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Review

The building performance gap:
Are modellers literate?

Salah Imam1, David A Coley1 and Ian Walker2

Abstract

One of the most discussed issues in the design community is the performance gap. In this research, we

investigate for the first time whether part of the gap might be caused by the modelling literacy of design

teams. A total of 108 building modellers were asked to comment on the importance of obtaining and using

accurate values for 21 common modelling input variables, from U-values to occupancy schedules when

using dynamic simulation to estimate annual energy demand. The questioning was based on a real building

for which high-resolution energy, occupancy and temperature data were recorded. A sensitivity analysis

was then conducted using a model of the building (based on the measured data) by perturbing one

parameter in each simulation. The effect of each perturbation on the annual energy consumption given
by the model was found and a ranked list generated. The order of this list was then compared to that

given by the modellers for the same changes in the parameters. A correlation analysis indicated little

correlation between which variables were thought to be important by the modellers and which proved to

be objectively important. k-means cluster analysis identified subgroups of modellers and showed that 25%

of the people tested were making judgements that appeared worse than a person responding at random.

Follow-up checks showed that higher level qualifications, or having many years of experience in modelling,

did not improve the accuracy of people’s predictions. In addition, there was no correlation between

modellers, with many ranking some parameters as important that others thought irrelevant. Using a
three-part definition of literacy, it is concluded that this sample of modellers, and by implication the

population of building modellers, cannot be considered modelling literate. This indicates a new cause of

the performance gap. The results suggest a need and an opportunity for both industry and universities

to increase their efforts with respect to building physics education, and if this is done, a part of the

performance gap could be rapidly closed.

Practical application: In any commercial simulation, the modeller will have to decide which parameters

must be included and which might be ignored due to lack of time and/or data, and how much any

approximations might perturb the results. In this paper, the judgment of 108 modellers was compared
against each other. The results show that the internal mental models of thermal modellers disagree with

one another, and disagree with the results of a validated thermal model. The lessons learnt will be of great

utility to modellers, and those educating the next generation of modellers.
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Introduction

Many policies and actions are being imple-

mented by governments with the aim of redu-

cing greenhouse gas emissions. In developed

countries, buildings commonly account for up

to 40% of such emissions,1 making them a

clear focus. Unfortunately, there is a proven

gap between the energy use predicted by

models of buildings used to aid their design, or

ensure compliance with national building codes,

and the monitored energy consumption of the

buildings once built. Many researchers claim

that the measured energy consumption is fre-

quently twice or more than that of the design

stage prediction,2–4 and although many studies

have explored the performance gap from various

perspectives, such as the role of poor workman-

ship or occupants’ behaviour, the literacy of

building energy modellers is rarely questioned.

In addition, the literature indicates that in gen-

eral, professionals (architects, engineers, sustain-

ability experts, etc.) do not tend to criticize

themselves and thus a culturally embedded

lack of reflection might contribute to the per-

formance gap.2–5

Modelling professionals are limited in the time

they can apportion to any project and hence need

accurate inbuilt knowledge of the impact that

modelling any element of the building in less

than ideal detail might have; for example, the

impact of missing out a thermal bridge. The

basis for these judgment calls might be in part

based on experience, but it is likely to also be

embedded within an organisation, or just com-

monly accepted within the modelling commu-

nity.6,7 Professionals in general are known to be

open to change if evidence is presented,8 and this

paper attempts to provide this evidence in a

robust way, by asking the question, how accurate

in general are such professionals’ judgments?

Background

Literacy

The United Nations Educational, Scientific and

Cultural Organization (UNESCO) defines liter-

acy as the ‘ability to identify, understand, inter-

pret, create, communicate and compute, using

printed and written materials associated with

varying contexts. Literacy involves a continuum

of learning in enabling individuals to achieve

their goals, and to develop their knowledge

and potential’.9 Some have argued that this def-

inition of literacy should be expanded to include

the capability to use computerized tools effi-

ciently and correctly.10

There is no single method to monitor and

measure literacy levels, but there are various

methodologies that can be followed depending

on the aim of the study. According to

UNESCO,

typically countries measure literacy levels by

undertaking self-assessment questionnaires

and/or by means of a proxy variable utilizing

the number of years of primary schooling (i.e.,

6 or 8 years of primary schooling equals a lit-

erate person), typically literacy rates are

assigned so that people over 15 years of age

are designated as literate.11

Unfortunately, this does not give a robust

method for measuring literacy levels in other

settings. An alternative is to use tailored ques-

tioning to assess literacy.

There are many ways one might define liter-

acy with respect to building physics and thermal

modelling, and we are after a measure which is

more independent and about modelling in gen-

eral, not about a certain simulation package or

method. The assessment method also needs to

2 Journal of Building Services Engineering Research & Technology 0(0)



provide a numeric result or a ranking in order

that a quantitative assessment of literacy can be

made. Here, we suggest a suitable requirement

for literacy within a population is that we might

expect that when given a real project the popu-

lation of modellers should: (1) approximately

agree on the important parameters that need

to be included in the model; (2) approximately

agree on the rank order of the importance of a

list of possible input parameters; (3) that their

rank ordering of the impact of given changes

(perturbations) to the values of these parameters

should approximately agree with that given by a

sensitivity analysis of the parameters within a

common thermal model.

