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ABSTRACT

A finite element procedure is presented for the analysis of the buckling and
postbuckling behavior of cracks in plates loaded in tension. The procedure proposed is
applied to the problem of the centrally cracked plate in tension where the loading
direction is perpendicular to the crack faces. The results of the analysis shows that the
buckling deformations can cause a considerable amplification of the stress intensity
around the crack tip. This effect, which is due to a redistribution of the stress field in
the plate, increases with the length of the crack..

1. INTRODUCTION

A cracked sheet in tension, where the crack is aligned perpendicularly to the
loading direction, will buckle locally around the crack when the loading exceeds a
certain (critical) value. This mechanism is the consequence of compressive transverse
stresses that arise in a region along the crack edges. When buckling occurs, the
stress field in the plate undergoes a modification, which leads to a change in the
behavior of the intensity of the crack tip stress singularity. More precisely, the crack
tip singularity is stronger in the buckled state than it would have been in the
"comparative” unbuckled state at the same value of the load. It is of interest to note
that the "buckling" mode of the crack in the plate is similar in form and nature to the
"bulging” mode of a longitudinal crack in a thin-walled pressurized cylinder. Both
phenomena share the distinction to be governed by a geometrical nonlinear effect
(Refs. 1 - 5). ‘ '




The cracked plate buckling problem has been the subject of study at various occasions
in the past but we will refrain from an extensive review. It is here sufficient to mention
that the majority of the studies that lay behind us were occupied with the question
how to determine the critical state of the plate, i.e., the moment at which buckling
takes place, see for instance (Refs. 7 - 17). We will take the point of view here that
this problem has been adequately dealt with, at least from the computational point of
view, see for example (Refs. 12, 14- 17).

As mentioned, the behavior of the crack after buckling has taken place is governed by
a geometrical nonlinear effect. (We will ignore the physically nonlinear effects, i.e., the
plasticity effects at the crack tip). This means that the problem must be formulated in
terms of a finite displacement plate theory. In the list of references given above, the
work of Petyt (Ref. 6) is particularly worthy of mention. He is the only author in this
list who took the geometrical nonlinearity just mentioned into account. His work
comprises an extensive and interesting study of the behavior of cracked plates,
analytically and experimentally. In this pioneering paper, a finite element procedure is
described for the analysis of the postbuckling states of the plates with geometrical

imperfections. It furnishes therefore an early example of geometrical nonlinear finite.

element computations. There is no mention, however, of an attempt to asses how the
characteristic crack tip parameter(s) behave along these nonlinear states.
Nevertheless, Petyts contribution showed very early on that the finite element
approach had a great deal of potential and it is this potential that we want to unfold in
the present report.

It must now be clear that the objective of this paper is to go beyond the critical
buckling state and to study the postbuckling states of the cracks. To the best of our
knowledge, a study of this kind has not been carried out before. The feasibility of a
"unified" analysis of this type was demonstrated earlier on two occasions (Refs. 1 &
3), but rather in an ad-hoc way. In these reports, we presented two isolated finite
element solutions of a centrally cracked plate loaded into the postbuckling state. The
first solution in (Ref. 1) addressed the imperfect plate problem. The second, in (Ref.
3), concerned the same plate but now without imperfections. These particular
solutions were derived in a context in which the fracture mechanical aspects of the
solutions had to be ignored. They were included in these reports only for the sake of
demonstration, for the sake of showing how the present day nonlinear finite element
methods codes can be used for the analysis of (nonlinear) cracked plate structures. As
such, these exercises can be seen as an preliminary to the present work.

1) Shaw and Huang (ref. 17) also addressed the problem of a cracked plate with imperfections. However,
the plate theory these authors used is incomplete, rendering their postbuckling solutions defective.
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The paper is now organized as follows.

-i- Chapter 2 presents an introductory description of the behavior of the centrally
cracked plate.

-ii- Chapter 3 describes the methods that are needed for the solution of this problem.
Here, special emphasis is placed on the computation of the energy release rates.

-iii- In Chapter 4, the proposed procedure is applied to series of plate configurations.
-iv- Finally, in Chapter 5 we discuss the results of the calculations and present some
conclusions that show how the observed behavior of the cracks fits into the notions of
classical bifurcation theory.

2. THE CENTRALLY CRACKED PLATE

2.1 General Remarks

For convenience we concentrate on a case that is likely to appear in
experiments. A flat plate with rectangular planform: width = 2b, length = 2I and a
central crack of length = 2a perpendicular to the axial direction (x), is loaded in
tension. The boundary conditions are similar to the conditions which are usually
applied in an experiment (see Figure 1). The plate is loaded at the transverse edges
but the longitudinal edges are free. We will consider the behavior of this model for a
number of geometries determined by the parameters:

2.1

Figure 1 Centrally cracked plate




To illustrate the behavior of this specimen, we consider the out of plane displacement
w, at the center of the crack edge as a function of the load A V. In a qualitative sense,
the response of the plate when the load is applied follows a pattern which is rather
characteristic for plate buckling problems. At the beginning of the loading process, for
0 < A < A there is no out of plane displacement. This is the path along the vertical
axis denoted by branch I in figure 2. During this phase compressive transverse
stresses are building up along a region along the crack edges. Then, at a certain value
A = A, the plate will buckle locally around the crack edges. We can call this process
crack-buckling. In the diagram, the development of the buckling deformations is
represented by the curve II (figure 2). This is the so called postbuckling path. Acr Is
called the buckling load.
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Figure 2 Buckling behavior centrally cracked plate

We note now that the buckling process for this class of problems is stable, because it
is still possible to increase the load beyond the critical value A¢r. But as we will show
later, at the buckling point, the energy release rate (or the intensity of the crack tip
singularity) as a function of the loading undergoes an abrupt change. More precisely,
when buckling occurs, the energy release rate will grow faster with the load than it did

1) 1t is assumed in these and the following considerations that the crack length 2a does not change during

the loading process.



before buckling and the transition point is marked by a jump in the slope of this
function, eg.,(Figure 3)2.

2.2 Perfect versus Imperfect behavior
It is well known that the behavior of the model described above is never

observed in experiments. This is due to the fact that there are always deviations from
the definition of the problem in the practical situation. For example, in practice the
boundary conditions do not precisely match the assumptions on which the model
definition is based, or, the plate is not really flat, etc. These deviations or
imperfections cause a perturbed behavior of the actual plate with respect to the
computational model, and one will observe in the experiment that the actual response
- of the plate will qualitatively be like the curve labeled by IT" in figure 3.

A
>

Load factor

Energy release rate G
>

Figure 3 Energy release rate vs. load

The simulation of this natural (or imperfect) behavior with the computational model is
relatively easy. It is accomplished by adding imperfections to the geometry of the
model (as in (Ref. 1 & 6)). In the remaining part of this paper, however, we prefer to
focus exclusively on the analysis of the perfect plate because it is the principal
problem in most of the studies we mentioned earlier.

