
The Bugs Framework (BF):
A Structured Approach to Express Bugs

Irena Bojanova

NIST

Gaithersburg, USA
irena.bojanova@nist.gov

Yaacov Yesha

NIST; UMBC
Gaithersburg, USA; Baltimore, USA

yaacov.yesha@nist.gov

Paul E. Black

NIST

Gaithersburg, USA
paul.black@nist.gov

Yan Wu

BGSU

Bowling Green, USA
yanwu@bgsu.edu

Abstract—To achieve higher levels of assurance for digital

systems, we need to answer questions such as does this software

have bugs of these critical classes? Do two software assurance tools

find the same set of bugs or different, complimentary sets? Can we

guarantee that a new technique discovers all problems of this

type? To answer such questions, we need a vastly improved way to

describe classes of vulnerabilities and chains of failures. We

present the Bugs Framework (BF), which raises the current realm

of best efforts and useful heuristics. Our BF includes rigorous

definitions and (static) attributes of bug classes, along with their

related dynamic properties, such as proximate, secondary and

tertiary causes, consequences and sites. The paper discusses the

buffer overflow class, the injection class and the control of

interaction frequency class, and provides examples of applying

our BF taxonomy to describe particular vulnerabilities.

Keywords—software weaknesses; bug taxonomy; attacks.

I. INTRODUCTION

The medical profession has an extensive, elaborate
vocabulary to precisely name muscles, bones, organs and
diseases. When a doctor says that a comatose patient has a left
temporal lobe epidural hematoma, the intention is to enlighten,
not obfuscate. In the software profession, many efforts have
developed terms to discuss software, faults, failures and attacks,
such as the Common Weakness Enumeration (CWE) [1] and
Landwehr et. al. Taxonomy of Computer Program Security
Flaws [2], but much work remains.

We want to more accurately and precisely define software
bugs or vulnerabilities. Consider that adding “canary” values
around arrays detects some buffer overflows while using address
layout randomization mitigates others. A precise, orthogonal
nomenclature can state exactly which classes of buffer
overflows each approach handles. We can also clearly state the
classes of bugs that a tool can find and more easily determine if
two tools generally find the same set of bugs or if they find
different, complimentary sets.

The ancient Greeks used the terms element and atom, and
Aristotle proposed that all matter is a mixture of earth, air, fire
or water. In the Middle Ages, alchemists made lists of materials,
such as alcohol, sulfur, mercury and salt. Through centuries of
experimentation and development of scientific principles, we
now have Mendeleev's Periodic Table of Elements, see Fig. 1.
Just as the structure of the periodic table reflects the underlying
atomic structure, we are developing a taxonomy dictated by the
“natural” organization of software bugs, while using as stepping
stones known bugs enumerations, compendia and collections.

Over the course of history, science has developed many
different organizational structures. Linnaeus’ taxonomy
categorizes living things into a hierarchy of Domain, Kingdom,
Phylum, Class, Order, Family, Genus and Species. It allows
comprehension of the diversity of life forms and codifies
understanding that some animals are close in their evolutionary
history. The Geographic Coordinate System specifies any
location on Earth using latitude, longitude and elevation. The
Dewey Decimal Classification system allows new books and
whole new subjects to be placed in reasonable locations in a
library for easy retrieval based on subject. Fingerprints are

Fig. 1. Periodic Table of Elements: antiquity, Levoisier 1789, Men-
deleev 1869, Deming 1923, Seaborg 1945, up to 2000, to 20121.

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology (NIST),

nor does it imply that they are necessarily the best available for the purpose.

1
 By Sandbh - Wikimedia Commons., CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31017351

Fig. 2. Three ways to describe Zofran ODT.

classified using loops, whorls and arches and retrieved based on
minutia. Chemists have a detailed system beyond the periodic
table to describe chemicals. For instance, they have several
different systems of rendering molecules, which are three
dimensional, to emphasize aspects that are more important in
different contexts, see Fig. 2.

Finally, all integers2 have unique prime factors.
Analogously, we seek to factor software weaknesses into their
constituent components, thereby gaining the understanding to
organize these components in their most naturally-occurring
categories and structure. We aim for the most accurate, precise
and intuitive way to describe software bugs.

