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Abstract

The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal
self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression
screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled
(scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to
transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the
eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate
with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression
arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-
response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The
progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in
the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the
appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through
impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase)
signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel
cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that
epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state.
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Introduction

Cancer cells with significant tumour-propagating potential are

increasingly referred to as cancer stem cells. Whilst this refers to

the potential of these cells to regenerate the tumour in both in vivo

and in vitro assays, it also alludes to the possibility that these cells

may have either hijacked self-renewal programmes involved in

normal stem cell maintenance, or that they are in fact directly

derived from stem or progenitor-like cells. Consistent with either of

these possibilities, profiles of tumour cells show increased

expression of stem cell factors and associations with progenitor-

like cell states [1,2].

In Drosophila melanogaster, tumours have long been known to be

associated with the retention of stem cell states. Germ line tumours

show continual overgrowth of progenitor cells that fail to initiate

differentiation, and neuroblast-derived brain tumours are associ-

ated with defects in neuroblast (neural stem cell) divisions and an

expansion of neuroblast numbers [reviewed in 3]. Furthermore,

the overgrowth associated with l(3) malignant brain tumour mutants

has been shown to depend upon the acquisition of a stem cell state

associated with the germline [4]. Impaired differentiation has also

been considered to be a hallmark of Drosophila epithelial tumours

[5], although how differentiation is perturbed and what role this

plays in maintaining tumour overgrowth is not yet known. Indeed
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the epithelial tissues of the imaginal discs are not thought to contain

stem cells. Instead it appears that cells become progressively

restricted in their developmental potential as patterning mecha-

nisms drive greater elaboration and cell fate commitments across

the epithelial field. The sequential nature of these elaborations

means that epithelial progenitor-like states are generally associated

with earlier developmental times and are not necessarily associated

with spatially defined regions of the developing tissue. In the

antennal disc, the early progenitor state is yet to be clearly

characterised, although the early division between the more distally

destined cells that express the homeodomain protein Distal-less (Dll)

and the more proximal cells expressing the MEIS family

transcription factor, Homothorax (Hth), is one of the earliest cell

fate divisions to have been described within the developing

appendage [reviewed in 6]. Downstream targets of these genes,

including atonal (ato), dachshund (dac), distal antenna (dan), and bric-a-brac

2 (bab2), are subsequently expressed, and gradually define further

cell fate divisions along the proximo-distal axis of the appendage [7–

9]. In the eye disc, the progenitor state has been more fully defined

and is thought to be characterised by the expression of Hth, which

cooperates with Yorkie (Yki, or YAP in mammals), the transcrip-

tional coactivator of the Hippo tissue growth control pathway

[reviewed in 10], to maintain cells within a proliferative state [11].

The downregulation of Hth coincides with the progressive

upregulation of cell fate markers such as dac, eyes absent (eya), dan,

ato and embryonic lethal abnormal vision (elav), that define further

differentiation [reviewed in 6]. What role, if any, these sequential

cell fate restrictions play in mediating the overgrowth of eye and

antennal disc tumours has not yet been investigated.

Epithelial tumours can be induced in the eye/antennal disc by

using a clonal system to combine loss of the cell polarity regulator

and tumour suppressor scribbled (scrib) with oncogenic Ras or Notch

(N) signalling. Whilst neither genetic alteration is sufficient to

transform cells, in combination they cooperate to drive the

formation of invasive tumours that outcompete the surrounding

untransformed tissue and massively overgrow [12]. In an overex-

pression screen, to identify novel cooperating oncogenes that

function like oncogenic Ras or Notch, we isolated the BTB-zinc

finger (BTB-ZF) domain protein Abrupt (Ab). Expression arrays

and ChIP-Seq analysis of Ab binding regions and immunohisto-

chemical analysis of the tumours indicates that Ab promotes the

retention of a progenitor-like cell state in scrib mutant cells by

blocking the expression of dac, eya, dan, ato and elav in the eye disc,

and prevents the temporal elaboration of cell fate domains, defined

by dac, cut (ct), senseless (sens), dan, bab2 and ato expression, along the

proximo-distal axis in the antennal disc. The Hippo tissue growth

control pathway transcriptional coactivator, Yki, is both required to

promote tumour overgrowth, and sufficient to cooperate with Ab

and maintain cells within the progenitor-like state.

Results

A screen for cooperating oncogenes in Drosophila
We have previously shown how loss of the epithelial cell polarity

regulator and tumour suppressor scrib cooperates with oncogenic Ras

(RasV12/RasACT) or Notch (Notchintra/NotchACT) signalling to promote

the formation of invasive tumours [12]. To identify novel oncogenes

in Drosophila we carried out an overexpression screen to identify

additional genes that can cooperate with the loss of scrib to promote

tumour overgrowth. This was done using a bank of Gene Search (GS) P

element lines [13], which contain UAS sites to ectopically express the

flanking genes. By combining this with GAL4-driven expression, we

screened independent GS line insertions on the second chromosome

for their ability to promote neoplastic overgrowth when combined

with the loss of scrib in eye disc clones. Normally the generation of

scribmutant clones in the eye/antennal disc produces adult flies with

mildly reduced and necrotic eyes due to Jun kinase (JNK)-mediated

death of the mutant tissue [12]. We therefore aimed to identify genes

that could either cause pupal lethality or, most importantly, act like

activated alleles of either Ras or Notch to block larval pupariation

and cause massive tumour overgrowth.

From screening,2000 GS lines, we identified over 50 that caused

increased organism lethality when expressed in scrib mutant clones

(Table 1). As the insertion point and expressed genes have been

mapped for all GS lines, it was possible to determine that this

corresponded to 10 different genes. Using independent transgenes

we were able to confirm that overexpression of 6 of them (abrupt (ab),

dorsal (dl), escargot (esg), numb, charlatan (chn) and apontic (apt) reproduced

the lethality of the GS line. For the remaining 4 genes (kismet (kis),

anachronism (ana), CG3363 and CG10543), although we identified

multiple independent GS lines for each, independent transgenes

were not available at the time to confirm the interaction. For the

confirmed interactors, we examined larval eye/antennal discs to

determine the extent of clonal overgrowth induced by the transgene

alone compared to the amount of overgrowth when combined with

the loss of scrib (Figure 1 and Figure S1). Some of the interactors

(numb and apt) promoted very little consistent overgrowth pheno-

types despite causing organism lethality at the pupal stage of

development, whilst chn produced mild overgrowth, and both dl and

esg were striking for producing very large antennal overgrowths

before the larvae pupated at day 5/6 after egg laying (AEL).

However, of the 6 confirmed genes, the strongest interactor was ab.

The overexpression of ab in scrib mutant clones was unique

amongst the interactors in promoting a block to pupariation and

massive tumour overgrowth throughout an extended larval stage.

Both GS lines were inserted within the 59 region of ab, and

orientated so as to overexpress ab, and an independent UAS-ab line

reproduced the same cooperative effect as the two GS lines.

Analysis of scrib2+ab larval eye disc clones at day 5 revealed that

differentiation of eye disc tissue was completely abrogated, as

judged by the failure to express the photoreceptor differentiation

marker Elav, although expression of the antennal cell fate marker,

Dll, was retained within the growing tumour (Figure 1A–H). By day

9, huge invasive tumours had developed and become fused with the

Author Summary

Cancer is a multigenic process, involving cooperative
interactions between oncogenes or tumour suppressors. In
this study, in a genetic screen in the vinegar fly, Drosophila
melanogaster, for genes that cooperate with a mutation in
the cell polarity (shape) regulator, scribbled (scrib), we
identify a novel cooperative oncogene, abrupt. Expression
of abrupt in scrib mutant tissue in the developing eye/
antennal epithelium results in overgrown invasive tu-
mours. abrupt encodes a BTB-zinc finger transcription
factor, which has homology to several cancer-causing
proteins in humans, such as BCL6. Analysis of the Abrupt
targets and misexpressed genes in abrupt expressing-
tissue and abrupt-expressing scrib mutant tumours,
revealed cell fate regulators as a major class of targets.
Thus, our results reveal that deregulation of multiple cell
fate factors by Abrupt expression in the context of polarity
disruption is associated with a progenitor-like cell state
and the formation of overgrown invasive tumours. Our
findings suggest that defective polarity may also be a
critical factor in BTB-zinc finger-driven human cancers, and
warrants further investigation into this issue.

Cell Fate Regulator in Cooperative Tumourigenesis
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brain lobes (Figure 1I,J). In contrast, the overexpression of ab in

otherwise wild type eye disc clones promoted antennal disc

overgrowth, and sometimes resulted in the formation of ectopic

Dll-positive antennal-like structures, however, it did not block

photoreceptor differentiation and the larvae pupated, although most

died during pupal development (Figure 1E,F). Analysis of

proliferation by ethynyl deoxyuridine (EdU) incorporation con-

firmed that whilst ab-expressing clones exhibited a relatively normal

pattern of proliferation, scrib2+ab tumours ectopically proliferated

and disrupted the normal pattern of cell proliferation within the eye

disc (Figure S2). Furthermore, Terminal deoxynucleotidyl trans-

ferase dUTP nick end labeling (TUNEL) stains indicated that

although scrib mutant cells undergo apoptosis [12,14], cell death in

scrib2+ab discs was mainly confined to the wild type tissue

surrounding the growing tumours, although interestingly, ab-

expressing clones alone were also characterised by increased cell

death of wild type cells bordering the clones (Figure S2). Therefore,

similar to RasACT or NotchACT, the overexpression of ab can cooperate

with the loss of scrib to block cell death and differentiation, and

promote unrestrained and invasive tissue overgrowth, thus acting as

a highly potent novel oncogene in Drosophila.

Ab acts as a global transcriptional regulator at the
promoters of many genes
Ab is a transcription factor with a BTB protein interaction

domain and zinc finger DNA binding domains [15–17]. To build

a comprehensive picture of how Ab functions in its oncogenic

capacity, we employed Affymetrix expression arrays to identify the

transcriptional changes induced by ab overexpression both alone

and in combination with the loss of scrib, and combined this with

Ab Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) to

identify those genes that were potential direct targets of Ab-

mediated regulation.

Tissue samples were prepared from mosaic eye/antennal discs

overexpressing ab alone, or ab in scribmutant clones, 5 days AEL. For

the expression arrays, samples were compared back to control eye/

antennal discs with wild type clones to identify differentially

expressed probe sets (log base 2 fold change .1, adjusted p value

[18],0.05). This analysis indicated that Ab exerts a potent influence

on gene expression, with 3028 and 3534 probe sets differentially

expressed in ab and scrib2+ab discs respectively, of which 2323 probe
sets were shared between the two (Figure 2A andDataset S1). The
combined 4239 differentially expresssed probe sets encompassed

Table 1. Identified scrib2 cooperating oncogenes.

GS lines Overexpressed gene, position of GS insertion

Validating

transgene

Validated/Candidate

gene function

Closest human

homologue

49 (GSV1)
81 (GSV1)

CG4807(ab)-RA, +10847
CG4807(ab)-RA, +10854

UAS-ab BTB-C2H2 zinc finger
transcription factor

ZFP161

5075 (GSV2)
5251 (GSV2)

CG6667(dl)-RA, +505
CG6667(dl)-RA, +621

UAS-dl NF-kB/Rel family
transcription factor

REL

2077 (GSV1)
5022 (GSV2)
9490 (GSV6)
11431 (GSV6)
11506 (GSV6)
11550 (GSV6)
13437 (GSV6)
14412 (GSV6)
14394 (GSV6)

CG3758(esg)-RA, 298
CG3758(esg)-RA, 2112
CG3758(esg)-RA, 2265
CG3758(esg)-RA, 289
CG3758(esg)-RA, 2105
CG3758(esg)-RA, 2153
CG3758(esg)-RA, 293
CG3758(esg)-RA, 2105
CG3758(esg)-RA, 2270

UAS-esg Snail family C2H2 zinc
finger transcription factor

SNAI2

2112 (GSV1)
11450 (GSV6)

CG11798(chn)-RA, +780
CG11798(chn)-RB, +12782

UAS-chn C2H2 zinc finger
transcription factor

ZNF462

9032 (GSV6)
9416 (GSV6)
10126 (GSV6)
10914 (GSV6)
12693 (GSV6)
13666 (GSV6)
14392 (GSV6)

CG5393(apt)-RA, 2254
CG5393(apt)-RA, 2254
CG5393(apt)-RA, 2394
CG5393(apt)-RA, 2182
CG5393(apt)-RA, 2249
CG5393(apt)-RA, 2296
CG5393(apt)-RA, 2315

UAS-tdf SANT domain
transcription factor

none

2149 (GSV1)
2273 (GSV1)

CG3779(numb)-RB, 237
CG3779(numb)-RB, 235

UAS-numb Membrane associated regulator
of intracellular signalling

NUMB

2198 (GSV1)
14080 (GSV6)

CG10543-RA, +2050
CG10543-RA, +1620

Not validated C2H2 zinc finger
transcription factor

ZNF479

2067 (GSV1)
9929 (GSV6)
10455 (GSV6)
14364 (GSV6)

CG3696(kis)-RA, +28904
CG3696(kis)-RA, +1341
CG3696(kis)-RA, +28429
CG3696(kis)-RA, +28276

Not validated SNF2-like chromo
domain protein

CHD7

9498 (GSV6)
11321 (GSV6)

CG8084(ana)-RA, 252
CG8084(ana)-RA, 251

Not validated Secreted glycoprotein none

7333 (GSV2)
11052 (GSV6)

No tagged gene
No tagged gene

Not validated - -

doi:10.1371/journal.pgen.1003627.t001
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3549 annotated genes, 183 of which were represented by more than

one probe set. The 183 genes with multiple probe sets were largely

consistent in their pattern of expression changes in each genotype,

although 59 of the 183 genes had probe sets that were both up and

downregulated within the same genotype, possibly reflecting the

existence of differentially expressed transcripts (Dataset S2).

