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Abstract—To achieve higher levels of assurance for digital 

systems, we need to answer questions such as does this software 

have bugs of these critical classes? Do two software assurance tools 

find the same set of bugs or different, complimentary sets? Can we 

guarantee that a new technique discovers all problems of this 

type? To answer such questions, we need a vastly improved way to 

describe classes of vulnerabilities and chains of failures. We 

present the Bugs Framework (BF), which raises the current realm 

of best efforts and useful heuristics. Our BF includes rigorous 

definitions and (static) attributes of bug classes, along with their 

related dynamic properties, such as proximate, secondary and 

tertiary causes, consequences and sites. The paper discusses the 

buffer overflow class, the injection class and the control of 

interaction frequency class, and provides examples of applying 

our BF taxonomy to describe particular vulnerabilities. 

Keywords—software weaknesses; bug taxonomy; attacks. 

I. INTRODUCTION 

The medical profession has an extensive, elaborate 
vocabulary to precisely name muscles, bones, organs and 
diseases. When a doctor says that a comatose patient has a left 
temporal lobe epidural hematoma, the intention is to enlighten, 
not obfuscate. In the software profession, many efforts have 
developed terms to discuss software, faults, failures and attacks, 
such as the Common Weakness Enumeration (CWE) [1] and 
Landwehr et. al. Taxonomy of Computer Program Security 
Flaws [2], but much work remains. 

We want to more accurately and precisely define software 
bugs or vulnerabilities. Consider that adding “canary” values 
around arrays detects some buffer overflows while using address 
layout randomization mitigates others. A precise, orthogonal 
nomenclature can state exactly which classes of buffer 
overflows each approach handles. We can also clearly state the 
classes of bugs that a tool can find and more easily determine if 
two tools generally find the same set of bugs or if they find 
different, complimentary sets.  

The ancient Greeks used the terms element and atom, and 
Aristotle proposed that all matter is a mixture of earth, air, fire 
or water. In the Middle Ages, alchemists made lists of materials, 
such as alcohol, sulfur, mercury and salt. Through centuries of 
experimentation and development of scientific principles, we 
now have Mendeleev's Periodic Table of Elements, see Fig. 1. 
Just as the structure of the periodic table reflects the underlying 
atomic structure, we are developing a taxonomy dictated by the 
“natural” organization of software bugs, while using as stepping 
stones known bugs enumerations, compendia and collections. 

Over the course of history, science has developed many 
different organizational structures. Linnaeus’ taxonomy 
categorizes living things into a hierarchy of Domain, Kingdom, 
Phylum, Class, Order, Family, Genus and Species. It allows 
comprehension of the diversity of life forms and codifies 
understanding that some animals are close in their evolutionary 
history. The Geographic Coordinate System specifies any 
location on Earth using latitude, longitude and elevation. The 
Dewey Decimal Classification system allows new books and 
whole new subjects to be placed in reasonable locations in a 
library for easy retrieval based on subject. Fingerprints are 

 

Fig. 1. Periodic Table of Elements:  antiquity,  Levoisier 1789,  Men-
deleev 1869,  Deming 1923,  Seaborg 1945,  up to 2000,  to 20121. 

Disclaimer: Certain trade names and company products are mentioned in the 
text or identified. In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and Technology (NIST), 

nor does it imply that they are necessarily the best available for the purpose. 
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Fig. 2. Three ways to describe Zofran ODT. 

classified using loops, whorls and arches and retrieved based on 
minutia. Chemists have a detailed system beyond the periodic 
table to describe chemicals. For instance, they have several 
different systems of rendering molecules, which are three 
dimensional, to emphasize aspects that are more important in 
different contexts, see Fig. 2.  

Finally, all integers2 have unique prime factors. 
Analogously, we seek to factor software weaknesses into their 
constituent components, thereby gaining the understanding to 
organize these components in their most naturally-occurring 
categories and structure. We aim for the most accurate, precise 
and intuitive way to describe software bugs. 

