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Abstract: Shown in every neuroanatomy textbook, a key morphological feature is the bumpy ridges, which
we refer to as hippocampal dentation, on the inferior aspect of the hippocampus. Like the folding of the cere-
bral cortex, hippocampal dentation allows for greater surface area in a confined space. However, examining
numerous approaches to hippocampal segmentation and morphology analysis, virtually all published 3D ren-
derings of the hippocampus show the inferior surface to be quite smooth or mildly irregular; we have rarely
seen the characteristic bumpy structure on reconstructed 3D surfaces. The only exception is a 9.4T postmortem
study (Yushkevich et al. [2009]: NeuroImage 44:385–398). An apparent question is, does this indicate that this
specific morphological signature can only be captured using ultra high-resolution techniques? Or, is such
information buried in the data we commonly acquire, awaiting a computation technique that can extract and
render it clearly? In this study, we propose an automatic and robust super-resolution technique that captures
the fine scale morphometric features of the hippocampus based on common 3T MR images. The method is
validated on 9.4T ultra-high field images and then applied on 3T data sets. This method opens possibilities of
future research on the hippocampus and other sub-cortical structural morphometry correlating the degree of
dentation with a range of diseases including epilepsy, Alzheimer’s disease, and schizophrenia. Hum Brain
Mapp 39:472–490, 2018. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Numerous studies have been devoted to the image
based sub-cortical morphology from radiology images.
The hippocampus has been the focus of more studies than
any other sub-cortical structures. A number of brain disor-
ders have demonstrable abnormalities of hippocampal vol-
ume [Beresford et al., 2006; Bobinski et al., 1995; Fleisher
et al., 2008; Hayes et al., 2014; Morra et al., 2009a,b), shape
(Apostolova et al., 2006; Colliot et al., 2008; Csernansky
et al., 1998; Frank�o et al., 2013; Gao and Bouix, 2014, 2016;
Nestor et al., 2012; Scher et al., 2007; Styner et al., 2004;
Thompson et al., 2004; Wang et al., 2006], or metabolic
properties [Kraguljac et al., 2013] of the hippocampus.
Accurate segmentation of the hippocampus is the critical
first step for volumetric or morphometric analysis, there-
fore methods to precisely and consistently extract the hip-
pocampus from MR images has been the subject of much
research [Bishop et al., 2011; Boccardi et al., 2011; Carmi-
chael et al., 2005; Chupin et al., 2007, 2009a, 2009b; Collins
and Pruessner, 2010; Coupe et al., 2011a, 2010, 2011b; Gao
et al., 2012a; Ghanei et al., 1998; Hao et al., 2014; Hu et al.,
2011; Khan et al., 2011; Kim et al., 2013; Konrad et al.,
2009; Kwak et al., 2013; Luo et al., 2014; Morey et al., 2009;
Pipitone et al., 2014; Pluta et al., 2009; Prudent et al., 2010;
Tong et al., 2013; Van Leemput et al., 2009; van der Lijn
et al., 2008; Wang et al., 2011a,; Yushkevich et al., 2010;
Zarei et al., 2013; Zarpalas et al., 2014].

The majority of recent studies have used images with
voxel dimensions at or near 1 mm isotropic acquired on 3-
Tesla (3T) scanners. When 3T MRI is not sufficient to
reveal fine structural elements, 7T scanner may be used to
push the in vivo resolution limit to a higher level. For
example, ultra-high field scanners have been employed to
push the in vivo resolution to 0.7 mm isotropic at 7T in

vivo [Derix et al., 2014; Henry et al., 2011; Kim et al., 2013;
Wisse et al., 2012] and even 0.2 mm isotropic at 9.4T ex

vivo specimens [Yushkevich et al., 2009]. However, at pre-
sent there are fewer than thirty 7T scanners in all of North
America. The limited accessibility to 7T scanners severely
limits the utility of this technology to the wider research
community. Furthermore, 7T scanners are expensive, more
prone to image distortions due to field inhomogeneities,
and not currently FDA-approved for clinical use.

An interesting morphological feature of the hippocam-
pus that is commonly, but not always, present is a series
of transverse ridges on its inferior surface, which we refer
to as hippocampal dentation. These ridges, or dentes
(“teeth”) arise from folds in the Cornu Ammonis 1 (CA1)
layer of the hippocampus and appear on the inferior-
lateral aspect of the hippocampal body and extend
through the inferior-medial aspect of the tail [Duvernoy,
2005; Figure 22, 32, 35]and is similar to the undulating
contour of the dentate gyrus above it.

Similar to the gyri of the neocortex, the folds of hippo-
campal neuronal layers that produce the dentated

appearance may represent an adaptation to pack a larger
surface area in a given volume.

To the best of our knowledge, while quantitative studies
of radiological brain images have been advancing for deca-
des and have examined numerous approaches to hippo-
campal segmentation and morphology analysis, virtually
all published 3D renderings of the hippocampus show the
inferior surface to be quite smooth or mildly irregular; we
have rarely seen prominent hippocampal dentation in a
reconstructed 3D surface, with the only exception being
the 9.4T postmortem study in [Yushkevich et al., 2009].
Under the 0.2 mm isotropic resolution, the reconstructed
dentation starts to appear.

Interestingly, though hippocampal dentation is not
apparent in segmentations performed at native resolution
of 1 mm isotropic, such structure can be visually observed
even in routine 3T images. Figure 1 shows examples of
typical T1w MPRAGE images, in which the degree of hip-
pocampal dentation varies dramatically among normal
individuals from prominently dentated (Fig. 1C) to mini-
mally dentated (Fig. 1G). However, with the typical
approach to segmentation based on manual tracing per-
formed in the image native resolution, the reconstructed 3D
surfaces of the hippocampi do not clearly show dentation, as
shown in Figure 1D,H. It should be noted that most pub-
lished segmentation results do not have the “boxy” surface
appearance of Figure 1D/H, due to triangulation-based
approaches to surface rendering, and/or smoothing of the
extracted surfaces. Nevertheless, it is evident that a binary
volume at this resolution is not sufficient to reveal fine-scale
surface features such as dentation.

This leads to the question, do we have to use ultra-high
resolution images obtained with ultra-high field scanners
(7T or greater), and possibly post-mortem specimens, to
extract such complicated surface contours? Or, if such
information does reside in the 3T data, can we design a
specific algorithm to extract it?

The present study addresses such an issue of extracting
the fine hippocampal morphology features from the clini-
cally available 3T MR images. Our underlying hypothesis is
that the grayscale data of standard T1w images contains
additional in- formation about the contour of the hippocam-
pal boundary that can be used to infer sub-millimeter sur-
face features, but that this data is lost when segmentation is
used to generate a binary mask in the native resolution. By
subsampling the data to a point where the resolution is
much smaller compared to the variation in surface contour
and then employing a robust segmentation algorithm, we
can reproduce the surface on a sub-voxel scale.