Quantitative real-time PCR validation of 5 representative genes

confirmed the results of the expression array (Figure S3).

To identify genes that could be direct targets of Ab regulation,

we performed ChIP-Seq after pulling down Ab-associated

chromatin from ab alone expressing mosaic discs and scrib2+ab

mosaic tissue. The Ab antibody used for the pull-down has been

widely used in the literature [17,19,20], and showed good

specificity for Ab in eye/antennal disc tissue, as determined by

reduced staining of endogenous Ab protein in ab mutant clones,

and increased staining in ab over-expressing clones (Figure S4).

Peak enrichments were identified by comparing each sample to

input DNA controls (see Materials and Methods). Reflecting the

large number of deregulated genes identified from the array, there

were many peaks associated with Ab in both contexts (Figure 2B

and Dataset S1). In the ab alone sample, 8881 peaks were

identified, associated with the transcriptional start site or introns of

2582 genes; whilst in the scrib2+ab tumourigenic sample, 10,892 Ab

binding regions were identified, associated with 2746 genes.

Figure 1. ab overexpression in scribmutant clones promotes neoplastic overgrowth of eye/antennal epithelial tissue throughout an
extended larval stage. Mosaic eye/antennal discs (anterior to the left in this and all subsequent figures) generated with ey-FLP and taken from
larvae 5 days (A–H) or 9 days (I,J) AEL. Clones are positively marked by GFP (white, or green in merges). Tissue morphology is shown by F-actin (red in
merges), and cell fate by Elav and Dll (white, or blue in merges – dark blue when overlaid with GFP). Brain lobes in I,J are marked by BL. GFP (panels
A–J), Elav (panels A9,C9,E9,G9,I9), Dll (panel B9,D9,F9H9,J9) and merges (panels A0–J0). (A,B) Control mosaic eye/antennal discs show the normal pattern of
Elav expression in developing photoreceptor cells, and Dll expression within the antenna. (C,D) scrib1 cells still express Elav and Dll, although the
normal pattern of Elav-expressing photoreceptor cells is disrupted by alterations in tissue morphology. (E,F) ab overexpressing clones still express
Elav and Dll, but are often larger than control clones within the antennal region, and in some discs ectopic domains of Dll expression are observed (F,
arrowhead). (G,H) scrib1+ab clones are larger than scrib1 clones, and do not express Elav (G, arrowhead), although Dll expression is maintained (H,
arrowhead). (I,J) scrib1+ab clones at day 9 are massively overgrown and the two eye/antennal discs fuse with each other and with the Elav-expressing
brain lobes (I), whilst the Dll-expressing domain in the antennal disc is maintained (J). Yellow scale bar = 50 mm.
doi:10.1371/journal.pgen.1003627.g001
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Validating these data, ChIP and quantitative real-time PCR for 10

candidate genes were consistent with the ChIP-Seq results (Figure
S5), and there was also a high correlation between the ab and

scrib2+ab samples (a correlation coefficient of,0.86). Of the potential

target genes, 2025 were shared between the two samples, whilst 661

new binding site peaks, associated with 721 genes (some peaks

overlapped more than one gene), were unique to the scrib2+ab
tumourigenic sample (Figure 2B). Shared target genes were

enriched for organismal development-related gene ontologies (GO),

including ‘‘cell differentiation’’ (1.42E-70), ‘‘imaginal disc develop-

ment’’ (2.39E-64), ‘‘imaginal disc morphogenesis’’ (1.92E-52) and

‘‘appendage development’’ (1.03E-42); whilst the 721 scrib2+ab

unique genes, were enriched for the GO of ‘‘microtubule cytoskel-

eton’’ organization (4.58E-06) (Figure 2D and Dataset S3).

DNA recognition sequences for Ab have previously been

suggested from its isolation as a protein capable of binding to

the Engrailed binding site [15], and more recently through a

bacterial one-hybrid study that defined a consensus Ab binding

sequence [16], however, in vivo we observed no enrichments for

these motifs amongst the Ab peak sequences (data not shown).

Instead, the most highly represented motif amongst the most

significant Ab peaks (irrespective of genomic location) from the ab
overexpression sample, exhibited significant similarity to the

recognition sequence for another BTB-ZF protein and transcrip-

tional activator, the Drosophila GAGA factor, Trithorax-like (Trl)

(Figure S6). Other motifs identified within the sequences

associated with the most significant Ab peaks exhibited significant

similarity to recognition sequences for Scalloped (Sd), which

functions with Yki to activate target genes downstream of Hippo

pathway signalling [reviewed in 10], and Brinker (Brk), which is a

repressor downstream of the Dpp pathway [reviewed in 21]. We

also searched the Ab peak sequences within the promoter regions

or introns of potential target genes, for known transcription factor

recognition site motifs. This approach also identified the Trl

recognition sequence as one of the most highly represented motifs

in peaks common to both the ab alone and scrib2+ab samples

(Table S1). Recognition sequences for the mammalian proteins

MZF1 (similar to Drosophila Crooked legs (Crol), a zinc finger,

ecdysone-induced gene that is also required for the expression of

ecdysone response genes [22]) and VDR (similar to Drosophila

hormone receptor HR96 and the ecdysone receptor EcR) were

also identified, although the relevance of these sites for Drosophila

proteins is not yet clear. In contrast, within peaks unique to the

scrib2+ab sample (and not within the common peaks) there was

significant enrichment of binding sites for AP1 (the Jun/Fos

transcription factor complex that acts downstream of the JNK

signalling pathway), and REL and NF-KB (transcription factors

that act downstream of the Toll-like receptor inflammatory

signalling pathway), suggesting that new Ab target genes could

be generated through the activation of JNK and associated

inflammation pathways within the tumourigenic context.

Prioritisation of Ab deregulated genes
To prioritise these data and focus upon those genes that could

be transcriptional regulated by Ab and also critically required for

tumour formation, we first removed from consideration all genes

identified from the ChIP-Seq results that were not represented by

probes on the array, and then combined the results from both

analyses to identify those genes that were both associated with Ab

peaks and differentially expressed from the microarray analysis

(Figure 2C). This revealed that, for the ab alone sample, 27% of

the differentially expressed genes (687 of 2511 genes), and for the

scrib2+ab sample, 31% of the (915 of 2987 genes), were associated

with Ab peaks, and thus potentially defined primary targets of Ab-

mediated regulation.

To identify potential direct targets of Ab that could be key to

promoting tumour development, we focussed upon those targets

that were both deregulated and associated with Ab peaks in the

scrib2+ab tumour sample. Of these, there were two classes of genes

that were also associated with Ab peaks in the non-tumour samples,

and either deregulated in both (Class 1), or just deregulated in the

tumour sample alone (Class 2); and two further classes of genes only

associated with Ab peaks in the tumour sample, but either also

deregulated in both tumour and non-tumour (Class 3), or only

deregulated in the tumour alone (Class 4). The largest of the four

classes consisted of shared target genes deregulated in both tumour

and non-tumour samples (Class 1, 450 genes), or in the scrib2+ab

sample alone (Class 2, 269 genes), whilst relatively few potential new

targets of Ab (which were also deregulated genes) were generated in

the tumour sample (116 genes in Class 3, and 80 genes in Class 4). In

contrast, 2072 genes deregulated in the tumour were likely to be

either secondary downstream targets of ab or targets deregulated by

the loss of scrib, since they were not associated with Ab peaks (Class

5, 1925 genes), or were only associated with Ab peaks in the ab

overexpression sample alone (Class 6, 147 genes).

Figure 2. Potential tumourigenic targets of Ab identified from expression array and ChIP-Seq analysis. (A) Venn diagram showing the
number of differentially expressed probe sets (log base 2 fold change .1, adjusted p value ,0.05) within mosaic ab overexpressing eye/antennal
discs compared to control mosaic discs, and scrib1+ab mosaic discs compared to the control mosaic discs. (B) Venn diagram showing the number
genes identified as potential Ab targets based upon the occurrence of a significant peak (see Materials and Methods) either within 500 bp upstream
of the transcription start site or within the introns of a gene, in either mosaic ab-expressing eye/antennal discs, or scrib1+ab mosaic discs, when
compared to the respective input DNA controls. (C) Venn diagram that combines the results from the expression array and ChIP-Seq analysis. The six
main classes of genes deregulated in scrib1+ab tumours are shown: Class 1, genes differentially expressed and associated with Ab peaks in both ab
and scrib1+ab samples; Class 2, genes differentially expressed in scrib1+ab alone, but associated with Ab peaks in both samples; Class 3, genes
differentially expressed in both ab and scrib1+ab samples, but associated with Ab peaks in scrib1+ab alone; Class 4, genes only differentially expressed
and associated with Ab peaks in scrib1+ab alone; Class 5, genes deregulated in the scrib1+ab tumours but not associated with Ab peaks; and Class 6,
genes deregulated in the scrib1+ab tumours but only associated with Ab peaks in the non-tumourigenic ab-expressing discs. Note that genes
represented by multiple probe sets in the expression array are represented only once amongst the different classes, and assigned to either both
genotypes if at least one probe set was significantly deregulated in both genotypes, or assigned to either ab or scrib2+ab uniques categories if at
least one probe set was deregulated specifically in these genotypes. See Dataset S1 for the complete gene lists associated with the expression array,
ChIP-Seq and Classes 1–6. (D) Selected GO enrichments amongst the deregulated genes and potential Ab targets. See Dataset S3 for the full listing
of significantly enriched GO categories. (E) Heat map highlighting selected functional groups of deregulated genes identified from the expression
array (red, upregulated; green, downregulated). For genes represented by multiple probe sets, the following probe sets are shown in the figure: br
(1636931_at), chinmo (1636985_s_at), Dll (1636088_at, 1625771_at), dom (1628160_a_at), Eip75B (1635393_s_at), elB (1631207_at), fru (1641338_at,
1632859_a_at), ImpE1 (1631375_a_at), lola (1633089_a_at, 1635096_at), Mmp1 (1625761_a_at), mod(mdg4) (1627953_at, 1638041_at), toy
(1633094_a_at), and Trl (1635305_s_at). See Dataset S2 for a full listing of deregulated genes with multiple probe sets, and their relative
expression in ab or scrib2+ab tissue. A cross (X) denotes genes that were also identified from the ChIP-Seq analysis as potential Ab targets in either
the ab alone, and/or scrib1+ab samples. See Dataset S4 for ChIP-Seq genome alignments for these genes.
doi:10.1371/journal.pgen.1003627.g002
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Classes 3 and 4 did not exhibit significant GO enrichments,

however, amongst the two primary classes of potential Ab target

genes (Class 1 and 2) GO categories were identified that were

involved in all aspects of tumour formation, from cell fate/

differentiation, cell survival/growth/proliferation, and cell migra-

tion/invasion (Figure 2D, and Dataset S3). In contrast, genes

deregulated, but not associated with Ab peaks in the tumour

(Classes 5 and 6) did not show these GO enrichments. A heat map

depicting the relative expression levels of selected genes from

Classes 1 to 6 is shown in Figure 2E (see Dataset S4 for ChIP-

Seq peak alignments to the genome for the Class 1–4 targets

depicted in this figure). The functional significance of these genes

will be elaborated upon below.

Ab binding is associated with the repression of multiple
regulators of development and cell fate
The strongest GO enrichments amongst Ab targets included

‘‘multicellular organismal development’’ (1.76E-40 in Class 1 and

9.83E-22 in Class 2), ‘‘cell differentiation’’ (1.44E-28 in Class 1

and 7.65E-09 in Class 2) and ‘‘eye development’’ (3.72E-12 in

Class 1) (Figure 2D). Amongst these targets were particular

enrichments for ecdysone-response genes, other developmental

genes involved with epigenetic control, Notch signalling, and the

control of eye/antennal disc differentiation.

Ecdysone-response genes. Many ecdysone-response genes

were identified as potential Ab targets, including Eip75B, Eip78C,

broad (br), ImpL2 (all Class 1; peaks in both ab and scrib2+ab, and

significantly deregulated in both), ImpE1, ftz-f1, Blimp-1 (Class 2;

peaks in both ab and scrib2+ab, but significantly deregulated in

scrib2+ab alone), and ImpL3 (Class 4; peaks in scrib2+ab only, and

only deregulated in scrib2+ab). Confirming these data, protein

levels of Br, a key ecdysone-induced gene, were substantially

repressed in eye disc clones overexpressing ab (Figure S7). The

involvement of Ab in the repression of ecdysone response genes is

consistent with studies in the Drosophila ovary where Ab has also

been shown to associate with the steroid hormone receptor

coactivator, Taiman (Tai), and repress ecdysone response genes to

control the timing of border cell migration [20]. Indeed, Tai is also

expressed in the early 3rd instar larval eye disc (Figure 3A), and

knockdown of tai with RNAi in scrib2+ab eye disc clones

completely abrogated tumour overgrowth, restoring pupariation

and resulting in the eclosion of adult flies (Figure 3B,C). Similar

rescue of scrib2+ab tumour formation was observed by ectopically

expressing a form of tai that lacks the Ab interaction domain

(TaiDB), and which has been shown to activate ecdysone response

genes even in the presence of Ab [20] (Figure S8). Tai is therefore

required for scrib2+ab tumour development. Furthermore, whilst

the overexpression of a wild type form of tai alone in clones did not

induce tumour formation (Figure 3D) and adult flies eclosed (data

not shown), overexpression of tai in scrib mutant clones was

sufficient to induce clonal overgrowth and tumour formation

throughout an extended larval stage, in a similar manner, albeit

with less potency, as ab overexpression (Figure 3E–G). Thus,

whilst it is not known if Ab directly cooperates with Tai in

repressing ecdysone response genes in scrib2+ab tumours, Tai is

both required for ab to promote tumourigenesis, and sufficient to

drive tumour formation in combination with the loss of scrib.