To paraphrase William Thomson, Baron Kelvin, “when you 
can measure what you're speaking about, and express it [in 
precise terms], you know something about it; but when you 
cannot, your knowledge is of a meager and unsatisfactory kind: 
it may be the beginning of knowledge, but you have scarcely, in 
your thoughts, advanced it to the stage of science.” [3] 

In this paper, we first discuss existing software weaknesses 
enumerations, patterns and templates. Then we present our Bugs 
Framework (BF) with its four main areas: causes, attributes, 
consequences and sites. To make sure that BF applies to all 
classes of bugs, we began with three quite disparate classes: 
buffer overflows, injections and control of frequency of 
interactions. Buffer overflow occurs primarily in C and is low-
level; injection relates strongly to the language in which the 
command string is interpreted, and control of frequency 
interactions requires reference to a user-level policy to set limits. 
For each class, we provide a definition and the BF taxonomy, 
which includes the sites in code where they may be found. We 
also provide examples of applying the taxonomy to describe 
particular vulnerabilities and list corresponding classes from 
other weaknesses collections. The final section summarizes our 
work and discusses the benefits from our BF as well as our future 
plans. Our goal is for the BF to become the software developer’s 
and tester’s “Best Friend.” 

II. EXISTING ENUMERATIONS, PATTERNS AND TEMPLATES 

The Common Weakness Enumeration (CWE) [1] is an 
“encyclopedia” of over 600 types of software weaknesses. Some 
of the classes are buffer overflow, directory traversal, OS 
injection, race condition, cross-site scripting, hard-coded 
password and insecure random numbers. CWE is a widely-used 
compilation, which has gone through many iterations. Many 
tools and projects are based on it. Each CWE has a variety of 
information, such as description summary, extended 
description, white box definition, consequences, examples, 
background details and other notes, recorded occurrences 

(Common Vulnerabilities and Exposures or CVE [4]), 
mitigations, relations to other CWEs, and references. 

CWEs are a rich source of material for software developers 
and superior to anything that existed before. However, for very 
formal, exacting work, CWE definitions are often inaccurate, 
imprecise or ambiguous, and the various definitions within one 
CWE can be inconsistent. Each CWE bundles many stages, such 
as likely attacks, resources affected and consequences. The 
coverage is uneven, with some combinations of attributes well 
represented and others not appearing at all. An extreme instance 
is path traversal. There are a dozen CWEs for path traversal, 
each one having a specific combination of relative or absolute 
paths, forward or backward slashes – singly or repeated, 
between one and three directory steps, and two or more dots, 
which indicate the parent directory. 

Another example is buffer overflows. CWE-121 [5] is write 
outside of a buffer on the stack, CWE-122 is write outside of a 
buffer in the heap, CWE-127 is read before the beginning of a 
buffer and CWE 126 is read after the end of a buffer. But there 
are no CWEs specifically for read outside a buffer on the stack 
vs. in the heap. The description summary of CWE-119: 
Improper Restriction of Operations within the Bounds of a 
Memory Buffer is "The software performs operations on a 
memory buffer, but it can read from or write to a memory 
location that is outside of the intended boundary of the buffer.” 
Note that “read from or write to a memory location” is not 
explicitly tied to the buffer! Most humans would, of course, 
assume that it means the software can access through a buffer a 
memory location that is not allocated to that buffer. 

Software Fault Patterns (SFP) [6] are a clustering of CWEs 
into related weakness categories. Each cluster is factored into 
formally defined attributes, with sites (“footholds”), conditions, 
properties, sources, sinks, etc. This work overcomes the problem 
of combinations of attributes in CWE. For instance, Table 1 
shows how SFP factored attributes are more clear than the 
irregular coverage of CWEs. 

SFP is an excellent advance, but does not tie fault clusters to 
causes or chains of fault patterns nor to consequences of a 
particular vulnerability. In addition, since they were derived 
from CWEs, more work is needed for embedded or mobile 
concerns, such as, battery drain, physical sensors (e.g. Global 
Positioning System (GPS) location, gyroscope, microphone, 
camera) and wireless communications.  

Another source of organization of weaknesses is Semantic 
Templates (ST). “A semantic template is a human and machine 
understandable representation of the following: 1) software 
faults that lead to a weakness; 2) resources that a weakness 
affects; 3) weakness attributes; and 4) consequences/ failures 
resulting from the weakness.” [7] Semantic Templates factor out 
chains of causes, resources and consequences that are present in 
CWEs. For instance, Fig. 3 shows phrases in the description 
summary, extended description and common consequences of 
CWE-120: Buffer Copy without Checking Size of Input 
(‘Classic Buffer Overflow'), labeled according to the phases 
called out by Semantic Templates.  