2) In the diagrams and presentation of the results we will follow the convention of elastic stability

theory where it is customary to plot the loading vertically.
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3. DESCRIPTION OF THE COMPUTATIONAL TOOLS

3.1 Discretization of the Governing Equations
For the analysis of the cracked plate problem we used the STAGS code (=

Structural Analysis of General Shells), (Refs.20., 21, 22). This is a code designed for
the static and dynamic analysis of shell structures. The equations that are generated
by it are a discrete form of thin shell equations that are valid for small strains but finite
rotations (Refs.23, 24). This finite element representation is special in that it is
formulated on the basis of a co-rotating frame of reference that describes the overall
rotation of each individual element (Refs. 21, 22). Within this moving frame of
reference, the formulation of the shell equations reduce to a particularly simple formD if
the shell has no initial curvature, i.e. when it is a plate. It is a formulation that
corresponds to a plate theory which is valid for small strains, and small, (but finite)
displacements and rotations (Refs. 21, 22, 24).

Let an arbitrary point of the plate wall in the undeformed state be described by the
local Cartesian coordinate system (X, y, z), where x and y measure the distance in
axial and transverse direction respectively, and let z be the distance taken along the
normal (N) to the plate at (x, y). In addition, let the displacement components that
characterize the deformation of the (mid-surface) in these directions be denoted by

(u, v, w). It then follows that the Green-Lagrange membrane strain measures are
given as:

Exx = %{2u'+u'2+v'2+w'2}
= %{ 2vo+ u°2 + v°2 + w° 2} (3.1)

1
Exy= 5{UC+V + U+ VvV + ww}

The prime denotes here partial differentiation with respect to x, the dot denotes partial

differentiation with respect to y; thus g_x = () ; g—y = (.)° It is noted that the
nonlinear part of the membrane strains are essential for the description of the buckling

phenomenon that we are studying here.

The changes of curvature of the plate are given by the linearized, and therefore
approximate expressions:

1) The use of shell theory implies that we will obtain solutions in the context of plane stress

assumptions.




Kxx=-W"
Kyy =-W°° (3.2)
ny =-w'" .

which are sufficiently accurate to describe the bending deformations as long as the
rotations and the displacement gradients remain small " enough " (Ref. 23, 24).

With these definitions, the description of the state of strain in the plate is completed
by means of:
Exx Kxx
E=€E+ZK E=|&yy X =| Kyy (3.3)
Sxy ny X

The next step is the formulation of the equilibrium equations by applying the principle
of virtual work. If N is the vector of the membrane stress resultants and M is the
vector of the bending stress resultants, this principle can be written in the form:

oP =0

5P = S[{Ntzseds} R J{Made} i fogaUdr (3.4)
T

- N= (Nxx, Nyy, ny)t M= (Mxx, Myy, l\flxy)t

where 0U = any admissible variation of the displacement field U = (u, v, w)t. The
integrations are extended over the shell surface S and boundary I' respectively. Note
that the last term in (3.4) refers to the external work exerted on the shell by tractions
L = AL along the boundary I' 2. The basic formulation is completed by the through .
the thickness constitutive equations for a linear elastic shell wall:

N=Eeg M=Bx (3.5)

where E and B are the matrices of the generalized membrane and bending
stiffnessess of the plate wall.

The STAGS program uses the variational principle Eq.(3.4) as a basis for the
discretization process. For details of the plate elements that are available in STAGS
we refer to (Ref.20) and the references mentioned there.

2) Other types of loadings are not considered here.




3.3 Buckling Equations

After discretization, the equilibrium states of the panel model under load are
determined by a set of nonlinear equations that are denoted by:

f(d; A) =0 (3.6)
where :
d € R, is an n-dimensional vector of nodal displacement variables

A € Rj is a scalar that represents the load intensity

f € R, is a set of nonlinear functions of (d, A) that result from the
discretization of (3.1 - 3.5)

The solution for the the displacement field of the plate is thus represented by:
U=UKx,y)= Q(x,yd (3.7

where Q is the matrix of shape functions belonging to the finite elements that are

introduced.

It is useful to note that the plate problem considered here belongs to a special class of
problems where the governing nonlinear equations admit one solution set that is
almost linear. Moreover, this solution can be taken as linear for all the applications to
be considered here. This means that for a certain, limited range of A : 0 < A < A; ¥ the
response of the plate can be written in terms of:

d; =2 Do (3.89)
with Dg :
bx
Do= | by (3.80)
0

and where by, by, pertain to the in-plane displacement components. It is noted that
this solution is characterized by a decoupling between the in-plane displacements and
the out of plane solutions so that: u = AUp = AZg(X, y) , v=AVo = AWg(X,y ) and w =

4) We follow here the convention that the plate loaded in tension corresponds to positive values of A. Aj
denotes some positive bound.




0. Thus, in this state, to be denoted by I in the remaining part of the paper, the plate
remains perfectly straight.

Other solutions of the nonlinear governing equations (other than those represented by
I) can only have points in common with the linear basic solution (3.8) L, if these points
are bifurcation points e.g. figure 2. The equations that determine where this occurs
along the path (3.8) are the so-called "linearized" buckling equations.

It is a consequence of the linearity of I, (3.8), that the displacement field Do can be
seen as the tangent to the path of solutions I. This means that Do must satisfy the
equations for the tangent to the path I given by:

d 0
i [(d; )] = [Df] (Dl ] =0 (3.99)
or ,
fa(ADg; M)Dg + fy(ADg; A) =0 (3.9%)
where:
of of; of;

[D«f] = [fg; £l = [ad aA]‘{ad o ij € [1,0]

(3.10)
[Dxf] € Ry * Rp+)

denotes the Jacobian of the functions f, see Eq. (3.7). Note that the Jacobian [Dyf] is a
combination of the stiffness matrix K of the plate evaluated along the basic state I :

K(ADg; A) = fa(ADo; A) € Ry * Ry (3.11%)
and the differential of the loading vector, the vector 1 :
I(2) = fH(ADg; A) € Ry (3.11b)
The question of a possible bifurcation from state I corresponds thus to the question of

the existence of multiple solutions to equation (3.9). To formulate this in formal terms,
one assumes the possibility of two solutions Dg; and Dy :

b =Do; - D2 | . (3.12)



and derive the equations for the difference b :
fa(ADg; M)b =0 (3.13)

We can show that this set of equations can be approximated by the set of equations:

[K(0) - AK'(0)]b =0 (3.14%)
where:
dK(ADg; A
K'(0) = o0 ) o ) (3.14b)

The matrix K' defined by Eq. (3.14Y) is the so-called geometric stiffness matrix.