To paraphrase William Thomson, Baron Kelvin, “when you
can measure what you're speaking about, and express it [in
precise terms], you know something about it; but when you
cannot, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced it to the stage of science.” [3]

In this paper, we first discuss existing software weaknesses
enumerations, patterns and templates. Then we present our Bugs
Framework (BF) with its four main areas: causes, attributes,
consequences and sites. To make sure that BF applies to all
classes of bugs, we began with three quite disparate classes:
buffer overflows, injections and control of frequency of
interactions. Buffer overflow occurs primarily in C and is low-
level; injection relates strongly to the language in which the
command string is interpreted, and control of frequency
interactions requires reference to a user-level policy to set limits.
For each class, we provide a definition and the BF taxonomy,
which includes the sites in code where they may be found. We
also provide examples of applying the taxonomy to describe
particular vulnerabilities and list corresponding classes from
other weaknesses collections. The final section summarizes our
work and discusses the benefits from our BF as well as our future
plans. Our goal is for the BF to become the software developer’s
and tester’s “Best Friend.”

II. EXISTING ENUMERATIONS, PATTERNS AND TEMPLATES

The Common Weakness Enumeration (CWE) [1] is an
“encyclopedia” of over 600 types of software weaknesses. Some
of the classes are buffer overflow, directory traversal, OS
injection, race condition, cross-site scripting, hard-coded
password and insecure random numbers. CWE is a widely-used
compilation, which has gone through many iterations. Many
tools and projects are based on it. Each CWE has a variety of
information, such as description summary, extended
description, white box definition, consequences, examples,
background details and other notes, recorded occurrences

(Common Vulnerabilities and Exposures or CVE [4]),
mitigations, relations to other CWEs, and references.

CWEs are a rich source of material for software developers
and superior to anything that existed before. However, for very
formal, exacting work, CWE definitions are often inaccurate,
imprecise or ambiguous, and the various definitions within one
CWE can be inconsistent. Each CWE bundles many stages, such
as likely attacks, resources affected and consequences. The
coverage is uneven, with some combinations of attributes well
represented and others not appearing at all. An extreme instance
is path traversal. There are a dozen CWEs for path traversal,
each one having a specific combination of relative or absolute
paths, forward or backward slashes – singly or repeated,
between one and three directory steps, and two or more dots,
which indicate the parent directory.

Another example is buffer overflows. CWE-121 [5] is write
outside of a buffer on the stack, CWE-122 is write outside of a
buffer in the heap, CWE-127 is read before the beginning of a
buffer and CWE 126 is read after the end of a buffer. But there
are no CWEs specifically for read outside a buffer on the stack
vs. in the heap. The description summary of CWE-119:
Improper Restriction of Operations within the Bounds of a
Memory Buffer is "The software performs operations on a
memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.”
Note that “read from or write to a memory location” is not
explicitly tied to the buffer! Most humans would, of course,
assume that it means the software can access through a buffer a
memory location that is not allocated to that buffer.

Software Fault Patterns (SFP) [6] are a clustering of CWEs
into related weakness categories. Each cluster is factored into
formally defined attributes, with sites (“footholds”), conditions,
properties, sources, sinks, etc. This work overcomes the problem
of combinations of attributes in CWE. For instance, Table 1
shows how SFP factored attributes are more clear than the
irregular coverage of CWEs.

SFP is an excellent advance, but does not tie fault clusters to
causes or chains of fault patterns nor to consequences of a
particular vulnerability. In addition, since they were derived
from CWEs, more work is needed for embedded or mobile
concerns, such as, battery drain, physical sensors (e.g. Global
Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Another source of organization of weaknesses is Semantic
Templates (ST). “A semantic template is a human and machine
understandable representation of the following: 1) software
faults that lead to a weakness; 2) resources that a weakness
affects; 3) weakness attributes; and 4) consequences/ failures
resulting from the weakness.” [7] Semantic Templates factor out
chains of causes, resources and consequences that are present in
CWEs. For instance, Fig. 3 shows phrases in the description
summary, extended description and common consequences of
CWE-120: Buffer Copy without Checking Size of Input
(‘Classic Buffer Overflow'), labeled according to the phases
called out by Semantic Templates.

Details on the relevant body of knowledge that consolidates
CWE, including the SFP and the ST efforts is presented in [8].