Building energy modelling

Researchers have noted the influence that the

building design industry has had on building

performance simulation (BPS) tools and vice

versa. This development has meant more com-

plexity without evidence that the complexity is

manageable by all professionals.12 For example,

architects are regularly using BPS tools, despite

them being described as generalists.13–18

Many studies have highlighted that most tools

available are inadequate to deal with early design

stages. Furthermore, they are not user

friendly.19–22 The building simulation industry

became aware of this and tried to tackle it by

producing more friendly interfaces. However,

many barriers still exist in using these tools.12

It has been argued that the most important

capabilities of these tools are usability, comput-

ing ability, data-exchange and database sup-

port.23 Researchers have also stated the

importance of what they called ‘functional cri-

teria’ of BPS tools, which again addresses the

question of usability.15 Despite researchers’ con-

cerns about usability, tools over the years have

become more and more complex.

Attia et al.12 performed a survey with

approximately 150 architects, with the aim of

ranking the selection criteria of BPS tools

according to their importance from the user

point of view. The results showed that model

intelligence had the highest priority (Figure 1).

(The study defined model intelligence ‘as the

ability to advise the user with design optimisa-

tion options based on a range of early stage

input’.) Accuracy was considered the least

important.12

The performance gap

The literature indicates that a disconnect

between modelled and actual performance can

occur in each of the three broad stages of:

design, construction and operation.3,24

The design gap. Many studies have concluded

that the design phase is a frequent cause of the

gap.4,24 Reasons include misunderstanding of

the design performance targets between design

team and client, or even between the design

team members.25 In addition, De Wilde4 pointed

out that even if the design itself is properly out-

lined, underperformance can still occur if the

design team did not take into consideration

buildability, simplicity or the construction

sequence. Other papers have focused on issues

with the specification of advanced systems and

technologies due to the level of complexity of the

system and its controls.

The Zero Carbon Hub5 report ‘Closing the

Gap’ observed that professionals have a limited
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simulation tool features (data from Attia et al.12).
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understanding of the impact of their design deci-

sions on actual energy performance. For exam-

ple, how much might improving the U-value by

10% reduce heating energy consumption in a

particular climate? But this observation was

not based on a quantitative assessment, and is

hence possibly questionable. Knowledge of the

impact of uncertainties in the design stage is

another level of literacy that is understudied,

and it is unknown if practitioners gain the

required knowledge to address this after many

years of experience or not, but given that few

buildings are monitored after construction by

their designers, this seems unlikely.

It is known that incorrect use of simulation

tools will result in unreliable predictions at the

design stage, which will lead to the gap later on,

and therefore, the user has to have a minimum

level of knowledge and skills to be able to use

these tools properly.26 De Wilde4 pointed out

that the required knowledge includes the ability

to define correct input data within the model.

Nevertheless, even with an experienced user,

many predictions will still be inconsistent and

lacking in certain areas, mainly arising from

issues of uncertainties such as occupancy behav-

iour and weather data.2

The construction gap. Another issue that can

cause a performance gap is the construction pro-

cess. Many studies, including industry reports

and papers analysing various scales and types

of case studies, have pointed out that the

onsite construction quality often does not

agree with design specifications. More particu-

larly, there is a lack of attention to aspects

related to insulation and airtightness.2,4,27 In

many cases, both builders and engineers are

responsible for the resultant discrepancy in

buildings performance, but studies have not

been able to identify nor quantify the exact

source of the gap.

The operational gap. A building’s operational

stage is repeatedly cited to be a major reason for

discrepancy with the design stage predictions.

More particularly, studies often put the blame

on occupants’ behaviour.2,4,28,29 It is suggested

that by using proper post occupancy evaluation

data, more knowledgeable design stage assump-

tions might be possible in future and hence

reduce this contribution to the gap.2 However,

such data are rarely collected.

Building simulation modelling

Case study building

The particular building chosen in this study was

a typical UK semi-detached house, which was

recently renovated to meet the L1B require-

ments (essentially an upgrade to the relevant

building codes). Such a building, rather than

for example a large office block, was chosen

deliberately to reduce the complexity of the

situation and hence improve the accuracy of

the human judgements. The building was mod-

elled in detail using IES and the model was

validated using measured hourly gas consump-

tion, electricity use, occupancy and indoor

temperatures.

Modelling approach and limitations

Weather input data. Observed weather was

recorded for the project from a weather station

approximately 3 miles from the house. This

gave, dry bulb temperature, wet bulb tempera-

ture, relative humidity, wind direction and wind

speed. Radiation data were taken from the

World Meteorological Organization’s website

for Camborne (the closest available location)

with similar climate characteristics and hourly

measured weather data (2004–2014). Other

data were from the EPW for London. As the

paper only examines changes to the annual

energy consumption, given by perturbations in

the modelling variables, not the consumption

itself, minor inaccuracies in the weather files

are likely to have little effect on the results.

Heating use. System use was determined based

on observations of measured energy consump-

tion, and indoor temperature variations for

4 Journal of Building Services Engineering Research & Technology 0(0)



each space. The heating set-point (21�C) was

based on the measured indoor temperature.

Building geometry. Internal and external

dimensions and openings of the case study

building were modelled carefully using to-scale

drawings.

Surroundings. The surrounding environment of

neighbouring buildings was modelled in detail,

as this provides extensive shading. The case

study building has no external self-shading

except for 200mm extrusions above doors, a

100mm extended roof perimeter and a 100mm

recession around windows and doors – all were

included in the model.

Glazing ratio. The plans gave a glazing ratio of

25% and 21.8% on south and north facades,

respectively. The east façade contains only one

window, representing 2.3% of the area. Doors

were 1.6m2 in area (solid doors with no glazing).

Natural ventilation and occupancy. Modelling

natural ventilation depends on assumptions, for

example, it is highly unlikely a modeller can

accurately determine when and which windows

will be opened, and for what length of time.