Epigenetic regulators. Many epigenetic regulators were

transcriptionally deregulated in both ab alone and scrib2+ab eye/

antennal discs, including Pc, ph-d, Psc, mod(mdg4), psq, skd (all Class

1), ph-p (Class 2), Pcl (Class 3), and a large number of other BTB-

ZF transcription factors including fru, chinmo, br, longitudinals lacking

(lola) and Trl. Most of these genes were repressed by ab

overexpression, with the exception of chinmo, pc, psq, skd and some

isoforms of fru, lola and mod(mdg4). Other epigenetic regulators

including brm, mor (both Class 5), dom and E(var)3-9 (both Class 6)

were also repressed in the tumour, although they were not

associated with Ab peaks in the scrib2+ab sample, and were

therefore likely to be indirect targets of Ab.

Notch-regulated genes. Notch signalling is a key regulator

of cell fate decisions, and many Notch-associated genes were

repressed in the tumour and associated with Ab peaks, including

the E(spl) region genes HLHm3, HLHmb, m2 and ma (Class 2), the

Notch transcriptional coactivator mam (Class 2) and the ligand

Figure 3. Tai is required for scrib2+ab tumour overgrowth, and sufficient to cooperate with the loss of scrib. ey-FLP induced eye/antennal
disc clones at 5 (A,B,D,E,G) and 9 days (F) AEL, and a dorsal view of mosaic adult eyes (C). Clones are marked by GFP (white, or green in merges). Tai (A) is
white (and in merges appears magenta when overlaid with GFP), and Elav (B,D,E) is white (and blue in merges – dark blue when overlaid with GFP). F-
actin is red in merges in B,D–G. Brain lobes in F,G are marked by BL. GFP (panel A), Tai (panel A9), Elav (panels B,D,E), and merges (panels A0,B9,D9,E9). (A)
Expression of taiRNAi in clones reduces endogenous levels of Tai. (B–C) Expression of taiRNAi in scrib1+ab clones reduces clonal overgrowth (B) compared
with scrib1+ab (see Figure 1G–J), and results in the eclosion of adult flies (C). (D) Overexpression of taiFL in clones does not block Elav expression, nor
cause clonal overgrowth throughout an extended larval stage. (E–F) Overexpression of taiFL in scrib1 clones promotes mutant tissue overgrowth and a
block to Elav expression (E, arrowhead), eventually resulting in the formation of large tumours after an extended larval stage of development (F). (G) Wild
type eye/antennal disc clones attached to the brain lobes at day 5, just before pupariation. Yellow scale bar= 50 mm.
doi:10.1371/journal.pgen.1003627.g003
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Delta (Dl) (Class 1). Many other Notch targets, although not

associated with Ab peaks, were also repressed in the tumourigenic

state, including HLHm7, HLHmc, HLHmd (all Class 5), and m4
(Class 6). Consistent with these data, the Notch reporter E(spl)-

lacZ, normally activated in the differentiating portion of the eye

disc, was repressed in scrib2+ab tumours (data not shown).

Furthermore, similarities between ab overexpression and Notch
loss-of-function phenotypes have previously been reported [19].

Eye/antennal disc differentiation. The identification of

Notch and ecdysone response genes as potential Ab targets

validated our approach, however, most striking amongst the

repressed Ab target genes associated with cell fate control were

known regulators of eye/antennal disc differentiation, including

bab2, ct, dac, dan, daughterless (da), elbow (el), eya, eyegone (eyg), hairy (h),

hth, no ocelli (noc), pannier (pnr) and spineless (ss) (Figure 2E). This
suggested that Ab could be functioning as an oncogene by

maintaining cells within an undifferentiated state.

Ab promotes tumourigenesis by blocking differentiation
and maintaining scrib mutant cells within a progenitor-
like state
Eye disc differentiation initiates from the posterior edge of the disc

in the late 2nd instar and progresses sequentially towards the anterior

edge over a number of days. At the wandering third instar stage,

when photoreceptor differentiation has progressed half way across

the epithelium (as marked by Elav staining), the eye disc consists of a

spectrum of various cellular differentiation states, from the most

differentiated posterior cells to the least differentiated anterior cells.

The transcription factors Hth, Eyeless (Ey) and Teashirt (Tsh) are

expressed in the most anterior portion of the eye disc within the

progenitor domain, whilst more posteriorly, Hth is first downregu-

lated, followed subsequently by Ey and Tsh. The downregulation of

Hth marks a transition point whereby cells begin to express Dac,

Eya, Dan, Distal antenna-related (Danr), H, Da, Ato and finally Elav

[reviewed in 6] (Figure 4M). In the antennal disc, the temporal

development of the tissue is not displayed as a spatial distribution of

cell fate markers at the third instar stage as it is in the eye disc,

however, early to late cell fate transitions have been documented.

Initial domains of Hth, Ct and Dll in the 2nd instar larvae establish

the early proximo-distal axis of the antenna [23,24], and

downstream targets of these genes, including the cell fate markers

Ato, Dac, Dan, Bab2, Spalt major (Salm) and Ss, are subsequently

expressed throughout the 2nd and 3rd instar to elaborate the

proximo-distal axis of the appendage [7–9] (Figure 4M).

Multiple regulators of eye/antennal disc cell fate were repressed

in scrib2+ab tumours. Whilst some were repressed by expression of

Ab alone, most of these were substantially further repressed in

combination with the absence of scrib. Potential direct targets of Ab

involved in regulating cell fate in the eye/antennal disc, and

repressed in the tumour state, included dan, eyg el, h and noc (Class 1),

hth, dac, eya, bab2, pnr, ss (Class 2), and da (Class 4). To further

validate these results we examined the expression domains of the

different cell fate regulators in the tumours. We had already

established that scrib2+ab tumours failed to express Elav in the eye

disc (Figure 1G), however, examination of other cell fate markers,

revealed that Dac, Dan, Eya, Sens and Ato were also repressed

within the overgrowing eye disc tumour (Figure 4A–H and Figure
S9). Importantly, all of these proteins (with the exception of Ato,

which was also decreased in scrib mutant and ab-overexpressing

clones) were not strongly downregulated in either scrib mutant

clones alone, nor in ab-expressing clones alone, but only in

cooperation with both genetic lesions (summarised in Table 2),
thus validating the results from the expression array. In contrast, the

expression of the cell fate markers that define earlier states,

including Hth, Tsh and Ey were relatively unaffected in scrib2+ab

eye disc tumours, despite their domains of expression being enlarged

and warped due to the growth of the tumour (Figure 4I–L and

Figure S10), and with the exception of Hth (see below), were not

identified as Ab targets. Furthermore, Hth, Tsh and Ey were all

downregulated in more posterior tumour cells indicating that they

were still being subject to their normal mode of repression. scrib2

clones exhibited only minor perturbations in Hth, Tsh or Ey

expression, whereas ab-expressing clones showed mildly reduced

Hth and Ey, and slightly upregulated Tsh, expression levels.

In scrib2+ab antennal disc tumours, most of the tumour tissue

expressed Dll, whilst Hth and Ct expression was repressed

(Figure 4I–L, Figure S10 and data not shown). Furthermore,

the expression of subsequent cell fate markers expressed along the

proximo-distal axis, including Dan (Class 1), Bab2 and Dac (Class 2),

as well as Sens and Ato, were also repressed within the tumours

(Figure 4A–H, Figure S9 and Figure S10). Their expression was

only slightly perturbed in scrib mutant clones, whilst ab-expressing

clones alone also repressed most of these markers, with the exception

of Dac (summarised in Table 2). The repression of Hth in the Dll-

positive tumour mass within the antenna suggested that the tissue

was transformed to a more leg-like state [25], and, consistent with

this, the HOX genes Antennapedia (Antp) and labial (lab) were also

upregulated by ab overexpression (Figure 2E and Dataset S1).

The data therefore suggest that whilst scrib2+ab eye/antennal

disc tumours are not homogeneous, and consist of a diverse

population of cells, they are characterised by the maintenance of

an earlier progenitor-like cell state through the continual

overgrowth of tissue that, in the eye disc, fails to transition to

the expression of Dac, Eya, Ato and Elav, and in the antennal disc,

fails to express differentiation markers downstream of Dll that

define the elaboration of the appendage along the proximo-distal

axis (summarised in Figure 4M and Table 2).

The endogenous expression of Ab overlaps that of the
progenitor state transcription factor Hth, but Hth is
neither sufficient nor required for Ab-mediated tumour
overgrowth
The capacity of Ab to maintain cells within a progenitor-like

state suggested that its function might be linked to the eye disc

progenitor state transcription factor, Hth. Indeed, the endogenous

expression of Ab in the eye disc mirrored the expression of Hth

(Figure 5A), and its downregulation in the eye disc heralds the

beginning of Dac and Eya expression. Although our analysis of

scrib2+ab tumours indicated that Hth expression was not

maintained in the tumours, and in fact was repressed in the

antennal disc, it was still possible that Hth might be sufficient for

tumour formation in combination with scrib mutants or required

for scrib2+ab tumour overgrowth.

To determine if Hth was sufficient to cooperate with the loss of

scrib, we ectopically expressed Hth in scrib mutant clones.

However, although this promoted overgrowth of the tumour

tissue and pupal lethality, it did not result in a block to pupariation

and massive tumour overgrowth throughout an extended larval

stage of development, indicating that Hth could not substitute for

Ab in a tumour-promoting role (Figure S11). Conversely, to test

for whether Hth was required for scrib2+ab tumour overgrowth,

we overexpressed ab in scrib2 hth2 double mutant clones and

assayed for tumour formation. Examination of tumour samples at

day 5 revealed that overgrowth was initially confined to regions

within the neck and the ventral portion of the eye disc

(Figure 5C), regions that correspond to tissue that is least

dependent upon hth for cell survival and/or proliferation, and are
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associated with a role for hth in repressing ventral eye formation

[26,27]. Indeed, this tissue continued to grow in scrib2 hth2+ab

tumours, so that whilst overgrowth was substantially delayed

compared to scrib2+ab tumours, massive and invasive tumour

masses eventually overtook the larvae (Figure 5D). These

tumours consisted of characteristic Dll-positive tumour masses

within the antennal region, and Ey-positive tumour tissue within

the eye disc (Figure 5E,F). Thus, hth is neither sufficient nor

absolutely required for Ab-driven tumour formation.

Yki promotes overgrowth of scrib2+ab tumours
To identify potential targets of Ab that could be important for

maintaining tumour overgrowth, we analysed Class 1 and 2 genes

for GO enrichments associated with cell survival and proliferation.

Importantly, the GO categories of ‘‘cell death’’ (4.84 E-03),

‘‘growth’’ (1.09 E-06) and ‘‘cell proliferation’’ (2.03 E-05) were all

enriched within Class 1 targets, which were genes associated with

Ab peaks and deregulated in both ab alone and scrib2+ab tumours.

Amongst potential cell death targets, the pro-survival Bcl2

homologue Buffy was upregulated, and the cell death inducer Hid

(W) was downregulated by ab overexpression. Furthermore,

klumpfuss (klu) and echinus (ec) that promote cell death in the pupal

retina [28–30], were also downregulated by ab. Notable Class 1 ab

targets involved in cell growth and proliferation included the cell

growth and G1-S phase driver Cdk4 (upregulated), the inhibitor of

the PI3K pathway Pten (downregulated) and a number of Hippo

pathway components and/or targets, including expanded (ex), fat (ft),

thread (th/DIAP1) and diminutive (dm), the DrosophilaMyc gene. Whilst

Figure 4. Overexpression of ab in scrib mutant clones promotes the retention of a progenitor-like state in the eye and antennal disc.
ey-FLP induced eye/antennal disc clones at,5 days AEL. Clones are marked by GFP (white, or green in merges), and cell fate is shown by the expression
of Dac, Dan and Hth (white, andmagenta when overlaid with GFP in themerges) in wild type control clones (A,E,I), scrib1 clones (B,F,J), ab overexpressing
clones (C,G,K), and scrib1+ab clones (D,H,L). GFP (panels A–L), Dac (panels A9–D9), Dan (panels E9–H9), Hth (panels I9–L9) and merges (panels A0–L0). (A–D)
Dac expression is only slightly reduced in scrib1 clones (B, yellow arrowhead), and unaffected in ab overexpressing clones in the eye disc, although
ectopic Dac expressing antennal-like structures are sometimes observed in the antenna (C, arrowhead). scrib1+ab clones do not express Dac (D,
arrowhead; the magenta staining observed around some clones is derived from GFP bleed-through from underlying sections. (E–H) Dan levels are
reduced in scrib1 clones both in the antennal and eye disc (F, arrowheads). ab overexpressing clones do not affect Dan levels in the eye disc (G,
arrowhead), although Dan is slightly repressed in the antenna (G, arrow), albeit ectopically expressed in the ectopic antennal-like structures. Dan is
repressed in scrib1+ab clones (H, arrowhead). (I–L) Hth expression is generally unaffected in scrib1 clones (J). In ab overexpressing clones, levels of Hth are
slightly reduced in the eye disc (K, arrow), and large clones in the antennal disc do not express Hth (K, arrowhead). In scrib1+ab clones, Hth is expressed in
some clones within the eye disc (L, arrowhead), but not all clones (L, arrow), and is generally reduced in antennal disc clones (L, and data not shown). (M)
Diagram summarising the expression of cell fate markers in both wild type eye/antennal discs, as well as in eye/antennal disc scrib2+ab tumours (green).
In the antenna, proximal refers to the outer circular domains of the tissue, whilst distal refers to the inner, central domains. See Figures S9 and S10 for
immunohistochemical images of Tsh, Ey, Eya, Ato and Sens; and Table 2 for a summary of these results. Yellow scale bar= 50 mm.
doi:10.1371/journal.pgen.1003627.g004