2
 Greater than one.

TABLE I. SFP FACTORED ATTRIBUTES OF BUFFER OVERFLOW CWES

 Attribute

 CWE

Location
Access

kind

Boundary

exceeded

heap stack read write lower upper

119: Improper Restriction of Operations
within Bounds of Buffer

√ √ √ √ √ √

120: Buffer Copy without Checking
Size of Input

√ √ √ √ √

121: Stack Overflow √ √ √ √

122: Heap Overflow √ √ √ √

123: Write-what-where condition √ √ √ √ √

124: Buffer Underwrite √ √ √ √ √

125: Out-of-bounds read √ √ √ √ √

126: Buffer Overread √ √ √ √

127: Buffer Underread √ √ √ √

Landwehr et. al. created a taxonomy of security flaws in
programs [2]. The taxonomy has three aspects: genesis, that is,
how it originated, time of introduction and location. Each aspect
is further divided into subcategories. The main focus of the
taxonomy seems to be how flaws originated and is aimed at a
higher, system level. It does not include details enabling
automated detection in code, proving the efficacy of mitigation
techniques or deriving possible consequences.

III. THE BUGS FRAMEWORK (BF)

Just as integers can be factored into prime numbers or
molecules can be decomposed into constituent atoms, we break
down information in CWEs, SFPs, and other compendia and
collections into basic, orthogonal components.

We organize them into meaningful structures and identify
rules of composition. We use this compilation in several ways
in order to validate it and demonstrate its utility. We elucidate
known vulnerabilities, accurately and precisely defining the
classes of bugs reported by assurance tools and document in
exactly what situation various software assurance techniques are
efficacious. We believe this compilation may also guide
development of techniques to cover gaps.

The BF comprises four main areas: causes, attributes,
consequences and sites of bugs. The causes and consequences
are well represented with a directed graph. Causes include
implementation mistakes, conditions, preceding weaknesses and
circumstances that bring about the fault. Some of the causes are
nested hierarchically. The identifying or distinguishing
attributes are the next general area.

Some assurance techniques or mitigation approaches may
work for a fault with certain attributes, but not for the same
general kind of fault that has other attributes. Each attribute is
an enumeration of possible values. Lists of attributes also open
the opportunity to more formally define and reason about them.

Note that the attributes describe an event, not the site in code
that gives rise to the event.

We want to be able to forecast possible consequences of
different kinds of faults. Knowing what consequences might

Fig. 3. Phrases in CWE-120 descriptions labeled according to ST phases.
Blue is software faults. Yellow is a weakness. Green is resource or location.
Red is consequences.

occur allows risk estimation and determination of best
mitigation strategies.

Finally, we describe the sites or locations in code where the
bug might occur under circumstances indicated by the causes.

A site is a location in code where a weakness might be For
instance, every buffer access in a C program is a site where
buffer overflow might occur if the code is buggy. In other words,
sites for a weakness are places that must be checked for that
weakness. [9] The determination of sites depends only on local
information. That is, global or flow-sensitive information is not
needed to determine where sites are in code.

For example, the following code comes from Software
Assurance Reference Dataset (SARD) [10] case 62 804. It has
one site of writing to an array, data[i] = …, which needs to be
checked for a write-outside-array bug. There is also one site of
reading from an array, source[i], where the program might
read outside the array if there is a bug.

 for (i = 0; i < 10; i++) {
 data[i] = source[i];
 }

In addition, the code has sites of possible uninitialized
variable, every place that i is used, and a possible integer
overflow site, i++. Notice that the assignment statement in the
body of the loop has several sites.

This statement-level definition of site not always applies.
When a C programmer uses the strcpy library function, it does
not get enough information to check for a buffer overflow.
Similarly the Structured Query Language (SQL) processor
cannot determine that the programmer never intended queries
like “name = Henry or 1=1” to be always true. The site is the last
or lowest level of code execution outside library functions or
utilities. This is the final chance the programmer had to avoid
the fault. In other words, sites of a bug are places in the code that
should be checked for that class of bug.

Following are one section for each of three classes of bugs
from our BF: buffer overflows, injections and control of

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow’)

Description Summary: The program copies an input buffer to an output
buffer without verifying that the size of the input buffer is less than the size
of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when a program
attempts to put more data in a buffer than it can hold, or when a program
attempts to put data in a memory area outside of the boundaries of a buffer.
The simplest type of error, and the most common cause of buffer overflows,
is the "classic" case in which the program copies the buffer without
restricting how much is copied.