Therefore, modellers usually use assumptions

that are under-descriptive of the actual behav-

iour of occupants. For the purposes of this

research, and starting from reasonable assump-

tions, the ventilation was adjusted to give a high

correlation between measured and simulated

heating energy demand and temperature (mea-

sured on an hourly basis). This means the model

is much more accurate than that normally cre-

ated by a design team.

Building’s envelope. The air permeability of the

building envelope was set as 10m3/h/m2 at 50 Pa

in order to comply with the standard set by the

building code (Part L). Any error here being

accounted for in the way natural ventilation

was modelled (see paragraph above). U-values

were as detailed in Table 1.

Internal heat gains. The sensible gains from

people were set to 75W/person in accordance

with the ASHRAE handbook (2013).30 A max-

imum of four people were assumed to be in the

house, with occupancy linked to the measured

occupancy profiles of each space. Gains from

lighting were controlled based on the illumin-

ance level required for each space and occu-

pancy period. Finally, internal gains from

equipment and cooking were assumed as an aver-

age based on the ASHRAE handbook (2013).

The appliances were linked to occupancy profiles

of each space in order to provide the measured

average value of consumption. This action was

performed with an understanding that not all

appliances are linked to occupancy profiles, for

example fridges.

Model validation: Simulation vs.

measured data

In order to validate the model, one year of

detailed gas consumption and indoor tempera-

ture monitoring was obtained and correlated

with the simulated case study results. The data

were compared on hourly intervals across the

entire year. The correlation between measured

monthly gas consumption and the simulated

model gives an R2 of 0.93 (Figure 2), with the

hourly correlation also being good (Figures 3

and 4). As illustrated in Figures 5 and 6,

a strong correlation is found between both peak

and average indoor temperatures in all spaces.

Table 1. U-values of case study building.

Element

Modelled U-values

(W/m2K)

External walls 0.35

Pitched Roof 0.26

Floors 0.25

Windows 1.6

Doors 1.8

Internal walls 1.8

Internal floor/ceiling 1.0

Imam et al. 5



The model can thus be considered as validated.

Table 2 and Figures 7 and 8 show the perturb-

ations introduced and their impact on the model.

Survey

Method

Survey design. From a psychological perspective,

A person’s perception of how a system operates

is often referred to as a mental model. This

might come from educated understandings via

literature and mentorships or simply from prac-

tical experimentation with the controls – and in

both cases their mental model might or might

not be accurate.31

Within this context, the survey conducted in

this research aims to reveal the energy modelling

‘mental models’ of professionals in the construc-

tion industry. This was done by asking questions
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Table 2. Perturbations performed on each input parameter.

Input parameter Base value Altered value Scale of alteration

Glazing ratio 17.3% 19 % 10% Greater than actual and modelled

ratio

Installed window

U-value

1.6W/m2K 1.92W/m2K 20% Greater than installed and modelled

value

Walls U-value 0.35W/m2K 0.42W/m2K 20% Greater than installed and modelled

value

Occupancy period 13 hr/day 16.25 h/day 25% Greater than the average measured

and modelled period per day

Airtightness 0.25 ach 0.3 ach 20% Greater than the assumed and mod-

elled value

Roof U-value 0.26W/m2K 0.31W/m2K 20% Greater than installed and modelled

value

Thermal bridging 10% Increase

in each element

U-value

Thermal bridges

ignored

Ignoring thermal bridging

Winter indoor

temperature

set-point

21�C 19�C The modelled value being 2�C lower than

reality

Natural ventilation MacroFlo profiles Constant airflow

at 1 ach

Assuming the air flow is constant at 1 ach

when occupied, against the base case of

assuming windows are open during

occupied period, if (Tin >25
�C, RH

>65% or CO2 concentration 1000 ppm)

Ground floor U-value 0.25W/m2K 0.3W/m2K 20% Greater than installed and modelled

value

Building geometry 39.5 m2 32 m2 Using internal dimensions for the building

rather than external

Ventilation rate 1 ach 1.1 ach 10% increase

Shading from

surroundings

Modelled

surroundings

Ignore their effect Ignoring shading from the surrounding

homes etc.

Windows recession 100 mm 200 mm Assuming windows recessed 100mm fur-

ther into the building

The position of

windows in walls

Base model position 0.5m downwards Assuming a 0.5m vertical shift down from

the actual position on each facade

Density of block

used as inner

leaf of wall

1.40 Tonne/m3 1.54 Tonne/m3 20% greater than installed and modelled

value

Internal gains

from appliances

and lighting

52.8W/m2 58.0W/m2 10% greater than installed and modelled

value

External doors

opening

10 Openings/day Continuously closed Ignoring the fact that the external doors

might be opened 10 times a day, each

time for 30 s

(continued)
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Table 2. Continued.

Input parameter Base value Altered value Scale of alteration

Internal gains from

cooking

12W/m2 0W/m2 Ignoring heat gains from cooking

Thermostat location Thermostat only

in the living room

Thermostat in

each space

Assuming thermostats in each room rather

than just in one room (modellers often

assume the former)

The use of curtains Used at night Ignore their effect Ignoring the use of curtains at night

Base model 183.84

Glazing Ratio 185.51

Installed window U-Value 191.43

Walls U-Value 215.50

Occupancy period 186.12

Airtightness 185.25

Roof U-Value 186.85

Thermal Bridge 191.17

Indoor Temp. set-point 157.09

Natural ventilation profile 199.68

Ground floor U-Value 184.31

Building Geometry 165.56

Ventilation rate 210.91

shading from surroundings
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p
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ra
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te

rs

180.30

Windows recessed further 184.45

Position of Window in wall 183.38

Density of inner leaf wall block 183.29

IHG from appliances 183.52

External door opening 183.17

Thermostats in each room 171.71

Heat gains from cooking 183.86

Curtains

0 50 100 150

Annual gas consumption kWh/m2

200 250

183.63

Figure 7. The impact of each perturbation on the annual gas consumption compared with the base model

(dashed line).
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using two standard social science approaches:

the free-form method and the given list

method,30 see Table 3. A detailed description of

the building and the surroundings including

photographs (see Appendix 1: Online question-

naire) was given to the participants.