Equations (3.14) are routinely generated by STAGS for any sort of problem that can
be modeled by the program. The eigensolutions are found using a subspace iteration
method. It computes the eigenvalues A; (i = 1, 2, 3, 4,...) in a specified range together
with the correspondihg eigenmodes (i.e., the buckling modes) b;. For the problem that
is considered here, the lowest positive eigenvalue Ak of (3.14) (denoted by A¢r ) is the
critical buckling load.

As it was mentioned in the introduction, in many of the papers cited in the
introduction, the derivation and the solution of equations (3.14) is the principal
subject. This is particularly true for (Refs. 12 - 17). The differences between these
formulations and the STAGS formulation can be found in the details of the
discretization technique used and the way the resulting equations are solved.

3.3 Path Following Methods

The equilibrium path II (figure 2), which represents the postbuckling states of
the plate after the load A has exceeded Ay, is a solution of equations (3.7) in which
the deformation d depends nonlinearly on the factor A. Usually, such nonlinear
equilibrium states can only be computed with specialized methods that obtain points
of the equilibrium path II step by step using iterative techniques. These methods are
called continuation methods, path following methods, or incremental-iterative
methods. See for instance (Refs.25 - 28), which also contain further references.

The formulation of the path following methods are usually based on an extended
system of equations:
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f(d; ) =0 (3.159)
h(d; \)-n=0 (3.15b)

that replaces the original system (3.7). The extra equation is introduced to reformulate
the problem (3.7) in terms of a new path parameter n by means of which the control of
the calculation procedure can be improved. (It furnishes a greater degree of robustness
of the iteration process). The scalar function h, by which 1 is defined, is a function of d
and A. In principle, it is reformulated at each new solution step. Note that in this
modified formulation, d as well as A belong to the set of unknowns. The solution of the
extended set of equations is thus represented by the parametrization:

(d(n)}
x=x(n) = €Ry 4+ (3.16)
A(n) .

In this setting, the solutions that the continuation procedure produces can be written
as:

xi=x(n);i=1,2,3,.;n1=0;n2=4n2; n3 =12 +Anz; etc.(3.17)
where the starting configuration is often the undeformed state:
x=x(0)=0 (3.18)

The sequence of solution points is obtained by applying a "predictor” - "corrector”
process to equations (3.15). At a known solution point x(n;), the predictor makes an
estimate of a new solution x( n; + An; +1) that lays "ahead" for the increment Anj + 1
of the control parameter n. After that, the corrector takes over and finds, by iteration,
the new solution to some desired degree of accuracy.

3.4 Bifurcation as a Special Case . ‘

The most important part of the calculations that we need for the analysis of the
cracked plate, concerns the calculation of the post buckling path II. While the
computation of the basic state I starting from the undeformed state poses no problem,
the calculation of the postbuckling path starting from the bifurcation point does. The
difficulty concerns the computation of the "predictor”, i.e., the initial "guess” that is
needed to start the iterations towards the first solution point of the branch I

The first difficulty is that for the construction of this "predictor” the bifurcation point
must be located and determined. A second difficulty is that the system matrix J is
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singular at the bifurcation point, a condition that may lead to divergence of the
corrector process if no appropriate measures are taken.

In the cases under consideration, the pre-buckling state is linear and the bifurcation
point can directly be determined by solving equations (3.92) & (3.14). We will assume
in what follows that this part of the analysis is carried out successfully. Let this
solution of the bifurcation point be denoted by :

d d(nc) AcDo
Xc = Xl(ﬂc) = = = (3.19)
. Aol A(ne) Ac
and let the corresponding buckling mode be denoted by b.. Recall that the buckling
mode b, stands for the difference between dj and djj, the two bifurcating branches
when 1 approaches n.. With this concept in mind, it is natural to expect that a
prediction of a point on the branch II can be constructed by setting:

[Ac + p(An2)]Do + An2b,

GOH =X + (3.20)
Ac + p(An2) I
A A II
0
b On
PA >
}\c

>
Central Deflection W

Figure 4 The prediction for the switch to branch II
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where the path parameter increment An, into the direction of II is prescribed and
p(Any) contains information about the growth of the loading in this direction. One can
see that a predictor of the type (3.20) is based on a shift from the bifurcation point
which consists of a linear combination of the original direction of the path I and the
direction given by the difference between the two paths I & II (see also figure 4).

It is of interest to note, that it is at this first step onto II that the generalized path
parameter 1} is particularly useful. We will skip the discussion about the manner by
which the participation constant p(An) in (3.20) is computed in general. For this and
other details we refer to (Refs. 26, 27, 28).

Let us conclude this description by mentioning that the bifurcation procedure that is
implemented in STAGS is not only based on the principle outlined above but also on
another, additional feature, which concerns a modification of the corrector equations,
i.e., a modification of the equations that perform the iterations towards the new
solution on IL This modification enhances the robustness of the complete operation
considerably. We refer to (Refs.29, 30) for the description of this procedure.

3.5 Computation of the Energy Release Rates
In the continuum description, the total potential energy of the structure is

defined by:

Ple; A; a] = W[g; a] - A[U; A; a] (3.213)
where
€ = g(U)
WIg; a] = S[{stE gdS} + s[{mt B xdS} (3.21b)
A[U; nal= A JL;UdI‘ (3.21°)
T

W is here the internal elastic energy and A = the potential of the external loads. The
potential energy is of course dependent on the geometry of the crack, which is the
reason why it is included as a parameter in this description.

The energy release rate is defined by:

dP |
G=- {E—(ﬁ}h = constant ' (3'22)
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where it is tacitly understood that we only deal with straight cracks so that the crack
extension is self similar. It is noted that we really need to take the differential of the
total potential energy i.e., the sum of the internal elastic energy and the potential
energy of the externally applied loads. In other words, it is not possible to compute G
using the short -cuts that can be introduced in the linear theory (Refs. 31, 32).

In the actual computations presented here, we will use the discrete analog of
expression (3.21):

P(d; A ; a) =W(d; a) - A(d; A ; a) (3.23)

and determine G from the formal definition:

dP(d; A; a) T P(d; A; a + Aa) - P(d; A; a)
° da = - Hm Aa

Aa — 0

G= } (3.24)

There are several ways to carry out this computation. In the linear range, the available
methods are well established (Refs.31, 32). It turns out that they can easily be
extended to the nonlinear range. In (Ref.3) we described three examples of these
adaptations. A reiteration of the description of two of these methods is given below.