Common Consequences: Buffer overflows often can be used to execute
arbitrary code, which is usually outside the scope of a program's implicit
security policy. This can often be used to subvert any other security service.
Buffer overflows generally lead to crashes. Other attacks leading to lack of
availability are possible, including putting the program into an infinite loop.

frequency of interactions. In each section, we give a definition
of the class and our taxonomy, including related sites. Following
that we provide examples and related classes from other
collections, such as CWEs and SFPs.

IV. BUFFER OVERFLOW CLASS – BOF

A. Definition

We define Buffer Overflow (BOF) as:

The software can access through an array a memory

location that is outside the boundaries of that array.

Often referred to as a “buffer,” an array is a contiguously
allocated set of objects [11], called elements. An array has a
definite size—a definite number of objects are allocated to it.
The elements are of same data type and are accessed by integer
subscripts.

If the software can utilize the array name (more generally,
array handle or pointer to array elements) to access any memory
other than the allocated objects, it falls into this class.

B. Taxonomy

Fig. 4 depicts BOF causes, attributes and consequences.

The graph of causes for BOF shows that there are only two
proximate causes of buffer overflows: amount of data exceeds
the array size or there is a wrong index or pointer. Those two
causes have preceding causes that may lead to them. Note that
“Data Exceeds Array” could be the result of an “Array Too
Small” or result of “Too Much Data.” The former sub-cause
means that an incorrectly small array has been allocated and
because of that the destination is too small. The latter sub-cause
means that incorrectly large amount of data has been accessed
and because of that the data is too big.

The attributes of BOF are:

Access – Read, Write.

Boundary – Below, Above. This indicates which end of the
array is violated. Synonyms for boundary are side or bound. The

terms before, under or lower may be used instead of below. The
terms after, over or upper may be used instead of above. Outside
indicates that the boundary is unknown or it doesn’t matter.

Location – Heap, Stack. This indicates what part of memory
the array is allocated in. It may matter since violations in the
stack may affect program execution flow, while violations in the
heap typically only affect data values. Other architectures may
have other locations that are significant. For instance, Intel
architecture also has Bss, Data and Code (text).

Magnitude – Small, Moderate, Far. This is how far outside
the boundary the violation extends. Small means just barely
outside, e.g. one to a few bytes beyond the end, moderate is
something like eight bytes to dozens, and far is hundreds,
thousands or more.

These distinctions in the magnitude attribute are important
because some violation detection techniques or mitigation
techniques, such as canaries or allocating a little extra space, are
only useful if the magnitude is small.

Data Size – Little, Some, Huge. This is how much data is
read or written beyond the boundary. Like in magnitude, these
distinctions are important in some cases. For instance,
Heartbleed [12] would not have been a severe problem if it just
exfiltrated a little data. The fact that it may exfiltrate a huge
amount of data greatly increases the chance that very important
information will be leaked.

Reach – Continuous, Discrete. This indicates whether the
access violation was preceded by consecutive access of elements
starting within the array (continuous) or just an access outside
of the array (discrete). Typically string accesses or array copies
handle a continuous set of array elements, while a vagrant array
index only reads or writes one element.

Note that any of the attributes may be “any,” “don’t care” or
“unknown.” For instance, strict bounds checking is equally
effective regardless of the location, magnitude, data size or reach
of the violation. Keeping return addresses in a separate stack
helps prevent problems occurring from write accesses when the
array location is the stack.

Fig. 4. The Buffer Overflow (BOF) class represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.)

The values for the access, boundary, location, magnitude,
and reach attributes were listed earlier by Kratkiewicz [13],
although they were discovered independently through our
analysis of the buffer overflow CWEs. Some additional
attributes from [13] that might be relevant to our BOF taxonomy
are: Data Type, for instance int, float or Boolean, and Container,
for instance, the array is in a struct or record.

Note that in the graph of consequences in Fig. 4, “Resource
Exhaustion” refers to Memory and CPU.

In the C language, sites where a buffer overflow may occur
are the use of [] or unary * operators with arrays. Sites also
include the use of string library functions as strcpy or strcat.

C. Examples

1) CVE-2014-0160 – Heartbleed
This vulnerability is listed in [12] and discussed in [14]. Our

BF description is:

Input not checked properly leads to too much data, where a

huge number of bytes are read from the heap in a continuous

reach after the array end, which may be exploited for exposure

of information that had not been cleared.