Sampling method. The target respondents were

chosen from professionals in the construction

industry: architects, engineers and energy ana-

lysts. All of who made regular use of dynamic

thermal models. Random sampling32,33 was used

to generate the population sample.

Participants. Participating employees were

from engineering and architectural firms

involved in the design process of a range of

national and international projects, and

included some of the world’s largest engineering

and architecture practices.

Emails were sent to directors to ask whether

it would be possible to visit their firm to

ask employees to complete the survey. Many

replies welcomed the idea, resulting in 31

respondents. The online questionnaire was also

sent directly to professionals drawn from

LinkedIn, and respondents were also garnered

by posting on online building energy

Walls U-Value 17.22%

Ventilation rate 14.73%

Indoor Temp. set-point 14.55%

Building Geometry 9.94%

Natural ventilation profile 8.62%

Thermostats in each room 6.60%

Installed window U-Value 4.13%

Thermal Bridge 3.99%

Shading from surroundings 1.92%

Roof U-Value 1.64%

Occupancy period 1.24%

Glazing ratio 0.91%

Airtightness 0.77%

External door opening 0.36%

Windows recessed further 0.33%

Density of inner leaf wall block 0.30%

Ground floor U-value 0.26%

Position of window in wall 0.25%

IHG from appliances 0.17%

The use of curtains at night 0.11%

Heat gains from cooking

0.00% 5.00% 10.00%

Alterations weighted impact on base model

15.00% 20.00%

0.01%

Figure 8. The impact of each perturbation rank ordered in terms of percentage change, with dark bars indicating an

increase in consumption and light bars a decrease.
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modelling groups, resulting in an additional 77

respondents.

The whole process resulted in 108 participants

who completed the survey; a further 12 participants

failed to fully complete it. Questionnaire results

were anonymous, and the names of the firms parti-

cipating in the survey cannot be reported due

to confidentiality. Figure 9 shows the nature of

Table 3. Survey questions and their purpose.

Survey question(s) Purposes/aims

Free-form method

Question 1 List the three most important parameters that

if not included or included less accurately in

a thermal model of the case study building,

might affect the annual heating demand

significantly.

To discuss any common input parameters that

participants might consider have a signifi-

cant impact on the annual heating demand.

Question 2 List three parameters that you might not

normally include, as they do not have a

great impact on the annual heating demand.

To encourage participants to include input

parameters that they might not normally

consider. Hence, parameters not included

in their answers will more likely not used

by participants in actual projects.

Question 3 List any other parameters that you might

include in a thermal model of the case study

building and might have a moderate effect

on the annual heating demand.

To give participants the chance to add any

other input parameters that they might

sometimes include in a thermal model of

the case study building.

Structure concept # Not providing users with a list of parameters – at this stage – was intentional, so as to not

attract them to certain input parameters that need to be included in the model.

# Clarify what participants do take or do not take into consideration in a thermal model of the

case study building and to identify their natural thoughts regarding the modelling stage

assumptions.

# Dividing this section into three questions was to limit the answers to three to five options,

making it easier for participants to understand and respond correctly (Holt and Walker31).

Given list of input-parameters method

Question 1 Rate the list of parameters provided in the

survey based on your judgement of impact

on annual heating demand due to variations

applied to each parameter (Table 2).

# Identify the perception of the design team

of potential errors due to some param-

eters and their effect on the annual heating

energy demand.

# The answers to this question were

obtained in the form of a ‘ranked list’ and

compared with the ‘accurate ranking

‘obtained from the validated simulation

model.

# This comparison set forms the base for

evaluating their modelling literacy.

Notes # The details of the case study building were given to participants, as shown in Appendix 1.

# Once participants proceeded from the ‘free-form’ question to the ‘given list’ question, they

were not able to return back and edit their responses. Hence, the case study description

was repeated to be accessible while answering both questions.

# The ‘error factors’ applied to each input-parameter were assumed to be due to lack of

knowledge in the design stage or poor workmanship on-site.

10 Journal of Building Services Engineering Research & Technology 0(0)



the participants, in terms of years of experience

within the construction industry. The highest aca-

demic degree achieved related to this field was

reported as: bachelors (34 participants), masters

(66), PhD (8). Eighty per cent of respondents

selected IES VE as the simulation software they

used for energy analysis.

Results

Free-form method. In this form of the survey,

participants were not given a list of parameters

to choose from, but asked to separately list par-

ameters they considered highly important, mod-

erately important, or unlikely to be important.

Parameters listed by participants are shown in

Figures 10 to 12.

Given list method. For this part of the survey,

participants were given a list of 21 input param-

eters and the perturbations used in the sensitiv-

ity analysis (see Tables 2 and 3). Participants

were asked to indicate the relative size of

impact for each parameter variation on the

annual heating demand by scaling them from

1 to 5. The ranking given by the participants is

shown in Figure 13. The weighted average for

any parameter was calculated as

x1w1 þ x2w2 þ x3w3 þ x4w4 þ x5w5

Total number of respondents
ð1Þ

where x is the response (1–5) and w is the

response count.