Table 2. Expression of cell fate regulators in eye/antennal disc clones.

scrib2 abrupt scrib2+abrupt

Eye

Elav Disrupted and slightly reduced Unaffected although spacing disrupted Repressed

Ato Disrupted and slightly reduced Reduced and delayed Repressed

Sens Disrupted and slightly reduced Unaffected Repressed

Dac Slightly reduced Unaffected Repressed

Dan Slightly reduced Unaffected Repressed

Eya Unaffected Unaffected Repressed

Hth Unaffected Slightly reduced, especially posteriorly Variable, but generally unaffected

Tsh Generally unaffected, although some ectopic
expression extends posteriorly in large
disorganised clones

Increased Unaffected

Ey Slightly reduced Slightly reduced Unaffected

Antenna

Ato - Repressed Repressed

Sens Reduced Repressed Repressed

Dac Slightly reduced Ectopic in ectopic antennae-like structures Repressed

Dan Slightly reduced Slightly reduced, but also ectopic in ectopic
antennae-like structures

Repressed

Ct Unaffected Unaffected in proximal region but repressed
more distally and in neck region

Repressed

Bab2 Unaffected Slightly reduced, but also ectopic in ectopic
antennae-like structures

Repressed

Hth Unaffected Repressed Variable, but often repressed

Dll Unaffected Ectopic in ectopic antennae-like structures Unaffected and ectopic in antennal-like
overgrowths

doi:10.1371/journal.pgen.1003627.t002
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th, a survival-promoting effector of Yki activity, was repressed by ab

overexpression, which was confirmed by immuno-histochemical

analysis of ab-expressing larval discs (Figure S12), the Yki targets

dm and ex were upregulated upon ab overexpression, and ft and hippo

(Class 5), two negative tissue growth components of the Hippo

pathway, were repressed. Thus, although multiple genes may

contribute to ab-driven tumour overgrowth, ab-mediated impair-

ment to the Hippo pathway could be a key factor.

A role for the Hippo pathway in scrib2+ab tumour overgrowth

was tested by knocking down yki, a critical downstream

transcriptional effector of impaired Hippo pathway signalling.

Strikingly, and unlike loss of hth, this substantially restrained

scrib2+ab tumour overgrowth and restored pupariation to the

tumour-bearing larvae (Figure 6A–F). To determine whether the

rescue in tumour overgrowth was accompanied by a restoration to

differentiation we examined the expression of cell fate markers.

This revealed that whilst knockdown of yki did not restore Elav and

Eya expression to scrib2+ab tumours, Dac levels were substantially

increased (Figure 6G,H). It was therefore possible that the

increased levels of Dac upon yki knockdown could account for the

suppression of tumour overgrowth. However, overexpressing dac

within scrib2+ab tumours, using a dac transgene, failed to restrain

tumour overgrowth and restore pupariation (Figure S13). Thus,

the downregulation of Dac is not a key requirement for continual

tumour overgrowth. Furthermore, scrib2+ab tumour cells express-

ing ykiRNAi, could still be observed with mesenchymal morphology

between the brain lobes (Figure S14), suggesting that whilst Yki

activity is required for tumour overgrowth, it is not an essential

mediator of tumour cell migration and invasion.

Impaired Hippo signalling is sufficient to cooperate with
Ab and promote tumour overgrowth
The ChIP-Seq and expression array analysis had indicated that

ab overexpression was capable of modulating Hippo pathway

activity, however, scrib mutant cells also express Hippo pathway

reporters, and ectopically proliferate in a Yki-dependent manner

[31]. Thus both the overexpression of ab and the loss of scrib each

had the potential to promote Yki activity, and either of these could

be crucial in driving cooperative tumour overgrowth. To discern

which of the two was more critical in mediating cooperation we

tested for whether knockdown of wts in either ab-overexpressing

clones or scrib mutant clones, was sufficient to elicit cooperative

tumour overgrowth throughout an extended larval stage. Whilst

knockdown of wts alone in clones did not perturb Elav expression

and larvae pupated normally (Figure 7A), ectopically expressing

ab in wtsRNAi clones was sufficient to block pupariation of larvae

and promote massive overgrowth of the eye/antennal discs.

Examination of Elav expression indicated that although at day 5

some wtsRNAi+ab clones were still observed to express Elav, the

overgrown clonal tissue that ensued was entirely composed of

Elav-negative tissue (Figure 7B,C). Similar cooperation was

observed when ab was ectopically expressed within wtsX1 mutant

clones (data not shown). In contrast, although knockdown of wts in

scrib mutant clones enhanced scrib mutant tissue overgrowth

causing pupal lethality, it was not sufficient to completely block

Elav expression and drive cooperative tumour overgrowth

throughout an extended larval stage of development (Figure 7D
and data not shown). Consistent with this interpretation, scrib-

mediated impairment to Hippo signalling has been shown to be

Figure 5. Hth is not essential for scrib2+ab tumour overgrowth. ey-FLP induced eye/antennal disc clones at 5 (A–C) and 9 (D–F) days AEL.
Clones are marked by GFP (white, or green in merges), and cell fate markers (Ab, Hth, Elav, Ey and Dll) are white (or blue in the merges, changing to
dark blue when overlaid with GFP, except Ab, which is red in the merge in A). F-actin is shown in red in the merges of B–F. Brain lobes in D,F are
marked by BL. Ab (panel A), Hth (panel A9), GFP (panels B–F), Elav (panels B9–D9), Dll (E9), Ey (F9), and merges (A0–F0). (A) Control discs show the
endogenous expression of Ab and Hth in the eye/antennal disc, which overlap, except in the centre of the antennal disc and in the dorsally located
ocelli (A, arrow), which express Ab but not Hth, and in the posterior part of the eye disc, which expresses Hth but not Ab. (B) hthP2 clones are absent
from the progenitor domain (bracketed), although overgrowth is sometimes observed within the neck region between the eye and antennal disc,
and ectopic domains of Elav expression are sometimes generated within and adjacent to these mutant clones (B, arrow). (C–F) The overexpression of
ab in scrib1 hthP2 double mutant clones promotes overgrowth of clonal tissue that does not express Elav (C), and fuses with the brain lobes (BL) that
are Elav positive (D). The expression of both Dll (E) and Ey (F) is maintained within the tumours. Yellow scale bar = 50 mm.
doi:10.1371/journal.pgen.1003627.g005
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atypical Protein Kinase C (aPKC)-dependent, since it is rescued by

expressing a kinase dead dominant negative (DN) version of aPKC

(aPKCDN) within the mutant tissue [31], and similarly, expressing

aPKCDN in scrib2+ab tumours also curtailed tumour overgrowth

(Figure S15). Thus, whilst ab overexpression alone may impair

Hippo pathway signalling, the deregulation of the Hippo pathway

induced by the absence of scrib is likely to be a key factor in

promoting susceptibility to Ab-driven tumour formation.

To determine whether expressing ab inwtsmutant clones produced

tumours that were similar to scrib2+ab tumours, we examined the

expression of different cell fate markers in wts2+ab clones. wtsmutant

clones differentiated normally, apart from a mild downregulation of

Dac (Figure 7E,G and Figure S16). However, although some of

the wts2+ab clonal tissue at day 5 expressed normal, or only mildly

reduced, levels of Dac, Dan and Eya (data not shown), in older larvae,

the overgrown wts2+ab tumours consisted predominantly of eye disc

progenitor-like tissue that did not express Dac, Dan or Eya, and

antennal-like tissue that ectopically expressed Dll and Dac

(Figure 7F,H and Figure S16). Thus, the wts2+ab tumours

retained a progenitor-like state that was similar to scrib2+ab tumours,

with the exception that Dac expression was retained within the

antennal domain of the wts2-derived tumours, but not in the scrib2-
derived tumours. Furthermore, wts2+ab tumours were characterised

by the generation of huge, highly-folded epithelial sheets of tissue that

remained distinct and did not fuse with the brain lobes, thus

indicating that cooperation between wts2+ab was unable to

reproduce the invasive properties of scrib2+ab tumours.

Ab targets are involved in migration and invasion, but Ab
can not promote invasion without JNK signalling
The invasive properties of RasACT and NotchACT-driven

tumours are dependent upon JNK signalling, since blocking

Drosophila JNK (Basket (Bsk)), within either scrib2+RasACT or

scrib2+NotchACT tumours prevents tumour cell invasion [14,32,33].

The expression array of scrib2+ab tumours indicated that JNK

signalling was also likely to be active within these tumours, as

evidenced by the upregulation of known JNK-regulated genes

such as Matrix metalloproteinase 1 (Mmp1) and scarface (scaf) [32,34],

which were also identified as potential Ab targets (Class 1 and 2,

respectively). In addition, GO analysis of Class 1 and 2 targets of

Ab indicated a significant enrichment for genes within the

category of ‘‘locomotion’’ (6.67 E-12 in Class 1 and 2.72 E-07

in Class 2). In the scrib2+ab tumours these included wunen, wunen2

and Trapped in endoderm 1 (Tre1) that are known to promote germ

cell migration, and jing and PDGF- and VEGF-related factor 1 (Pvf1)

that are involved in border cell migration [reviewed in 35]. Thus,

the data suggested that Ab could directly contribute to the invasive

capability of scrib2+ab tumour cells by controlling the expression of

migration-associated genes, including JNK targets such as Mmp1.

Using the JNK pathway reporter, misshapen (msn)-lacZ [36], we

first determined whether JNK signalling was active in scrib2+ab

tumours. Indeed, although ab overexpressing clones alone did

not upregulate msn-lacZ expression (Figure 8A,B), the reporter

was strongly activated within scrib2+ab tumours, most notably

within basal portions of the tumour and in cells that appeared to

be migrating between the brain lobes, consistent with a role for

JNK in promoting invasion (Figure 8C,D). Immunohisto-

chemical analysis also indicated that the JNK target, Mmp1, was

ectopically expressed within scrib2+ab tumours (Figure 8E,F),

and, in agreement with the expression array, Mmp1 levels were

also slightly elevated in ab alone overexpressing clones

(Figure 8G). To next determine whether Ab was capable of

promoting invasion, independent of JNK signalling, we then

examined scrib2+ab tumours in which JNK signalling was

Figure 6. Yki is required for scrib2+ab tumour overgrowth. ey-FLP induced eye/antennal disc clones marked by GFP (white, or green in
merges). Elav, Dac and Eya are in white (blue in merged images, changing to dark blue when overlaid with GFP), and F-actin for cell morphology is in
red. Brain lobes are labeled BL. GFP (panels A–C,G,H), Elav (panels A9–C9), Dac (panel G9), Eya (panel H9) and merges (panels A0–C0,D,E,G0,H0). (A)
ykiRNAi-expressing clones. (B) Clones overexpressing ykiRNAi+ab are similar to ab overexpressing clones. (C–E) Expressing ykiRNAi in scrib1+ab tumours
does not restore Elav expression to the tumour cells (C, arrowhead), however, tumour overgrowth is substantially reduced (E, compared to scrib1+ab
tumours in D), and larvae pupate instead of entering an extended larval stage. (F) Quantification of percentage of scrib1+ab and scrib1+ab+ykiRNAi

tumour-bearing larvae that had pupated by 9 days AEL. (G,H) Expressing ykiRNAi in scrib1+ab tumours restores Dac expression in the clones (G,
arrowhead) but Eya levels remain reduced (H, arrowhead). Yellow scale bar = 50 mm.
doi:10.1371/journal.pgen.1003627.g006
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blocked, using a dominant negative JNK transgene (bskDN).

Strikingly, the expression of bskDN in scrib2+ab tumours

prevented the fusion of the discs to one another and to the

brain lobes, thus demonstrating a critical role for JNK in

mediating the invasive properties of the tumours (Figure 8H).

To confirm the benign nature of the overgrowths we used live

cell imaging to monitor the growth of the tumours over time.

The scrib2+ab tumour cells were highly motile with individual

cells moving rapidly into the brain (Movie S1). In contrast, the

scrib2+ab+bskDN tumours remained compact, despite their

massive growth throughout an extended larval stage of

development (Movie S2). Thus, although ab overexpression

may contribute to the invasive properties of the tumours by

promoting the expression of targets such as Mmp1, it is not

sufficient to promote tumour invasion in the absence of JNK

signalling. In this regard, ab-driven tumours resemble RasACT

and NotchACT-driven tumours, although, interestingly, express-

ing bskDN in RasACT and NotchACT tumours additionally

restores pupariation to the tumour-bearing larvae, thus curtail-

ing tumour overgrowth [14,32,33]. In contrast, the formation of

massive, albeit benign, scrib2+ab+bskDN tumours during an

extended larval stage, indicated that ab blocks pupariation and

promotes scrib2 tumour overgrowth, even in the absence of JNK

signalling.