2) CVE-2015-0235 – Ghost
This vulnerability is listed in [4] and discussed in [15]. Our

BF description is:

Incorrect calculation, (specifically missing factor) leads to

array too small, where a moderate number of bytes are written

to the heap in a continuous reach after the array end, which

may be exploited for arbitrary code execution, leading to denial

of service.

3) CVE-2010-1773 – Chrome WebCore
This vulnerability is listed in [4] and discussed in [16, 17, 18,

19, 20, 21]. Our BF description is:

Incorrect calculation, (specifically off by one) leads to a

wrong index, where a small number of bytes are read from the

heap in a discrete reach before the array start, which may be

exploited for information exposure, arbitrary code execution

or program crash, leading to denial of service.

D. Related CWEs, SFP and ST

CWEs related to BOF are: CWE-119, 120, 121, 122, 123,
124, 125, 126, 127, 786, 787 and 788. The only related SFP
cluster is SFP8 Faulty Buffer Access under Primary Cluster:
Memory Access [22]. The corresponding ST is the Buffer
Overflow Semantic Template [23].

V. INJECTION CLASS – INJ

A. Definition

We define Injection (INJ) as:

Due to input with language-specific special elements, the

software can assemble a command string that is parsed into

an invalid construct.

In other words, the command string is interpreted to have
unintended commands, elements or other structures.

B. Taxonomy

Fig. 5 depicts INJ causes, attributes and consequences.

The attributes of INJ are:

Language – Database Query, Regular Expression,
Command, Markup, Script. This indicates the language in which
the command string is interpreted. Database query language
could be SQL. Command language could be Bash. Markup
language could be XML/Xpath. HTML Scripting language
could be PHP, CGI.

Special Element – Query Elements, Header Separators,
Scripting Elements, Format Parameters, Path Traversals,

Fig. 5. The Injection (INJ) class represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.)

Wildcards, Metacharacters. These could be assembled with
other elements to form malicious structures such as queries,
scripts and commands. Query elements are strings delimiters ‘
or “ or words such as ‘and’ or ‘or’. Header separators are
carriage return/line feed. Scripting elements are < or > or &.
Format parameters are such as %c or %n. Path traversals
elements are .. or \. Metacharacters are back tick (`) or $ or &.

Entry Point – Data Entry Field, Scripting Tag, Markup Tag,
Function Call Parameter, Procedure Call Argument. This
indicates where the input came from.

Note that in the graph of consequences on Fig. 5, “Arbitrary
Code Execution” concerns any instructions to the computer –
compiled, interpreted by software, executed directly by
hardware or combination.

Injection sites are typically not primitive operations in most
languages. Sites are the library or utility functions that accept a
command string for actions. In shell commands, command
substitution is invoked with paired back quotes (`…`) or $(…).
Command substitution executes a subshell, which opens the
possibility of the string to be interpreted with all the richness of
the command line interpreter.

C. Examples

1) CVE-2007-3572 – Yoggie Pico
This vulnerability is listed in [4] and discussed in [25];

special elements are discussed in [26]. Our BF description is:

Input not checked properly (specifically incomplete blacklist)

allows shell command injection through the “param“ function

parameter in a CGI script using Shell metacharacters

(specifically back ticks `), which may be exploited to add

command, leading to arbitrary code execution.

Note that adding a command through Ping to change the root
password enables eventual complete host takeover.

2) CVE-2008-5817
This vulnerability is listed in [4] and discussed in [27, 28].

Our BF description is:

Input not checked properly or input not sanitized properly

allows SQL injection through the “username“ & “password“

fields in a PHP script using query elements (specifically ' , or,

and =), which may be exploited to mask legitimate SQL

commands, leading to authentication compromise, admin

server access and arbitrary SQL code execution.

3) CVE-2008-5734
This vulnerability is listed in [4] and discussed in [29, 30,

31]. Our BF description is:

Input not sanitized properly allows XSS web script or HTML

injection through the IMG element of a generated HTML

email, which may be exploited to add commands or for

cookie-based authentication credentials compromise, leading

to arbitrary code execution.