(1) Method 1 (Total Potential Differential by Node Release)

The first method is simply based on the differential form of (3.24):

P(d(as); A; a2) - P(d(ay); A; ay)
tAa

P
" tda

G= {a=a1+%Aa}z-

(3.25)
Aa = dy - 4

where a; and ap are two successive crack lengths along the fracture path that we have
to choose close together if we strife for accuracy. The opening process is effected by a
node release technique along the crack path. This is an iterative technique because the

differential form (3.25) requires the determination of two nonlinear equilibrium states
for A = constant; a = a; and a = a; (Refs. 1, 2, 3, 4).

The method described by (3.25) is relatively simple, but it has the drawback that we
need to compute at least two successive nonlinear equilibrium states. Moreover,
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when the structure is large, the numerical values of the two energies that need to be
subtracted are large while the difference between the two may be a small, thus leading
to a large and possibly unacceptable truncation error. The alternative that we have
applied successfully in (Ref.3), and that we will discuss below, is an adaptation to the
geometrically nonlinear range of the methods that were proposed by Parks, Hellen and
deLorenzi (Refs.33 - 37). It can be seen as the discrete analog of the J - integral
method (Refs. 35 - 37).

(ii) Method 2 (Discrete Analog of the J - Integral)

Consider the structure with a crack under its load and assume that the finite element
mesh is given. For reasons that will become clear later, the mesh of the structure
around the crack tip is divided into three regions (Figure 5). The first, denoted by Q;,
is enclosed by the contour I'; and contains the crack tip T. The second region is Q* an
area formed by the strip of elements that border I'; outside Q. The third region Q; is
the remaining part of the structure. The borderline formed by the element sides
connecting the nodes on the boundary between Q, and Q* is denoted by I';. The
freedoms that are associated with the nodes belonging to Q* are denoted by d*. The
freedoms that are connected with the nodes inside Q, are denoted by d,, while those
connected with the nodes inside Q, are denoted by d;. With these conventions, the
total potential energy of this structure can be written as:

P(d; Au) = Wi(dy, d%; a) + Wy(dy, d*; a) + W*(d*; a) +
-81(d;, d*; A, 2) - go(dy, d*; A, @) - g*(d*; A, a)  (3.26)

where: Wi, W,, W¥*
and
g1, 82, 8% = denote the contributions pertaining to the regions Q;, Q,
and Q* of the elastic energy and the potential of the
external loads respectively.

A= the load intensity parameter (which does not play a role in
what follows but which is added for the sake of
completeness.)

a= the half-length of the crack

The equilibrium equations of the structure are then given by:

oW 081 _,. W2 Og_ OW1 OW; OW* 0g Ogp Og*
od; d4d; ’ 0dy 0dy > gd*  od* od* oOd* od* od*

(3.27)
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It is now assumed that these equations are satisfied for a certain non-zero value of
the load, i.e. they are satisfied by the deformation state: d = {(d;)T, (d2)T, (d*)T}T at
A # 0. At this particular state of deformation, it is of interest to compute the change of
the potential energy under a change Aa of the crack length (2a). The change will be
invoked by distortion of the existing mesh in accordance with the change of the
position of the crack tip T along the projected path of the crack. The particular way this
will be carried out is discussed below.

With the prescribed movement of the crack tip, one can decide to distort the mesh in
such a way that only the node T changes position, leaving the position of all other
nodes unchanged. The distortion of the mesh is in that case restricted to the region of
elements that immediately border the crack tip node T. On the other hand, one can
also decide to move additional nodal points in the mesh. In principle, the energy
release rate is independent of which nodes are moved, provided that the nodes remain
on the surface of the model, the boundaries are unaffected, and the crack grows by the
prescribed Aa. In practice, however, the results will be affected by discretization
errors that stem from a variety of sources. The greatest error can be expected to be
found in the rapidly changing stress gradients near the crack tip, with the error
diminishing as the distance from the crack tip increases.

Figure 5 Discrete Analog of the J - Integral
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Since we are computing a difference between the energy of the undistorted and
distorted mesh, it is advantageous to minimize the number of elements involved, and
at the same time, restrict the area that is distorted to be as far from the crack tip as
possible. For the flat plate model considered here, we can translate a patch of
elements uniformly, including, of course, the crack tip. Then the energy changes are
localized to those elements that border the patch. The optimum location of this border
is far enough away from the crack tip to avoid severe stress gradients, but not so far
as to involve a very large number of elements in the computation.

Specifically, the way the mesh distortion is carried out in STAGS is illustrated in
Figure 5. One can see from the figure that the patch of elements Q, is translated
uniformly to a new position illustrated by the dotted lines in the figure. The crack tip T
has moved to T" along the projected fracture path. Distortion of the mesh only occurs in
the patch (or string) Q* but not in the regions Q1 and Q2 so that all energy changes
are confined to the shaded region Q*.

We show this now in formal terms. Straightforward differentiation of the energy
expression Eq. (3.26) with respect to (ta) in the direction of the crack axis gives:

oW,

OW, __& ,
tda =134, - Odl} + {3 -aatdz*

od, " 0d;

{awl aw2 OW* g, 0Og, Og*

od* +3q% " oa* “aa* - qr d*t

aw OW. oOW* 0
{ 1 aaz 1 } { aa _&}

(3.28)

where ()' = tili_a

It follows now from the identities Eq. (3.27) that the first three terms on the right side
of above expression vanish. Moreover, the potential energy contributions from the
regions Q; and Q, are not influenced by the change of (a) so that the partial
derivatives of the functions W;, W5, and g;, g> with respect to (a) vanish. Thus there
remains:

dp _ow* og*
tda - tda  tda (3.29)

£ 3

i‘g; corresponds to the change of internal energy due to the change of

The first term

stiffness of the region Q*. The second term determines the change in the external
potential due to the change in the surface integral of this potential. Note that the
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resultant forces of the external loading in the domain Q* are generally due to a
pressure load p, so that this type of loading is not relevant in the case that we are
discussing here.

In conclusion it should be mentioned that in the numerical evaluation of the expression
(3.29), we make use of the differential form of (3.29) by introducing a finite step Aa,
and that we do this backwards and forwards so that the final result is derived from a
central difference formula (See also Ref. 3 ).

4. COMPUTATIONS

4.1 Plate Specifications
The particular dimensions of the plate problem considered here are taken from

(Ref.17). They are given by:

Geometrical Data:

Width 2b =400 mm ; Length 21 =800 mm
Thickness t= 1. mm ; Aspect ratios o = .2, thru, .7
a
(a= b )

Loading :  Central load in x- direction
Material constants:

Youngs modulus E = 70000 N/mm-2, Poissons Ratio v =.3
Boundary conditions:

Longitudinal Edges = unrestrained

Loaded Edges = all freedoms restrained, with the exception of the
axial displacement u(l, y) which remains uniform
with respect to y, but is otherwise free.