Essentially, the key contributions of the paper are in two
folds:

First from a neuro-anatomical point of view, the pro-
posed method successfully extracts a significant morpholog-
ical feature of the hippocampus from clinically available
MR scanning. Such a characteristic dentate morphology has
been demonstrated in essentially every neuroanatomy book,
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and its degree has been found significantly correlated with
various psychiatric and psychological states. However,
reviewing neuroimage analysis methods particularly hippo-
campus segmentation literatures, we failed to find correct
capture of such dentate morphology from clinical MR
images. With the capability of this work, we can now quan-
titatively capture the characteristic morphology of the hip-
pocampus and this enables us to further study the
correlation with various disorders in a more quantitative
and robust manner at much larger scale.

Second from an algorithmic point of view, the work pro-
poses an approach to utilize low-resolution training atlas
to segment structure at much higher resolution. Indeed,
the detailed tracing of target is very tedious manual work.
The growth of the scanner resolution improves the capa-
bility of detecting finer and finer structures. However, the
manual burden for volumetric atlas labeling increases
super-linearly with respect to the resolution growth.
Therefore, with the fast growth of data: size and resolu-
tion, we are in need of such an accurate and robust
approach to utilize the already created atlas in lower reso-
lution to analyze the higher resolution data.

We believe that this opens possibilities of future
research on hippocampal and other sub-cortical structure
morphometry correlating the changes in dentation with a
range of diseases and disease progression including epi-
lepsy, Alzheimer’s disease (AD), and schizophrenia.

Methods

As mentioned above, although numerous hippocampus
segmentation studies exist, to the best of our knowledge

none have demonstrated hippocampal dentation on 3T
MR images. This may be due to the fact that either the
labeling is performed in the native image resolution, or

the mesh/graph nodes density is not high enough.

Because of this, even contours drawn manually by an

expert, which is ubiquitously considered as the reference

standard, are not able to reveal fine hippocampal morpho-

logic features. As a result, existing online databases of
training data for multi-atlas segmentation approaches do

not contain such information.
In this work, we propose a coupled self-correcting

multi-atlas and active contour scheme to harness the
robustness of the multi-atlas method and achieve the
super-resolution segmentation capability under the active
contour framework.

The main idea of the present work is straight-forward:

the segmentation is performed on a much denser interpo-

lated grid to reveal the millimeter/sub-millimeter level
morphological features contained in the gray scale infor-

mation of the 1-millimeter scale native images.
However, several obstacles rise when dealing with images

at such a high resolution. First, despite the fact that the

multi-atlas based algorithms are currently achieving the most

accurate and robust performance for the purpose of segmen-

tation of the hippocampus, they heavily rely on the existence

of training segmentations. Unfortunately, since there have

not been training hippocampal segmentation under 3T MRI
revealing the fine dentation features, a multi-atlas approach

alone would not be applicable for the fine-scale segmentation

features at high resolution. Second, the high-resolution at

which the morphology of hippocampal dentation is apparent

would boost the data volume to a much larger magnitude,

Figure 1.

Top row: a prominently dentated hippocampus. Bottom row: a

minimally dentated hippocampus. (A),(E). Full sagittal images

through the hippocampus, which is surrounded by a dashed box.

(B),(F). Magnified view of the hippocampal region in original

image resolution of 1 mm 3 1 mm. The undulating hippocampal

contour in B is di cult to appreciate in the native resolution

when viewed up close, but is more apparent viewed from a

distance or when squinting. (C), (G). Hippocampal region in sub-

pixel resolution (0.1 mm 3 0.1 mm). The dentated contour of

the inferior hippocampal surface can be clearly seen in C as

opposed to the smooth contour in G. (D), (H) Reconstructed

inferior surface of the hippocampus at the native resolution, the

dentation information is lost. [Color figure can be viewed at

wileyonlinelibrary.com]
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as will be discussed below, more than 1000 times larger vol-

umetrically. Nonlinear registration, such as ITK’s symmetric-

demons [Ibanez et al., 2005] and ANTs [Avants et al., 2009],

often consumes 100–160 time number of pixels in memory

(single threaded execution, steady state memory consump-

tion, not peak). Assuming this scales linearly, a 1280*1280*750

matrix will require around 180 GB of memory. Handling

such a large data volume is a challenging issue for most

workstations.
Indeed, how to perform segmentation on such a locally

highly interpolated grid obtained from a monotonic inter-
polation in an accurate and robust way, is the main issue
we addressed in the research and the main contribution of
the paper. In addressing the above issues, we present the
following coupled two-stage approach that extracts the
fine hippocampal morphologic features from the widely
available 3T MR images.

To aid further discussion, we define some notations.
First, denote the novel image to be segmented as
I : Xs � R3 ! R, where the discrete domain (grid) on
which the image is defined is Xs :¼ xi; yj; zk

� �� �
with the

grid density (resolution) s5xi112xi5yi112yi5zi112zi. Stan-
dard 3T MR images often have s 5 1.0 mm. Alongside, a
set of training images are defined on the same domain as
Ii : Xs ! R; i50; . . . ; N21. Their respective manually seg-
mented binary images are Ji : Xs ! 0; 1f g; i50; . . . ; N21
with 1 indicating being inside the target, the hippocampus
being the present case.

The proposed method is detailed below. It contains two
main components. First, a “self-correcting” multi-atlas
scheme is used to determine the low-resolution hippocam-
pus probability map. After that, an active contour scheme
further refines the morphology at much higher interpo-
lated resolution.

Construction of probability map in native resolution via
a self-correcting multi-atlas approach

Due to its robustness and accuracy, the multi-atlas meth-
ods have been adopted in many segmentation scenarios.
The basic idea behind the atlas-based segmentation is to
drive segmentation by registration: to segment a novel
image, one registers already segmented images (training
images) to this novel image, and utilizes the resulting
transformation to deform the corresponding segmentations
(training label images) to the space of the novel image.
The basic scheme of the multi-atlas approach segmentation
can be divided into two steps: registration and label fusion:
First, each of the Ii images is registered to I, and the opti-
mal transformation Wi : Xs ! Xs minimizes the cost
function:

Wi5 arg min
W:Xs!Xs

d I xð Þ; Ii W xð Þð Þð Þ (1)

where the dis-similarity measurement d �; �ð Þ measures the
global discrepancy between the two images. After the regis-
tration, in the second stage of the multi-atlas segmentation,
each training label image Ji is transformed with Wi and the

transformed training label images, Ji 8Wi; i50; . . . ;N21, are
fused to form the segmentation.

The residual registration costs are often times used as
an indicator for the registration performance. However,
not only is a single value not sufficient in describing the
whole deformation field, but also such a value only
reflects the global discrepancy between the two images,
and is not specific about the target we are trying to extract.
To address such issues, in the fusion step researchers have
proposed localized methods that compare the local pat-
terns between the registered training images with the
novel image [Derix et al., 2014; Sabuncu et al., 2010; Wang
et al., 2011b, 2012].