Details on the relevant body of knowledge that consolidates 
CWE, including the SFP and the ST efforts is presented in [8]. 
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TABLE I.  SFP FACTORED ATTRIBUTES OF BUFFER OVERFLOW CWES 

                               Attribute 

          CWE                          

Location 
Access 

kind 

Boundary 

exceeded 

heap stack read write lower upper

119: Improper Restriction of Operations 
within Bounds of Buffer 

√ √ √ √ √ √ 

120: Buffer Copy without Checking  
Size of Input 

√ √  √ √ √ 

121: Stack Overflow  √  √ √ √ 

122: Heap Overflow √   √ √ √ 

123: Write-what-where condition √ √  √ √ √ 

124: Buffer Underwrite √ √ √ √ √  

125: Out-of-bounds read √ √ √  √ √ 

126: Buffer Overread √ √ √   √ 

127: Buffer Underread √ √ √  √  

Landwehr et. al. created a taxonomy of security flaws in 
programs [2]. The taxonomy has three aspects: genesis, that is, 
how it originated, time of introduction and location. Each aspect 
is further divided into subcategories. The main focus of the 
taxonomy seems to be how flaws originated and is aimed at a 
higher, system level. It does not include details enabling 
automated detection in code, proving the efficacy of mitigation 
techniques or deriving possible consequences. 

III. THE BUGS FRAMEWORK (BF) 

Just as integers can be factored into prime numbers or 
molecules can be decomposed into constituent atoms, we break 
down information in CWEs, SFPs, and other compendia and 
collections into basic, orthogonal components. 

We organize them into meaningful structures and identify 
rules of composition. We use this compilation in several ways 
in order to validate it and demonstrate its utility. We elucidate 
known vulnerabilities, accurately and precisely defining the 
classes of bugs reported by assurance tools and document in 
exactly what situation various software assurance techniques are 
efficacious. We believe this compilation may also guide 
development of techniques to cover gaps. 

The BF comprises four main areas: causes, attributes, 
consequences and sites of bugs. The causes and consequences 
are well represented with a directed graph. Causes include 
implementation mistakes, conditions, preceding weaknesses and 
circumstances that bring about the fault. Some of the causes are 
nested hierarchically. The identifying or distinguishing 
attributes are the next general area. 

Some assurance techniques or mitigation approaches may 
work for a fault with certain attributes, but not for the same 
general kind of fault that has other attributes. Each attribute is 
an enumeration of possible values. Lists of attributes also open 
the opportunity to more formally define and reason about them.  

Note that the attributes describe an event, not the site in code 
that gives rise to the event. 

We want to be able to forecast possible consequences of 
different kinds of faults. Knowing what consequences might 

Fig. 3. Phrases in CWE-120 descriptions labeled according to ST phases.  
Blue is software faults. Yellow is a weakness. Green is resource or location. 
Red is consequences. 

occur allows risk estimation and determination of best 
mitigation strategies. 

Finally, we describe the sites or locations in code where the 
bug might occur under circumstances indicated by the causes.  

A site is a location in code where a weakness might be For 
instance, every buffer access in a C program is a site where 
buffer overflow might occur if the code is buggy. In other words, 
sites for a weakness are places that must be checked for that 
weakness. [9] The determination of sites depends only on local 
information. That is, global or flow-sensitive information is not 
needed to determine where sites are in code.  

For example, the following code comes from Software 
Assurance Reference Dataset (SARD) [10] case 62 804. It has 
one site of writing to an array, data[i] = …, which needs to be 
checked for a write-outside-array bug. There is also one site of 
reading from an array, source[i], where the program might 
read outside the array if there is a bug. 

 for (i = 0; i < 10; i++) {  
  data[i] = source[i];  
 } 

In addition, the code has sites of possible uninitialized 
variable, every place that i is used, and a possible integer 
overflow site, i++. Notice that the assignment statement in the 
body of the loop has several sites.  

This statement-level definition of site not always applies. 
When a C programmer uses the strcpy library function, it does 
not get enough information to check for a  buffer overflow. 
Similarly the Structured Query Language (SQL) processor 
cannot determine that the programmer never intended queries 
like “name = Henry or 1=1” to be always true. The site is the last 
or lowest level of code execution outside library functions or 
utilities. This is the final chance the programmer had to avoid 
the fault. In other words, sites of a bug are places in the code that 
should be checked for that class of bug. 