4.2 Modeling Aspects
In view of the symmetry of this problem, it is sufficient to consider only one

quarter of the plate. In that case, the length and width of the model are /and b. Along
the two edges x = 0 and y = 0 symmetry conditions are applied. Along the edge y = 0
the symmetry is enforced in a straightforward manner by suppressing v, ix , B2 (P is
the symbol for the edge rotations). At the edge along where the crack can be found (at
x = 0), the symmetry condition is enforced by means of a set of prescribed
displacements along the nodes that are still supposed to be connected with the other

18




half of the plate. The prescription is there: u = 0, By = 0, Bz = 0. Of course, that part of
the edge where the crack is supposed to be is unrestrained.

For this analysis we did not use special elements that are capable of representing the
singularity of stress field at the tip. In such cases it is expedient to have a mesh
grading that is relatively fine in the neighborhood of the crack. A crude but very
convenient way to do this is given by one of the grading options in STAGS which
creates structured meshes. Although this is not an elegant way to discretize the
model (because it produces many superfluous degrees of freedom), it enables the user
to change the model very quickly, and that was for us the most important factor. We
considered several meshes in a convergence study and chose a mesh of 40x40 in a
format that is pictured in Figure 6.

Figure 6 Buckling mode cracked plate
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4.3 Buckling Loads
The results of the buckling calculations are presented in Figure 6, 7 and 8.

Figure 6 shows the typical shape of the critical mode which is always symmetrical
with respect to the planes x = 0 and y = O (in the cases considered here, see also
(Refs. 1, 3, 12-17)). This means that crack behavior that we are studying here belongs
exclusively to the class of Mode I type of cracking, also in the post-buckling states.

F
The critical stress O¢r = ztl‘;;al versus the crack aspect ratio y =% for the range of

cracks analyzed here is shown in figure 7. Figure 8 is a repeat of figure 7, but now with

the critical stress in non-dimensional form ,i.e., p = ocr(zTa)ZE'l.

The mesh refinement studies that we conducted seem to indicate that our results for
the buckling load accurate up to an order of magnitude of about 3 %. For the larger
aspect ratios a/b > .4, excellent agreement is found with the results of computations
reported in the literature. For instance, the differences found between the results of
(Ref.17) and the present results are at most 6 % where the relative error is defined as:

(o} -0

present ~ Oref.

Error = | .
Opresent

Critical stress N/mm 2

0 M i M 1] M T T Y T
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Aspect ratio a/b

Figure 7 Buckling loads results
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P=

Load factor 2

1 S ¥ v 1 v 1 v 1

0.2 0.3 0.4 0.5 0.6 0.7

Aspect Ratio a/b

Figure 8. Buckling loads in non-dimensional form

0.8

1 2 3 4 5
w-center in mm.

Figure 9 Load vs. center displacement we
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I1

Load factor )\
w
1
[

0 . — .
0.0 0.1 0.2
Crack opening displacement y = u(0,0) in mm

Figure 10 Load vs. center displacement u¢

4.3 Post-Buckling States
Next, we computed the postbuckling behavior of the plate for three choices of

aspect ratios o = a/b from the set given in section 3.1, i.e., a/b = 0.2, 0.4, 0.6. In order
to save space, we restrict the presentation of the postbuckling calculations to one
case (determined by a/b = 0.6) for which the postbuckling solutions are the most
pronounced.

Starting from the critical state D(A¢) = AgDo, it was easy to compute the
postbuckling equilibrium path following the steps outlined in section 3.3. The
calculation of the postbuckling path II 1) was carried out up to and including the
equilibrium point determined by the value of the load of Apax =4 * A¢r. The run took 11
steps and no convérgence difficulties were encountered. Figure 9 gives the load
displacement history for the normal displacement w, at the center of the crack edge,
while in Figure 10 the same diagram is given for the in-plane displacement uc = u(0, 0)
at the edge. Note that in these graphs the load factor A is defined as: A =
[load}/[critical (buckling) load]. It should be mentioned that the deviation from the
straight line of the curve II that can be seen near the bifurcation point is due to the

1) From now on we will denote the pre- and postbuckling states by I and I respectively, in order to avoid
confusion with the symbols for mode I and mode II cracking. Note, that this practice is not followed in
the figures because there danger of confusion does not exist.
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circumstance that the bifurcation point is represented in the figure by the solution of
the approximate buckling equations (3.142) instead of the exact equations.

As can be judged from figure 10, in the postbuckling state the in plane displacement uc
at the center of the crack is still a linear function of the load factor A, at least, in good
approximation. The same observation applies to the end displacement: ug = u(x, y
=.57) a plot which is not shown here. The load-displacement response of the cracked
plate in tension is thus very similar to that of a simply supported plate in compression
for the range of load factors considered here (Refs. 18 &19). We defer a further
discussion of this behavior to section 5.2.

4.5 The Energy Release Rates

To compute the energy release rates along the path II, we used the contour
integral method (2) in section 3. We note here that the calculation of G was first
tested in the linear range and compared with the formula for a centrally cracked plate
given by Feddersen (Ref.31):

K2 a
G= T 4.13)
K1 = geVTa’\ [ [sec % 1 (4.1%)

with K the symbol for the mode I crack intensity factor.

It turned out that the STAGS results for the linear case differed less than 2% from the
values determined by this analytical solution. We note that this corresponds to a
difference the order of magnitude of the error of the formula itself.

The results for the postbuckling states are plotted in Figure 12. If we boldly use the
formula (4.1) to approximate the Mode I stress intensity factor Kj in the buckled state
I1, the results are transformed to the graph given in figure 13. This form of the
postbuckling solutions is revealing because it seems to indicate that the Mode I
stress intensity factor Kj along the postbuckling path is still a linear function of the
load (to a good approximation), just as it is in the linear pre-buckling state I.
Consequently, our results seems to suggest that it is possible to represent the
solutions for the centrally cracked plate in the form of :

EASE K% =5000(@b) = AGemer\T2\ [seC {50} 4.2)
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Ooco
where: A = Gonp 5 00T = average critical stress at the loaded edges (Ref.29).

I A> 1K1 =6000@0 =1+ 0 - DK owVra sec{Zp} (4.3)

where, in (4.3), K is a positive constant, smaller than unity, which depends on the
specific plate geometry, crack length, boundary and loading conditions at hand. Note
that x can be determined by a curve fit applied to the resuits in figure (12).

As mentioned, equation (4.3) can only be considered to be an approximation for the
stress intensity factor Ki (A) along the loading path II. To what extent this
approximation can be trusted will be discussed in the following chapter. It can already
be mentioned that for the cases considered here (4.3) is a very good approximation.