While such collective decision making in the fusion step
improves the overall performance, such an idea can fur-
ther be employed in the upstream registration step. With
more accurate registration transformation, the fusion is
provided with better alignment and significantly better
accuracy and robustness is achieved [Gao et al., 2015].
However, there the filtering strategy is only performed
over the linear (affine) transformation. The nonlinear
deformation which reveals the detailed morphology is
computationally prohibitive to be processed through the
Kalman filtering scheme presented in [Gao et al., 2015].
The present research below proposes a computationally
feasible way to harness the nonlinear inter-relationship
among the training (label) images, and use such informa-
tion to correct the registration step, for a better overall
segmentation.

The key observation is this: the nonlinear transformation
Wi are computed to register the two grayscale images. As
a result, Wi should also align the corresponding binary
masks, which highlight the target regions. Formally, if Wi

and Wj register Ii and Ij to the I, respectively, we would
have

Ji 8Wi ’ I; and

Jj 8Wj ’ I
(2)

As a result, a by-product is a registration Wij :¼ Wi 8Wj
21

between Ji and Jj:

Ji 8Wij ’ Jj; and

Ii 8Wij ’ Ij; 8i 6¼ j
(3)

Since Ii’s are of the same modality and Ji ’s are binary
images, the quality of Wij can be evaluated at a point-wise
accuracy with straightforward metrics. Moreover, contrast-
ing to using the optimization final cost as the registration
quality assessment, such an evaluation is independent of
the registration optimization process. This provides an
approach, at the stage of registration, to cross check the reg-
istration performance and the possibility of self-correcting,
which is detailed next.

Furthermore, since the ultimate goal of the registration
is the segmentation of the target, the registration accuracy
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remote from the target is of less interest. Indeed, only the
registration accuracy around the target is affecting the seg-
mentation. Therefore, we can focus in particular on the
points x 2 Xs in the target, that is, Ji xð Þ 6¼ 0.

In the nonlinear registration between grayscale images,
the regularization plays a critical role in avoiding the sin-
gularity development. The choice of appropriate regulari-
zation is a fine art balancing the optimization stability
between desired registration accuracy, especially at the
sharp/fine-scale regions.

However, in the nonlinear registration between binary
images, fortunately, one can adopt a point set representa-
tion of the target [Gao and Tannenbaum, 2010]. Under
such a representation, a diffeomorphic registration can be
achieved without the usage of regularization. Specifically,
Ji and Jj are considered as non-normalized probability den-
sity functions (pdfs) of certain random variables Ri and Rj,
respectively. Evidently, Ri and Rj are uniformly distrib-

uted on the respective supports of Ji, Jj. Then, Q points are

sample from Ri and Rj, forming two sets of points

Pi5 p1
i ; . . . ; pQ

i

n o
;Pj5 p1

j ; . . . ; pQ
j

n o
� R3. To find an optimal

correspondence and diffeomorphic transformation among
the points.

We denote the correspondence between Pi and Pj by a
matrix A 2 0; 1f gQ3Q where Au;v51 0ð Þ indicates pu

i is corre-
sponding (not corresponding, resp.) with pu

i . Denoting the
pair-wise distance matrix C 2 RQ3Q as Cu;v5jjpu

i 2pv
j jj2

where jj�jj2 is the L2 norm, we find the correspondence
between the two sets of points by solving such as assign-
ment problem:

A5 min
~A2RQ3Q

jjC�~AjjFX
v

~Au;v518u 2 1; . . . ;Qf gX
u

~Au;v51 8v 2 1; . . . ;Qf g

~Au;v � 0 8u; v 2 1; . . . ;Qf g

(4)

where � is the Hadamard product of the two matrices
and jj�jjF is the matrix Frobenius norm. Moreover, it is
noted that the optimization variable ~A is not restricted to
be a binary matrix. Otherwise the optimization becomes
an NP-hard combinatorial problem. Fortunately, due to
the fact that the constraint matrix of (4) is totally unimodu-
lar, the resulting optimal A is a binary matrix [Burkard
et al., 2009]. This optimization problem can be shown to
be convex, and it can be effectively solved by using, for
example, the interior point method [Boyd and Vanden-
berghe, 2004]. The resulting matrix A will give a one-to-
one correspondence and transformation between Pi and Pj.
Hence, a transformation Wij is defined between Ji and Jj.

While the transformations obtained through different
route should coincide, we have Wij ’ ~W ij. That is,

Wi5 ~Wij 8Wj
211eij; 8j 6¼ i (5)

where eij is the residual transformation.

The final transformation bWi is computed as

bWi :¼ aWi1
12a

N21

X
j 6¼i

~W ij 8Wj
21

� �
(6)

where a 2 0; 1ð Þ is a convex weight adjusting the contribu-
tions from two routes.

Once the nonlinear transformations are computed, a
simple averaging scheme is adopted to obtain a probabil-
ity map U: Xs ! 0; 1½ � as

U xð Þ5 1

N

XN21

i50
Ji
bWi xð Þ
� �

(7)

Using the majority voting rule, the boundary of the target
can therefore be defined as the 0.5-isocontour of U xð Þ. It is
noted that though more sophisticated fusion schemes exist,
here the purpose is mainly to obtain a robust and accurate
probability map for the next step’s fine tuning of segmen-
tation, which is detailed in the next section.

Synergistic Surface Evolution for Super-

Resolution Segmentation

As discussed above, though a rich amount of segmenta-
tion schemes exists for the hippocampus, the shortcoming
of them all is that at the native image resolution, the fine
dentation morphology has not been captured in the 3T
MR image based segmentations. Moreover, due to the fact
that atlas based methods depend on training segmenta-
tions, it is apparent if certain shape features do not exist in
training set, it is rare, if not impossible, that they will be
captured by atlas based segmentation.

As a result, while the probability map U: Xs ! 0; 1½ �
obtained above contains valuable information about the
approximate morphology, it has to be fine-tuned in a more
de novo and data driven approach. The fine-tuning of the
surface in the up-sampled space is detailed below.

Monotonic Interpolation with Very Large

Interpolation Factor

To extract the fine morphology, the image I is up-
sampled by a factor of K and we now denote the new
image I : Xs=K ! R, where Xs=K :¼ xi; yj; zk

� �� �
with the

grid density (resolution) s=K5xi112xi5yi112yi5zi112zi In
this study we used the cubic spline for such a purpose.
Correspondingly, the probability map U is also interpo-
lated to be U which is defined on Xs=K. Two critical issues
have to be addressed to achieve successful overall
segmentation.