Following are one section for each of three classes of bugs 
from our BF: buffer overflows, injections and control of 

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer 
Overflow’) 

Description Summary: The program copies an input buffer to an output 
buffer without verifying that the size of the input buffer is less than the size 
of the output buffer, leading to a buffer overflow. 

Extended Description: A buffer overflow condition exists when a program 
attempts to put more data in a buffer than it can hold, or when a program 
attempts to put data in a memory area outside of the boundaries of a buffer. 
The simplest type of error, and the most common cause of buffer overflows, 
is the "classic" case in which the program copies the buffer without 
restricting how much is copied. 

Common Consequences: Buffer overflows often can be used to execute 
arbitrary code, which is usually outside the scope of a program's implicit 
security policy. This can often be used to subvert any other security service. 
Buffer overflows generally lead to crashes. Other attacks leading to lack of 
availability are possible, including putting the program into an infinite loop. 



frequency of interactions. In each section, we give a definition 
of the class and our taxonomy, including related sites. Following 
that we provide examples and related classes from other 
collections, such as CWEs and SFPs. 

IV. BUFFER OVERFLOW CLASS – BOF 

A. Definition 

We define Buffer Overflow (BOF) as: 

The software can access through an array a memory  

location that is outside the boundaries of that array. 

Often referred to as a “buffer,” an array is a contiguously 
allocated set of objects [11], called elements. An array has a 
definite size—a definite number of objects are allocated to it. 
The elements are of same data type and are accessed by integer 
subscripts. 

If the software can utilize the array name (more generally, 
array handle or pointer to array elements) to access any memory 
other than the allocated objects, it falls into this class.  

B. Taxonomy 

Fig. 4 depicts BOF causes, attributes and consequences.  

The graph of causes for BOF shows that there are only two 
proximate causes of buffer overflows: amount of data exceeds 
the array size or there is a wrong index or pointer. Those two 
causes have preceding causes that may lead to them. Note that 
“Data Exceeds Array” could be the result of an “Array Too 
Small” or result of “Too Much Data.” The former sub-cause 
means that an incorrectly small array has been allocated and 
because of that the destination is too small. The latter sub-cause 
means that incorrectly large amount of data has been accessed 
and because of that the data is too big.  

The attributes of BOF are: 

Access – Read, Write. 

Boundary – Below, Above. This indicates which end of the 
array is violated. Synonyms for boundary are side or bound. The 

terms before, under or lower may be used instead of below. The 
terms after, over or upper may be used instead of above. Outside 
indicates that the boundary is unknown or it doesn’t matter. 

Location – Heap, Stack. This indicates what part of memory 
the array is allocated in. It may matter since violations in the 
stack may affect program execution flow, while violations in the 
heap typically only affect data values. Other architectures may 
have other locations that are significant. For instance, Intel 
architecture also has Bss, Data and Code (text).  

Magnitude – Small, Moderate, Far. This is how far outside 
the boundary the violation extends. Small means just barely 
outside, e.g. one to a few bytes beyond the end, moderate is 
something like eight bytes to dozens, and far is hundreds, 
thousands or more.  

These distinctions in the magnitude attribute are important 
because some violation detection techniques or mitigation 
techniques, such as canaries or allocating a little extra space, are 
only useful if the magnitude is small. 

Data Size – Little, Some, Huge. This is how much data is 
read or written beyond the boundary. Like in magnitude, these 
distinctions are important in some cases. For instance, 
Heartbleed [12] would not have been a severe problem if it just 
exfiltrated a little data. The fact that it may exfiltrate a huge 
amount of data greatly increases the chance that very important 
information will be leaked. 

Reach – Continuous, Discrete. This indicates whether the 
access violation was preceded by consecutive access of elements 
starting within the array (continuous) or just an access outside 
of the array (discrete). Typically string accesses or array copies 
handle a continuous set of array elements, while a vagrant array 
index only reads or writes one element. 

Note that any of the attributes may be “any,” “don’t care” or 
“unknown.” For instance, strict bounds checking is equally  
effective regardless of the location, magnitude, data size or reach 
of the violation. Keeping return addresses in a separate stack  
helps prevent problems occurring from write accesses when the 
array location is the stack. 