Load factor A

—8— G- Linear

—&—— G - Nonlinear

i

o Y T T T Y T T T d i

0 1 2 3 4 5 6
Energy release G in [N]

Figure 11 Energy release rate vs. load
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Load factor A

—— K-linear

——&— K-nonlinear

* 1 * | M ]
0 200 400 600 800
K-Factor in N/(mm)a’ 2

Figure 12 K - Factor (defined by Kj = \/GE) vs. load

5. DISCUSSION AND CONCLUSION

5.1 On the Global Form of the Solutions

The behavior of the energy release rate of the crack at buckling can be brought
in a wider perspective (in a qualitative sense) with the help of the general results of
the buckling & postbuckling theory for elastic structures (Refs.18, 19). In the following
discussion we will introduce these results for as far they are needed to support the
development of our arguments.

It is useful to write the total displacements in the postbuckling state as the sum of the
pre-buckling displacements ADg and the buckling displacements d:

Diotal = A\Dg + d (5.1)

The change of the total potential energy AP of the plate in going from state I to state
II is then defined as :

AP(d; A) = P(ADo + d) - P(ADo) (5.2)




where P = the function that we introduced at (3.23). The Taylor expansion of this
function with respect to A can formally be written as:

AP(d; M) = APO(d) + A AP'5(d) + A2AP"5(d) + ..

+ APO3(d) + AAP'3(d).. + APOy(d)+ ..
(5.3)

where AP; i =2, 3, 4 denote the quadratic, cubic and quartic parts of the energy in
terms of the additional (buckling) displacement d and (.)' denotes the derivative with

0 : . . .
respect to A: ()' = G It turns out, by inspection, that for all practical purposes this

expansion can be truncated to:
AP(d; ) = APOy(d) + A AP'2(d) + APO3(d) + AP%(d) (5.4)

which is a form of the potential energy which is characteristic for flat plates
experiencing small strains, moderate but finite displacements and rotations. It is noted
that the quadratic term AP0, in this expansion is positive definite. On the other hand,
the term AAP'; is indefinite in our case. It represents the coupling between ADg and d
in the expansion and it turns out that is the only term coupled with A that needs
consideration. (The terms belonging to higher order powers of A are either negligeable
or identically zero (Ref.24).)

If b, is the buckling mode determined by equations (3.142) it is possible to write the
solution for the buckling displacements in terms of a perturbation expansion:

d = nbc + n2v + O(n3) (5.5)
(Refs.18, 19)
where v is the so called second order perturbation field and n is the parameter that
represents the growth of the buckling displacements d.

It turns out that the second order displacement field v is determined by a linearized
problem that can be considered to correspond to the cracked plate (as it is studied
here), but now loaded with a modified system of loads and boundary conditions. The
new load system and boundary conditions are determined by the bucklingmode b.. We
will not describe this additional problem here because it is not strictly necessary for
the present argument. It should be kept in mind, however, that v is again a membrane
mode so that it has only components in terms of the in-plane displacements (u, v).
This mode represents a part of the solution (5.5) that takes care of the redistribution
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of stresses in the plate once the out of plane displacements (w), contained in nbe,
start to grow and become finite.

Once b and v are determined, the potential energy increase AP can be reduced to a
simple expression in terms of the amplitude n and the load factor A, (Refs.18, 19). In
our case, where the bifurcation point is symmetric 1), this reduction yields:

AP(t, A; 2) = (Ac - NA'2N 2 + Ag n* (5.6)
where the constants Ac , A'z, A4 are defined by :
A2 = - AP'y(bc) ; Ag = APVy(bc) - {APOy (V) + AAP2(V)} 5.7)
Ac = value of the load parameter at buckling

The reduced form of the energy increase (5.6) represents an approximation that is
accurate in some (small) neighborhood 2) of the bifurcation point, i.e., its accuracy
increases when | n | = 0 ;| A - Ac | — 0. It is noted that the value of A'p is here

defined in such a way that it is positive for the bifurcation point under consideration.
(There are also bifurcation points for A < 0 which means that for such points Ay <
0h). The sign of A4, which factor is determinate for the stability or instability of the
buckling process, must also be positive in our case because we can still load the plate

after the buckling point is reached.
The reduced form of the energy (5.6) is the simplest possible function that still

represents the behavior of the structure in the neighborhood of the bifurcation point.
From this function follows the basic bifurcation equation:

d - d '
an {AP(n; M)} = an {(rc - M)A'2n 2 ‘+ Agnd}=0 (5.7%)
2(Ac-MA2n +4A4173=0 (5.7b)

It yields two solutions:

The pre-buckling state I: A < Ac; =0 (5.82)

1) Symmetric means here that the branching diagram is symmetric around the state I : ADy.
2) The range of validity of expression (4.5) varies strongly with the problem at hand. For many plate

problems it is relatively large, say in correspondence with: | A - A¢ | several times in excess of A¢.
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and
Ac- MDA’
the postbuckling state II: A > Ac; n2=- ( czAz :

The energy release rate was defined as:

_ (4P __oP
= '{tda }7\ =constant tda

Along the state I this yields:

oP OP[AD Ki2
=Gt =- {Th} =g = B =)

dK
where k; is a positive constant, i.e. k; = K{ = d}\I

Along the state I we get:

G- (%) _ OPDDol GAP(: A
TTlWoaly T tba  tda

Substitution of (5.5) gives:
S AED? - {(h - NAZN? + Ag %)

)2 (A 2)2
Ay

7\Z(kI) + t@ {4 (Ac- }

where use is made of the identity (5.8b). For simplicity we introduce:

(5.89)

(5.9)

(5.10)

(5.11)

(5.12)

which is a factor that contains the coefficients that govern the postbuckling solution

(see (5.8Y)). With this definition we get from (5.11):

G = A2(kp)? + B (he - A) + 73 B1° (he - N2

(5.13)

0
where ()° = =192’ that A°= taa {Ac} and B;° = taa {B1}. Notice that the factor Ac°

that appears here can in principle be read from the graph in figure (7) and that it is

clear that this factor must be negative.
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From a computational point of view, expression (5.13) does not offer much prospective
because it seems cumbersome to compute the derivatives A.° and f$;°. This is
particular true for the factor B;° which is built on the derivative b.°. The significance of
expression (5.13) rather lays somewhere else, i.e., in the general structure it reveals
in terms of the dependency on the load factor A. Notice that the relation in terms of A

agrees with the form of the computed solution in figure 11, i.e. it presents a quadratic
function in terms of AA = (A - Ao).