D. Related CWEs, SFPs and ST

CWEs related to INJ are CWE-74, 75, 77, 78, 80, 85, 87, 88,
89, 90, 91, 93, 94, 243, 564, 619, 643 and 652. Related SFPs are
SFP24 and SFP27 under Primary Cluster: Tainted Input, and
SFP17 under Primary Cluster: Path Resolution [22]. The
corresponding ST is the Injection Semantic Template [32].

VI. CONTROL OF INTERACTION FREQUENCY CLASS – CIF

A. Definition

We define Control of Interaction Frequency (CIF) as:

The software does not properly limit the number

of repeating interactions per specified unit.

In physics, frequency is the number of occurrences of a
repeating event per unit time [24]. Interactions in software could
be also per event or per user.

B. Taxonomy

Fig. 6 depicts CIF causes, attributes and consequences.

The attributes of CIF are:

Fig. 6. The class Control of Interaction Frequency (CIF) represented as causes, attributes and consequences. (The ACI cluster is the same in all classes.)

Interaction – Authentication Attempt, Book, Checkout,
Register, Initiate. This indicates the type of interactions to be
controlled. Voting could be related to election, census, survey,
referendum and ballot. Booking could be of tickets, hotel
rooms or rental cars. Checkout could be of library books, hotel
rooms or rental cars. Register could be for computer games.
Initiate could be for message exchange.

Number – Single, Unique; Specified Number (> 1). This
indicates the maximum number of occurrences allowed.

Unit – Time Interval, Event, User. This indicates the
specific unit per which the number of occurrences is
controlled. Time Interval could be in seconds, in days, etc.
Event could be election, authentication, on-line transaction to
move funds, etc.

Authentication event is the sequence of authentication
attempts arriving at a particular server, possibly with the same
partial credential, from any source, that terminates by
successful authentication or by blocking.

Actor – User, Part of Program Logic, Automated Process.
This indicates who/what is performing the repeating
interactions. User could be authenticated user, attacker. Part
of program logic could be message exchange. Automated
process could be virus, bot.

Note that in the graph of consequences in Fig. 6,
“Credentials” concerns username or password, smart card and
personal identification number (PIN), retina, iris, fingerprint,
etc. “Resource Exhaustion” concerns memory, CPU or
granted licenses.

Our taxonomy makes it abundantly clear that CIF is a
“metaclass” in some senses. External policies must define for
each system or application what constitutes an interaction,
how many interactions should be allowed, and the unit. Each
policy, then, defines a different class of CIF concerns.

Since the concept of interaction is so broad and high level,
compared to most programming languages, no general
description of what is a site is feasible. Each system or
application must define its own concept of interaction. An
interaction must then be mapped to some code that controls or
authorizes said interactions. More importantly, since a failure
may be the total lack of code to recognize and control
frequency of interaction, there is often no particular line or
even block of code that can be pointed out as missing the
control code. An entire path may be indicated from the
beginning of an interaction event, that is, an outside agent
indicates desire to start an interaction, to the final chance in
execution flow that code may refuse to authorize the event.

C. Examples

1) CVE-2002-0628
This vulnerability is listed in [4]. Our BF description is:

Failure to limit to a specified number the authentication

attempts per authentication event by same or different

user(s) may be exploited for credentials compromise

(username or password) via brute force.

2) CVE-2002-1876

This vulnerability is listed in [4]. Our BF description is:

Failure to recognize repeated interactions that are rapid

initiations of message exchange requests from authenticated

users, leads to failure to properly limit them to a specified

number per specified time interval, which may be exploited

for resource exhaustion (consumption of all granted

licenses) leading to denial of service.

3) CVE-2002-1018
This vulnerability is listed in [4]. Our BF description is:

Failure to limit the checkouts of a book to a single one per

user may be exploited for resource exhaustion leading to

denial of service.

D. Related CWEs and SFP

CWEs related to CIF are CWE-799, 307 and 837. The
related SFP cluster is SFP34 Unrestricted Authentication
under the Primary Cluster: Authentication [22].

VII. CONCLUSIONS

A. Summary

We have shown a superior, unified approach. The
presented Bugs Framework (BF) allows accurate, precise and
unambiguous expression of software bugs or vulnerabilities.
It can also be used to clearly explain the applicability and
utility of different software quality or assurance techniques or
approaches, which is demonstrated in the discussion of the
magnitude and data size attributes of BOF.