First, the choice of K is apparently critical for the capa-
bility of detecting fine scale morphology features. As our
experiments show in the next section, at 0.7 mm/pixel
(K � 1:4), which is a common resolution of 7T MRI, the
segmentation still does not capture dentation very well.
With K55(0.2 mm isotropic resolution), the dentations
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start to emerge. This is consistent with the observation
that at 9.4T with isotropic 0.2 mm/pixel resolution, the
reconstructed surfaces start to show the dentations [Yush-
kevich et al., 2009]. While the choice of K will be further
evaluated in Section 4, it is noted here that such a simple
up-sampling based process indeed reveals three important
issues: First, we may have overlooked the valuable infor-
mation already existing in the 3T MRI; Second, if we still
segment the structure in the native resolution, even the
0.7 mm/pixel resolution common in 7T MRI is not suffi-
cient for the this morphology study; Third, with the capa-
bility of extracting sub-pixel information, a large amount
of clinically acquired 3T images will be available for the
study of fine-scale morphology.

Most of the super-resolution studies only has an interpo-
lation factor K around 1.5, 2, or 3 in two-dimension [Dong
et al., 2014]. Interpolating to 10 times denser is very rare,
especially in three-dimension. This is the justifiable since
the objective of the super-resolution is to achieve better,
shaper, and more visually appealing appearance. With
such an objective, the usage of sophisticated super-
resolution techniques results in very high computation
load even for moderate K values for 2D images.

Contrastingly, the objective of the present work is not
on the textural content of the image: we are not trying to
infer the whole content of the 9.4T MR image from a 3T
image. Instead, one is only interested in the outer contour
of certain object. With such goal, we have to use very high
magnification factor K in all the three dimensions, and this
precludes the usage of sophisticated super-resolution tech-
niques such as those based on neural network and sparse
encoding. As it is shown in the result section, function
interpolation suffices such a purpose. However, cares
must be taken in the choice of the interpolation kernel,
which is the second issue detailed below.

With the purpose of locating the dentate surface, the
interpolation must not introduce any new edge/bound-
ary/surface, that is, the interpolation kernel must guaran-
tee the monotonicity and range of U [Fritsch and Carlson,
1980]. Indeed, non-monotonic interpolation may result in
Gibbs ringing artifacts, which may be mistakenly regarded
as ripples on the structure.

Figures 2 and 3 show the usage of different interpolation
scheme and their effects in the identification of the edges.
In both figures, the monotonic kernel results in a much
smoother and sharper hippocampus boundary.

Although the up-sampling provides richer morphology
details, boosting the resolution from 1 3 131:5 mm3 to an
isotropic 0.1 mm will dramatically increase the image vol-
ume size by a factor of 1500. As a result, a single image
file can be as large as 50G bytes, which is computationally
prohibitive. To address such an issue, realizing the notion
of the approximated hippocampus region has already
been encoded in U, we will focus the computation only
around the hippocampus, covering approximately 5 3 333
cm3 region.

In native resolution, manual tracing of a hippocampus
only covers roughly 30 sagittal slices. It is a time consum-
ing but still possible process. However, at 0.1 mm resolu-
tion a single side hippocampus occupies approximately
500 3 300 3 300 voxels. Contouring in all those slices is
extremely time-consuming, if not impossible at all, for
human raters. While currently computer-aided segmenta-
tion is only facilitating human contouring as the gold stan-
dard in the clinical resolution settings, at much higher
resolutions, paradigm must shift and computer-aid seg-
mentation is indispensable. It is also noted that some soft-
ware allows contouring in physical space, and the
resulting contour may achieve sub-pixel accuracy in 2D.
This may reveal the dentation pattern in a single slice.
However, when advancing to the next slice 1 or 1.5 mm
away, the overall spatial resolution is still too coarse for
the reconstruction of fine surface features in 3D. Inevita-
bly, one of the main claims of the present work is that for
such a fine-scale shape reconstruction, entirely manual
extraction is beyond the feasible capability of human rater,
and a computational approach seems necessary.

The main idea in this fine-tuning step, is that the algo-
rithm would learn the image features from the high proba-
bility region, defined by U, as well as the edge information
in I , together constrained by the spatial vicinity of U, to
compute the final segmentation.

To proceed, denote the high confidence learning region
D is defined as D :¼ fx 2 XS=K : U xð Þ > hg, where higher h

value indicates higher confidence. Then, to robustly cap-
ture the appearance inside the hippocampus, three robust
statistics, the median, inter-quartile range, and median
absolute deviation are measured locally for each location x
2 D as a feature vector f 2 R3. With the feature vectors
defined, the hippocampus appearance is now character-
ized by the probability density function ı �ð Þ of the feature
vectors estimated by the kernel density estimation proce-
dure [Botev et al., 2010; Gao et al., 2012b]. Essentially,
given any feature vector, the function ı �ð Þ will provide a
value measuring the likelihood for such a vector belonging
to the hippocampus. However, it may be the case that cer-
tain similar appearing images may also excite high likeli-
hood values even being remote from the hippocampus.
This may cause the segmentation to “leak”. To address
such an issue, under a Bayesian framework, the posterior
is computed as q(x):¼ı f xð Þð Þ � U xð Þ which synergizes both
the image appearance and the prior estimation of the loca-
tion of the target. This effectively mitigates the segmenta-
tion leakage problem. Such a posterior value can be
considered as the conformal metric defined on the image
domain [Caselles et al., 1997; Gao et al., 2012; Kichenass-
amy et al., 1996b]. This is achieved by the following varia-
tional approach. We denote the family of evolving surface
as C � R3. It evolves to minimize the energy functional:

E Cð Þ :¼ 2

ð
x in C

sq f xð Þð Þdx1k
ð

C

dA (8)

where in the first term the x traverses the space inside the
closed surface C and the second term is the total surface
area. The s and k are positive weighting factors.
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The first variation of the functional is computed and the
flow of the surface is governed by the partial differential
equation:

oC q; tð Þ
ot

5 2sq f C q; tð Þð Þð Þ1kj q; tð Þ½ �N q; tð Þ (9)

in which q is the spatial parametrization of the surface C;
N is the inward unit normal vector field on C, and j is the
mean curvature of the surface.

In addition to the regional statistic force, the edge based
force is also added to the flow. Define L5I�G to be the
LoG (Laplacian of Gaussian) filtered version of I, we
update the Equation (9) to

oC q; tð Þ
ot

5 L q; tð Þð Þ2sq f C q; tð Þð Þð Þ1kj q; tð Þ½ �N q; tð Þ (10)

Essentially, the surface will evolve and converge to the
locations that possess strong edge appearance, and are

similar in intensity statistics, yet spatially close to the atlas
derived probability map.

The LoG of the images at high-resolution is visualized in
Figure 4 to further emphasize the importance of the choice
of the interpolation kernel. In Figure 4, the background
gray-scale image is the up-sampled in the high-resolution.
The yellow curves indicate the zero-crossing regions of the
LoG image: x 2 R3 : jjL xð Þjj < 5

� �
. The red contour indi-

cates the initial contour obtained from the native-resolution
atlas based computation. It can be seen from the arrowing
pointing region that the initial contour passes the dentate
inferior hippocampal surfaces. In the fine tune step, it is
expected to evolve and converge to the correct dentations.
Moreover, we can see that much of the regions share very
similar intensity as the hippocampal region. A pure region-
based energy will drive the initial contour and leak into
those locations. Edge based energy term, with smaller
attraction region, serves our purpose here well since the ini-
tial atlas based contour is already quite close to the real

Figure 3.