To obtain the rate of change of G(A) at the buckling point we determine the derivative
of G with respect to A (for 2a = constant ):

Along I 2 - awy?
(5.14)
0G 2 ) o
Along II: ax = 2MkD” - Ac°Br + B1° (A - Ao)

Consequently at the buckling load A, the slope to the G(2) curve undergoes a (finite)
jump:

oG oG o
S - {5},= -Acpi>0 (5.15)

which is a result that is completely confirmed by our calculations (figure 13).
5.2 The energy release rate in terms of the local crack tip solutions
In the foregoing we wrote the solution for the bifurcating branch as:
Diotal = ADg + nbc + n2v + O(n3) (5.15)

It follows from our previous remarks that the components of this expansion can be
written as:

x 0 Cx
0 by 0

The subscript y and x refer here to the membrane or in plane displacements (u, v)
while the subscript z refers to the out of plane displacements (w). We see that for our
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problem, the buckling displacements b., which are associated with the bending
deformations, are exclusively in terms of (w), and that the two other vectors: Dg and
the second order term v only contain components in terms of u and v. Consequently, in
the initial stage of the buckling process the displacement field in a close region around
the crack tip are expected to have the form:

v Y(0) - 2VT 1(8) N Y(6)

- *:(0
u=u(x,y,z)=Ak, \/;c;(e) * nky zsz N + %k, \/;c(e)
0 5\/;‘»01(6) 0

(5.17)

where r, 0 are the coordinates of a polar coordinate system at the crack tip, see
figure 1. The precise specification of the functions Y, ¢ and so forth are immaterial at
this stage of the discussion.

It is now noted that the energy release rate G can be expressed in terms of the
integral (Irwin's representation) (Ref. 31):

t

Aa
G=Lim, __ {J _tf%c(x, 2, A)u(Aa - X, z, a)dz dx} (5.18)
2

an expression in which only the local crack tip solution (5.17) plays a role. The
specification of the functions that we need to evaluate under the integral sign are
provided by the classical solutions for mode I stretch and mode I bending (see (Refs.
31, 32) and (Refs. 5, 38, 39) respectively). The components involved are given by:

ox(X, z, a) = oxm(X, a) + zoxb(X, @)

(5.193)
u(Er’ Z, a) = Uxm(iy a) + ZKXb(€7 a)
E=Aa-x
Oxm(X, @) = A klﬁ +n2 sz%—ﬂ_—x + (irrelevant terms)
(5.19b)

um(€, a)=A klﬁ\/—&— +n2ky ﬁ\fi— + (irrelevant terms)
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1 .
oxb(X, a) =1 kpp o + (irrelevant terms)

(5.199)
®xb(E, a) =1 kzbﬁ\/f —ztz + (irrelevant terms)

Carrying out the integration and taking the limit leads to the following resuit:

G=Gn+Gyp
(5.20)
1
G= [E (Aky+ A)\kz)zl"‘ [%% AA (k2b)2]

where we note that the factor (%) before the bending term is actually not important,

because it could very well be incorporated in kop and only has the character of a
scaling factor.

The significance of this result, (5.20), and that given by (5.13) is the possibility to
identify, i.e. to relate the membrane stress intensity factor Kjn(A) and the bending
stress factor Kmp(A), which are local parameters, to the corresponding global
contributions in the energy release rate G = G, + Gp,. It follows by comparison of

(5.13) and (5.20) that:
/ Ep’
k2=k1{ 1+(k1)f’z ‘1}

kob= \/%{ (-No)B1E - 2Ackikz}

(5.21)

where it is understood that k; is given, i.e. by k; = 7+—(K1c),; in accord with definition
y A I

(5.9). Notice, that the expression for ky in (5.21) indicates that f; must be an
increasing function of the crack length 2a.

These results obtained at (5.20 & 5.21) show how the intensity factors Kiy (A) and
Kip(A) can be determined (in principle) from the global buckling analysis of section

5.2. But notice, that equation (5.20) also shows some light on the approximation that
we introduced for the Ky, factor at (4.3). We can write (5.20) in the form:
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1 3§ AM(Kab)?

G =[g (ki + A2l { 1+ 7 (5.22%
£ (Ak; + Akp)2

so that 4 G becomes:

2
1 3AMk2)2 12
— b
[K*ml,, =5 Oki + M {1+ G5 a2 S (5.22b)

The "exact” expression for Kjp is:

1

Kiml ), =g

(Aky + AAkg) (5.23)

It turns out that the results of our numerical calculations (figure 12) show very little
deviation from this linear relation. This seems to indicate that the factor kpp/k; is very
small for the cases that we analyzed here. In other words, the bending part Gy, of the
energy release rate G is a negligeable factor in the postbuckling solution of the
cracked plate and the approximate formula for the mode I intensity factor given by
(4.3) must thus be fairly accurate.

5.3 Conclusions

It must be clear that the methods for nonlinear analysis that we described in
this paper are very useful for the analysis of crack problems in thin walled plate and
shell structures.

As far as the analysis of the centrally cracked plate is concerned, a number of
interesting and we believe new facts were revealed regarding the physics of this
problem. We can summarize these facts as follows:

-i- When the plate is loaded into the postbuckling state, the energy release rate, c.q.
the stress intensity factor as a function of the load will bifurcate (with finite slope)
from the relation that belongs to the (linear) prebuckling state.

-ii- The crack tip stress intensity along the post buckling path is always larger than it

is along the pre-buckling path at the same value of the load. This effect increases with
the crack length 2a.
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-iii- The mechanical cause of this phenomenon must be sought in the redistribution of
the membrane stress field during buckling process. This modification represents a
more severe in-plane loading of the crack.

-iv- The relation between the membrane stress intensity factor Kjp and the intensity
of the loading, which is a linear relation in the pre-buckling state, is again linear after
buckling has taken place, at least, for values of the load not far in excess of the
buckling load.

-v- The bending part of the energy release rate does not seem to play a noticeable role
(as compared to the membrane part) in the cases considered here.

ACKNOWLEDGEMENT

REFERENCES

1. Riks E., den Reijer PJ., "A Finite Element Analysis of Cracks in a Thin Walled Cylinder under Internal
Pressure”, NLR TR 87021 U, National Aerospace Lab. NLR, the Netherlands, Jan. 1987.

2. Riks E., "Bulging Cracks in Pressurized Fuselages: A Numerical Study”, NLR MP 87058 U, National
Aerospace Lab. NLR, The Netherlands, Sept. 1987.

3. Riks E., Brogan F.A., & Rankin C.C., "Bulging Cracks in Pressurized Fuselages: A Procedure for
Computation”, December Meeting ASME, San Francisco, 1989. In: Analytical and Computational
Models of Shells, Proceedings Winter Annual Meeting ASME (A K. Noor, T. Belytschko, J.C. Simo eds.),
C.ED. Volume 3, The American Society of Mechanical Engineers, 1989.

4. Ansell, H., "Bulging of Cracked Pressurized Aircraft Structure,” Ph.D. Thesis, Linkoping Institute of
Technology, Sweden, April 1988.

5. Dong, Chen., " Bulging Fatigue Cracks in a Pressurized Aircraft Fuselage”, PhD. Thesis, Delft
University, Dept. of Aeronautics & Astronautics, Delft, The Netherlands, January, 1991.