 

Fig. 4. The Buffer Overflow (BOF) class represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.)



The values for the access, boundary, location, magnitude, 
and reach attributes were listed earlier by Kratkiewicz [13], 
although they were discovered independently through our 
analysis of the buffer overflow CWEs. Some additional 
attributes from [13] that might be relevant to our BOF taxonomy 
are: Data Type, for instance int, float or Boolean, and Container, 
for instance, the array is in a struct or record. 

Note that in the graph of consequences in Fig. 4, “Resource 
Exhaustion” refers to Memory and CPU. 

In the C language, sites where a buffer overflow may occur 
are the use of [ ] or unary * operators with arrays. Sites also 
include the use of string library functions as strcpy or strcat. 

C. Examples  

1) CVE-2014-0160 – Heartbleed 
This vulnerability is listed in [12] and discussed in [14].  Our 

BF description is: 

Input not checked properly leads to too much data, where a 

huge number of bytes are read from the heap in a continuous 

reach after the array end, which may be exploited for exposure 

of information that had not been cleared. 

2) CVE-2015-0235 – Ghost 
This vulnerability is listed in [4] and discussed in [15]. Our 

BF description is: 

Incorrect calculation, (specifically missing factor) leads to 

array too small, where a moderate number of bytes are written 

to the heap in a continuous reach after the array end, which 

may be exploited for arbitrary code execution, leading to denial 

of service. 

3) CVE-2010-1773 – Chrome WebCore 
This vulnerability is listed in [4] and discussed in [16, 17, 18, 

19, 20, 21]. Our BF description is: 

Incorrect calculation, (specifically off by one) leads to a 

wrong index, where a small number of bytes are read from the 

heap in a discrete reach before the array start, which may be 

exploited for information exposure, arbitrary code execution 

or program crash, leading to denial of service. 

D. Related CWEs, SFP and ST 

CWEs related to BOF are: CWE-119, 120, 121, 122, 123, 
124, 125, 126, 127, 786, 787 and 788. The only related SFP 
cluster is SFP8 Faulty Buffer Access under Primary Cluster: 
Memory Access [22]. The corresponding ST is the Buffer 
Overflow Semantic Template [23]. 

V. INJECTION CLASS – INJ 

A. Definition 

We define Injection (INJ) as: 

Due to input with language-specific special elements, the 

software can assemble a command string that is parsed into 

an invalid construct. 

In other words, the command string is interpreted to have 
unintended commands, elements or other structures.  

B. Taxonomy 

Fig. 5 depicts INJ causes, attributes and consequences.  

The attributes of INJ are: 

Language – Database Query, Regular Expression, 
Command, Markup, Script. This indicates the language in which 
the command string is interpreted. Database query language 
could be SQL. Command language could be Bash. Markup 
language could be XML/Xpath. HTML Scripting language 
could be PHP, CGI.  

Special Element – Query Elements, Header Separators, 
Scripting Elements, Format Parameters, Path Traversals,

Fig. 5. The Injection (INJ) class represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.) 



Wildcards, Metacharacters. These could be assembled with 
other elements to form malicious structures such as queries, 
scripts and commands. Query elements are strings delimiters ‘ 
or “ or words such as ‘and’ or ‘or’. Header separators are 
carriage return/line feed. Scripting elements are < or > or &. 
Format parameters are such as %c or %n. Path traversals 
elements are .. or \. Metacharacters are back tick ( ` ) or $ or &.  

Entry Point – Data Entry Field, Scripting Tag, Markup Tag, 
Function Call Parameter, Procedure Call Argument. This 
indicates where the input came from.  

Note that in the graph of consequences on Fig. 5, “Arbitrary 
Code Execution” concerns any instructions to the computer – 
compiled, interpreted by software, executed directly by 
hardware or combination. 

Injection sites are typically not primitive operations in most 
languages. Sites are the library or utility functions that accept a 
command string for actions. In shell commands, command 
substitution is invoked with paired back quotes (`…`) or $(…). 
Command substitution executes a subshell, which opens the 
possibility of the string to be interpreted with all the richness of 
the command line interpreter. 