30

22

18

Less than 1

year

(Graduate)

1–3 years 3–5 years
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6–10 years Over 10

years
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Figure 9. Participants’ years of experience in the con-

struction industry.
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Internal heat gains

Ventilation rate

Building orientation

Glazing type

Heating system effeciency

Weather data

Heating system set-point

Figure 10. Question 1: Input parameters assumed by

participants to have a significant impact on the annual

heating demand of the case study building.
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Figure 11. Question 2: Input parameters that partici-

pants conclude that they might not normally include in a

thermal model of the case study building.
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Figure 12. Question 3: Input parameters assumed by

participants to have a moderate impact on the annual

heating demand of the case study building.
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Glazing ratio 4.2

4

3.92

3.91

3.81

3.75

3.75

3.72

3.63

3.42

3.31

3.29

3.17

3.03

2.94

2.92

2.81

2.78

2.75

2.69

2.06

2.03

Installed window U-value

Walls U-value

Occupancy period

Airtightness

Roof U-value

Thermal bridge

Natural ventilation profiles

Ground floor U-value

Building geometry

Ventilation rate

Glass g-value

Shading from surrounding environment

Windows recessed further into the building

The position of windows in the walls

Density of block used as inner leaf of wall

Internal heat gains from appliances

External doors opening

Assuming thermostats in each room

Heat gains from cooking

Curtains

0 1 2 3

Weighted average

4 5

Winter indoor temperature set-point

Figure 13. Ranking of the parameters given by participants when asked to indicate on a scale of 1–5 the relative size

of the impact for each parameter on the annual heating demand.
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Discussion

Un-mentioned parameters. Re-plotting the

free-form results so as to concentrate on param-

eters not mentioned by one or more individuals

provides some surprising results (Figure 14).

All parameters were subject to being over-

looked except U-values. For example,

although ‘internal heat gains’ was mentioned

104 times out of 108 responses, 34 participants

considered it to be the type of parameter that

they would not normally include in such a

dynamic model. Similarly, 18 participants con-

sidered the inclusion of shading from the sur-

rounding environment to not be worth

including, whereas 56 respondents highlighted

this parameter to be of considerable import-

ance. This is still surprisingly low given that

participants were provided with a photo of the

surrounding area (see Appendix 1) that shows

the building is surrounded by buildings of a

similar height.

Comparing and contrasting the results from
both survey methods. Comparing the results

obtained from both methods highlights that a

parameter’s ranking can differ significantly.

For example, in the free-form question, 70%

of participants did not mention glazing ratio,

while 42% and 23% did not include occupancy

period and airtightness respectively, whereas the

top 5 ranked parameters in the given list ques-

tion included all three parameters as shown in

(Table 4). The full list of responses is given in

Appendix 2.

One of the clearest differences between the

participants and the ground truth provided by

the model is in the impact of changing the glaz-

ing ratio (a 10% increase in glazing ratio was

presented to the participants and modelled).

Although assumed by the participants to be

the parameter with the greatest impact, the mod-

elling showed it to only be the 12th and giving

an increase of only 0.91% in heating energy use

(183.84 to 185.51 kWh/m2/year). Similarly,

installed window U-Value was given by the par-

ticipants as the second most important, whereas,

it was the seventh in the simulation model.

For a few cases, the participants and the

model are in better agreement. For example,

the impact of changing the wall U-value was

voted by the survey as third, which is relatively

close to the finding of the simulation study,

which placed it first, with an increase of

17.22% in heating energy use. This outcome is

probably logical, because of the large surface

area of this element and the relatively large per-

turbation assumed (20%). Ignoring the use of

curtains at night, ignoring the internal heat

gains due to cooking and a 10% increase in

heat gains due to appliances also showed agree-

ment between the participants and the model.

All are viewed by the participants and validated

by simulation as being of little impact, securing

the last five slots in the ranking of both the

survey and the simulation model. However, in

the case of indoor temperature set-point being

reduced by 2�C, the survey gave a rank of

eighth, yet the simulation model shows it to be

the third; with gas consumption decreasing from

the base case by 14.55%.

As discussed earlier, the results from the

survey participants are on a scale of 1–5 scale;

however, the ranking produced by the simula-

tion model is on a scale of 1–21, making a

numeric comparison between the survey results

and the model difficult. To analyse the findings

further, the survey responses were ranked using

equation (1), i.e. ranked according to their mean

score, placing them in a ranked list of 21 mem-

bers. It is clear that there is a large variability in

the survey responses and, the mean ranking

given by the survey is far from that given by

the model, with a Spearman ranking of 0.43

and an R2 value of 0.28 (Figure 15). This sug-

gests no correlation between the thoughts of

designers and the modelled results, and indicates

that, when measured in this way, modelling lit-

eracy (as defined earlier) may not be high in the

participants.

Cluster analysis. Having shown no overall cor-

relation between the results from the partici-

pants and the predictions of the model, it is

worth asking if any subpopulations perform
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better than the average. Normal correlation is

not strictly valid for ordered rating categories,

so this is best done by looking at each partici-

pant’s weighted kappa value, k. This is a

measure of agreement between any two sets of

numbers that form discrete ordered categories.