 This approach is a factoring and restructuring of
information contained in CWEs, SFPs and STs, and thus
benefits from the community’s experience with their use.
Instead of trying to match weakness classes that tools find to
CWEs, usually far over- or under-generalizing, the BF can
describe tool classes much more accurately, precisely and
succinctly. Table 1 shows how this refinement approach
allows clearer and more succinct descriptions. The BF consists
of (1) causes arranged in a directed graph, (2) attributes of a
software fault, (3) possible consequences of the fault, also in
a directed graph and (4) possible sites in code, that is, locations
that must be reviewed for possible faults. Causes and
consequences may be hierarchical, too. For instance, “Data
Exceeds Array” in BOF is either “Array Too Small” or “Too
Much Data.” “Input Not Checked Properly” in the INJ class is
either “Permissive Whitelist” or “Incomplete Blacklist.”

B. Benefits

With our BF practitioners and researchers can more
accurately, precisely and clearly describe problems in
software, discuss the classes of bugs that tools report or
explain what vulnerabilities the proposed techniques prevent.
Instead of adding more and more CWEs for every slight
variant, types of weaknesses can be categorized
unambiguously, allowing similarities and differences to be
easily explored and examined. We believe that as CWEs
migrate to using this kind of taxonomy, they will be easier to
comprehend and avoid.

Those concerned with software quality, the reliability of
programs and digital systems, or cybersecurity will be able to
make more rapid progress now that they can more clearly label
the results of errors in software. Those responsible for
designing, operating and maintaining computer complexes
can communicate with more exactness about threats, attacks,
patches and exposures.

C. Future Work

Although we demonstrate this approach on three disparate
classes of weaknesses, much work remains. More examples,
such as CVEs and tool classes, need to be expressed using this
scheme to bring out facets that were overlooked or find better
ways of organizing the information. Consequences need to be
examined across all classes to better understand how, say,
adding commands can lead to whole host takeover, regardless
of the weakness allowing the addition. Chains of causes
should be researched similarly. A concerted investigation of
chains through particular attributes, drawing on existing work,
should help clarify the relations between them. We also need
to refactor many other bugs classes, which will turn up
commonalities. We are building a web site at
https://samate.nist.gov/BF/ which will have the latest
information, such as guide books for classes.

As our BF covers more classes, existing taxonomies, like
CWE, can start explaining their current entries with concise
forms of our descriptions. Bug trackers can be enhanced to
allow BF descriptions to be given. Many tool makers, such as
static analyzers and bug trackers, already use CWEs. In the
future, this use of CWEs can evolve to integrate BF into bug
descriptions. For instance, a software assurance tool maker
can find a CWE similar to the class of bugs that their tool can
find and start with its BF description. The tool maker then can
refine the BF description, changing enumerations of attributes
until it matches their tool’s class.

REFERENCES

[1] The MITRE Corporation. Common Weakness Enumeration (CWE).
http://cwe.mitre.org.

[2] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A
taxonomy of computer program security flaws, and examples. ACM
Computing Surveys. vol. 26. no. 3. pp. 211–254. September 1994.

[3] W. Thomson, Baron Kelvin. Electrical units of measurement. Popular
Lectures and Addresses. MacMillan. 1889. vol. 1. p. 73. A Lecture
delivered at the Institution of Civil Engineers. May 3. 1883.

[4] The MITRE Corporation. Common Vulnerabilities and Exposures or
(CVE). https://cve.mitre.org.

[5] The MITRE Corporation. Common Weakness Enumeration. CWE
121. https://cwe.mitre.org/data/definitions/ 121.html.

[6] N. Mansourov and D. Campara. System Assurance: Beyond Detecting
Vulnerabilities. Morgan Kaufmann. 2010. pp. 176–188.

[7] Y. Wu, R. A. Gandhi, and H. Siy. Using Semantic Templates to Study
Vulnerabilities Recorded in Large Software Repositories. Proc. 2010
ICSE Workshop on Software Engineering for Secure Systems. ser.
SESS ’10. New York, NY: ACM. 2010. pp. 22–28.
http://doi.acm.org/10.1145/1809100.1809104.

[8] Y. Wu., I. Bojanova, and Y. Yaacov. They Know Your Weaknesses –
Do You?: Reintroducing Common Weakness Enumeration. CrossTalk
(The journal of Defense Software Engineering). Sept-Oct 2015.
http://static1.1.sqspcdn.com/static/f/702523/26523304/1441780
301827/201509-Wu.pdf.