6. Petyt M., "The Vibration Characteristics of a Tensioned Plate Containing a Crack”, J. Sound Vib. 8, 377
(19683).

7. Dixon R. and Strannigan J. S.,. "Stress distribution and Buckling in Thin Sheets with Central Slits”,
Proc. 2nd. Int. Conf. on Fract., Brighton, 105 (1969).

8. Dyshel M. S., "Stability under Tension of Thin Plates with Cracks", Soviet Appl. Mech. 14, 1169 - 1173
(1978)

9. Dyshel M. S., "Stability of Thin Plates with Cracks under Bi-axial Tension", Soviet Appl. Mech. 18, 924
-928 (1982)

10. Guz A. N., Kuliev G. G. and Tsurpal I.A.,"On Fracture of Brittle Materials from Loss of Stability near
a Crack”, Engng Fract. Mechanics, 10, 401 (1978).

11. Dal, Y. M., " Local Bending of a Stretched Rectangular Plate with a Crack”, Soviet Appl. Mech. 17,
120- 125 (1978) :

12. Markstrom K., Stordkers B.,"Buckling of Cracked Members under Tension”, Int. J. Solids Structures,
Vol. 16, pp 217 - 229, 1980.

33




13. Rossmanith H. P., Troger H., Tschegg E., " Beulen und Reissen von Gezogenen Diinnen Blechen mit
Innenrissen”, Z. Flugwiss. Weltraumforsch. §, (1981), Heft 1.

14. Fujimoto T. and Sumi S., "Local Buckling of Thin Tensioned Plate Containing a Crack”, The Memoirs
of the faculty of Engineering, Kyushu University, Vol. 12, pp. 355-370 (1982)

15. Fujimoto T. and Sumi S., "Elastic buckling of Center Cracked Plates under Tension", J. J. S. M. E. 52,
1582-1586 (1985)

16. Sih G. C. and Lee Y. D., " Tensile and Compressive Buckling of Plates Weakened by Cracks”, Theor.
Appl. Fracture Mech. 6, 129-138 (1986)

17. Shaw D., Huang Y. H. "Buckling Behavior of a Central Cracked Thin Plate under Tension™ Engrg.
Fracture Mechanics, Vol. 35. no 6. pp 1019 - 1027, 1990.

18. Budiansky B., " Theory of Buckling and Post-buckling Behaviour of Elastic Structures,” in: "Advances
in Applied Mechanics 14", edited by C.S. Yih, Academic Press, New York, 1974, 1-65.

19. Thompson J.M.T., Hunt G.W., " A General Theory of Elastic Stability,” John Wiley & Sonms, Ltd.,
(1973).

20. Almroth B.O., Brogan F.A., Stanley G.M.,"Structural Analysis General Shells”, Vol.2 Users
Instructions for STAGSC-1, LMSC D633873.

21. Rankin C. C. and Brogan F. A., "An Element Independent Corotational Procedure for the Treatment of
Large Rotations,” J. Pressure Vessel Techn., 108,pp. 165 - 174, (1986).

22. Rankin C. C. and Nour-Omid B., "The Use of Projectors to Improve Finite Element Performance,”
Computers & Structures, Vol. 30, No. 1/2, November, 1988, pp. 257-267.

23. Koiter W. T., " On The Nonlinear Theory of Thin Elastic Shells", Proc.Kon. Ned. Ak. v.
Wetenschappen, 1- 54 (1966).

24. Koiter W.T., "General Equations of Elastic Stability for Thin Skells, Proc. Symp. on the Theory of
Shells in honour of Loyd Hamilton Donnell, University of Houston, (1967).

25. Riks E., " The Application of Newtons Method to the Problem of Elastic Stability", J. Appl.
Mech.,Vol. 39, pp. 1060-1066, Dec. 1972.

26. Rheinboldt W. C. and Riks E., "A Survey of Solution Methods for Finite Element Equations,” In:
State of the Art Surveys on Finite Element Technology, A.K. Noor, W.D. Pilkey eds., The American
Society of Mechanical Engineers, 1983.

27. Riks E., "Some Computational Aspects of The Stability Analysis of Nonlinear Structures”, Comp.
Meth. in Appl. Mech. and Engng. 47, 219-259, 1984.

28. Riks E., "Progress in Collapse Analysis”, Journal of Pressure Vessel Technology, Vol. 109/27 - 41,.
Febr.1987.

29.Thurston G. A., Brogan F.A., Stehlin P., " Postbuckling Analysis Using a General Purpose Code”,
AIAA paper No. 85-079-CP. Presented at the AIAA/ASME/AHS 26 Structures, Structural Dynamics
and Materials Conference, Orlando,Florida, April 15- 17, (1985).

30. Rankin C. C., Stehlin P. and Brogan F. A., "Enhancements to the STAGS Computer Code”, NASA CR-
4000, 1986.

31. Broek D., " Elementary Engineering Fracture Mechanics” Sijthof & Noordhoff, Alphen a/d Rijn - The
Netherlands. (1987).

32 Owen D.RJ., Fawkes AJ., "Engineering Fracture Mechanics: Numerical Methods and Applications”,
Pineridge Press Ltd., Swansea, UK. (1983).

33. Parks D.M., "A Stiffness Derivative Finite Element Technique for Determination of Elastic Crack Tip
Stress Intensity Factors”, Int. J. Fracture 10, No. 4, 487-502, December (1974).

34




34. Hellen T K., "On the Method of Virtual Crack Extensions”, Int. J. Num. Meth. Engng. 9, No.1, 187-207
(1975).

35. LeFort P., deLorenzi H.G., Kumar V., German M.D., "Virtual Crack Extension Method for Energy
Release Rate Calculations in Flawed Thin Shell Structures”, Journal of Pressure Vessel Technology, Vol.
109/101-107, February 1987.

36. deLorenzi H.G., " Energy Release Rate Calculations by the Finite Element Method", Engineering
Fracture Mechanics, Vol. 21, No. 1, 1985, pp. 129.

37. Hellen T. K., Blackburm W. S., "Non-linear Fracture Mechanics and Finite Elements”, Eng. Comp., Vol.
4, pp. 2 - 14, March (1987).

38. Knowles, J. K. and Wang N.M.,"On the Bending of an Elastic Plate containing a Crack", Journal of
Mathematics and Physics, Dec. 1961, pp. 223 - 236.

39. Sih G.C., Paris P., and Erdogan, F., "Crack Tip Stress Intensity Factors for plane Extension and Plate

Bending problems”, Journal of Applied Mechanics, Vol. 29, Trans. ASME, Vol. 84, series E, June 1962,
pp- 306 - 312.

35




Jim