A person scoring k¼+1.00 would be rating

each item with exactly the same category score

U-Values

Internal heat gains

Air tightness

Ventilation rate

Shading from surrounding

environment

Glazing type

Occupants behavior

Thermal bridging

Building orientation

Thermal mass

Glazing ratio

Heating system effeciency

Windows g-value

Heating system set-point

Weather data

Solar heat gains

0 20 40

Number of times mentioned by participants

Number of times not mentioned by participants

60 80 100 120

Figure 14. The most impactful input parameters mentioned by participants in the free-form question, highlighting

the number of times each parameter, was not mentioned.
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as the model did; a person scoring k¼ 0.00

would essentially be responding at random;

and a person scoring k¼ –1.00 would be sys-

tematically disagreeing with the results of the

model (for example, saying the most unimport-

ant parameter perturbations were the most

important, and vice versa). To be able to com-

pare the ranks from the survey, which are on a

scale of 1–5, with those from the model, which

are on a scale of 1–21, the model parameters

need to be re-scaled to take values of 1 to 5, so

k can be calculated. The most important per-

turbation (wall U-value) changes the annual

heating energy use by 31.66 kWh/m2; the

least important (gains from cooking) by

0.02 kWh/m2.

An initial cluster analysis was used to group

the perturbation factors into five groups which

could be rated 1–5. k-means cluster analysis

takes a set of measurements and splits these

into k groups (with k specified by the

researcher), whereby the items within each

group are as similar to one another as possible

and the differences between groups are as large

as possible. With k¼ 5, we obtained five groups

of factors, ranging from the most important

(Walls’ U-value, ventilation rate, etc., rated 5)

to the least (gains from cooking, curtains, etc.,

rated 1).

Now that the factors are rated 1–5 both

objectively (by this analysis) and subjectively

(by the participants), we can calculate the

weighted kappa score of each individual and

thus have a measure of how skilled they are at

rating the perturbations. An agglomerative clus-

ter analysis will then automatically group people

based on how similar their kappa values are. This

is done by carrying out N�1 analysis steps, on

each step grouping together the two people (and

then groups) with the most similar kappa values.

This iterative hierarchical clustering process

begins without preconceptions about how many

groups of people will be found and identifies any

distinct clusters of people with distinct levels of

perturbation rating ability; once clusters are thus

identified based purely on rating skill, the

makeup of each, in terms of education, years of

experience or other factors, can be reflected

upon. Five clusters are found in this case

(Figure 16). Note the emergence of five clusters

in this analysis is just coincidence and does not

arise from the use of a five-point rating scale.

Figure 16 can be read as follows: starting

from the x-axis of 108 participants, the ‘stables’

link the pairs of individuals with the closest

values of k, then pairs of pairs of similar k,

etc. The dashed red boxes identify the five

groups which in k-space have reasonably similar

values; although arguably the two left hand

groups (containing the best performing partici-

pants) could be combined, as could the two right

hand groups (containing the worst performing

participants). The people within each of the

five groups are similarly skilled to one another

at rating the perturbations, and quite different

from the people in the other groups. Figure 17

shows that there are three subgroups of people

who are better than guessing at the task (k> 0)

and two groups who are worse than random.

The makeup of these groups is discussed in

Table 5.

Table 6 further disaggregates the results and

shows that the participants with a PhD also had

>10 years of experience, so it is unknown

whether their poor performance was in anyway

connected with their education, rather than

Table 4. Comparison between the Top 5 ranked input

parameters in the ‘given list’ question and the number of

times participants did not mention these parameters in

the ‘free-form’ question.

Given list method

Number of participants

who did not mention

this parameter

(total of 108

participants)

Top 5 ranked input parameters

Glazing ratio 76

Installed window U-value 0

Walls U-value 0

Occupancy period 46

Airtightness 25
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their experience or greater time since leaving

education.

Although the sample size of 108 is not

insubstantial, the subpopulations are much

smaller (although reasonably sized in social

science terms). This suggests a larger experi-

ment with greater statistical power would be

worth conducting. However, this analysis

does permit some conclusions. There is clearly

a great variation in how accurately profes-

sional engineers rate model perturbation fac-

tors. Of particular note, 25% of the people

tested (27 out of 108) performed worse on

this task than would be expected if they had
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Figure 15. Scatter plot comparing survey results (mean and standard deviation) and simulation model ranking.

No correlation is seen.
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rated each perturbation factor with a random

number between 1 and 5. This suggests that

there are some engineers who have systematic-

ally skewed ideas about the importance of

these perturbation factors. Notably, there are

no signs of these people being less experienced

or less qualified than their better performing

peers.
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Figure 16. Dendrogram provided by the clustering analysis.
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Figure 17. Weighted kappa (i.e. the perturbation judgement skill) distributions for the five groups of participants

identified in the cluster analysis.
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Summary and conclusion

The performance gap is a problem that might

affect all new buildings or the refurbishment of

older ones. Its existence creates a gap between

reality and the policies enacted by governments

to reduce energy use and greenhouse gas emis-

sions. Previous studies tried to tackle this problem

from various perspectives such as highlighting

issues concerned with the role of poor workman-

ship or occupants’ behaviour. The research

reported here tackled this problem from the earlier

stage of energy modelling, or, more precisely, the

building physics literacy of building energy mod-

ellers. The literature indicates that this is an under-

studied area and is highly important as architects,

engineers and modellers do not tend to consider

themselves as a contributing factor to the perform-

ance gap, but rather consider construction quality

and occupants to be the problem.

The methodology was chosen specifically to

allow a mixed building physics and social science

approach, as such the sample size of 108 is par-

ticular large. One limitation of the work is the

form of the building (a dwelling), and it maybe

that a more complex building might have pro-

duced even more diversity in the thoughts of the

participants and therefore in their scores.