Overview of cooperating pathways in scrib2+ab tumours
In summary, this comprehensive analysis has identified multiple

modes through which the overexpression of ab and loss of scrib

cooperate to promote the retention of a progenitor-like cell state

and the formation of invasive tumours (Figure 9). The

overexpression of ab modulates the expression of a significant

proportion of the genome to block differentiation, repress

ecdysone signalling (potentially through direct association with

the ecdysone receptor coactivator Tai), and promote cell survival

and proliferation; whilst loss of scrib induces aPKC-dependent Yki

activity to promote tumour overgrowth, and JNK signalling to

promote invasion. Indeed, deregulation of the Hippo pathway is

sufficient to cooperate with Ab and drive the formation of large,

albeit benign, tumours, although the deregulation of additional

pathways in scrib mutants may contribute to the complete

Figure 7. ab cooperates with impaired Hippo pathway signalling to drive tumour overgrowth. ey-FLP induced eye/antennal disc clones
marked by GFP (white, or green in merges). The cell fate markers Elav, Dac and Eya are shown in white (blue in merged images, changing to dark blue
when overlaid with GFP). F-actin for cell morphology is in red. GFP (panels A–H), Elav (panels A9–D9), Dac (panels E9F9), Eya (panels G9H9), and merges
(panels A0–H0). (A) wtsRNAi-expressing clones exhibit the normal pattern of Elav in the eye disc. (B) Coexpressing wtsRNAi+ab in clones decreases Elav
expression in some (B, arrowhead), but not all clones, and some larvae enter an extended larval stage, during which massive overgrowth of Elav-
negative tissue ensues (C). (D) Overexpressing wtsRNAi in scrib mutant clones increases scrib mutant clone size and reduces Elav expression, but does
not result in cooperative tumour overgrowth throughout an extended larval stage. (E) wtsX1 clones exhibit mildly reduced Dac levels in anterior
localised clonal tissue in the eye (E, arrowhead), and also reduced expression in the antennal disc. (F) In wtsX1+ab clones, overgrowing tissue within
the eye disc does not express Dac (F, arrowhead), although extensive ectopic Dac expression is observed throughout the antennal disc (F, arrow). (G)
Eya expression in wtsX1 clones is largely unperturbed. (H) wtsX1+ab clones overgrow in the eye disc, and do not express Eya (H, arrowhead), however,
occasional Eya positive tissue is sometimes observed within the antennal disc region (H, arrow). Yellow scale bar = 50 mm.
doi:10.1371/journal.pgen.1003627.g007
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spectrum of overgrowth and differentiation defects observed in

scrib2+ab tumours.

Discussion

In this study we show in Drosophila that; 1) the BTB-ZF

transcription factor Abrupt acts as a potent oncogene when

combined with the loss of scrib in the eye/antennal disc; 2)

scrib2+ab epithelial tumours are associated with an earlier

developmental state; 3) impaired Hippo signalling in scrib mutants

is a key factor in mediating cooperative overgrowth with ab
overexpression; and 4) ab can promote tumour overgrowth, but

not invasion, independently of JNK signalling. Abrupt thus joins a

growing list of BTB-ZF proteins with potent oncogenic potential,

including another Drosophila member of the family, Lola, which

cooperates with the ectopic expression of the Notch ligand, Delta,

to form metastatic tumours in Drosophila [37], as well as numerous

mammalian BTB-ZF proteins that are also implicated as human

oncogenes [reviewed in 38].

Underpinning the conclusions of this study is a description of

the transcriptional changes and potential direct targets of Ab in

scrib2+ab tumourigenesis. This has revealed a complex picture of

widespread transcriptional deregulation upon Ab overexpression,

and a multitude of potential Ab target genes. The in vivo binding

sequence for Ab is not known, however, the most highly enriched

motif from the ChIP-Seq has similarity to the binding sequence of

another BTB-ZF protein, Trl. Whether this reflects a predilection

for Ab to bind a similar recognition sequence as Trl, or whether

Ab competes or cooperates with Trl to regulate transcription, will

require further analysis. Interestingly, mammalian BTB-ZF

proteins can heterodimerise, and are also known to associate with

histone deacetylases (HDACs) or other corepressors to control of

cell fate through transcriptional repression [reviewed in 39]. It is

not known if Ab associates with HDACs, however, there was not a

clear bias in Ab targets for genes that were specifically

downregulated in the scrib2+ab tumour. Nevertheless, many of

the most notable Ab targets were repressed in the tumourigenic

state, and this included numerous Notch pathway targets and

ecdysone response genes, as well as a suite of transcription factors

responsible for orchestrating the differentiation of the eye and

antennal disc.

Figure 8. JNK signalling in scrib2+ab tumours is required for invasion, but not tumour overgrowth. ey-FLP induced eye/antennal disc
clones at 5 (A,B,E,G) and 7 days (C,D,F,H) AEL. Clones are marked by GFP (white, or green in merges), and JNK signalling is indicated by b-Gal
expression from the msn06946-lacZ enhancer trap or Mmp1 expression (white, and blue in the merges). Tissue morphology is shown by F-actin (red in
merges). Brain lobes in D,E,F,H are marked by BL. GFP (panels A–H), b-Gal (A9–D9), Mmp1 (E9–G9), F-actin (H9) and merges (A0–H0). (A) Control clones
show the normal pattern of msn-lacZ expression in the eye antennal disc. (B) Clones overexpressing ab do not alter the normal pattern of msn-lacZ
expression. (C,D) scrib1+ab clones show ectopic expression of msn-lacZ in some cells (C), including those that are fusing with the brain lobes (D). (E,F)
Mmp1 levels are elevated in scrib1+ab tumour cells migrating between the brain lobes (F, arrowhead), compared to control eye discs and brain lobes
(E). (G) Mmp1 levels are slightly elevated in some ab-expressing clones (G, arrowheads). (H) scrib1+ab+bskDN clones massively overgrow similar to
scrib1+ab tumours, however, the eye/antennal discs do not fuse with each other or with the brain lobes, and the tumour cells show no evidence of
invasive migration between the brain lobes. Yellow scale bar = 50 mm.
doi:10.1371/journal.pgen.1003627.g008
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Hormone signalling and developmental timing in
tumourigenesis

Repressed ecdysone response genes were enriched amongst

potential Ab targets, consistent with the known capacity of Ab to

directly associate with the steroid hormone receptor coactivator

Tai and repress the expression of ecdysone response genes in the

Drosophila ovary [20]. Indeed, we show that Tai is both required

for Ab to exert its oncogenic effect in the eye/antennal disc, and

sufficient when overexpressed to cooperate with scrib2 and

promote the formation of large tumours throughout an extended

larval stage. Thus, it is possible that Ab also associates with Tai in

its oncogenic role, although further work will be required to

determine if this is the case. The human homologue of Tai,

SRC3/AIB1, is also a transcriptional coactivator of steroid

hormone receptors and an oncogene [reviewed in 40], although

whether it associates with BTB-ZF proteins is not yet known.

The repression of multiple ecdysone-response genes within

scrib2+ab tumours is striking, yet whether this plays a cell

autonomous role in promoting tumour overgrowth is unclear.

However, the tumour-bearing larvae also fail to undergo an

ecdysone-induced pupariation response, and this non-cell auton-

omous block in organismal development functions to extend the

time frame available for continual tumour overgrowth. Indeed, an

extended larval stage is a phenotype elicited by both neoplastic

tumour overgrowth [41] and tissue damage [42], whereby it

functions to give time for tissue regeneration before initiating

pupariation. A key factor in mediating this delay is Drosophila

insulin-like peptide 8 (Dilp8), which is secreted from tumours or

damaged tissues, and acts as a diffusible signal to repress the

biosynthesis of ecdysone [43,44]. dilp8 expression can be induced

by JNK signalling [43], which is consistent with previous studies

indicating that JNK signalling within scrib2+RasACT and scrib2+-
NotchACT tumours is essential for the failure of the tumour-bearing

larvae to pupate [14,32,33]. In contrast, we show here that ab-

driven tumour overgrowth throughout an extended larval stage

does not require JNK signalling. Possibly this reflects a capacity of

Ab to directly or indirectly regulate dilp8 expression, independent

of JNK. Indeed, the expression array indicated that dilp8 was

upregulated in both ab-expressing eye/antennal discs, and in

scrib2+ab tumours, although the ChIP analysis indicated that dilp8

was only associated with Ab peaks in the ab alone expressing

sample (Class 6). Why ab-expressing larvae pupate (unlike

scrib2+ab larvae), despite the elevated levels of dilp8 expression,

remains to be determined. Interestingly, known endogenous

functions of Ab are also associated with regulating the timing of

Figure 9. Model illustrating the pathways involved in scrib2+ab cooperative tumour overgrowth. Ab cooperates with the loss of scrib to
form invasive tumours through modulating the expression of multiple genes involved in all aspects of tumour formation. Potential targets of Ab
include genes involved with blocking apoptosis and promoting tumour overgrowth (eg. hid, Buffy, ft, dm, Pten), genes required for eye/antennal disc
differentiation (eg. ct, dac, eya, dan), genes involved in promoting cell invasion (eg. Mmp1), and genes involved in the ecdysone-induced pupariation
response (eg. Blimp-1, br, Eip75E, Hr39). Whilst not shown on the figure, the steroid hormone receptor coactivator Tai is both required for ab-driven
tumour overgrowth and sufficient to cooperate with the loss of scrib, consistent with the possibility that Ab acts in concert with Tai to drive tumour
formation. Loss of scrib activates JNK-mediated apoptosis, however, ab overexpression abrogates the apoptotic response, thereby unmasking a key
role for JNK in promoting tumour cell migration and invasion through the expression of JNK-induced genes such as Mmp1. Loss of scrib also
promotes aPKC-dependent Yki activity that is required and sufficient to cooperate with Ab by impairing differentiation and promoting tumour
overgrowth. Other pathways deregulated in scribmutants may participate in the tumour phenotype and promote the full spectrum of differentiation
defects seen in scrib2+ab tumours (indicated by the dotted blocking arrow and question mark), such as Dac repression in the antenna.
Green= downregulated genes, and red= upregulated genes.
doi:10.1371/journal.pgen.1003627.g009
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hormone-induced developmental transitions, including the cor-

rect timing of border cell migration in the Drosophila ovary [20],

and neuromuscular junction formation during metamorphosis

[45]. In both contexts, and similar to its oncogenic role, Ab

expression is associated with earlier developmental states, and its

ectopic expression can inhibit temporal progression towards

differentiation.

The role of Ab in mediating impaired differentiation
during tumourigenesis
The cells of the adult eye are derived from progenitor cells

within the 3rd instar eye disc that are characterised by the

expression of a number of transcription factors including Hth,

Tsh, Ey, ElB and Noc. The endogenous expression of Ab overlaps

with Hth, and both Hth and Ab are downregulated prior to the

downregulation of Tsh, Ey, ElB and Noc, and coincident with the

upregulation of Dac, Eya, So and Dan. In ab-driven tumours, the

expression of dac, eya and dan was blocked, as were other

downstream posteriorly-expressed differentiation markers (ato,

Elav, sens), thereby maintaining cells within an earlier progenitor-

like state. The expression array also indicated that elB and noc were

repressed in ab-driven tumours, and although these genes are

normally expressed within the progenitor region, elB and noc

mutants promote overgrowth of Hth-positive progenitor cells [46].

As the ChIP analysis indicated that Ab binding was associated with

many of these genes, including eya, dac, dan, elB and noc, we suggest

that Ab may promote the maintenance of a progenitor-like state by

directly repressing many of these differentiation-promoting genes,

although further work will be required to verify this hypothesis.

Interestingly, the failure to transition to Eya, Dac and Dan

expression and the maintenance of a progenitor-like state may be

sufficient to promote over-proliferation of tumour cells in the eye

disc, since not only is loss of elB and noc associated with over-

proliferation of progenitor cells, but also loss of eya promotes tissue

overgrowth in the eye, although this is eventually restrained

through the induction of cell death [47,48], and the ectopic

expression of hth and tsh can block eya and dac expression and also

promote eye disc overgrowth [49]. Ab, however, appears capable

of maintaining eye disc tumour overgrowth independent of both

hth and tsh, since Hth and Tsh levels are repressed in the

posteriorly localised tumour cells, and ab overexpression can

promote overgrowth of eye disc tumour tissue, even in the absence

of hth. Thus, whilst the repression of multiple differentiation-

promoting genes in ab-driven eye disc tumours might cooperate to

elicit a default over-proliferative progenitor-like state, this state

does not appear to be defined by simply maintaining the

expression of the known progenitor state factors, Hth and Tsh.

Progenitor cells in the antennal disc are not as well defined as in

the eye disc. However, overgrowing tumour tissue in the antennal

region was characterised by the expression of Dll and Hth, whilst

all other cell fate markers examined were repressed in the tumour,

including Ct, Dan, Bab2, Ato and Sens. A number of other

antennal cell fate markers, although not examined by immuno-

histochemistry, were also identified from the expression array as

significantly repressed within the tumour including aristaless (al),

brother of odd with entrails limited (bowl), danr, salm and ss. Although the

3rd instar antennal disc, unlike the eye disc, does not present itself

as a spectrum of early to late cell fate states marked by the

expression of different transcription factors, significant detail is

known concerning the temporal development of the appendage

from the embryonic stage onwards. The expression of hth and dll,

defining the proximal and distal domains respectively, are one of

the first divisions to be established in the developing appendage.

Neither are required for each others expression [50], however, the

expression of most other cell fate regulators that define the

elaboration of the appendage along the proximodistal axis are

dependent upon either or both of their activities [7,9,51–53].

Thus, in scrib2+ab tumours, the expression of cell fate markers

downstream of dll and hth are repressed resulting in the overgrowth

of antennal primordia tissue that has a defined proximo-distal axis

that fails to transition towards a further differentiated state. In this

regard, the tissue becomes indistinguishable from the develop-

mentally related leg appendages in their early state. Indeed, within

the tumours, most of the Dll-positive tissue does not express Hth,

making the tumour tissue more characteristic of a leg-like, as

opposed to an antennal-like, state. Consistent with this, the two

HOX genes Antp, a repressor of hth [25], and lab were ectopically

expressed within the tumours, and both are capable of transform-

ing the antennae to a leg-like fate [54]. We propose that similar to

the eye disc, this alteration in cell fate and block in expression of

downstream cell fate regulators is directly mediated by Ab, since

Ab binding was associated with most of the downstream genes.