Two coronal views are shown. Like the Figure 2, the non-monotonic kernel is used for the left panel

and the monotonic is used on the right. Again, the boundaries on the right side is much smoother and

sharper than those on the left. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2.

Sagittal view of the hippocampus region at high resolution using

different kernels. Left panel uses the non-monotonic cubic ker-

nel whereas the monotonic cubic kernel is used for the right

panel. In the dash-line circled regions, we can observe that the

hippocampus boundary on the left side has many zig-zag

artifacts. In particular, in the yellow circle on the hippocampus

tail, no obvious edge can be seen on the left panel, whereas a

clear half-circular shaped edge can be seen on the right side.

[Color figure can be viewed at wileyonlinelibrary.com]
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dentation. However, if the non-monotonic kernel is used,
shown on the left, the resulting image gets many superflu-
ous edges. As predicted by the Gibbs ringing effect, these
edges are spatially quite close to the real boundary, analo-
gous to the “main lobe” in the signal processing. Such adja-
cent edges will mislead the edge-based energy term to
converge to wrong locations. In contrast, with the mono-
tonic kernel on the right panel, there are much fewer iso-
lated edges attracting the contour evolution, and the
contour correctly converges to the desired location.

The entire process, including both the atlas and fine
tune steps, are fully automated. At convergence, with

proper setting of K (which is found to be around 10),
the final surface will enclose the hippocampus and will
be able to capture the hippocampal dentations, which is
the critical shape feature for various morphology
studies.

Quantitative Validation and Evaluation

As a preview, the segmentation of two hippocampi are
shown in Figure 5. Both images were taken under 3Tesla
MR scanner. The dentated structure of the inferior sur-
face of Figure 5F clearly differentiates it from that of

Figure 5.

Hippocampus with smooth inferior surface in (A) full sagittal

view, (B) magnified sagittal view with segmentation contour in

orange, and (C) 3D surface, inferior view. Hippocampus with

prominently dentated (bumpy) inferior surface in (D) sagittal

slice, (E) magnified sagittal view with segmentation contour in

orange, and (E) 3D surface, inferior view. The ridges that

produce the dentated appearance of the hippocampus can be

clearly seen in F and are notably absent in C. Comparing C/F

with Figure 1H/D, the improvement can be seen. The images

were obtained on a 3 Tesla MR scanner. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 4.

The LoG of the images at high-resolution. The yellow curves indicate the zero-crossing regions

of the LoG image: x 2 R3 : jjLðxÞjj < 5
� �

. The red contour indicates the initial contour

obtained from the native-resolution atlas based computation. See text for detailed discussion.

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5C. Such morphology, to the best of our knowl-
edge, has not been paid full attention under the segmen-
tation based on 1 mm resolution. Indeed, even the
volumetric segmentations traced by physicians following
consistent protocols do not reveal the characteristic mor-
phology under the hippocampus [Boccardi et al., 2011,
Boccardi, 2015].

However, a critical question is: are such dentations real,
or are they merely artifacts induced by the computation
approach? For example, in the one-dimensional signal
processing, one critical phenomena to avoid in interpola-
tion is the Gibbs ringing effect. Such effect introduces
“bumpy” artifacts into the original signal. In the present
study, it is critical to rule out such artifacts and quantita-
tively validate the morphological features we captured are
realistic and accurate.

While dentation can certainly be observed visually in a
3T image, to quantitatively validate the results, we have to
rely on higher field image where dentation can be
undoubtedly captured.

In this section, we design experiments to validate the
detected dentation.

Validation Framework

In Yushkevichet al. [2009], researchers obtained five
ultra-high resolution hippocampus images from three sub-
jects. Only the postmortem hippocampus region is imaged.
The imaging time ranges from 13 hours to 62 hours, under
a 9.4T ultra-high field scanner. The hippocampus are
traced out by experts from the five volumes. At such a
high resolution (0:2 3 0:2 3 0:3 mm3), the dentation of

Figure 6.

9.4 T images at various levels of resampling. From top to bottom the images are shown at 0.2

(native), 0.4, 0.67, and 1.0 mm per pixel to simulated the effect of lower resolution sampling.

The left column shows a prominently dentated hippocampus and the right shows a smooth hip-

pocampus. The bottom row on the left does not show the dentated contour seen in the top

image, while less of a difference is apparent on the right.

Figure 7.

The 1 mm resolution image on the left (same as the bottom left panel of Figure 6) is interpo-

lated back to 0.2 mm/pixel on the right. The internal texture is lost, but the dentated appear-

ance of the inferior boundary visually observed more precisely, particularly when viewed up

close.
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the hippocampus can unequivocally be observed and
captured.

Figure 6 shows two columns of images with varying res-
olution. The first row has the original resolution (0.2 mm/
pixel) and clearly the hippocampus on the left has a prom-
inently dentated inferior surface. The right one is relatively
flat. From the first to the fourth rows, the resolution
decreases from 0.2, 0.4, 0.67, to 1 mm/pixel. The denta-
tions of the hippocampus on the left are noticeable harder
to perceive, and the high quality image textures disappear,
while the less complex shape of the hippocampus in the
right panel is minimally affected. However, even in the
last row of the left panel, we can still visually detect traces
of dentation. This convey a critical message that: the den-
tation information is not totally lost at 1 mm resolution
and the dentate structures we visually appreciate in the 3T
images are truly reflecting the same structure in ultra-high
field. This key observation is the basis of our recovery.
However, if the segmentation is carried also at 1mm reso-
lution, the voxel size is too large to capture the fine
bumpy contour. Instead, to capture the fine dentation

information, the segmentation should be performed at

much higher resolution. Indeed, as an illustration, the

1 mm resolution image in the bottom left panel of Figure 6

is interpolated back to 0.2 mm/pixel, as shown in the right

panel of Figure 7, the dentation is visually better observed.

Computationally, using segmentation on such a down-

sample-then-up-sampled “high” resolution grid, we are

able to obtain closer to ground truth morphology.
This is also the approach we take to validate the pro-

posed method. The main idea is: starting from the high-

resolution (0.2 mm/pixel) image data, whose validated

segmentations are available, we first down-sample them to

1 mm/pixel resolution. The down-sampling is performed

using linear kernel. Other choices have been explored but

unlike the up-sampling step, here no difference was

observed among different choices. Then, using the pro-

posed method we aim to accurately depict the bumpy con-

tour of the hippocampi. The perceived dentation is then

compared with the ground truth.
However, there is a major obstacle for the proposed seg-

mentation method to be applied and validated on this
data set: the 9.4T images are only acquired around the hip-
pocampus area, the multi-atlas based on the whole-brain

Figure 8.

