Vn(EX )1/n  ≥ EVn(X )1/n. 

See [149] (and [150] for a stronger version). By taking X to be a random compact 

set that realizes values (nonempty compact sets) K and L with probabilities (1 − λ) 

and λ, respectively, we see that (79) generalizes the Brunn-Minkowski inequality for 

compact sets. A version of (79) for intrinsic volumes (weighted quermassintegrals) of 

random convex bodies and applications to stationary random hyperplane processes 

are given by Mecke and Schwella [118]. 

Earlier integral forms of the Brunn-Minkowski inequality, using a Riemann ap- 

proach to pass from a Minkowski sum to a “Minkowski integral”, were formulated 

by A. Dinghas; see [36, p. 76]. 
 

18.5. Oth er s tro n g fo rm s  o f the  Brun n -Minko w ski in equality fo r co nvex 

s e ts . McMullen [117] defines a natural generalization of Minkowski addition of con- 

vex sets that he calls fibre addition and proves a corresponding Brunn-Minkowski 

inequality. 

Several strong forms of the Brunn-Minkowski inequality hold in special circum- 

stances, for example, the stability estimates due to V. Diskant, H. Groemer, and 

R. Schneider referred to in [70, Section 3] and [135, p. 314], and an inequality of 

Ruzsa [132]. 

Dar [45] conjectures that if K and L are convex bodies in Rn and m = 
maxx∈Rn  V (K ∩ (L + x)), then 

 
(80) V (K + L)1/n ≥ m1/n + 

  
V (K)V (L) 

 1/n
 

. 
m 

He shows that (80 ) implies the Brunn-Minkowski inequality (2) for convex bodies 

and proves that it holds in some special cases. 
 

18.6. Related  affine  in equalities . A wide variety of fascinating inequalities lie 

(for the present) one step removed from the Brunn-Minkowski inequality. The 

survey paper [124] of Osserman indicates connections between the isoperimetric 

inequality and inequalities of Bonnesen, Poincaré, and Wirtinger, and since then  

many other inequalities have been found that lie in a complicated web around the 

Brunn-Minkowski  inequality. 
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n 

≤ 
n 

 

Some of these related inequalities are affine inequalities in the sense that they are 

unchanged under a volume-preserving linear transformation. The general Brunn- 

Minkowski inequality (10) and Prékopa-Leindler inequality (21) are clearly affine 

inequalities.  Young’s inequality (49) and its reverse (50) are affine inequalities, 

since if φ ∈ SL(n), we have 

φ(f ∗ g) = (φf ) ∗ (φg) and lφf lp = lf lp. 

The Brascamp-Lieb inequality (59) and Barthe inequality (60) are also affine in- 

equalities. 

The isoperimetric inequality (7) is not an affine inequality (if it were, the equality 

for balls would imply that equality also held for ellipsoids), and neither is the 

Sobolev inequality (16). But there are remarkable affine inequalities that are closely 

related and much stronger for important classes of sets and functions. The Petty 

projection  inequality  states that 

 

(81) V (K)n−1V (Π∗K) ≤ 
   

κn   

 

n 

, 
κn−1 

where K is a convex body in  Rn, and Π∗K denotes the polar body of the projection  
body ΠK of K.   (The support function of ΠK at u ∈ Sn−1  equals V (K|u⊥).) 

Equality holds if and only if K is an ellipsoid. See [66, Chapter 9] for background 

information, a proof, several other related inequalities, and a reverse form due to 

Zhang. Zhang [153] has also recently found an astounding affine Sobolev inequality, 

a common generalization of the Sobolev inequality (16) and the Petty projection 

inequality (81): If f ∈ C1(Rn) has compact support, then 

 
(82) 

 r 

 
Sn−1 

lDuf l1 du 

 −1/n 

≥ 
 2κn− 1   

n1/nκn
 

lf ln/(n−1), 

where Duf is the directional derivative of f in the direction u. Lutwak, Yang, and 

Zhang [108] establish a sharp Lp version of (82). 

This is only a taste of a banquet of known affine isoperimetric inequalities. Lut- 

wak [103] wrote an excellent survey. For still more recent progress, the reader can 

do no better than consult the work of Lutwak, Yang, and Zhang, for example, [109] 

and [111]. 

 
18.7. A res tricted Brun n-Min ko w s ki in equality. Let X and Y be measurable 
sets in Rn, and let E be a measurable subset of X × Y . Define the restricted vector 

sum of X and Y by 

X +E Y = {x + y :  (x, y) ∈ E}. 