[9] P. E. Black and A. Ribeiro. SATE V Ockham Sound Analysis Criteria.
National Institute of Standards and Technology (NIST). NIST IR 8113.
March 2016. http://dx.doi.org/10.6028/NIST.IR.8113.

[10] Software Assurance Reference Dataset (SARD). https://samate.nist.
gov/SARD.

[11] ISO/IEC 9899:2011 programming languages - C, Committee Draft—
April 12, 2011 N1570. ISO/IEC Joint Technical Committee JTC 1,
Information technology, Subcommittee SC 22, Programming
languages, their environments and system software interfaces.
Working Group WG 14 – C. Tech. Rep. 2011.

[12] The MITRE Corporation. CVE-2014-0160. https://cve.mitre. org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

[13] K. Kratkiewicz. Evaluating Static Analysis Tools for Detecting Buffer
Overflows in C Code. Master's thesis. Harvard University, Cambridge,
MA. March 2005. https://www.ll.mit.edu/mission/cyber
sec/publications/publication-files/full_papers/KratkiewiczThesis.pdf.

[14] S. Cassidy. Diagnosis of the OpenSSL Heartbleed Bug. https://
www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html.

[15] Openwall. Qualys Security Advisory CVE-2015-0235 - GHOST: glibc
gethostbyname buffer overflow. http://www.openwall. com/lists/oss-
security/2015/01/27/9.

[16] R. Gandhi. Buffer Overflow Semantic Template: CVE-2010-1773.
http://faculty.ist.unomaha.edu/rgandhi/st/CVE-2010-1773.pdf.

[17] The MITRE Corporation. CVE-2010-2304. http://cve.mitre.org/
cgibin/cvename.cgi?name=CVE-2010-2304.

[18] Debian Bug report logs - #586547. Webkit: CVE-2010-2304 memory
corruption in rendering of list markers. https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=586547.

[19] Chromium. Diff of /branches/WebKit/375/WebCore/rendering/
RenderListMarker.cpp. http://src.chromium.org/viewvc/chrome/
branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp?r1
=48100&r2=48099.

[20] Chromium. Contents of /branches/WebKit/375/WebCore/rendering/
RenderListMarker.cpp.
http://src.chromium.org/viewvc/chrome/branches/WebKit/375/WebC
ore/rendering/RenderListMarker.cpp?annotate=48100#l104.

[21] Red Hat Bugzilla – Bug 596500 CVE-2010-1773 WebKit: off-by-one
memory read out of bounds vulnerability in handling of HTML lists.
https://bugzilla.redhat.com/show_bug.cgi?id=596500.

[22] B. A. Calloni, D. Campara, and N. Mansourov. White Box Definitions
of Software Fault Patterns. Final Report. Lockheed Martin Corporation
and KDM Analytics, Inc. 2011.

[23] R. Gandhi, H. Siy, and Y. Wu. Buffer Overflow Semantic Template.
http://faculty.ist.unomaha.edu/rgandhi/st/buffer
overflowtemplate.pdf.

[24] Wikipedia. Frecuency. https://en.wikipedia.org/ wiki/Frequency.

[25] Neohapsis. Yoggie Pico Pro Remote Code Execution. http://arch
ives.neohapsis.com/archives/fulldisclosure/2007-07/0020.html.

[26] The MITRE Corporation. Common Weakness Enumeration. CWE 78.
https://cwe.mitre.org/data/definitions/78.html.

[27] Cxsecurity. WebClassifieds 2005 (Auth Bypass) SQL Injection
Vulnerability. http://cxsecurity.com/issue/WLB-2009010117.

[28] Mozilla Developer Network. SQL Injections. https://developer.
mozilla.org/en-US/docs/Glossary/SQL_Injection.

[29] Secunia. Merak Mail Server Web Mail "IMG" HTML Tag Script
Insertion. http://secunia.com/advisories/32770.

[30] N. Vijatov. Vulnerability in Merak Mail. http://secunia.com/
advisories/32770.

[31] Securyty Focus. Merak Mail Server and Webmail Email Message
HTML Injection Vulnerability. http://www.securityfocus.com/bid/
32969/info.

[32] R. Gandhi, H. Siy, and Y. Wu. Injection Semantic Template.
http://faculty.ist.unomaha.edu/rgandhi/st/injec tiontemplate.pdf.