Segmentation on the 9.4T data. (A) 9.4T image as in (Yushkevich

et al., 2009) in which the dentation can be clearly seen. (B)

Original image with validated segmentation in (Yushkevich et al.,

2009). In it, the dentation is correctly captured. (C) Down-

sampled version of the original image to 1 mm resolution, then

interpolated to the 0.2 mm resolution. The internal texture can

hardly be discerned. However, the dentation on the inferior sur-

face of the hippocampus can still be seen. (D) The proposed

segmentation on C. The dentation captured and highly comparable

to the original segmentation in B. [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE I. The Hausdorff distance is measured between

the reference segmentation surface and that from the

proposed method (Ti)

Surface 1R 2L 2R 3L 3R

~Ti 2.1 1.9 1.5 1.8 2.0
Ti 0.7 0.3 0.6 0.2 0.4

As a comparison, the distance is also measured to the surface
without the super-resolution step ~Ti. With the super-resolution,
the largest surface discrepancies are correctly reduced. “R” and
“L” mean right and left, respectively, and 1, 2, or 3 refer to the
subject.

TABLE II. The Dice coefficients between the reference

segmentation volume and the proposed method, with

and without the super-resolution (SR) step

Segmentation 1R 2L 2R 3L 3R

without SR 0.81 0.80 0.82 0.78 0.81
with SR 0.81 0.81 0.80 0.79 0.82

In one case (2R), the Dice even drops. This is due to the fact that
in the high-resolution fine tuning steps, the contour slightly leaks
into the non-hippocampal region.
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training images are not directly applicable. To solve this
problem and use the small field-of-view (FOV) high-
resolution images in our validation, we take the approach
that to adapt the training images to the same FOV as that
of the 9.4T images.

To proceed, denote the five high-resolution 9.4T images
to be Gi

0:2 : X0:2 ! R; i50; . . . ; 5 where 0.2 indicates the
resolution. The validated segmentation is also provided in
[Yushkevich et al., 2009], and they are denoted as Hi

0:2

: X0:2 ! R; i50; . . . ; 5. Then, the Hi
0:20s are registered to

their average image H0:2, defined as H0:25
P

iHi
0:2=5, over

the 3D similarity transformation minimizing the mean-
square-error metric. After the registration, the average
image H0:2 is computed again with the registered Hi

0:20s

and the registration is performed again. Such iteration con-
verges in a few times and we get a final average image.
With slight abuse of notation, the final average image is
stilled denoted as H0:2.

After that, each training image Ji : Xs ! 0; 1f g is regis-
tered to H0:2 over the 3D similarity transformation mini-
mizing the mean-square-error metric. Once the registration
optimization converges, the registered training images and
their corresponding MR images are cropped to the FOV of
the H0:2. This way, all the training images and training
segmentations are defined on the similar FOV as the high-
resolution 9.4T MRIs, which enables the application of the
proposed algorithm on to them.

Visual Assessment

The G0:2 image is down-sampled to 1mm/pixel resolu-
tion and is denoted as G1. One slice of G1 is shown in
Figure 8C. After adapting the training images to G1, the
proposed algorithm is applied to it. The results are shown
in Figure 8D. Comparing with the validated segmentation
at the original resolution, shown in Figure 8B, the denta-
tion on the inferior surface is well kept.

Quantitative Evaluation

Two types of quantities often used for evaluating seg-
mentation accuracy: one based on the volumetric overlap-
ping, such as the Dice coefficient [Dice, 1945]. The other
often represents the point-wise distance measure, such as
variations of the Hausdorff distance [Hausdorff, 1962]. In
this study, since the primary interest is to capture the
bumpy morphology on the inferior aspect of the hippocam-
pus, the Dice coefficient is not sensitive to this measure.
Instead, we measure the largest distance from the manual
segmentation to the algorithm output in the sagittal slices.

Denote the surface of Hi
0:2 as Si

0:2. The proposed seg-
mentation is performed on the down-sampled 1 mm reso-
lution images, and their respective surfaces Ti are

TABLE III. Various metrics (Hosseini et al., 2014, 2015,

2016) between the reference segmentation volume and

the proposed method, with and without the super-

resolution (SR) step

ID/Metric Similarity Precision RMS MD Sensitivity RAVD

1R SR 0.70 0.89 0.44 0.28 0.86 0.06
w/o/SR 0.68 0.85 0.72 0.40 0.84 0.07

2L SR 0.68 0.83 0.28 0.20 0.81 20.07
w/o/SR 0.66 0.77 0.77 0.56 0.78 20.08

2R SR 0.71 0.77 0.48 0.30 0.76 0.10
w/o/SR 0.72 0.79 0.69 0.40 0.78 0.08

3L SR 0.65 0.79 0.17 0.10 0.73 0.10
w/o/SR 0.62 0.78 1.1 0.59 0.71 0.11

3R SR 0.69 0.83 0.37 0.19 0.81 20.07
w/o/SR 0.70 0.81 0.99 0.56 0.80 20.07

Among the metrics, it can be observed that the metrics based on
voxels and volumes are less sensitive to the SR than those based
on the distances. This correctly reflects the characteristics that the
fine-scale dentate structures do not significantly alter the volume
of the segmentation structure, yet they significantly change the
surface distance due to their ridges/valleys. The observation is
consistent with the comparison based on the Dice and Hausdorff
metrics shown in Tables I and II.

Figure 9.

Inferior view of six right hippocampus. A, B: asymmetry group; C, D: bumpy group; E, F: smooth

group. The arrowheads indicate the prominent dentes and their approximate orientations. Note

the visible dentation in A and B on this side. [Color figure can be viewed at wileyonlinelibrary.

com]
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recorded. As a comparison, the proposed segmentation,
without the super-resolution step, is also performed
directly under the 1 mm resolution, with their respective

surfaces ~Ti. The Hausdorff distance is measured between
Si and all the resulting surfaces and are shown in Table I.
The unit of distance is mm.

Figure 10.

Inferior view of six right hippocampi. A, B: asymmetry group; C, D: bumpy group; E, F: smooth

group. The arrowheads indicate the prominent dentations and their approximate orientations.

Note the lack of dentation in A and B on this side. [Color figure can be viewed at wileyonlineli-

brary.com]

Figure 11.

Four right hippocampi from the ADNI data set. The top row shows surface renderings from the

validated segmentations in the native resolution; the bottom row shows surfaces from the pro-

posed super-resolution method. Panel A shows a hippocampus with a smooth inferior surface,

which shows little difference between rows, whereas the other three panels show hippocampi

with prominent dentations that are much more clearly seen in the bottom row. [Color figure

can be viewed at wileyonlinelibrary.com]
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As a comparison, the Dice coefficients with and without
the super-resolution are also computed, as shown in Table
II. Though there are only five cases, it can be observed
that the Dice coefficients do not fluctuate much. This indi-
cates that the proposed super-resolution (SR) scheme is
valuable in capturing and reconstructing fine detailed
morphology, while the overall volumetric accuracy is not
the main objective of the proposed scheme.