Then there is a c > 0  such that if X and Y are nonempty measurable subsets of 

Rn, 0  < t < 1, 
  

Vn (X )   
1/n

 1      V2n (E)      √   

then 

t 
V (Y ) ≤ 

t 
, and 

V
 (X )Vn 

(Y ) 
≥ 1 − c min{t n, 1}, 

(83) Vn(X +E Y )2/n ≥ Vn(X )2/n + Vn(Y )2/n. 

Szarek and Voiculescu [143] proved the restricted Brunn-Minkowski inequality (83) 

in the course of establishing an analog of the entropy power inequality in Voicu- 

lescu’s free probability theory. (Voiculescu has also found analogs of Fisher informa- 

tion within this noncommutative probability theory with applications to physics.) 
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D 

+ 

  

X + Y X 

p 

  

 

Barthe [18] also gives a proof via restricted versions of Young’s inequality and the 

Prékopa-Leindler  inequality. 

18.8. Discrete  vers io ns . The Cauchy-Davenport theorem, proved by Cauchy in  

1813 and rediscovered by Davenport in 1935, states that if p is prime and X and 

Y are nonempty finite subsets of Z/pZ, then 

|X + Y | ≥ min{p, |X | + |Y | − 1}. 

Here |X | is the cardinality of X . Many generalizations of this result, including 

Kneser’s extension to Abelian groups, are surveyed in [122]. The lower bound for 

a vector sum is in the spirit  of the Brunn-Minkowski inequality. We now describe 

a closer analog. 

Let Y be a finite subset of Zn with |Y | ≥ n + 1. For x = (x1, . .. ,  xn) ∈ Zn, let 
n 

wY (x) =  
x1 

|Y | − n 

+ 
  

i=2 

xi. 

Define the Y -order on Zn by setting x <Y y if either wY (x) < wY (y) or wY (x) =  

wY (y) and for some j we have xj > yj  and xi = yi for all i < j. For m ∈ N, let 
DY n n 

m be the union of the first m points in Z+  (the points in Z with nonnegative 

coordinates) in the Y -order. The set DY
 is called a Y -initial segment. The points 

of Y
 

|Y | 
are 

o <Y  e1 <Y  2e1 <Y  · · · <Y  (|Y | − n)e1 <Y  e2 <Y  · · · <Y  en, 

where e1, . . . , en is the standard orthonormal basis for Rn. Note that the convex 
hull of DY

 

|Y | is a simplex.  Roughly speaking, Y -initial segments are as close as 

possible to being the set of points in Zn
 that are contained in a dilatate of this 

simplex. 

The Brunn-Minkowski  inequality  for  the  integer  lattice  states that if X and Y 

are finite subsets of Zn with dim Y = n, then 

(84) |X + Y | ≥ DY
 + DY     . 

|X| |Y |  

See [67], and also [25] for a similar result in  fin ite subgrids of Zn. The reason for 

the name is that (84) is an analog of the Brunn-Minkowski inequality in the form 

(9). In fact, (84) is proved by means of a discrete version, called compression, of an  

anti-symmetrization process related to Steiner symmetrization. In [67] it is shown 

that (84) implies that if X and Y are fin ite subsets of Zn with dim Y = n, then 
 

1/n 1/n 

| | ≥ |   | 
1 

(n!)1/n
 

(|Y | − n)1/n. 

18.9. The  du al Brunn -Min ko w ski theo ry. Let M be a body in Rn containing 

the origin  in its interior and star-shaped with respect to the origin. The radial 

function of M is defined by 

ρM (u) = max{c : cu ∈ M }, 
for u ∈ Sn−1. Call M a star body if ρM  is positive and continuous on Sn−1. 

Let M and N be star bodies in Rn, let p /= 0 , and define a star body M +�  pN by 

ρM +e        N (u)p
 = ρM (u)p

 + ρN (u)p. 

The operation +�  p is called p-radial addition. 

+ 
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The p-dual Brunn-Minkowski inequality states that if M and N are star bodies 
in Rn, and 0  < p ≤ n, then 

(85) V (M +�  pN )p/n ≤ V (M )p/n + V (N )p/n. 

The reverse inequality holds when p > n or when p < 0 . Equality holds when p /= n 

if and only if M and N are equivalent by dilatation. 