The results are in line with those found by

Guyon and Gilles35 who asked 12 modellers to

create a thermal model (using the same software,

and in which they were knowledgeable) of a

dwelling. A factor of 2.4 was found between the

lowest and highest annual heating energy use pre-

dictions of the resultant models, and a +18% to

Table 5. The makeup and performance of the groups identified, as well as the Kappa values of the subpopulations.

Group Rate Performance

1 Second rate Mostly masters level, mostly relatively inexperienced. They do quite

well on the task.

2 Third rate More experienced and more qualified than group 1, this group

are nevertheless less skilled on the task.

3 Worst performance This group do somewhat worse than guessing on the task.

Mostly masters level, but qualified some time ago.

4 First rate This group do well on the task and their ratings show more

agreement with the true order of the items than any other group.

Notably, even here the ratings are still far from the theoretical

maximum of k¼ 1.00. Predominantly masters educated (11 out of 15)

with all levels of experience represented.

5 Fourth rate This group are a lot like group 3, but not quite as egregious.

Like group 3, they tend to be experienced and highly qualified.

The kappa values of the subpopulations (mean k)

Academic level Years of experience

Bachelor Master’s PhD <1 Years 1–3 Years 3–5 Years 6–10 Years >10 Years

+0.10 +0.11 �0.01 +0.11 +0.15 +0.06 +0.11 +0.08

Table 6. Performance (in terms of k) as a function of

education and years of experience.

<1 Year

exp.

1–3 Years

exp.

3–5 Years

exp.

6–10 Years

exp.

>10 Years

exp.

Bachelors .05 .13 .12 .19 .05

Masters .20 .17 .03 .08 .12

PhD – – – – �.01
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�50% error compared to a validated model of

the building. Interestingly, the most experienced,

including consultant engineers, performed the

worst and had the most diverse performance.

Williamson36 comments that the results of

any simulation will in part be dependent of the

philosophy of the modeller and particularly on

their ontological views and epistemological

beliefs, but that many modellers might not real-

ise this due to their largely positivist position. It

would seem reasonable to surmise that this

arises out of their positivist-centred educational

history. It is quite possible that as a group there

is too much belief that a simulation is a true

reflection of reality, even if the simulation does

not contain a full description of the problem; i.e.

modellers might be more concerned about the

technical details and accuracy of the simulation

engine, than about how their methodology

unambiguously captures the problem.

From the results reported here, it is clear that

all three tests of literacy suggested in Literacy

section have been failed by the sample of par-

ticipants. Participants do not: (1) approximately

agree on the important parameters that need to

be included in the model; or (2) approximately

agree on the rank order of the importance of a

list of possible input parameters; or (3) cannot

rank order the impact of given changes to the

values of 21 common parameters such that they

approximately agree with that given by a sensi-

tivity analysis of the parameters within an indus-

try standard and experimentally validated

thermal model of the same building.

Being that the sample size was reasonably

large (108), this conclusion is likely to be valid

on average also for the whole population of

thermal modellers. Future research should

therefore identify new ways to teach building

physics in both academic and industrial

settings, as this work indicates a gap that can

be bridged.

The most successful subpopulation shown in

Table 6 are those with very recent relevant mas-

ters degrees. It is likely that many of these par-

ticipants, and unlike those graduating before,

sat Masters Programmes that contained a large

thermal modelling component. It therefore

seems reasonable to conclude that this provision

should be expanded. However, it is clear that

even this subpopulation have k � 1 and hence

those teaching such courses need to face some

stark realities and improve their provision.

Another possibility is that the culture within

engineering consultancy undermines some of

the cautionary messages received by engineers

during their education, and that because thermal

modellers rarely compare their results with the

performance of the finished building, there is

little feedback or learning, and their personal

performance might drift over time. This would

give, as observed, a diversity of views about the

importance of the various driving parameters.
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Appendix 1. The online

questionnaire

Survey on how the UK construction industry

uses thermal models

Introduction. The following questionnaire

is part of research by the Department of

Architecture and Civil Engineering at the

University of Bath. We estimate that the survey

will take less than 15 minutes to complete.

The survey aims to make sense of how the

construction industry uses thermal models in

the UK and how the use of such models might

be improved. We know that thermal modellers

often have to use their judgement with respect to

the time available to model a building and also

have to produce models before all the architec-

tural details are known. We would like to know

how you make these judgements with respect to

which parameters to include accurately or which

you might not be overly concerned about if only

an approximate value was available. For exam-

ple, we would like to know, given the building

detailed below, do you consider it is more impor-

tant to know details of the positions of the win-

dows in the walls, or when people occupy the

building?

We do not ask for any personally identifiable

information (such as names, date of birth etc.).

The data we collect from you will be converted

into a generic form profile and will be used only

for research purposes. Please don’t think

overly carefully about your answers, we want

to know how you normally work in practice

and what your natural thoughts are. This is

not a test!

General information

Q1: Please indicate your years of experience in

the construction industry.

. Less than 1 year (graduate)/1–3 years/3–5

years/6–10 years/over 10 years.

Q2: Please indicate the highest degree you

have received (related to the construction

industry).

. Bachelor degree/Master’s degree/PhD degree/

other (please specify).

Q3: Please indicate the simulation software(s)

that you use for energy analysis.

. IES VE/TAS/Design Builder/Energy Plus/

PHPP/eQuest/other (please specify).

Case study description

Note: Questions shown in next pages are related

to the case study shown below.

Below you can see the ground and first floor

plans (Figure 18) as well as the construction

details (Figure 19) of a house located in

Exeter, UK. Both exterior and location map

views were captured from Google maps and

shown in Figures 20 and 21. Although a

dynamic simulation would not normally be

used on such a building, we have chosen this

as it is a relatively simple case.