C. Examples  

1) CVE-2007-3572 – Yoggie Pico 
This vulnerability is listed in [4] and discussed in [25]; 

special elements are discussed in [26]. Our BF description is: 

Input not checked properly (specifically incomplete blacklist) 

allows shell command injection through the “param“ function 

parameter in a CGI script using Shell metacharacters 

(specifically back ticks ` ), which may be exploited to add 

command, leading to arbitrary code execution. 

Note that adding a command through Ping to change the root 
password enables eventual complete host takeover. 

2) CVE-2008-5817 
This vulnerability is listed in [4] and discussed in [27, 28]. 

Our BF description is: 

Input not checked properly or input not sanitized properly 

allows SQL injection through the “username“ & “password“ 

fields in a PHP script using query elements (specifically ' , or, 

and = ), which may be exploited to mask legitimate SQL 

commands, leading to authentication compromise, admin 

server access and arbitrary SQL code execution. 

3) CVE-2008-5734 
This vulnerability is listed in [4] and discussed in [29, 30, 

31]. Our BF description is: 

Input not sanitized properly allows XSS web script or HTML 

injection through the IMG element of a generated HTML 

email, which may be exploited to add commands or for 

cookie-based authentication credentials compromise, leading 

to arbitrary code execution. 

D. Related CWEs, SFPs and ST 

CWEs related to INJ are CWE-74, 75, 77, 78, 80, 85, 87, 88, 
89, 90, 91, 93, 94, 243, 564, 619, 643 and 652. Related SFPs are 
SFP24 and SFP27 under Primary Cluster: Tainted Input, and 
SFP17 under Primary Cluster: Path Resolution [22]. The 
corresponding ST is the Injection Semantic Template [32]. 

VI. CONTROL OF INTERACTION FREQUENCY CLASS – CIF 

A. Definition 

We define Control of Interaction Frequency (CIF) as: 

The software does not properly limit the number  

of repeating interactions per specified unit. 

In physics, frequency is the number of occurrences of a 
repeating event per unit time [24]. Interactions in software could 
be also per event or per user.  

B. Taxonomy 

Fig. 6 depicts CIF causes, attributes and consequences.  

The attributes of CIF are: 

Fig. 6. The class Control of Interaction Frequency (CIF) represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.) 



Interaction – Authentication Attempt, Book, Checkout, 
Register, Initiate. This indicates the type of interactions to be 
controlled. Voting could be related to election, census, survey, 
referendum and ballot. Booking could be of tickets, hotel 
rooms or rental cars. Checkout could be of library books, hotel 
rooms or rental cars. Register could be for computer games. 
Initiate could be for message exchange.  

Number – Single, Unique; Specified Number (> 1). This 
indicates the maximum number of occurrences allowed. 

Unit – Time Interval, Event, User. This indicates the 
specific unit per which the number of occurrences is 
controlled. Time Interval could be in seconds, in days, etc. 
Event could be election, authentication, on-line transaction to 
move funds, etc.  

Authentication event is the sequence of authentication 
attempts arriving at a particular server, possibly with the same 
partial credential, from any source, that terminates by 
successful authentication or by blocking.  

Actor – User, Part of Program Logic, Automated Process. 
This indicates who/what is performing the repeating 
interactions. User could be authenticated user, attacker. Part 
of program logic could be message exchange. Automated 
process could be virus, bot.  

Note that in the graph of consequences in Fig. 6, 
“Credentials” concerns username or password, smart card and 
personal identification number (PIN), retina, iris, fingerprint, 
etc. “Resource Exhaustion” concerns memory, CPU or 
granted licenses. 

Our taxonomy makes it abundantly clear that CIF is a 
“metaclass” in some senses. External policies must define for 
each system or application what constitutes an interaction, 
how many interactions should be allowed, and the unit. Each 
policy, then, defines a different class of CIF concerns.  

Since the concept of interaction is so broad and high level, 
compared to most programming languages, no general 
description of what is a site is feasible. Each system or 
application must define its own concept of interaction. An 
interaction must then be mapped to some code that controls or 
authorizes said interactions. More importantly, since a failure 
may be the total lack of code to recognize and control 
frequency of interaction, there is often no particular line or 
even block of code that can be pointed out as missing the 
control code. An entire path may be indicated from the 
beginning of an interaction event, that is, an outside agent 
indicates desire to start an interaction, to the final chance in 
execution flow that code may refuse to authorize the event.  