Hosseini et al. provided a comprehensive evaluation of
the hippocampus segmentation algorithms [Hosseini et al.,
2014, 2015, 2016]. They categorize various metrics into three
groups. The three groups of metrics base their evaluation
on, respectively, voxel, distance, and volume. To better
characterize the segmentation with and without the super
resolution scheme, we also compute the evaluation metrics
in [Hosseini et al., 2014, 2015, 2016], shown in Table III.

EXPERIMENTS ON 3T CLINICAL DATA

In this section, we apply the proposed algorithm to
extract the fine-scale hippocampal dentation from epilepsy
patients and AD patients.

Epilepsy Data and Neurologist’s Visual

Assessment

Six scans were selected from an existing IRB-approved
database of clinical epilepsy patient scans maintained by
one of the authors (LV) at the Epilepsy Center of the Uni-
versity of Alabama at Birmingham. Epilepsy patients are
of particular interest because of the prevalence of temporal
lobe epilepsy and unilateral hippocampal atrophy/hippo-
campal sclerosis in this population, hence the use of this
database as a source for test scans, including those with
symmetric appearing hippocampi for the sake of unifor-
mity of scan acquisition. All scans were acquired on a sin-
gle 3T Philips Achieva platform (Philips Healthcare,
Einthoven, Netherlands) with an 8-channel head coil. A
common T1-weighted MPRAGE sequence was used with
1 mm resolution in the sagittal plane (FOV 256 mm) and
1.2 mm thick slices for both visual evaluation and analysis.
Basic sequence parameters include a TR of 7 ms, a TE of
3.3 ms, and a flip angle of 88.

Visual review of gray-scale MR images for assessment
of dentation was done in OsiriX by scrolling through all
the sagittal slices of each hippocampus; due to the

Figure 12.

Four left hippocampi from the ADNI data set. The top row

shows sur-face renderings from the validated segmentations in

the native resolution; the bottom row shows surfaces from the

proposed super-resolution method. Panel A shows a hippocam-

pus with a smooth inferior surface, which shows little difference

between rows, whereas the other three panels show hippo-

campi with prominent dentations that are much more clearly

seen in the bottom row as in Figure 11. [Color figure can be

viewed at wileyonlinelibrary.com]
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curvilinear shape of the hippocampus, no single sagittal
plane is capable of completely capturing dentation. Default
automatic interpolation for zooming was turned on as is
the typical practice in clinical imaging review [Rosset
et al., 2004].

A large number of scans were visually reviewed by a
board-certified clinical neuroimaging expert, and those
included in this study were individually selected as repre-
sentative examples of three groups of hippocampal
appearance: 1. prominent hippocampal dentation bilater-
ally “bumpy”), 2. virtually no dentation bilaterally
(“smooth”), and 3. asymmetric dentation. Figures 9 and 10
show the reconstructed surfaces of the extracted hippo-
campi. Subjects A-C are the asymmetric group, subjects D
and E are the bumpy group, and subjects F and G are the
smooth group. Subjects ranged in age from 23 to 58 years
with no particular distribution between groups, and all
subjects but one was female.

Regarding the diagnostic interpretation of the scans,
subjects B and C (asymmetric group) showed mild to
moderate right hippocampal atrophy and T2 signal hyper
intensity on coronal images in the clinical imaging proto-
col, which included coronal FLAIR and high-resolution
coronal T2w sequences (not shown here). Subject D
(bumpy group) had a right parietal trans-mantle cortical
dysplasia, but no abnormality affecting the hippocampi;
the remainder of the subjects’ scans were unremarkable.

The proposed algorithm configuration was developed
independent of the reviewers’ classification of each of the
14 hippocampi analyzed, but visualization of the resulting
surfaces shows that they compare favorably as seen in Fig-
ures 9 and 10.

Regarding classification of the degree of dentation, the
subjects in this study were chosen as clear examples of the
morphologic variation that exists across individuals based
on the clinical imaging experience of the reviewer. Two
such cases, one with a bumpy appearance and the other
with a smooth appearance are detailed in the Figure 5
mentioned above. Certainly there is a spectrum of degrees
of “bumpiness” between the few examples used in this
study, and the categories used herein are not intended to
be comprehensive or exhaustive. Rather, they are intended
simply to be illustrative. It is also important to note that,
based on our experience, very bumpy and very smooth
hippocampi are commonly seen in the normal population,
though striking degrees of asymmetry as seen in our
asymmetric group are uncommon in the absence of hippo-
campal pathology.

ADNI Hippocampus Data

The proposed method is applied to all the 3T images in
the hippocampus segmentation project in [Boccardi et al.,
2015]. In this data set, all the hippocampi have been
segmented and validated by human experts. However,
although such reference segmentation has been validated,

due to the limitation that the segmentation is only per-
formed and recorded in the native resolution, certain mor-
phological features are inevitably lost. Surface renderings
from the native resolution segmentations are shown in the
top rows of Figures 11 and 12. In particular, from the
binary label images, the marching cube algorithm is used
to extract the surface using the 3D Slicer [Lorensen and
Cline, 1987]. The Laplacian smoothing is applied for 10
iterations simply to avoid the stacking effect and no trian-
gle decimation is performed.

Contrastingly, the bottom rows in Figures 11 and 12
show the surfaces extracted from the same procedure and
parameters, but from the proposed super-resolution
method.

We can observe from the comparison that, the
hippocampus-A in both Figures have rather smooth (not
bumpy) inferior surfaces. In such a situation, both the top
(native resolution) and bottom (super resolution) rows cor-
rectly reflect such morphologic features.

However, for the other three hippocampi (not necessar-
ily paired), while prominent dentation can be seen in the
proposed method, they are only marginally well observed
in the surfaces extracted from the native resolution expert
validated segmentation. It is convincing to observe that
the surfaces from the native resolution capture certain
degree of the largest dents in Figures 11B,D and 12C,D.

This clearly demonstrates that, although the reference
segmentation is the current reference standard, due to the
limitation that it is performed and recorded in the native
image resolution, the resulting segmentation is not able to
reflect certain morphologic features that are indeed cap-
tured by the imaging devices. On the other hand, by crea-
tively extending the segmentation to the sub-pixel space,
the important features of hippocampal morphology can be
correctly reconstructed.

CONCLUSION AND DISCUSSION

We present a segmentation scheme for the hippocampus
that reveals subtle surface morphological features unique
to the hippocampus. The proposed method enables delin-
eation of surface features that are often overlooked and
not well depicted with segmentation performed in the
native resolution. This analysis was based on a sequence
commonly collected in clinical and research protocols.
While ultra-high resolution images obtained in vivo at 7T
or ex vivo at 9.4T would be ideal, the lack of access to
these scanners and the non-trivial nature of obtaining such
images with high quality severely limits their use to the
broader neuroscience community. By contrast, most large
hospitals and all major research centers in North America
have access to 3T.