The inequality (85) follows from the polar coordinate formula for volume and 

Minkowski’s integral inequality (see [76, Section 6.13]). It was found by Firey [57] 
for convex bodies and p ≤ −1.  The general inequality forms part of Lutwak’s 

highly successful dual Brunn-Minkowski theory, in which the intersections of star 

bodies with subspaces replace the projections of convex bodies onto subspaces in  
the classical theory; see, for example, [66]. The cases p =  1 and p = n − 1 of (85) 

are called the dual Brunn-Minkowski inequality and dual Kneser-Süss inequality, 

respectively. A renormalized version of the case p = n + 1 of (85) was used by 

Lutwak [100 ] in his work on centroid bodies (see also [66, Section 9.1]). 

There is an inequality equivalent to the dual Brunn-Minkowski inequality called 

the dual Minkowski inequality, the analog of Minkowski’s first inequality (15); see 

[66, p. 373]. This plays a role in the solution of the Busemann-Petty problem (the 

analog of Shephard’s problem mentioned in Section 5): If the intersection of an 

origin-symmetric convex body with any given hyperplane containing the origin is 

always smaller in volume than that of another such body, is its volume also smaller? 

The answer is no in general in five or more dimensions, but yes in less than five 

dimensions. See [64], [65], [68], [152], and [154]. 

Lutwak [95] also discovered that integrals over Sn−1 of products of radial func- 

tions behave like mixed volumes and called them dual mixed volumes.  In the 
same paper, he showed that a suitable version of Hölder’s inequality in Sn−1 then 

becomes a dual form of the Aleksandrov-Fenchel inequality (69), in  which mixed 

volumes are replaced by dual mixed volumes (and the inequality is reversed). Spe- 

cial cases of dual mixed volumes analogous to the quermassintegrals are called dual 

quermassintegrals, and it can be shown that an expression similar to (73) holds for  

these; instead of averaging volumes of projections, this involves averaging volumes 

of intersections with subspaces. Dual affine quermassintegrals can also be defined 

(see [66, p. 332]), but apparently an inequality for these corresponding to (75) is 

not known. 

18.10 . Bus e m an n ’s  theo rem . Let S be an (n − 2)-dimensional subspace of Rn, 

let u ∈ Sn−1 ∩ S⊥, and let Su denote the closed (n − 1)-dimensional half-subspace 

containing u and with S as boundary. Let u, v ∈ Sn−1 ∩ S⊥, and let X and Y be 

subsets of Su and Sv , respectively. If 0  < λ  < 1, let u(λ) be the unit vector in  
the direction (1 − λ)u + λv, and let (1 − λ)X +h λY be the set of points in  Su(λ) 

lying on a line segment with one endpoint in X and the other in  Y . We call the 

operation +h  harmonic  addition. 

With this notation, let X and Y be compact subsets of Su and Sv , respectively, 

of positive Vn−1-measure. If 0  < λ < 1, then 

(86) 
Vn−1 ((1 − λ)X +h λY ) 

lu(λ)l 
≥ M−1

 
(Vn−1 (X ), Vn−1 (Y ), λ). 

This is the Busemann-Barthel-Franz inequality, which, though it looks odd, has the 

following clear geometrical consequence called Busemann’s theorem. If K is a convex 

body in Rn containing the origin in its interior and S is an (n − 2)-dimensional 
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p 

 

subspace, the curve r = r(θ) in S⊥ such that r(θ) is the (n − 1)-dimensional volume 

of the intersection of K with the half-space Sθ forms the boundary of a convex body 
in S⊥. Proved in  this form by H. Busemann in 1949 and motivated by his theory 

of area in Finsler spaces, it  is also important in geometric tomography (see [66, 

Theorem 8.1.10]). As stated, (86) and precise equality conditions were proved by 

W. Barthel and G. Franz in 1961; see [66, Note 8.1] for more details and references. 

Milman and Pajor [120, Theorem 3.9] found a proof of Busemann’s theorem 

similar to that of Theorem 7.1 outlined above. Generalizations along the lines of 

Theorem 10 .1 are possible, such as the following (stated and proved in [14, p. 9]). 

Let 0  < λ < 1, let p > 0 , and let f , g, and h be nonnegative integrable functions 
on [0 , ∞) satisfying 

 

(87) 

(1−λ)yp 

h (M−p(x, y, λ)) ≥ f (x) (1−λ)y  +λx
 

λxp 

g(y) (1−λ)yp +λxp , 

for all nonnegative x, y ∈ R. Then 
r ∞ 

h(x) dx ≥ M−p 

0 

 

 r ∞ 

 

0 

 

r ∞ 

f (x) dx, 
0 

 

  

g(x) dx, λ  . 

The previous inequality is very closely related to one found earlier by Ball [8]. 