Whether this block is sufficient for tumour cells to be maintained

within a proliferative state is not yet known. However, as in the eye

disc, it is possible that multiple mechanisms cooperate to promote

the full spectrum of tumour overgrowth. Furthermore, both ab

overexpression and loss of bowl (which was repressed in the

tumours) can induce the development of ectopic antennae within

the eye/antennal disc [19], and whilst the cause of these

phenomena is not yet clear, the eye/antennal disc is derived from

the fusion of multiple segments, and it has been suggested that

ectopic appendages might arise from reawakened appendage

primordia that have been cryptically retained within the composite

tissue [55]. Thus it is possible that within ab-driven tumours,

multiple segmental appendage primordia could be contributing to

tumour overgrowth.

In summary, parallels emerge between scrib2+ab tumour

overgrowth in the eye and antennal disc, in that both are

characterised by the maintenance of an earlier developmental state

downstream of Hth but upstream of Dac. However, neither Hth

activity, nor the downregulation of dac, appear to be essential for

tumour overgrowth, thus indicating that further work is required

to identify what key transcription factors define the progenitor-like

state in ab-driven tumours. As many of the eye/antennal disc

transcription factors targeted by Ab have human orthologues that

are also implicated in cell fate regulation, organogenesis and

tumourigenesis (eg. Hth (MEIS family), Dac (DACH family), Eya

(EYA family), Dll (DLX family)), it is likely that this work will

promote a deeper understanding of how cell fate control also

influences the formation of human cancers.

The role of the Hippo pathway in maintaining the
progenitor-like state
The proliferation of progenitor cells within the eye disc is yki

dependent [11], and although the requirement for Yki activity in

antennal disc cells has not been examined, yki is required for

scrib2+ab tumour overgrowth in both the eye and antennal disc.

The requirement for Yki in scrib2+ab tumours could solely reflect a

basal need for Yki activity in progenitor cell proliferation,

however, loss of scrib impairs Hippo pathway signalling [31], and

we show here that blocking Hippo signalling is sufficient to

cooperate with ab and sustain massive tumour overgrowth.

Furthermore, the expression array indicated that ab overexpres-

sion may also deregulate the Hippo pathway, as can the BTB-ZF

protein Trl [56], which is known to directly associate with Yki

[57]. Interestingly, the mode of Hippo pathway deregulation

induced by the overexpression of ab is likely to be different to that
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induced by the loss of scrib. The Yki targets activated in scrib

mutants include CycE, DIAP1, fj-lacZ and ex-lacZ [12,31],

however, ab overexpression upregulated the Yki targets dm (Myc)

and ex, but both th (DIAP1) and fj-lacZ (data not shown) were

mildly repressed. As both fj and th are also targets of the JAK/

STAT pathway [58,59], Ab may additionally function to repress

JAK/STAT signalling, as does another Drosophila BTB-ZF protein,

Ken and barbie (Ken) [60]. Increasing complexity is being

recognised in the variety of transcriptional outputs of the Hippo

pathway. In the progenitor domain, Yki associates with Hth and

Tsh, and instead of promoting th expression, it drives expression of

the pro-survival micro-RNA bantam, which represses translation of

the cell death inducer hid (W) [11]. A similar capacity could be

shared by ab overexpression, and potentially it might be the

bringing together of two different modes of Hippo pathway

deregulation (both scrib mutant and ab overexpression dependent)

that makes the combining of these two oncogenic forces so potent.

Although loss of wts was sufficient to cooperate with ab and

promote massive overgrowth of undifferentiated tissue, it was not

sufficient to reproduce the entire spectrum of defects in scrib2+ab

tumours. The non-invasive nature of wts2+ab tumours is likely to

reflect the lack of JNK pathway activity and/or the maintenance

of epithelial cell polarity within the tumours. However, whether

these additional defects also account for the differences in

expression of cell fate regulators is not clear. Whilst overgrowth

of wts2+ab tumours was characterised by the failure to express Eya

and Dan, Dac was ectopically expressed within the antennal

tumours. Interestingly, Dac defines the medial domain of the

appendage and is one of the first markers to be expressed

downstream of Hth and Dll. Thus it may be the least refractory to

inhibition, relative to slightly later acting cell fate regulators. This

contrasts with the eye disc in which knockdown of yki in scrib2+ab

tumours restored Dac expression, but not Eya or Elav. Whilst this

could indicate that, unlike the antennal disc, Dac alone is

repressed by Yki activity in the eye, an alternative explanation

could be that in both the antennal and eye discs Dac repression

requires substantially higher levels of Yki activity than repression

of the other cell fate markers. This might make Dac particularly

susceptible to restoration when yki is knocked down in the

tumours, and conversely, only subject to repression in scrib2+ab

tumours when Yki activity is especially high.

Even though Hippo pathway mutants are not usually associated

with a failure to differentiate, the potential for the Hippo pathway

to elicit effects upon cell fate is not without precedence. Impaired

Hippo signalling can synergise with loss of Drosophila Retinoblas-

toma gene (rbf) to cause dedifferentiation of photoreceptor cells in

the eye disc, independent of effects on cell proliferation [61]; and

in the larval brain Yki overexpression can delay differentiation of

the neuroepithelia and promote overgrowth of the progenitor cells,

although in this case the effects are likely to be a consequence of

accelerated cell cycle progression [62]. However, most pertinent to

this study, Yki overexpression throughout the eye disc is sufficient

to block Eya expression and expand Hth expression [63].

Interestingly, these effects upon Hth levels were specifically linked

to exceptionally high Yki activity, since it could not be reproduced

by knockdown of wts alone, but only by combining wts knockdown

with additional loss of ft and ex [63]. Thus, additive effects that

escalate Yki activity elicit qualitatively different effects, and this is

likely to be relevant to both our own analysis of ab-driven tumours,

as well as more generally to understanding how cooperating

pathways synergise to drive tumourigenesis.

Parallels to mammalian BTB-ZF transcription factors
There are over 40 human BTB-ZF family members, many of

which are implicated in both haematopoietic and epithelial

cancers, where they act as oncogenes (e.g. BCL6, ZBTB7) or

tumour suppressors (e.g. PLZF, HIC1) [reviewed in 38]. They are

key regulators of cell fate, most notably within the immune system

[reviewed in 64], and a number of studies are also consistent with

roles in regulating self-renewal and differentiation. A specific

orthologue of ab is difficult to ascertain because of the low

sequence conservation between Drosophila and mammalian family

members, although ZFP161 exhibits the greatest amino acid

sequence similarity. ZFP161 is not known to exert oncogenic

activity within humans, and indeed its expression in some tumours

is more consistent with a potential tumour suppressor role [65],

however, Bcl6, one of the best-characterised mammalian onco-

genic family members, offers striking parallels to the function of

Ab. Mainly implicated in lymphomas, Bcl6 expression is also

associated with epithelial cancers, and can promote self-renewal

and repress differentiation of both B cells [66] and mammary

epithelia [67]. A key oncogenic target of Bcl6-mediated repression

in lymphomas is blimp-1, and the two proteins antagonise each

other’s expression to regulate lymphocyte differentiation [reviewed

in 68]. Importantly, Drosophila Blimp-1 is induced by ecdysone [69],

and was also identified as an Ab target, being one of the most

highly repressed genes within the tumour. Bcl6 can also repress

Notch signalling in Xenopus [70], similar to the repression of Notch

targets by Ab in Drosophila. Although it is not yet known whether

Bcl6 associates with the Tai orthologue, the activity of other BTB-

ZF proteins are linked with various nuclear hormone receptors

and their corepressors including NCoR and SMRT, suggesting

that integration with hormone signalling pathways is a feature

shared by mammalian family members. Overall, our identification

of ab as an oncogene that cooperates with scrib loss of function in

tumourigenesis, and analysis of cooperating pathways in Drosophila

tumours, have uncovered striking parallels to mammalian

tumourigenesis. It highlights the potent oncogenic potential of

this class of proteins, supports prevailing views of the importance

of impaired differentiation of progenitor cells as key drivers of

neoplastic overgrowth, and raises the possibility that mammalian

regulators of epithelial cell polarity could also act as important

restraints upon the oncogenic potential of the BTB-ZF family of

proteins.

Materials and Methods

Drosophila stocks
The following Drosophila stocks were used: ey-FLP1,UAS-mCD8-

GFP;;Tub-GAL4,FRT82B,Tub-GAL80 [71]; y,w,hs-FLP;

FRT82B,Ubi-GFP; UAS-ab55 [72]; UAS-ab79 [72]; FRT40A,ab1D

[17]; UAS-bskDN [73]; UAS-chn [74]; UAS-DaPKCCAAXDN [75]; UAS-

dac [76]; UAS-dl [77]; UAS-esg [78]; E(spl)m8 2.61-lacZ [79]; UAS-

hth [27]; hthP2 [80]; msn06946 (msn-lacZ) [81]; UAS-numb-GFP [82];

FRT82B,scrib1 [83]; UAS-taiFL [84]; UAS-TaiDB [20]; UAS-taiRNAi

(VDRC #15709); UAS-tdf (also known as apt) [85]; wtsX1 [86];

UAS-wtsRNAi (NIG #12072R-1); UAS-ykiRNAi [87].

Mosaic analysis
Clonal analysis utilised MARCM (mosaic analysis with repress-

ible cell marker) [88] with FRT82B and ey-FLP1 to induce clones

and mCD8-GFP expression to mark mutant tissue. All fly crosses

were carried out at 25uC and grown on standard fly media.
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F3 screen for cooperating oncogenes
A random selection of GS(mini-w+) insertions on the second

chromosome (obtained from the NIG stock centre in Kyoto),

carrying GAL4 sites to overexpress flanking genes, were screened

for their oncogenic potential by initially crossing to w2;;TM3/

TM6B flies. Male progeny of the genotype w2;+/GS(mini-w+);+/

TM6B were then selected to cross to virgin w2;+/CyO;FRT82B,-

scrib1/TM3,Sb flies. From their progeny, w2;GS(mini-w+)/Cy-

O;FRT82B,scrib1/TM6B male flies were then crossed to ey-

FLP1,UAS-mCD8.GFP;;tub-GAL4,FRT82B,tub-GAL80/TM6B vir-

gins to generate progeny containing scrib1 eye disc clones

overexpressing the gene(s) downstream of the UAS sites and

flanking the GS insertion point. The adult flies (at least 50) of the

resulting progeny were examined to determine whether the

expression of the GS line in scrib1 clones was lethal, or whether it

enhanced the scrib1 mosaic adult eye phenotype in the non-TM6B

progeny. Any crosses exhibiting lethality were then examined

under fluorescent light to determine whether the non-TM6B

progeny exhibited GFP-positive tumour overgrowth or a failure to

pupate. The insertion point and over-expressed genes of any

identified GS lines was obtained by referring to the Drosophila Gene

Search Project web site (http://kyotofly.kit.jp/stocks/documents/

GS_lines.html).

Immunohistochemistry
Imaginal discs were dissected in phosphate-buffered saline (PBS)

from either wandering 3rd instar larvae or from staged lays for

larvae of genotypes that failed to pupate and entered an extended

larval stage of development. Tissues were fixed in 4% formalde-

hyde in PBS, and blocked in 2% goat serum in PBT (PBS 0.1%

Triton X-100). For the detection of S phase cells, EdU labelling

was performed for 30 min at room temperature according to the

manufacturers protocol (Invitrogen). TUNEL assays were per-

formed as described in the manufacturers protocol (Roche Applied

Science). Primary antibodies were incubated with the samples in

block overnight at 4uC, and were used at the following

concentrations; rabbit anti-Ab (S. Crews [17], 1/200), rabbit

anti-Ato ([89], 1/1000), rat anti-Bab2 ([90], 1/1000), mouse anti-

b-galactosidase (Rockland, 1/400), mouse anti-Br-core (Develop-

mental Studies Hybridoma Bank (DSHB), 1/200), mouse anti-Ct

(DSHB, 1/100), mouse anti-Dac (DSHB, 1/10), rat anti-Dan ([9],

1/300), mouse anti-DIAP1 (B. Hay, 1/100), mouse anti-Dll ([8],

1/500), mouse anti-Elav (DSHB, 1/20), mouse anti-Ey ([91], 1/

20), mouse anti-Eya (DSHB, 1/20), rabbit anti-GFP (Invitrogen,

1/1000), guinea pig anti-Hth ([92], 1/100), mouse anti-Mmp1

(DSHB, 1/20), guinea pig anti-Sens ([93], 1/1000), rabbit anti-Tai

([84], 1/500), rabbit anti-Tsh ([94], 1/2000). Secondary antibod-

ies used were; anti-mouse/rat Alexa647 (Invitrogen) and anti-

rabbit Alexa488 (Invitrogen) at 1/400 dilution. F-actin was

detected with phalloidin–tetramethylrhodamine isothioblueate

(TRITC; Sigma, 0.3 mM, 1/1000). Samples were mounted in

80% glycerol.

Microscopy and image processing
All samples were analysed by confocal microscopy on an

Olympus FV1000 or Leica TCS SP5 microscope. Single optical

sections were selected in FluoView software before being processed

in Adobe Photoshop CS2 and assembled into figures in Adobe

Illustrator CS2.

Expression array, ChIP-Seq and bioinformatic analysis
Eye/antennal discs were dissected from ,5 day old larvae

bearing ab-expressing clones, scrib1+ab-expressing clones, or

FRT82B control clones. For the expression array, 20 pairs of

discs for the ab and scrib2+ab samples, and 50 pairs of discs for

the control FRT82B genotype, were used to prepare RNA.