Evidently, the dentation on the hippocampus also signif-
icantly increases the hippocampal surface and CA1 vol-
ume. Such dentational structure is spatially close to the
dentate gyrus which is known to contribute to the
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formation of new episodic memories and more impor-
tantly of being one of a select few brain structures with
high rates of neurogenesis after birth. As a result, the
study of the dentation structure on the hippocampal sur-
face may reveal the meso-scale effect of neurogenesis in
adulthood. This opens up numerous possibilities of future
research in hippocampal surface analysis correlating the
degree of dentation with a variety of clinical parameters in
a range of common diseases known to involve the hippo-
campus including epilepsy, AD, and schizophrenia, for
which publicly available databases of 3T images already
exist.

Ongoing research includes applying the algorithm to
larger sets of data, quantifying the degree of dentation,
and correlation that with various physiology, psychology
and psychiatry conditions.

Moreover, several issues rise in the presented research
are further discussed below.

How High Resolution Is Sufficient?

In this work, the resolution of the dense image grid was
chosen to be isotropic 0.1mm. This was determined empiri-
cally by balancing the computation load and the necessity
for revealing the features of dentation. First, 9.4T images
with a resolution of 0.2 mm per pixel, the dentations can
be reconstructed from the binary segmentation volume.
Therefore 0.2 mm per pixel could be sufficient. On the
other hand, it was observed in the experiment that the
dentation can be better captured when the density if fur-
ther increased to 0.1 mm per pixel. However, further
increasing the density does not increase the performance,
measured by the Hausdorff distance.

Theoretically, the Nyquist sampling theorem dictates
that the sampling frequency should be at least twice of the
highest frequency in the original signal. However, individ-
ual dentes commonly have a width of approximately 2
mm—corresponding to a wave length of 4 mm. Nyquist
would predict a sampling rate denser than 2 mm/pixel
would be sufficient. On one hand, this supports the notion
that the native resolution used in this study may capture
dentation information. On the other hand, it says little
about how such captured information can be correctly
interpreted by the later segmentation to reconstruct the
bump, which, is the main topic of the present report.

Moreover, the proposed method is performed on the
rectangular grid. Therefore, the total number of samples is
cubic with respect to the resolution. This, however, could
be reduced if the processing algorithm is performed on a
graph, which can be constructed in a way that it is dense
only along the boundary. On the other hand, it is noted
that numerical processing on a rectangular grid is often
more stable. Indeed, the boundary computation using level
set on a grid enjoys more numerical advantages than its
original version on parametric curve/surface. In our on-
going research, we are improving our previous short path

based algorithm [Zhu et al., 2014] to the graph to improve
the computation efficiency of the proposed method.

It is also worth noting that super-resolution techniques
have been studied in previous reports, in particular for
boosting the resolution of the image taken at lower resolu-
tion, see [Bahrami et al., 2016; Gao et al., 2012; Tian and
Ma, 2011; Yang et al., 2010; Yu et al., 2012; Zeyde et al.,
2012c] and the references therein.

While the generic super-resolution schemes provide
exciting results, in this study we approached the problem
in a novel way for three reasons. First, through our evalu-
ation we discovered that, we need a 10x super-resolution
ratio whereas most existing super-resolution methods have
a ratio less than 5. Above that, the numerical stability may
become an issue. Second, it is too computationally heavy
even in 2D, not to mention in 3D to boost the resolution
ten times in all directions with standard approaches.
Finally, in this study we are in particular focusing on the
morphologic contour of a specific structure, whereas the
purpose of general super-resolution methods is for the
entire textural content of the image not just boundaries of
structures. Because of these, the proposed scheme is
designed to balance the morphologic accuracy and the
computation complexity.

Quantification of Dentation

With the capability of accurately and robustly capturing
the hippocampal dentation, the next question is how to
quantitatively analyze the overall degree of dentation in
terms of the quantity and depth of the dents, and correlate
them with various physiologic, psychometric, and diag-
nostic parameters. To that end, in future work we can
leverage the surface parameterization frameworks based
on conformal mapping [Angenent et al., 1999; Gao et al.,
2006], Graph theory [Gelas and Gouail-lard, 2007], as well
as the optimal transportation [Haker et al., 2004; Sandhu
et al., 2012; Su et al., 2015]. Once the surface is parameter-
ized on certain regular domain, the geometrical and statis-
tical features of dentation can be quantified through a
multi-scale approach [Gao et al., 2007; Schr€oder and Swel-
dens, 1995], which is able to characterize the bumps at the
specific size and scale.

Validation in the Era of Big Data

In Section 3.3, a quantitative evaluation is performed to
validate the results. We further detailed the difficulty and
challenge in the validation at such dense and large data
set. Indeed, the enabling factor of such a validation still
relies on the seminal work of [Yushkevich et al., 2009],
which is human-work intensive and only has five public
cases. All the results after that, including the epilepsy and
AD, are largely visually assessed without quantitative
validation.
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In most existing reports evaluating segmentation accu-
racy done in the native resolution (	1mm isotropic), the
imaging reviewers only have to manually contour roughly
30 slices to cover the entire hippocampus. While this pro-
cess is already time consuming and tedious, it is still man-
ageable. Fortunately, the results of these efforts are publicly
available for the community in several outstanding open
data sets, such as [Boccardi et al., 2015], which includes
more than one hundred expert validated segmentations.

By contrast, to validate the fine detailed segmentation/
morphology in the present work, one has to contour ten
times as many slices. In addition, in each slice, much more
precision has to be taken to delineate the shape detail.
Essentially, contouring each volume is similar to that in
[Yushkevich et al., 2009] and many fewer data sets can be
manually contoured in a given amount of time.

This poses a general problem of validation of image
computing in the era of big data. Previously, human com-
putation has always been considered to be the reference
standard against which any computer based algorithm
must be compared. Consequently, the computer aided seg-
mentation has only facilitated or approximated human con-
touring in the clinical resolution settings. Unfortunately,
the complexity and size of data sets have increased to the
extent that human evaluation cannot not feasibly meet the
need for validation, both quantitatively and qualitatively.
At such a high resolution and data quantity, the paradigm
has shifted and the computer aid is no long merely facili-
tating, but rather has become indispensable.

One example is in the statistical shape analysis where
group difference is computed from two sets of complex
geometric shapes. There, the results are inherently not
assessable to human observers. Recently, this issue has
been addressed by designing an algorithm to validate
other algorithms [Gao et al., 2014], and newly designed
algorithm can now be quantitatively validated against
algorithm-generated, instead of human-generated, “ground
truth” [Gao and Bouix, 2016]. Similarly, in the digital
pathology field, the segmentation of millions of nuclei in a
single whole slide histopathology scan is impossible to be
checked by any imaginable single human effort, and a
computational approach is necessary to aid such a process
[Zhou et al., 2017].

Inspired by those ideas, adopting such algorithm-
generated data sets as the “ground truth” reference may
be a feasible solution for the validation of fine detailed
image segmentation. However, how such data sets can be
designed and how to avoid bias in the validation, are
important yet unsolved future research topics.
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