General information

House type: Semi-detached.

Stories: 2 (No basement).

Internal floor area: 80m2.

Glazing type: Double glazed.

Location: Exeter, UK.
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Figure 18. Ground and first floor plans for the case study dwelling.

Figure 19. Construction details for walls (left), ground floor (middle) and roof (right).

Figure 20. Exterior view of the case study building from the South-East facade (Taken from the EPSRC funded

ENLITEN (EP/K002724/1) project team at the University of Bath, UK). Image taken from Google maps.
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Free-form questions

Q4: Please list below the three most important

parameters that if not included or included less

accurately in a thermal model of this building

(shown above) might affect the annual heating

demand significantly.

Q5: Please list below the three parameters

that you might not normally include in a ther-

mal model of this building (shown above) as

they do not have a great impact on the annual

heating demand.

Q6: Please list below any other

parameters that you might include in a thermal

model of this building (shown above) and might

have a moderate effect on the annual heating

demand.

Given list

In the following final question, we are aiming to

identify the relationship between the annual heat-

ing energy use predicted by a thermal model of the

building and the thoughts of the design team on

errors that some parameters might have.

Q 6: For the case study shown, Please rate the

list of parameters described below based on your

judgement of the impact of differences applied to

each parameter (shown below in brackets) on the

annual heating demand. These errors might be due

to lack of knowledge in the design stage or poor

workmanship on site. For example, does a 10%

error in the airtightness value have more or less

impact than a 20% error in roof U-value? Please

indicate the relative size of impact for each para-

meter by marking them with a scale from 1 to 5.

. Airtightness (20% greater than modelled)

. Internal heat gains from appliances and light-

ing (10% greater than modelled)

. Windows recessed 100mm further into the

building

. Density of block used as inner leaf of wall

(10% greater than modelled)

. Glazing ratio (10% greater than actual

ratio)

. Roof U-value (20% greater than modelled

value)

. Walls U-value (20% greater than modelled

value)

Figure 21. The location of the building. The red arrow is pointing at the chosen case study building. Image taken

from Google maps.

Imam et al. 23



. Ground floor U-value (20% greater than

modelled value)

. Installed window U-value (20% greater than

modelled value)

. Shading from the surrounding environment

(Ignoring the surrounding homes)

. Using internal dimensions for the building

rather than external

. Occupancy period (25% greater than mod-

elled period)

. Ventilation (Assuming the air flow is constant

at 1 ach when occupied, against the base case

of assuming windows are open during occu-

pancy period, if Tin >25
�C, or RH >75%, or

CO2 concentration >1000 ppm)

. Thermal bridge (Ignoring thermal bridges)

. Winter indoor temperature set-point (The

modelled value being 2�C lower than reality)

. Ventilation rate (Assuming 1.1 ach rather

than 1 ach)

. The position of windows in the walls

(Assuming a 0.5m vertical shift down from

the actual position in each façade)

. Assuming thermostats in each room rather

than just in the living room

. Ignoring the use of curtains at night

. Ignoring heat gains from cooking

. Ignoring the fact that the external doors

might be opened 10 times a day for 30 sec-

onds each time

Last step

If you wish to know our findings later in the

year, please fill in your email address below.

Kindly know that your email address will be

kept separately from your answers to keep all

results anonymous (optional).

Appendix 2. Raw survey results

The following Tables 7 and 8 are indicating the

numerical data concerning the results of both

the free form and given list questionnaires.

Table 7. Free-form survey responses.

Input parameters

Number

of times

mentioned

Number of

times not

mentioned

U-values 108 0

Internal heat gains 104 4

Air tightness 83 25

Ventilation rate 81 27

Shading from

surrounding

environment

74 34

Glazing type 65 43

Occupants behaviour 62 46

Thermal bridging 58 50

Building orientation 36 72

Thermal mass 34 74

The use of curtains 33 74

Glazing ratio 32 76

Heat loss from system pipes 26 82

Heating system efficiency 25 83

Indoor surfaces colour 20 88

Windows g-value 16 92

Heating system set-point 10 98

Weather data 9 99

Solar heat gains 8 100

Internal doors opening 4 104
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Table 8. Given list survey responses.

Input parameter

Weight scale
Weighted

average1 2 3 4 5

Glazing ratio 6 6 9 26 61 4.20

Installed window U-value 9 3 18 27 51 4.00

Walls U-value 6 6 24 27 45 3.92

Occupancy period 9 6 15 34 44 3.91

Airtightness (infiltration rate) 6 12 18 33 39 3.81

Roof U-value 6 3 39 24 36 3.75

Thermal bridging 6 9 27 30 36 3.75

Winter indoor temp. set-point 9 12 12 42 33 3.72

Natural ventilation 15 11 12 31 39 3.63

Ground floor U-value 9 21 24 24 30 3.42

Building geometry 15 15 24 30 24 3.31

Ventilation rate 13 12 35 27 21 3.29

Shading from surroundings 15 33 21 12 27 3.03

Windows recession 12 27 36 21 12 2.94

The position of windows in walls 21 21 33 12 21 2.92

Density of block used as inner leaf of wall 21 27 24 24 12 2.81

IHG from appliances and lighting 15 33 33 15 12 2.78

External doors opening 18 27 36 18 9 2.75

IHG from cooking 39 30 33 6 0 2.06

Thermostats location 27 24 27 15 15 2.69

The use of curtains 45 33 15 12 3 2.03
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