Samples were prepared in triplicate, and the RNA isolated using

TRIZOL, before being column purified (Qiagen). Probes were

hybridised to GeneChip Drosophila 2.0 Genome Arrays

(Affymetrix).

For ChIP-Seq, eye/antennal discs were dissected and samples

cross-linked in a 1.8% formaldehyde solution on a rotating wheel

for 5 mins, prior to DNA being sheared by sonication (15 cycles of

20 seconds, 35% amplitude) to produce fragments of ,500 bp

[95]. 100 ml of extract (corresponding to ,100 discs) was used for

each immunoprecipitation. 35 ml of 50% Protein A-Sepharose

CL4B was added to each sample, and cleared after 1.5 hours

incubation. 2 ml of polyclonal rabbit anti-Abrupt antibody [17]

was then added per sample (or, for the input DNA controls, no

antibody was added), and incubated overnight with rotation.

Immunocomplexes were recovered by adding 35 ml Protein A-

Sepharose to each sample, incubating for 3 hours at 4uC, and then

harvesting by centrifugation. Chromatin was decrosslinked by

RNase and Proteinase K incubations, and the DNA column

purified (Qiagen). For each sequencing sample, 3 to 6 immuno-

precipitations were pooled.

High throughput sequencing was performed for the ChIP-Seq

from the ab-expressing (8,643,591 reads) and scrib2+ab (8,508,640

reads) samples. ChIP-Seq reads in all cases were aligned to the

Drosophila genome (dm3 genome assembly, BDGP Release 5)

using Bowtie with default parameters [96]. Correlation between

ChIP-Seq experiments was computed with UCSC Table browser

[97]. We used PeakSeq [98] to identify the regions significantly

enriched on ChIP-Seq reads from each sample in comparison to

the normalised input control (READLENGTH=40, MAX-

GAP=40, MINFDR=0.01 and PVALTHRESH=0.0001).

The resulting read maps and target lists were visualised as

custom tracks in the University of California Santa Cruz (UCSC)

Genome Browser [97]. Using RefSeq [99], potential Ab target

genes in each ChIP-Seq experiment were identified by the

presence of significant peaks either within the promoter region

(from the transcriptional start sites to 500 bp upstream) or within

the introns of each gene. Expression arrays, ChIP-Seq profiles

and target regions were deposited in the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) repository as CEL, wiggle (WIG) and Browser Extensible

Data (BED) files, respectively, under the accession numbers

GSE42938 (expression arrays) and GSE42928 (ChIP-Seq profiles

and target regions). Gene Ontology (GO) enrichments were

identified with the ‘‘GO Term Enrichment’’ v1.8 from AmiGo.

To annotate the list of putative transcription factor binding sites

on each set of ChIP-Seq binding regions (ab and scrib2+ab), we

used the MatScan program [100] with the full collection of 827

predictive matrices available in Jaspar and Transfac [101,102].

We ranked each matrix on the basis of the number of hits in both

experiments, normalizing with the total size for each set of

sequences and the number of occurrences identified in the whole

genome. To build the list of overrepresented matrices, we selected

those models that presented a difference in each ranking of at

least 200 positions and a positive normalised fold-change value.

To identify a potential DNA recognition sequence for Ab binding

we focussed upon peaks with a height of 40 or more reads from

the ChIP-Seq profile of the ab overexpression experiment

(irrespective of its genomic location), and used MEME [103] to

identify enriched motifs. Potential transcription factors capable of

recognizing enriched motifs were identified using the TOMTOM

program (MEME suite).
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Quantitative RT-PCR
Total RNA for each genotype was prepared in replicates using

TRIZOL and column purification (Qiagen). After cDNA synthe-

sis, qRT-PCR on each replicate was assayed in triplicate using

StepOnePlus Real Time PCR System (Applied Biosystems). For

the expression array validations, we were unable to use standard

house keeping mRNAs to normalise the results since many, such as

actin and GAPDH, were changed in the expression profiling.

Instead, the expression levels were normalised with respect to

CG6044, which is expressed in the eye/antennal disc but was not

significantly deregulated in the expression arrays, and the average

for the triplicates determined. The following primers were used:

Blimp-1, forward TTGCGACAAGAAGTACATCAG, reverse

GATGGTCTTTATCCAAACACTC; bab2, forward CAAGTT-

CGACATACCCATTCC, reverse GATATAGGTACCATGAC-

CCTG; CG6044, forward ACTCAGCTTCCTCTACTTCC,

reverse CGCAATACTAAAGCAATCACAC; Eip78C, forward

CTAATAAAGCTGGGCTTCTTCG, reverse GTTGACAAA-

GTCAGAATCGTAGAG; fru, forward TCAGATACTCAGA-

GATGCGA, reverse TGTTGTTATCTGTGAGACCA; H15,

forward GTGACTTTGATAGGGATCCCA, reverse AG-

GAGTCAATTGGGACATCAG. The fold changes for each

sample were determined using the 2(2Delta Delta C(T)) method

[104].

For the ChIP validation of a selection of representative genes,

chromatin was immunoprecipitated with the Ab antibody from ab

and scrib2+ab samples (as described above), and then used for

quantitative real-time PCR, with rabbit IgG immunoprecipitation

as a control. Primers were designed around peak regions identified

from ChIP-Seq analysis by using PerlPrimer application. The

following primers were used: Antp, forward AGGATCACC-

TATTTAACTGGAC, reverse ATGTACGTGGCATACTTT-

CAG; Blimp-1, forward CAAGAACCTGAGACACCTGA, re-

verse CAAGAACCTGAGACACCTGA; br, forward ACAC-

ATTCGCAACCAACAAT, reverse CCCTTCCAGTACCC-

TACTCT; Buffy, forward GGGATACATTCACCTTATATG-

CAC, reverse ACCGAAGTTGAAGTAAGCGA; chinmo, forward

CATCTTCAACTTCCTTGCTAA, reverse TGAATACGAAA-

TTGAGCGAA; eya, forward CACAGACAACACTCGAAT-

CAG, reverse GCAGCAGAAGAGACAAAGAG; fru, forward

GCTCTTCCATTATCGTTCTC, reverse TATACATGTGAA-

TAGGGCAAG: ftz-f1, forward AGAGATACGAGTATCCGA-

GTG, reverse GACATGCACATACATATAGACGG; HLHmb,

forward CCTCCCTCCTTATGTATGTG, reverse GCACAAT-

CAGAAGAAGTCAG; Mmp1, forward GGATAAGTGCCTAT-

TACTAGCTG, reverse GAATAGCTTATTAGCACGGGTC.

Supporting Information

Dataset S1 Lists of differentially expressed probe sets, identified

ChIP-Seq target genes, and genes within Classes 1 to 6. Sheet 1.

Probe sets deregulated in ab and scrib1+ab mosaic discs (compared

to control FRT82B discs). Out of 18952 probe sets, 4239 were

differentially expressed (log base 2 fold change (logFC) .1,

adjusted p value,0.05) within ab and scrib1+ab mosaic discs. In ab-

expressing discs, 3028 probe sets were deregulated, comprising

705 probe sets (pattern 3) unique to ab-expressing discs and 2323

probe sets (pattern 4) shared with scrib1+ab discs. In scrib1+ab

mosaic discs, 3534 probe sets were deregulated, comprising 1211

unique to scrib1+ab (pattern 2), together with the 2323 shared

probe sets. 14713 probe sets (pattern 1) were not significantly

deregulated in either genotype. Sheet 2. Genes identified from

ChIP-Seq peak enrichments from ab and scrib1+ab mosaic discs.

557 genes (pattern 2) were unique to ab; 721 genes (pattern 3) were

unique to scrib1+ab; and 2025 genes (pattern 1) were shared by ab

and scrib1+ab samples. Sheets 3–8. Gene lists of classes 1–6 (see

Figure 2C for a Venn diagram depicting the different classes).

(XLS)

Dataset S2 List of the 183 differentially expressed genes in ab or

scrib2+ab mosaic eye discs compared to control discs, that are

represented by more than one probe set. Of the 3549 annotated

genes deregulated in ab and scrib1+ab mosaic eye discs, 183 were

represented by more than one probe set. Individual probe sets

showing upregulation or downregulation (log base 2 fold change

.1, adjusted p value ,0.05) in either ab or scrib1+ab mosaic eye

discs compared to control FRT82B discs are indicated by ‘‘+1’’ or

‘‘21’’ respectively. A ‘‘0’’ indicates no significant deregulation.

The 59 genes that are represented by probes with conflicting

expression (i.e. with probe sets showing opposite regulation in a

particular genotype) are shown in red. The reasons for conflicting

expression are not known, but could indicate the existence of more

than one differentially regulated transcript.

(PDF)

Dataset S3 GO enrichments (p,0.01) for differentially ex-

pressed genes, ChIP-Seq candidate genes and Classes 1, 2 and 5.

Sheets 1–3. GO enrichments for differentially expressed genes

unique to ab overexpression (‘‘Abrupt Not Scrib’’), unique to

scrib1+ab (‘‘Scrib Not Abrupt’’), and shared between the two

samples (‘‘Abrupt and Scrib’’). For the analysis, deregulated genes

were identified from probe sets that could be assigned FlyBase

Gene IDs. For genes with multiple deregulated probe sets, each

FlyBase Gene ID was used only once per enrichment analysis.

Sheets 3–6. GO enrichments for potential Ab target genes,

identified by ChIP-Seq, unique to ab overexpression (‘‘Abrupt Not

Scrib’’), unique to scrib1+ab (Scrib Not Abrupt’’), and shared

between the two samples (‘‘Abrupt and Scrib’’). Sheets 7–9. GO

enrichments for genes within Classes 1, 2 and 5 (see Figure 2C

for a Venn diagram depicting the different classes). Classes 3, 4

and 6 exhibited no significant GO enrichments.

(XLS)

Dataset S4 ChIP-Seq peaks aligned to the genome for selected

genes within Classes 1 to 4. Only genes depicted in Figure 2E are

shown. Genes are in alphabetical order, and highlight bars

beneath the peak landscape indicate significant peaks in each

genotype.

(PDF)

Figure S1 Overexpression phenotypes of confirmed scrib2

interactors in eye/antennal disc clones. Mosaic eye/antennal discs

(anterior to the left in this and all subsequent figures) generated

with ey-FLP and taken from larvae ,5 days AEL. Clones are

positively marked by GFP (white, or green in merges), tissue

morphology is shown by F-actin (red in merges), and cell fate by

Elav expression (white or pale blue, changing to magenta or dark

blue when overlaid with GFP). GFP (panels A–J), GFP/Elav

merges (panels A9,B0,C9,D0,E9,F0,G9,H0,I9J0), F-actin

(B9,D9,F9,H9,J9) and GFP/Elav/F-actin merges (panels

A0,B09,C0,D09,E0,F09,G0,H09,I0J09). (A,B) dl-expressing clones and

mosaic discs are overgrown, especially within the antennal region

(A). The expression of dl in scrib1 clones also promotes overgrowth

within the antennal region, and in the eye disc, clonal tissue also

overgrows and does not express Elav (B). (C,D) esg-expressing

clones are not overgrown (C), however, the expression of esg in

scrib1 clones promotes large overgrowths especially within the

antennal region (D). (E,F) chn-expressing clones are not overgrown

(E), however, the expression of chn in scrib1 clones promotes

antennal disc overgrowth, as well as overgrowth of eye disc tissue
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that does not express Elav (F, arrow). (G,H) apt-expressing clones

are not overgrown (G), however, the expression of apt in scrib1

clones promotes mild clonal overgrowth although differentiation is

not completely blocked (H). (I,J) Neither numb-expressing clones (I),

nor scrib1 clones expressing numb, are overgrown (J). Yellow scale

bar = 50 mm.

(JPG)

Figure S2 Proliferation and apoptosis in scrib2+ab tumours. ey-

FLP induced eye/antennal disc clones marked by GFP (green).

EdU (A–C) labeling is white (and magenta when overlayed with

GFP in merged images), and TUNEL (D–F) is white (red in

merged images, and appears yellow when overlayed with GFP in

merged images). Arrowheads in A,B indicate the second mitotic

wave. EdU (panel C), GFP/EdU merges (panels A,B,C9), GFP/

TUNEL merges (panel D,E,F9), and TUNEL (panel F). (A,D) Wild

type mosaic discs show the normal pattern of cell proliferation (A)

and cell death (D). (B,E) ab overexpressing eye disc clones do not

ectopically proliferate (B), but induce increased cell death in wild

type cells along the clonal borders (E). (C,F) scrib1+ab clones

ectopically proliferate, and disrupt the normal pattern of cell

proliferation in the eye disc (C), and induce increased cell death in

surrounding wild type tissue (F, arrowhead). Yellow scale

bar = 50 mm.

(JPG)

Figure S3 Validation of the expression array by quantitative

real-time PCR of selected genes. Expression levels, as determined

by quantitative real-time PCR (see Materials and Methods), are

shown for 5 genes (Eip78C, bab2, H15, Blimp-1, fru) in ab-expressing

discs and in scrib1+ab discs, compared to the expression level in

control discs containing wild type FRT82B clones (assigned an

expression level of 1). The expression levels of CG6044, a gene that

is expressed in the eye/antennal disc but did not significantly

change in expression across the arrays, were used for normalisa-

tion. All five genes confirm the results from the expression array,

with Eip78C, bab2, H15 and Blimp-1 being repressed in ab-

expressing discs, and even further repressed in scrib1+ab tumours,

whilst fru expression is increased upon ab overexpression, and even

further increased in scrib1+ab tumours. ANOVA was performed for

each primer pair; * p,0.01, ** p,0.001, *** p,0.0001 compared

to the FRT82B control (n = 3). The changes in expression between

ab and scrib2+ab samples were also all highly significant

(p,0.0001). Error bars indicate 1 s.d.