C. Examples 

1) CVE-2002-0628 
This vulnerability is listed in [4]. Our BF description is: 

Failure to limit to a specified number the authentication 

attempts per authentication event by same or different 

user(s) may be exploited for credentials compromise 

(username or password) via brute force. 

2) CVE-2002-1876 

This vulnerability is listed in [4]. Our BF description is: 

Failure to recognize repeated interactions that are rapid 

initiations of message exchange requests from authenticated 

users, leads to failure to properly limit them to a specified 

number per specified time interval, which may be exploited 

for resource exhaustion (consumption of all granted 

licenses) leading to denial of service.  

3) CVE-2002-1018 
This vulnerability is listed in [4]. Our BF description is: 

Failure to limit the checkouts of a book to a single one per 

user may be exploited for resource exhaustion leading to 

denial of service. 

D. Related CWEs and SFP 

CWEs related to CIF are CWE-799, 307 and 837. The 
related SFP cluster is SFP34 Unrestricted Authentication 
under the Primary Cluster: Authentication [22]. 

VII. CONCLUSIONS 

A. Summary 

We have shown a superior, unified approach. The 
presented Bugs Framework (BF) allows accurate, precise and 
unambiguous expression of software bugs or vulnerabilities. 
It can also be used to clearly explain the applicability and 
utility of different software quality or assurance techniques or 
approaches, which is demonstrated in the discussion of the 
magnitude and data size attributes of BOF. 

 This approach is a factoring and restructuring of 
information contained in CWEs, SFPs and STs, and thus 
benefits from the community’s experience with their use. 
Instead of trying to match weakness classes that tools find to 
CWEs, usually far over- or under-generalizing, the BF can 
describe tool classes much more accurately, precisely and 
succinctly. Table 1 shows how this refinement approach 
allows clearer and more succinct descriptions. The BF consists 
of (1) causes arranged in a directed graph, (2) attributes of a 
software fault, (3) possible consequences of the fault, also in 
a directed graph and (4) possible sites in code, that is, locations 
that must be reviewed for possible faults. Causes and 
consequences may be hierarchical, too. For instance, “Data 
Exceeds Array” in BOF is either “Array Too Small” or “Too 
Much Data.” “Input Not Checked Properly” in the INJ class is 
either “Permissive Whitelist” or “Incomplete Blacklist.” 

B. Benefits  

With our BF practitioners and researchers can more 
accurately, precisely and clearly describe problems in 
software, discuss the classes of bugs that tools report or 
explain what vulnerabilities the proposed techniques prevent. 
Instead of adding more and more CWEs for every slight 
variant, types of weaknesses can be categorized 
unambiguously, allowing similarities and differences to be 
easily explored and examined. We believe that as CWEs 
migrate to using this kind of taxonomy, they will be easier to 
comprehend and avoid. 



Those concerned with software quality, the reliability of 
programs and digital systems, or cybersecurity will be able to 
make more rapid progress now that they can more clearly label 
the results of errors in software. Those responsible for 
designing, operating and maintaining computer complexes 
can communicate with more exactness about threats, attacks, 
patches and exposures. 

C. Future Work 

Although we demonstrate this approach on three disparate 
classes of weaknesses, much work remains. More examples, 
such as CVEs and tool classes, need to be expressed using this 
scheme to bring out facets that were overlooked or find better 
ways of organizing the information. Consequences need to be 
examined across all classes to better understand how, say, 
adding commands can lead to whole host takeover, regardless 
of the weakness allowing the addition. Chains of causes 
should be researched similarly. A concerted investigation of 
chains through particular attributes, drawing on existing work, 
should help clarify the relations between them. We also need 
to refactor many other bugs classes, which will turn up 
commonalities. We are building a web site at 
https://samate.nist.gov/BF/ which will have the latest 
information, such as guide books for classes. 

As our BF covers more classes, existing taxonomies, like 
CWE, can start explaining their current entries with concise 
forms of our descriptions. Bug trackers can be enhanced to 
allow BF descriptions to be given. Many tool makers, such as 
static analyzers and bug trackers, already use CWEs. In the 
future, this use of CWEs can evolve to integrate BF into bug 
descriptions. For instance, a software assurance tool maker 
can find a CWE similar to the class of bugs that their tool can 
find and start with its BF description. The tool maker then can 
refine the BF description, changing enumerations of attributes 
until it matches their tool’s class. 
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