For other associated inequalities, see [69, Theorem 4.1] and [119, Lemma 1]. 
 

18.11. Furthe r applicatio n s . Kannan, Lovász, and Simonovits [80] obtain some 

inequalities involving log-concave functions by means of a “localization lemma” 

that reduces certain inequalities involving integrals over convex bodies in Rn to 

integral inequalities over “infinitesimal truncated cones”—line segments with asso- 

ciated linear functions—and hence to inequalities in a single variable. The proof of 

this localization lemma uses the Brunn-Minkowski inequality; see [93, Lemma 2.5], 

where an application to the algorithmic computation of volume is discussed. Other 

applications of the Brunn-Minkowski inequality include elliptic partial differential 

equations [7] and combinatorics [79]. 
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3 2 4  (1997), 885–888. MR 9 8 a:26022 
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[111] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Diff. Geom. 4 7 (1997), 1–16. 

MR 20 0 0 c:52011 

[112] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University 

Press, Cambridge, 1995.  MR 9 6 h:28006 
[113] B.  Maurey,  Some  deviation  inequalities,  Geom.  Funct.  Anal.  1  (1991),  188–197.    MR 

9 2g:60024 

[114] R. J. McCann, A Convexity Theory for Interacting Gases and Equilibrium Crystals, Ph.D. 

dissertation,  Princeton  University,  1994. 
[115] , A convexity principle for interacting gases, Adv. Math. 128  (1997), 153–179. MR 

9 8 e :82003 

[116] , Equilibrium shapes for planar crystals in an external field, Comm. Math. Phys. 

19 5 (1998), 699–723. MR 9 9 j:73018 

[117] P. McMullen, New combinations of convex sets, Geom. Dedicata 78  (1999), 1–19.   MR 

20 0 0 i:52009 

[118] J. Mecke and A. Schwella, Inequalities in the sense of Brunn-Minkowski, Vitale for random 

convex bodies, preprint. 
[119]  M. Meyer, Maximal hyperplane sections of convex bodies, Mathematika 4 6  (1999), 131–136. 

MR 20 0 0 m :52006 

[120] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit 

ball of a normed n-dimensional space, Geometric Aspects of Functional Analysis, ed. by J. 

Lindenstrauss and V. D. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 

1989, pp. 64–104. MR 90 g:52003 

[121] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed 

Spaces, Springer (Lecture Notes in Mathematics 1200), Berlin, 1986. MR 8 7m :46038 
[122]  M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, 

Springer, New York, 1996. MR 98 f:11011 

[123] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 

405–411. MR 9 9 a:58074 
[124]  R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 8 4  (1978), 1182–1238. 

MR 58 :18161 

[125] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, 

Comm. Partial Differential Equations 26  (2001),  101–174. 

http://www.ams.org/mathscinet-getitem?mr=87f%3A52017
http://www.ams.org/mathscinet-getitem?mr=90a%3A52023
http://www.ams.org/mathscinet-getitem?mr=90k%3A52024
http://www.ams.org/mathscinet-getitem?mr=94g%3A52008
http://www.ams.org/mathscinet-getitem?mr=93m%3A51011
http://www.ams.org/mathscinet-getitem?mr=94h%3A52014
http://www.ams.org/mathscinet-getitem?mr=97f%3A52014
http://www.ams.org/mathscinet-getitem?mr=2001j%3A52011
http://www.ams.org/mathscinet-getitem?mr=2000c%3A52011
http://www.ams.org/mathscinet-getitem?mr=96h%3A28006
http://www.ams.org/mathscinet-getitem?mr=92g%3A60024
http://www.ams.org/mathscinet-getitem?mr=98e%3A82003
http://www.ams.org/mathscinet-getitem?mr=99j%3A73018
http://www.ams.org/mathscinet-getitem?mr=2000i%3A52009
http://www.ams.org/mathscinet-getitem?mr=2000m%3A52006
http://www.ams.org/mathscinet-getitem?mr=90g%3A52003
http://www.ams.org/mathscinet-getitem?mr=87m%3A46038
http://www.ams.org/mathscinet-getitem?mr=98f%3A11011
http://www.ams.org/mathscinet-getitem?mr=99a%3A58074
http://www.ams.org/mathscinet-getitem?mr=58%3A18161


404 R. J. GARDNER 
 

 

[126] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the 

logarithmic Sobolev inequality, J. Funct. Anal. 173  (2000), 361–400. MR 20 0 1k:58076 

[127] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univer- 

sity Press, Cambridge, 1989.  MR 9 1d:52005 
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