(JPG)

Figure S4 The Ab antibody shows high specificity. Mosaic eye/

antennal disc clones generated with ey-FLP. Clones are positively

marked by GFP (white or green in merges), and Ab protein levels

are shown in white (magenta when overlaid with GFP in the

merges). Ab (panels A,B), GFP (panel A9B9) and merges (panels

A0,B0). Tissue morphology in B is shown by F-actin (white, panel

B09). (A) Ab is endogenously expressed in the antennal disc, the

anterior portion of the eye disc and the peripodial membrane,

except in ab1D mutant clones, which show greatly reduced levels of

Ab. (B) Clones of tissue overexpressing ab show greatly elevated

levels of Ab protein. Yellow scale bar = 50 mm.

(JPG)

Figure S5 ChIP validation for selected representative genes.

Chromatin was immunoprecipitated with the Ab antibody from ab

and scrib2+ab mosaic eye/antennal discs, and then used for

quantitative real-time PCR. Fold enrichment for all target genes

was determined compared to rabbit IgG control immunoprecip-

itations, which were assigned an expression level of 1 (represented

by the line on the graph). Representative genes were included from

most functional categories; ecdysone response (Blimp-1, ftz-F1),

BTB-ZF (br, chinmo, fru), cell fate (Antp, eya), Notch signalling

(HLHmb), cell death/survival (Buffy) and JNK signaling (Mmp1).

Enrichment of all genes was observed in the Ab antibody

immunoprecipitation compared to the IgG control from ab and

scrib2+ab mosaic eye/antennal imaginal discs. T-test comparing

each Ab immunoprecipitation to the IgG control; * p,0.01,

** p,0.001, *** p,0.0001 (n= 3 for both Ab immunoprecipita-

tion and the IgG control). Error bars indicate 1 s.d.

(JPG)

Figure S6 Enriched sequence motifs amongst the top peaks from

the ab alone overexpression sample. The strongest peaks were

selected with a height of 40 or more reads from the ChIP-Seq

profile, resulting in 1629 regions with an average length of

84.8 bp. Enriched motifs were identified using MEME, and

potential transcription factors capable of recognizing the enriched

motifs were identified using the TOMTOM program (MEME

suite).

(JPG)

Figure S7 Br is repressed in ab-expressing cells. Mosaic eye/

antennal disc clones generated with ey-FLP. Clones are positively

marked by GFP (white, or green in merges), and tissue

morphology is shown by F-actin (white). Br levels are shown in

white (magenta when overlaid with GFP in the merges). GFP

(panels A–C), F-actin (panels A9–C9), Br (panels A0–C0), and

merges (panels A09–C09). (A) Br is expressed throughout the eye/

antennal disc and peripodial membrane. (B,C) Br is repressed in

ab-expressing clones (B, arrowheads) and in scrib1+ab clones (C,

arrowheads). Yellow scale bar = 50 mm.

(JPG)

Figure S8 Overexpression of taiDB in scrib2+ab tumours prevents

tumour overgrowth.Mosaic eye/antennal disc clones generated with

ey-FLP. Clones are positively marked by GFP (white, or green in

merges), tissue morphology is shown by F-actin (red in merges), and

cell fate by Elav expression (white or pale blue, changing to magenta

or dark blue when overlaid with GFP). GFP (panels A–C), F-actin

(panels A9–C9), Elav (panels A0–C0), GFP/Elav merges (panels A09–

C09) and GFP/Elav/F-actin merges (panels A00–C00). (A) Expression

of taiDB in clones results in small clones. (B,C) Expression of taiDB in

scrib1 clones (B) or scrib1+ab clones (C) reduces clonal overgrowth and

results in the eclosion of adult flies (data not shown).

(JPG)

Figure S9 Eya, Sens and Ato expression are reduced in scrib2+ab

tumours. ey-FLP induced eye/antennal disc clones at ,5 days

AEL. Clones are marked by GFP (white, or green in merges), and

cell fate is shown by the expression of Eya, Sens and Ato (all white,

and magenta when overlaid with GFP in the merges) in control

clones (A,E,I), scrib1 clones (B,F,J), ab-expressing clones (C,G,K),

and scrib1+ab clones (D,H,L). GFP (panels A–L), Eya (panels A9–

D9), Sens (panels E9–H9), Ato (panels I9–L9), and merges (panels

A0–L0). (A–D) Eya expression is not altered in scrib1 clones (B,

arrowhead), or ab overexpressing clones (C, arrowhead). scrib1+ab

clones have greatly reduced levels of Eya (D, arrowhead). (E–H)

Sens expression is disrupted and reduced in scrib1 clones, and

repressed in ab overexpressing clones in the antennal but not in the

eye disc (G, arrowheads). scrib1+ab clones do not express Sens (H,

arrowhead). (I–L) Ato expression is disrupted and slightly reduced

in scrib1 clones (J, arrowhead), and repressed in ab overexpressing

clones within the antennal disc (K, arrowhead), and reduced in eye

disc clones (K, arrow). scrib1+ab clones do not express Ato (L,

arrowhead). Yellow scale bar = 50 mm.

(JPG)
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Figure S10 Tsh and Ey expression is not substantially altered in

scrib2+ab tumours, however, Bab2 and Ct expression is reduced.

ey-FLP induced eye/antennal disc clones at ,5 days AEL. Clones

are marked by GFP (white, or green in merges), and cell fate is

shown by the expression of Tsh, Ey, Bab2 and Ato (all white, and

magenta when overlaid with GFP in the merges) in control clones

(A,E,I,M), scrib1 clones (B,F,J,N), ab-expressing clones (C,G,K,O),

and scrib1+ab clones (D,H,L,P). GFP (panels A–P), Tsh (panels A9–

D9), Ey (panels E9–H9), Bab2 (panels I9–L9), Ct (panels M9–P9),

and merges (panels A0–P0). (A–D) Tsh expression exhibits only

slight perturbations in scrib1 clones, sometimes extending more

posteriorly within large mutant clones spanning the normal

expression domain (B), and is slightly increased in ab overexpress-

ing clones (C, arrowhead). scrib1+ab clones express Tsh in the

anterior portion of the eye disc, although it is repressed more

posteriorly, as in control clones (D, arrowhead). (E–H) Ey

expression is slightly reduced in scrib1 clones (F, arrowhead), and

ab overexpressing clones (G, arrowhead). scrib1+ab clones express

Ey in the anterior portion of the eye disc, although its expression is

repressed, as it is in control clones, more posteriorly (H, arrow). (I–

L) Bab2 expression is not altered in scrib1 clones (J), and although

expanded, or ectopic, domains of Bab2 expression are sometimes

associated with ab overexpressing clones in the antenna, the levels

of Bab2 within the clones are slightly reduced compared to

adjacent wild type tissue (K; arrowhead showing slightly enlarged

Bab2 domain of expression, although levels of Bab2 in the ab-

expressing clone are lower than the more highly expressing wild

type tissue adjacent to the clone). scrib1+ab clones do not express

Bab2 (L, arrowhead). (M–P) Ct expression is not altered in scrib1

clones (N), and is repressed in more distally located ab

overexpressing clones (O, arrowhead), although expression is

unaffected in the proximal region (O, arrow). scrib1+ab clones do

not express Ct (P, arrowheads). Yellow scale bar = 50 mm.

(JPG)

Figure S11 Hth is not sufficient or required for Ab-mediated

tumour overgrowth. ey-FLP induced eye/antennal disc clones at 5

days AEL. Clones are marked by GFP (white, or green in merges),

and Elav is shown in white (blue in merges, and dark blue when

overlaid with GFP). GFP (panels A–D), Elav (panels A9–D9), and

merges (panels A0–D0). (A) hth overexpressing clones do not

express Elav. (B) Overexpressing hth in scrib1 clones blocks Elav

expression and promotes clonal overgrowth, however, the larvae

pupate and do not undergo an extended larval stage of

development. (C) scrib1 hthP2 mutant clones are similar to hthP2

mutant clones alone (see Figure 5B), although photoreceptor

differentiation is disrupted in posteriorly localised clones. (D) hthP2

mutant clones overexpressing ab are similar to hthP2 mutant clones

(see Figure 5B).

(JPG)

Figure S12 ab overexpression downregulates DIAP1 levels.

Mosaic antennal disc clones (A) and eye disc clones (B)

overexpressing ab, and positively marked by GFP (white, or green

in the merges). Diap1 is shown in white (or red in merges). GFP

(panels A,B), Diap1 (panels A9B9), and merges (panels A0,B0). (A,B)

ab-overexpressing clones downregulate DIAP1 (red in merges), in

both the antennal disc (A) and eye disc (B). Yellow scale

bar = 50 mm.

(JPG)

Figure S13 Overexpression of dac does not restrain scrib2+ab

tumour overgrowth. ey-FLP clones are positively marked by GFP

(white, or green in merges) in all panels. Elav is shown in white

(magenta when overlaid with GFP in the merges). Yellow lines

indicate the positions of virtual cross sections (shown on the right).

GFP (panels A–D), Elav (panels A9–D9), merges (panels A0–D0),

and virtual cross sections of the merges (panels A09–D’’9). (A)

Overexpressing dac in mosaic discs results in small cyst-like clones

that disrupt the normal pattern of photoreceptor differentiation.

(B) Overexpressing dac in scrib1 mutant clones produces a similar

phenotype as scrib1 clones alone (the mutant clone failing to

express Elav is located above the disc proper). (C) Overexpressing

ab and dac together in clones generates large clones in antenna,

similar to ab overexpressing clones alone, but very small clones in

the eye disc. (D) Overexpressing dac in scrib1+ab clones does not

restrain clone overgrowth, and large neoplastic tumours are

produced, which do not express Elav. Yellow scale bar = 50 mm.

(JPG)

Figure S14 Knockdown of yki in scrib2+ab tumours does not

prevent cell migration between the brain lobes. Eye/antennal discs

still attached to the brain lobes (BL) containing ey-FLP induced

scrib1 clones that express both ab and ykiRNAi (A, and a higher

magnification of the region between the brain lobes in B). ey-FLP

clones are positively marked by GFP (white, or green in merges)

and F-actin is shown in white (red in the merges). Elav is shown in

blue in the merges. GFP (panels A,B), F-actin (panels A9,B9), and

GFP/F-actin/Elav merges (panels A0,B0). Mutant tissue over-

growth is restrained compared with scrib2+ab tumours, however

tissue is still observed between the brain lobes (arrows), consistent

with it migrating and merging with the brain lobes. Yellow scale

bar = 50 mm.

(JPG)

Figure S15 Expression of aPKCDN in scrib2+ab tumours restrains

tumour overgrowth. ey-FLP clones at day 5 AEL (A–C), and with

brain lobes (BL) attached at day 7 (D). Mutant clones are positively

marked by GFP (white, or green in merges). Elav is shown in white

(magenta when overlaid with GFP in the merges), and cell

morphology is indicated by F-actin (white). GFP (panels A–D), F-

actin (panels A9–D9), Elav (panels A0–D0) and GFP/Elav merges

(panels A09–D90). (A) Overexpressing aPKCCAAX-DN in clones does

not produce a discernible phenotype. (B) Clones co-overexpressing

aPKCCAAX-DN and ab are similar to ab-expressing clones alone

(compare to Figure 1E). (C,D) Overexpressing aPKCCAAX-DN in

scrib1+ab clones restrains clonal tissue overgrowth and GFP specks

are observed, consistent with cells undergoing cell death (C).

Larvae still enter an extended larval stage of development,

however, tumour overgrowth (D) is reduced compared to scrib1+ab

tumours (eg. Figure 8F). Yellow scale bar = 50 mm.

(JPG)

Figure S16 wtsX1+ab tumours retain Dll expression, but do not

express Dan. ey-FLP induced eye/antennal disc clones marked by

GFP (white, or green in merges). The cell fate markers Dll and

Dan are shown in white (magenta when overlaid with GFP in

merged images). F-actin (white) shows cell morphology. GFP

(panels A–D), F-actin (panels A9–D9), Dll (panels A0,B0), Dan

(panels C0,D0), GFP/Dll merges (panels A09,B09) and GFP/Dan

merges (panels C09,D90). (A) wtsX1 clones exhibit the normal

pattern of Dll in the eye/antennal disc. (B) wtsX1+ab clones retain

Dll expression, often resulting in ectopic domains of Dll-expressing

tissue (B, arrowhead), similar to ab expressing clones, or scrib1+ab

tumours. (C) wtsX1 clones exhibit the normal pattern of Dan in the

eye/antennal disc. (D) wtsX1+ab clones do not express Dan in the

antenna, and the overgrowths in the eye disc are also characterised

by a loss of Dan (D, arrowhead). Yellow scale bar = 50 mm.

(JPG)

Movie S1 Live cell imaging of scrib2+ab tumours. Movie taken at

2 minute intervals over a 20 hour period at 106 magnification.
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scrib1+ab tumour cells are highly motile, moving between, and

over, the brain lobes. Note that, although motile hemocytes have

been reported be associated with the tumours, and may be

associated with tumour cell engulfment, the intensity and

distribution of GFP fluorescence within the motile cells is not

consistent with them being phagocytic hemocytes.

(ASF)

Movie S2 Live cell imaging of scrib2+ab+bskDN tumours. Movie

taken at 2 minute intervals over a 20 hour period at 106

magnification. scrib1+ab+bskDN tumour cells are non invasive, and

the overall tumour mass, whilst growing, remains compact.

(ASF)

Table S1 Transcription factor matrices enriched amongst peak

sequences associated with the promoter regions or introns of

potential target genes.

(DOC)
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